Logics for Hyperproperties

Martin Zimmermann

Saarland University

May, 19th 2017
Centre Fédéré en Vérification, Brussels, Belgium

Hyperproperties

- The system \mathcal{S} is input-deterministic: for all traces t, t^{\prime} of \mathcal{S}

$$
t=ı t^{\prime} \quad \text { implies } t=0 t^{\prime}
$$

Hyperproperties

- The system \mathcal{S} is input-deterministic: for all traces t, t^{\prime} of \mathcal{S}

$$
t=I t^{\prime} \quad \text { implies } \quad t=0 t^{\prime}
$$

- Noninterference: for all traces t, t^{\prime} of \mathcal{S}

$$
t=I_{\text {public }} t^{\prime} \text { implies } t=o_{\text {public }} t^{\prime}
$$

Hyperproperties

- Both properties are not trace properties, i.e., sets $T \subseteq \operatorname{Traces}(\mathcal{S})$ of traces, but
■ hyperproperties, i.e., sets $H \subseteq 2^{\operatorname{Traces}(\mathcal{S})}$ of sets of traces.
■ A system \mathcal{S} satisfies a hyperproperty H, if $\operatorname{Traces}(\mathcal{S}) \in H$.

Example: Noninterference as trace property:

$$
\left\{T \subseteq \operatorname{Traces}(\mathcal{S}) \mid \forall t, t^{\prime} \in T: t=I_{\text {public }} t^{\prime} \Rightarrow t=o_{\text {public }} t^{\prime}\right\}
$$

Hyperproperties

- Both properties are not trace properties, i.e., sets $T \subseteq \operatorname{Traces}(\mathcal{S})$ of traces, but
■ hyperproperties, i.e., sets $H \subseteq 2^{\operatorname{Traces}(\mathcal{S})}$ of sets of traces.
■ A system \mathcal{S} satisfies a hyperproperty H, if $\operatorname{Traces}(\mathcal{S}) \in H$.

Example: Noninterference as trace property:

$$
\left\{T \subseteq \operatorname{Traces}(\mathcal{S}) \mid \forall t, t^{\prime} \in T: t=I_{\text {public }} t^{\prime} \Rightarrow t=o_{\text {public }} t^{\prime}\right\}
$$

Specification languages for hyperproperties
HyperLTL: Extend LTL by trace quantifiers.
HyperCTL*: Extend CTL* by trace quantifiers.

Outline

1. HyperLTL

2. The Models Of HyperLTL
3. HyperLTL Satisfiability
4. HyperLTL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

LTL in One Slide

Syntax

$$
\varphi::=a|\neg \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi
$$

where $a \in$ AP (atomic propositions).

LTL in One Slide

Syntax

$$
\varphi::=a|\neg \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi
$$

where $a \in$ AP (atomic propositions).

Semantics

$w, n \models \varphi$ for a trace $w \in\left(2^{\mathrm{AP}}\right)^{\omega}$ and a position $n \in \mathbb{N}$:

- $w, n \models \varphi_{0} \mathbf{U} \varphi_{1}: w r \cdots \begin{array}{cccc}\varphi_{0} & \varphi_{0} & \varphi_{0} & \varphi_{1} \\ 1 & 1 & 1 & \\ n & & \end{array}$

LTL in One Slide

Syntax

$$
\varphi::=a|\neg \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi
$$

where $a \in$ AP (atomic propositions).

Semantics

$w, n \models \varphi$ for a trace $w \in\left(2^{\mathrm{AP}}\right)^{\omega}$ and a position $n \in \mathbb{N}$:

- $w, n \models \mathbf{X} \varphi$:

- $w, n \models \varphi_{0} \mathbf{U} \varphi_{1}: w r \cdots \begin{array}{cccc}\varphi_{0} & \varphi_{0} & \varphi_{0} & \varphi_{1} \\ 1 & 1 & 1 & \\ n & & \end{array}$

Syntactic Sugar
■ $\mathbf{F} \psi=\operatorname{true} \mathbf{U} \psi$
■ $\mathbf{G} \psi=\neg \mathbf{F} \neg \psi$

HyperLTL

HyperLTL $=$ LTL + trace quantification

$$
\begin{aligned}
& \varphi::=\exists \pi . \varphi|\forall \pi . \varphi| \psi \\
& \psi::=a_{\pi}|\neg \psi| \psi \vee \psi|\mathbf{X} \psi| \psi \mathbf{U} \psi
\end{aligned}
$$

where $a \in \mathrm{AP}$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

HyperLTL

HyperLTL $=$ LTL + trace quantification

$$
\begin{aligned}
& \varphi::=\exists \pi . \varphi|\forall \pi . \varphi| \psi \\
& \psi::=a_{\pi}|\neg \psi| \psi \vee \psi|\mathbf{X} \psi| \psi \mathbf{U} \psi
\end{aligned}
$$

where $a \in \mathrm{AP}$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

- Prenex normal form, but
- closed under boolean combinations.

Semantics

$$
\begin{aligned}
& \qquad \varphi=\forall \pi . \forall \pi^{\prime} . \mathrm{G} \text { on }_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} \\
& T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega} \text { is a model of } \varphi \text { iff }
\end{aligned}
$$

Semantics

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathrm{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\left\} \models \forall \pi . \forall \pi^{\prime} . \mathrm{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}\right.
$$

Semantics

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathrm{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\begin{aligned}
\} & \models \forall \pi \cdot \forall \pi^{\prime} . \mathbf{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} \\
\{\pi \mapsto t\} & \models \forall \pi^{\prime} . \mathrm{Gon}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} \quad \text { for all } t \in T
\end{aligned}
$$

Semantics

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathrm{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\begin{array}{rlrl}
\} & \models \forall \pi \cdot \forall \pi^{\prime} . \mathrm{Gon} \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & \\
\{\pi \mapsto t\} & \models \forall \pi^{\prime} \cdot \mathrm{Gon}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & & \text { for all } t \in T \\
\left\{\pi \mapsto t, \pi^{\prime} \mapsto t^{\prime}\right\} & \models \mathrm{Gon}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & & \text { for all } t^{\prime} \in T
\end{array}
$$

Semantics

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathrm{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\begin{array}{rlrl}
\} & \models \forall \pi . \forall \pi^{\prime} . \mathrm{Gon}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & \\
\{\pi \mapsto t\} & \models \forall \pi^{\prime} . \mathrm{Gon} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & & \text { for all } t \in T \\
\left\{\pi \mapsto t, \pi^{\prime} \mapsto t^{\prime}\right\} & \models \mathrm{Gon}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & & \text { for all } t^{\prime} \in T \\
\left\{\pi \mapsto t[n, \infty), \pi^{\prime} \mapsto t^{\prime}[n, \infty)\right\} & \models \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & & \text { for all } n \in \mathbb{N}
\end{array}
$$

Semantics

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathrm{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\begin{aligned}
& \left\} \models \forall \pi \cdot \forall \pi^{\prime} . \mathrm{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}\right. \\
& \{\pi \mapsto t\} \models \forall \pi^{\prime} . \mathrm{Gon}_{\pi} \leftrightarrow \text { on }_{\pi^{\prime}} \quad \text { for all } t \in T \\
& \left\{\pi \mapsto t, \pi^{\prime} \mapsto t^{\prime}\right\} \vDash \mathrm{G} \mathrm{n}_{\pi} \leftrightarrow \text { on }_{\pi^{\prime}} \quad \text { for all } t^{\prime} \in T \\
& \left\{\pi \mapsto t[n, \infty), \pi^{\prime} \mapsto t^{\prime}[n, \infty)\right\} \models \text { on }_{\pi} \leftrightarrow \text { on }_{\pi^{\prime}} \quad \text { for all } n \in \mathbb{N} \\
& \text { on } \in t(n) \Leftrightarrow \text { on } \in t^{\prime}(n)
\end{aligned}
$$

Applications

- Uniform framework for information-flow control
- Does a system leak information?

■ Symmetries in distributed systems

- Are clients treated symmetrically?
- Error resistant codes
- Do codes for distinct inputs have at least Hamming distance d ?
- Software doping
- Think emission scandal in automotive industry

The Virtues of LTL

LTL has many desirables properties:

1. Every satisfiable LTL formula is satisfied by an ultimately periodic trace, i.e., by a finite and finitely-represented model.
2. LTL satisfiability and model-checking are PSpace-complete.
3. LTL and $\mathrm{FO}[<]$ are expressively equivalent.

Which properties does HyperLTL retain ?

References

- Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security (2010).
■ Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. Temporal logics for hyperproperties. In Proceedings of POST 2014.
- Bernd Finkbeiner and Markus N. Rabe. The Linear-Hyper-Branching Spectrum of Temporal Logics. it-Information Technology (2014).
- Markus N. Rabe. A Temporal Logic Approach to Information-flow Control. PhD thesis, Saarland University (2016).

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability
4. HyperLTL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

What about Finite Models?

Fix $\mathrm{AP}=\{a\}$ and consider the conjunction φ of

- $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$

What about Finite Models?

Fix $\mathrm{AP}=\{a\}$ and consider the conjunction φ of

- $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$
- $\exists \pi . a_{\pi}$

What about Finite Models?

Fix $\mathrm{AP}=\{a\}$ and consider the conjunction φ of

- $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$
- $\exists \pi . a_{\pi}$

What about Finite Models?

Fix $\mathrm{AP}=\{a\}$ and consider the conjunction φ of

- $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$
- $\exists \pi . a_{\pi}$
- $\forall \pi . \exists \pi^{\prime} . \mathbf{F}\left(a_{\pi} \wedge \mathbf{X} a_{\pi^{\prime}}\right)$

$$
\begin{array}{cllllllll}
\{a\} & \emptyset & \cdots
\end{array}
$$

What about Finite Models?

Fix $\mathrm{AP}=\{a\}$ and consider the conjunction φ of

- $\forall \pi$. $\left(\neg a_{\pi}\right) \cup\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$
- $\exists \pi . a_{\pi}$
- $\forall \pi . \exists \pi^{\prime} . \mathbf{F}\left(a_{\pi} \wedge \mathbf{X} a_{\pi^{\prime}}\right)$

$\{a\}$	\emptyset	\cdots						
\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots

What about Finite Models?

Fix AP $=\{a\}$ and consider the conjunction φ of

- $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$
- $\exists \pi . a_{\pi}$
- $\forall \pi . \exists \pi^{\prime} . \mathbf{F}\left(a_{\pi} \wedge \mathbf{X} a_{\pi^{\prime}}\right)$

$\{a\}$	\emptyset	\cdots						
\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots
\emptyset	\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots
\vdots								

The unique model of φ is $\left\{\emptyset^{n}\{a\} \emptyset^{\omega} \mid n \in \mathbb{N}\right\}$.

What about Finite Models?

Fix $\mathrm{AP}=\{a\}$ and consider the conjunction φ of

- $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$
- $\exists \pi . a_{\pi}$
- $\forall \pi . \exists \pi^{\prime} . \mathbf{F}\left(a_{\pi} \wedge \mathbf{X} a_{\pi^{\prime}}\right)$

$\{a\}$	\emptyset	\cdots						
\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots
\emptyset	\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots
\vdots								

The unique model of φ is $\left\{\emptyset^{n}\{a\} \emptyset^{\omega} \mid n \in \mathbb{N}\right\}$.
Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by any finite set of traces.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.
Proof
■ W.I.o.g. $\varphi=\forall \pi_{0} . \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k} . \exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.
■ Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.
Proof
■ W.I.o.g. $\varphi=\forall \pi_{0}$. $\exists \pi_{0}^{\prime} . \cdots \forall \pi_{k} . \exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.
■ Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.
Proof

- W.I.o.g. $\varphi=\forall \pi_{0}$. $\exists \pi_{0}^{\prime} . \cdots \forall \pi_{k}$. $\exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.
- Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

$$
\begin{array}{r}
f_{0}(t) \\
f_{1}(t, t)
\end{array} f_{k}(t, \ldots, t)
$$

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} . \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k}$. $\exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.

- Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} . \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k}$. $\exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.

- Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} . \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k}$. $\exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.

- Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

The limit is a model of φ and countable.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$ 1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\quad\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$ 1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the trace $x\{a\}\{b\} y$.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$ 1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every $n . \quad\{a\}\{a\}\{b\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the trace $x\{a\}\{b\} y$.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$ 1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the $\{a\}\{a\}\{b\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$ $\{a\}\{a\}\{b\}\{a\}\{b\}\{b\} \emptyset^{\omega}$ trace $x\{a\}\{b\} y$.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$ 1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.
$\{a\}\{a\}\{b\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the trace $x\{a\}\{b\} y$.
$\{a\}\{a\}\{b\}\{a\}\{b\}\{b\} \emptyset^{\omega}$
$\{a\}\{a\}\{a\}\{b\}\{b\}\{b\} \emptyset^{\omega}$

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$ 1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.
$\{a\}\{a\}\{b\}\{b\}\{a\}\{b\} \emptyset^{\omega}$
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the trace $x\{a\}\{b\} y$.
$\{a\}\{a\}\{b\}\{a\}\{b\}\{b\} \emptyset^{\omega}$
$\{a\}\{a\}\{a\}\{b\}\{b\}\{b\} \emptyset^{\omega}$
Then, $T \cap\{a\}^{*}\{b\}^{*} \emptyset^{\omega}=\left\{\{a\}^{n}\{b\}^{n} \emptyset^{\omega} \mid n \in \mathbb{N}\right\}$ is not ω-regular.

What about Ultimately Periodic Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

What about Ultimately Periodic Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!

References

- Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In Proceedings of STACS 2017.

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

5. The First-order Logic of Hyperproperties
6. Conclusion

Undecidability

The HyperLTL satisfiability problem:
Given φ, is there a non-empty set T of traces with $T \models \varphi$?
Theorem
HyperLTL satisfiability is undecidable.

Undecidability

The HyperLTL satisfiability problem:
Given φ, is there a non-empty set T of traces with $T \models \varphi$?
Theorem
HyperLTL satisfiability is undecidable.
Proof:
By a reduction from Post's correspondence problem.
Example

$$
\text { Blocks } \quad(a, b a a) \quad(a b, a a) \quad(b b a, b b)
$$

Undecidability

The HyperLTL satisfiability problem:
Given φ, is there a non-empty set T of traces with $T \models \varphi$?
Theorem
HyperLTL satisfiability is undecidable.
Proof:
By a reduction from Post's correspondence problem.
Example

$$
\text { Blocks } \quad(a, b a a) \quad(a b, a a) \quad(b b a, b b)
$$

A solution:

b	b	a	a	b	b	b	a	a
b	b	a	a	b	b	b	a	a

Undecidability

The HyperLTL satisfiability problem:
Given φ, is there a non-empty set T of traces with $T \models \varphi$?
Theorem
HyperLTL satisfiability is undecidable.
Proof:
By a reduction from Post's correspondence problem.
Example

$$
\text { Blocks } \quad(a, b a a) \quad(a b, a a) \quad(b b a, b b)
$$

A solution:

Undecidability

1. There is a (solution) trace where top matches bottom.

Undecidability

1. There is a (solution) $\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}$ trace where top matches bottom.

Undecidability

1. There is a (solution)

$$
\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}
$$ $\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}$ trace where top matches bottom.

2. Every trace is finite and starts with a block or is empty.

Undecidability

1. There is a (solution)

$$
\{b\}\{b\}\{a\} \backslash\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}
$$ trace where top matches bottom.

2. Every trace is finite and starts with a block or is empty.

Undecidability

1. There is a (solution)

$$
\{b\}\{b\}\{a\} \backslash\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}
$$ trace where top matches bottom.

2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

$\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\}$ 冋 $^{\omega}$

1. There is a (solution) trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

$\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\}$ 冋 $^{\omega}$

1. There is a (solution) $\left(\{b\}\{b\}\langle a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not b^{\omega}\right.$ trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

1. There is a (solution) trace where top matches bottom.
2. Every trace is finite
 and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

1. There is a (solution) trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.

$$
\begin{aligned}
& \{b\}\{b\}\{a\}|\{a\}\{b\}|\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega} \\
& \text { (}\{b\}\{b\}\left\lceil\{a\}\{a\}\lceil b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}\right. \\
& \begin{array}{lllllcccc}
\{a\} & \{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset \\
\emptyset^{\omega} \\
\{a\} & \{a\} & \{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset \\
\emptyset^{\omega}
\end{array} \\
& \begin{array}{rlcccccccc}
\{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset^{\omega} \\
\{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset^{\omega}
\end{array}
\end{aligned}
$$

3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

1. There is a (solution) trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.

$$
\begin{aligned}
& \{b\}\{b\}\{a\}|\{a\}\{b\}|\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega} \\
& \left(\{b\}\{b\}\lceil a\}\{a\} \nmid\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}\right. \\
& \begin{array}{lllllcccc}
\{a\} & \{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset \\
\emptyset^{\omega} \\
\{a\} & \{a\} & \{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset \\
\emptyset^{\omega}
\end{array} \\
& \begin{array}{rccccccccc}
\backslash b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset^{\omega} \\
\{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset^{\omega}
\end{array}
\end{aligned}
$$

3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

1. There is a (solution) trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.

$$
\begin{aligned}
& \begin{array}{lllllcccc}
\{a\} & \{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset \\
\emptyset^{\omega} \\
\{a\} & \{a\} & \{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset \\
\emptyset^{\omega}
\end{array} \\
& \begin{array}{rcccccccc}
\{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset^{\omega} \\
\{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset^{\omega}
\end{array}
\end{aligned}
$$

3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

1. There is a (solution) trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
 removing the first block also exists.

Undecidability

1. There is a (solution) trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.

3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

1. There is a (solution) trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Decidability

Theorem
 \exists^{*}-HyperLTL satisfiability is PSpace-complete.

Decidability

Theorem

\exists^{*}-HyperLTL satisfiability is PSpace-complete.

Proof:

- Membership:

■ Consider $\varphi=\exists \pi_{0} \ldots \exists \pi_{k} . \psi$.

- Obtain ψ^{\prime} from ψ by replacing each $a_{\pi_{j}}$ by a fresh proposition a_{j}.
- Then: φ and the LTL formula ψ^{\prime} are equi-satisfiable.

■ Hardness: trivial reduction from LTL satisfiability

Decidability

Theorem

\forall^{*}-HyperLTL satisfiability is PSpace-complete.

Decidability

Theorem

\forall^{*}-HyperLTL satisfiability is PSpace-complete.

Proof:

- Membership:
- Consider $\varphi=\forall \pi_{0} \ldots \forall \pi_{k} . \psi$.
- Obtain ψ^{\prime} from ψ by replacing each $a_{\pi_{j}}$ by a.
- Then: φ and the LTL formula ψ^{\prime} are equi-satisfiable.
- Hardness: trivial reduction from LTL satisfiability

Decidability

Theorem
$\exists^{*} \forall^{*}$-HyperLTL satisfiability is ExpSpace-complete.

Decidability

Theorem

$\exists^{*} \forall^{*}$-HyperLTL satisfiability is ExpSpace-complete.

Proof:

■ Membership:
■ Consider $\varphi=\exists \pi_{0} \ldots \exists \pi_{k} \cdot \forall \pi_{0}^{\prime} \ldots \forall \pi_{\ell}^{\prime} \cdot \psi$.

- Let

$$
\varphi^{\prime}=\exists \pi_{0} \ldots \exists \pi_{k} \bigwedge_{j_{0}=0}^{k} \cdots \bigwedge_{j_{\ell}=0}^{k} \psi_{j_{0}, \ldots, j_{\ell}}
$$

where $\psi_{j_{0}, \ldots, j_{l}}$ is obtained from ψ by replacing each occurrence of π_{i}^{\prime} by $\pi_{j_{i}}$.

- Then: φ and φ^{\prime} are equi-satisfiable.

■ Hardness: encoding of exponential-space Turing machines.

Further Results

HyperLTL implication checking: given φ and φ^{\prime}, does, for every T, $T \models \varphi$ imply $T \models \varphi^{\prime}$?

Lemma

φ does not imply φ^{\prime} iff $\left(\varphi \wedge \neg \varphi^{\prime}\right)$ is satisfiable.

Further Results

HyperLTL implication checking: given φ and φ^{\prime}, does, for every T, $T \models \varphi$ imply $T \models \varphi^{\prime}$?

Lemma

φ does not imply φ^{\prime} iff $\left(\varphi \wedge \neg \varphi^{\prime}\right)$ is satisfiable.

Corollary

Implication checking for alternation-free HyperLTL formulas is ExpSpace-complete.

Tool EAHyper:

- satisfiability, implication, and equivalence checking for HyperLTL

References

- Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproperties. In Proceedings of CONCUR 2016.
- Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper: Satisfiability, Implication, and Equivalence Checking of Hyperproperties. In Proceedings of CAV 2017.

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking
5. The First-order Logic of Hyperproperties 6. Conclusion

Model-Checking

The HyperLTL model-checking problem:
Given a transition system \mathcal{S} and φ, does $\operatorname{Traces}(\mathcal{S}) \models \varphi$?

Theorem
The HyperLTL model-checking problem is decidable.

Model-Checking

Proof:

■ Consider $\varphi=\exists \pi_{1} . \forall \pi_{2} \ldots \exists \pi_{k-1} . \forall \pi_{k} . \psi$.
■ Rewrite as $\exists \pi_{1}, \neg \exists \pi_{2} . \neg \ldots \exists \pi_{k-1} . \neg \exists \pi_{k} . \neg \psi$.

Model-Checking

Proof:

■ Consider $\varphi=\exists \pi_{1} . \forall \pi_{2} \ldots \exists \pi_{k-1} . \forall \pi_{k} . \psi$.
■ Rewrite as $\exists \pi_{1} . \neg \exists \pi_{2} . \neg \ldots \exists \pi_{k-1} . \neg \exists \pi_{k} . \neg \psi$.
■ By induction over quantifier prefix construct non-determinstic Büchi automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \vDash \varphi$.

- Induction start: build automaton for LTL formula obtained from $\neg \psi$ by replacing $a_{\pi_{j}}$ by a_{j}.
- For $\exists \pi_{j} \theta$ restrict automaton for θ in dimension j to traces of \mathcal{S}.
- For $\neg \theta$ complement automaton for θ.

Model-Checking

Proof:

■ Consider $\varphi=\exists \pi_{1} . \forall \pi_{2} \ldots \exists \pi_{k-1} . \forall \pi_{k} . \psi$.
■ Rewrite as $\exists \pi_{1} . \neg \exists \pi_{2} . \neg \ldots \exists \pi_{k-1} . \neg \exists \pi_{k} . \neg \psi$.
■ By induction over quantifier prefix construct non-determinstic Büchi automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.

- Induction start: build automaton for LTL formula obtained from $\neg \psi$ by replacing $a_{\pi_{j}}$ by a_{j}.
- For $\exists \pi_{j} \theta$ restrict automaton for θ in dimension j to traces of \mathcal{S}.
- For $\neg \theta$ complement automaton for θ.
\Rightarrow Non-elementary complexity, but alternation-free fragments are as hard as LTL.

References

- Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for Model Checking HyperLTL and HyperCTL*. In Proceedings of CAV 2015.

Outline

1. HyperLTL
 2. The Models Of HyperLTL
 3. HyperLTL Satisfiability
 4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion

First-order Logic vs. LTL

FO[$<$]: first-order order logic over signature $\{<\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ over structures with universe \mathbb{N}.

Theorem (Kamp '68, Gabbay et al. '80)
LTL and $F O[<]$ are expressively equivalent.

First-order Logic vs. LTL

FO[$<$]: first-order order logic over signature $\{<\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ over structures with universe \mathbb{N}.

Theorem (Kamp '68, Gabbay et al. '80)
LTL and $F O[<]$ are expressively equivalent.

Example

$$
\forall x\left(P_{q}(x) \wedge \neg P_{p}(x)\right) \rightarrow \exists y\left(x<y \wedge P_{p}(y)\right)
$$

and

$$
\mathbf{G}(q \rightarrow \mathbf{F} p)
$$

are equivalent.

First-order Logic for Hyperproperties

■ $\mathrm{FO}[<, E]$: first-order logic with equality over the signature $\{<, E\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ over structures with universe $T \times \mathbb{N}$.

Example

$$
\forall x \forall x^{\prime} E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right)
$$

First-order Logic for Hyperproperties

■ $\mathrm{FO}[<, E]$: first-order logic with equality over the signature $\{<, E\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ over structures with universe $T \times \mathbb{N}$.

Proposition

For every HyperLTL sentence there is an equivalent $\operatorname{FO}[<, E]$ sentence.

A Setback

- Let φ be the following property of sets $T \subseteq\left(2^{\{p\}}\right)^{\omega}$: There is an n such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)
φ is not expressible in HyperLTL.

A Setback

- Let φ be the following property of sets $T \subseteq\left(2^{\{p\}}\right)^{\omega}$: There is an n such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)
φ is not expressible in HyperLTL.

- But, φ is easily expressible in $\mathrm{FO}[<, E]$:

$$
\exists x \forall y E(x, y) \rightarrow \neg P_{p}(y)
$$

Corollary

$F O[<, E]$ strictly subsumes HyperLTL.

HyperFO

■ $\exists^{M_{x}}$ and $\forall^{M_{x}}$: quantifiers restricted to initial positions.

- $\exists^{G} y \geq x$ and $\forall^{G} y \geq x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO

- $\exists^{M_{x}}$ and $\forall^{M_{x}}$: quantifiers restricted to initial positions.
- $\exists^{G} y \geq x$ and $\forall^{G} y \geq x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO: sentences of the form

$$
\varphi=Q_{1}^{M} x_{1} \cdot \cdots Q_{k}^{M} x_{k} \cdot Q_{1}^{G} y_{1} \geq x_{g_{1}} \cdot \cdots Q_{\ell}^{G} y_{\ell} \geq x_{g_{\ell}} \cdot \psi
$$

- $Q \in\{\exists, \forall\}$,
- $\left\{x_{1}, \ldots, x_{k}\right\}$ and $\left\{y_{1}, \ldots, y_{\ell}\right\}$ are disjoint,
- every guard $x_{g_{j}}$ is in $\left\{x_{1}, \ldots, x_{k}\right\}$, and

■ ψ is quantifier-free over signature $\{<, E\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ with free variables in $\left\{y_{1}, \ldots, y_{\ell}\right\}$.

Equivalence

Theorem
HyperLTL and HyperFO are equally expressive.

Equivalence

Theorem
HyperLTL and HyperFO are equally expressive.

Proof

- From HyperLTL to HyperFO: structural induction.

■ From HyperFO to HyperLTL: reduction to Kamp's theorem.

$$
\forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right)
$$

From HyperFO to HyperLTL

$$
\begin{gathered}
\forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
\forall^{M_{x_{1}} \forall^{M}{ }_{x_{2}} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right)} .
\end{gathered}
$$

From HyperFO to HyperLTL

$$
\begin{aligned}
& \forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{M} x_{1} \forall^{M}{ }_{x_{2}} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right)
\end{aligned}
$$

From HyperFO to HyperLTL

$$
\begin{aligned}
& \forall x \forall x^{\prime} E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right)
\end{aligned}
$$

| $x_{1} \mapsto$ | $\{\mathrm{on}\}$ | $\{\mathrm{on}\}$ | \emptyset | $\{\mathrm{on}\}$ | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{2} \mapsto$ | $\{\mathrm{on}\}$ | \emptyset | \emptyset | $\{\mathrm{on}\}$ | \cdots |

From HyperFO to HyperLTL

$$
\begin{aligned}
\forall x \forall x^{\prime} & E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right) \\
& \forall y_{1} \forall y_{2}\left(y_{1}=y_{2}\right) \rightarrow\left(P_{\text {(on }, 1)}\left(y_{1}\right) \leftrightarrow P_{\text {(on }, 2)}\left(y_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \{(\mathrm{on}, 1), \\
& (\mathrm{on}, 2)\}
\end{aligned} \quad\{(\mathrm{on}, 1)\}
$$

$\{(\mathrm{on}, 1)$,
(on, 2) \}

From HyperFO to HyperLTL

$$
\begin{aligned}
\forall x \forall x^{\prime} & E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right) \\
& \forall y_{1} \forall y_{2}\left(y_{1}=y_{2}\right) \rightarrow\left(P_{\text {(on }, 1)}\left(y_{1}\right) \leftrightarrow P_{\text {(on }, 2)}\left(y_{2}\right)\right) \\
& G((\text { on, } 1) \leftrightarrow(\text { on }, 2))
\end{aligned}
$$

$$
\begin{gathered}
\{(\mathrm{on}, 1), \\
(\mathrm{on}, 2)\}
\end{gathered} \quad\{(\mathrm{on}, 1)\}
$$

$\{(o n, 1)$,
(on, 2) \}

From HyperFO to HyperLTL

$$
\begin{aligned}
\forall x \forall x^{\prime} & E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
\forall^{M} x_{x_{1}} \forall^{M} x_{2} & \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right) \\
& \forall y_{1} \forall y_{2}\left(y_{1}=y_{2}\right) \rightarrow\left(P_{\text {(on }, 1)}\left(y_{1}\right) \leftrightarrow P_{\text {(on }, 2)}\left(y_{2}\right)\right) \\
& G((\text { on }, 1) \leftrightarrow(\text { on }, 2))
\end{aligned}
$$

$$
\{(\mathrm{on}, 1),
$$

$$
(o n, 2)\}
$$

$$
\{(\mathrm{on}, 1)\}
$$

$\{(o n, 1)$,
(on, 2) \}

From HyperFO to HyperLTL

$$
\begin{aligned}
& \forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{M} x_{1} \forall^{M} x_{2} \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right) \\
& \forall y_{1} \forall y_{2}\left(y_{1}=y_{2}\right) \rightarrow\left(P_{(\text {on, } 1)}\left(y_{1}\right) \leftrightarrow P_{(\text {on }, 2)}\left(y_{2}\right)\right) \\
& \mathrm{G}((\mathrm{on}, 1) \leftrightarrow(\mathrm{on}, 2)) \\
& \forall \pi_{1} \forall \pi_{2} \quad \text { G }\left(\mathrm{on}_{\pi_{1}} \leftrightarrow \mathrm{on}_{\pi_{2}}\right)
\end{aligned}
$$

References

- Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In Proceedings of STACS 2017.

Outline

1. HyperLTL
 2. The Models Of HyperLTL
 3. HyperLTL Satisfiability
 4. HyperLTL Model-checking
 5. The First-order Logic of Hyperproperties
 6. Conclusion

Conclusion

HyperLTL behaves quite differently than LTL:
■ The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.

- Satisfiability is in general undecidable.

■ Model-checking is decidable, but non-elementary.

Conclusion

HyperLTL behaves quite differently than LTL:
■ The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.
■ Satisfiability is in general undecidable.

- Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things:
HyperLTL is a powerful tool for information security and beyond

- Information-flow control

■ Symmetries in distributed systems

- Error resistant codes
- Software doping

Open Problems

- Is there a class of languages \mathcal{L} such that every satisfiable HyperLTL sentence has a model from \mathcal{L} ?
- Is the quantifier alternation hierarchy strict?
- HyperLTL synthesis
- Is there a temporal logic that is expressively equivalent to $\mathrm{FO}[<, E]$?
■ What about HyperCTL*?
- Software model-checking

■ Quantitative hyperproperties

Open Problems

- Is there a class of languages \mathcal{L} such that every satisfiable HyperLTL sentence has a model from \mathcal{L} ?
- Is the quantifier alternation hierarchy strict?
- HyperLTL synthesis
- Is there a temporal logic that is expressively equivalent to $\mathrm{FO}[<, E]$?
■ What about HyperCTL*?
- Software model-checking
- Quantitative hyperproperties

Thank you

