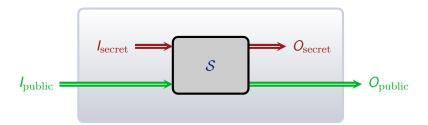
Logics for Hyperproperties

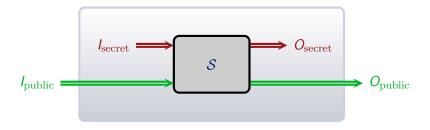
Martin Zimmermann

Saarland University

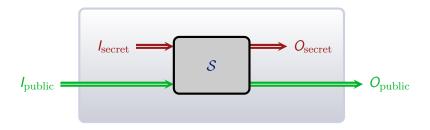
May, 19th 2017

Centre Fédéré en Vérification, Brussels, Belgium





■ The system S is input-deterministic: for all traces t, t' of S $t =_I t'$ implies $t =_O t'$



- The system S is input-deterministic: for all traces t, t' of S $t =_I t'$ implies $t =_O t'$
- Noninterference: for all traces t, t' of S $t =_{I_{\text{public}}} t' \quad \text{implies} \quad t =_{O_{\text{public}}} t'$

- Both properties are not trace properties, i.e., sets $T \subseteq \operatorname{Traces}(S)$ of traces, but
- hyperproperties, i.e., sets $H \subseteq 2^{\text{Traces}(S)}$ of sets of traces.
- A system S satisfies a hyperproperty H, if $Traces(S) \in H$.

Example: Noninterference as trace property:

$$\{T \subseteq \operatorname{Traces}(\mathcal{S}) \mid \forall t, t' \in T : t =_{I_{\operatorname{public}}} t' \Rightarrow t =_{O_{\operatorname{public}}} t' \}$$

- Both properties are not trace properties, i.e., sets $T \subseteq \operatorname{Traces}(S)$ of traces, but
- hyperproperties, i.e., sets $H \subseteq 2^{\text{Traces}(S)}$ of sets of traces.
- A system S satisfies a hyperproperty H, if $Traces(S) \in H$.

Example: Noninterference as trace property:

$$\{ \mathcal{T} \subseteq \operatorname{Traces}(\mathcal{S}) \mid \forall t, t' \in \mathcal{T} : t =_{I_{\operatorname{public}}} t' \Rightarrow t =_{O_{\operatorname{public}}} t' \}$$

Specification languages for hyperproperties

HyperCTL*: Extend LTL by trace quantifiers. **HyperCTL***: Extend CTL* by trace quantifiers.

Outline

- 1. HyperLTL
- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

Outline

1. HyperLTL

- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

LTL in One Slide

Syntax

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

where $a \in AP$ (atomic propositions).

LTL in One Slide

Syntax

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

where $a \in AP$ (atomic propositions).

Semantics

 $w, n \models \varphi$ for a trace $w \in (2^{AP})^{\omega}$ and a position $n \in \mathbb{N}$:

•
$$w, n \models \mathbf{X} \varphi$$
: $w \mapsto \mathbf{Y} + \mathbf{Y}$

LTL in One Slide

Syntax

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

where $a \in AP$ (atomic propositions).

Semantics

 $w, n \models \varphi$ for a trace $w \in (2^{AP})^{\omega}$ and a position $n \in \mathbb{N}$:

•
$$w, n \models \mathbf{X} \varphi$$
: $w \mapsto \mathbf{Y} + \mathbf{Y}$

Syntactic Sugar

$$lacksquare$$
 $\mathbf{F}\,\psi=\mathrm{true}\,\mathbf{U}\,\psi$

$$\blacksquare \mathbf{G} \psi = \neg \mathbf{F} \neg \psi$$

HyperLTL

HyperLTL = LTL + trace quantification

$$\varphi ::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi$$
$$\psi ::= a_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \mathbf{X} \psi \mid \psi \mathbf{U} \psi$$

where $a \in AP$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

HyperLTL

HyperLTL = LTL + trace quantification

$$\varphi ::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi$$
$$\psi ::= a_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \mathbf{X} \ \psi \mid \psi \ \mathbf{U} \ \psi$$

where $a \in \mathrm{AP}$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

- Prenex normal form, but
- closed under boolean combinations.

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

 $\mathcal{T}\subseteq (2^{\mathrm{AP}})^{\omega}$ is a model of φ iff

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

 $\mathcal{T}\subseteq (2^{\mathrm{AP}})^\omega$ is a model of arphi iff

$$\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

 $T\subseteq (2^{\mathrm{AP}})^{\omega}$ is a model of φ iff

$$\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

$$\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \qquad \text{for all } t \in T$$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

 $\mathcal{T}\subseteq (2^{\mathrm{AP}})^\omega$ is a model of arphi iff

$$\{\} \models \forall \pi, \forall \pi', \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

$$\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \qquad \text{for all } t \in T$$

$$\{\pi \mapsto t, \pi' \mapsto t'\} \models \ \mathbf{G} \, \mathrm{on}_\pi \leftrightarrow \mathrm{on}_{\pi'}$$

for all $t' \in T$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

 $\mathcal{T}\subseteq (2^{\mathrm{AP}})^\omega$ is a model of arphi iff

$$\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

$$\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \qquad \text{for all } t \in T$$

$$\{\pi\mapsto t,\pi'\mapsto t'\}\models \mathbf{G}\,\mathtt{on}_\pi\leftrightarrow\mathtt{on}_{\pi'}$$
 for all $t'\in T$

$$\{\pi\mapsto t[n,\infty),\pi'\mapsto t'[n,\infty)\}\models \quad \mathsf{on}_\pi\leftrightarrow \mathsf{on}_{\pi'} \qquad \qquad \mathsf{for all } n\in\mathbb{N}$$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

 $\mathcal{T}\subseteq (2^{\mathrm{AP}})^\omega$ is a model of φ iff

$$\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$$

$$\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \qquad \text{for all } t \in T$$

$$\{\pi \mapsto t, \pi' \mapsto t'\} \models \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \qquad \text{for all } t' \in T$$

$$\{\pi \mapsto t[n, \infty), \pi' \mapsto t'[n, \infty)\} \models \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \qquad \text{for all } n \in \mathbb{N}$$

$$\mathrm{on} \in t(n) \Leftrightarrow \mathrm{on} \in t'(n)$$

Applications

- Uniform framework for information-flow control
 - Does a system leak information?
- Symmetries in distributed systems
 - Are clients treated symmetrically?
- Error resistant codes
 - Do codes for distinct inputs have at least Hamming distance d?
- Software doping
 - Think emission scandal in automotive industry

The Virtues of LTL

LTL has many desirables properties:

- 1. Every satisfiable LTL formula is satisfied by an ultimately periodic trace, i.e., by a finite and finitely-represented model.
- 2. LTL satisfiability and model-checking are PSpace-complete.
- 3. LTL and FO[<] are expressively equivalent.

Which properties does HyperLTL retain?

References

- Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security (2010).
- Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
 Temporal logics for hyperproperties. In *Proceedings of POST 2014*.
- Bernd Finkbeiner and Markus N. Rabe. The Linear-Hyper-Branching Spectrum of Temporal Logics. it-Information Technology (2014).
- Markus N. Rabe. A Temporal Logic Approach to Information-flow Control. PhD thesis, Saarland University (2016).

Outline

- 1. HyperLTL
- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

Fix $AP = \{a\}$ and consider the conjunction φ of

 $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \land \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \land \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \land \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$

 $\{a\}$ \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \forall \pi. (\neg a_{\pi}) \mathsf{U} (a_{\pi} \wedge \mathsf{X} \mathsf{G} \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$
 - $\{a\}$ \emptyset \emptyset \emptyset \emptyset \emptyset

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \land \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$

Fix $AP = \{a\}$ and consider the conjunction φ of

$$\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \land \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$$

- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$

The unique model of φ is $\{\emptyset^n \{a\} \emptyset^\omega \mid n \in \mathbb{N}\}.$

Fix $AP = \{a\}$ and consider the conjunction φ of

$$\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \land \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$$

- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$

The unique model of φ is $\{\emptyset^n \{a\} \emptyset^\omega \mid n \in \mathbb{N}\}.$

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any finite set of traces.

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0.\dots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

Theorem

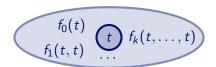
Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0.\dots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0.\dots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .



Theorem

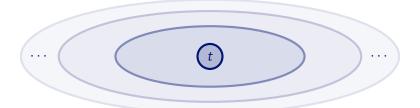
Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \cdots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \cdots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .



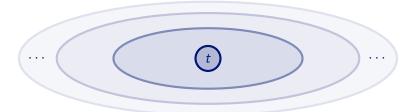
What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \cdots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .



The limit is a model of φ and countable.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

1. .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains.. $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains.. $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ \emptyset^{ω}

- 1. .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains...

- 1. .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.
- $\{a\} \{b\} \{a\} \{b\} \{a\} \{b\} \emptyset^{\omega}$ $\{a\}$ $\{b\}$ $\{b\}$ $\{a\}$ $\{b\}$ \emptyset^{ω}

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- 1. .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

$$\{a\} \{b\} \{a\} \{b\} \{a\} \{b\} \emptyset^{\omega}$$

{a} {a} {b} {b} {a} {b}
$$\emptyset^{\omega}$$

{a} {a} {b} {a} {b} {\delta}

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- 1. .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

{a} {b} {a} {b} {a} {b}
$$\emptyset^{\omega}$$
{a} {a} {b} {b} {a} {b} \emptyset^{ω}
{a} {a} {b} {b} {b} {a} {b} \emptyset^{ω}
{a} {a} {b} {b} {b} {b} {b} \emptyset^{ω}
{a} {a} {a} {b} {b} {b} {b} \emptyset^{ω}

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- 1. .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

{a} {b} {a} {b} {a} {b}
$$\emptyset^{\omega}$$

{a} {a} {b} {b} {a} {b} \emptyset^{ω}

$$\{a\} \ \{a\} \ \{b\} \ \{a\} \ \{b\} \ \{b\} \ \emptyset^{\omega}$$

$$\{a\}$$
 $\{a\}$ $\{a\}$ $\{b\}$ $\{b\}$ $\{b\}$ \emptyset^{ω}

Then, $T \cap \{a\}^*\{b\}^*\emptyset^\omega = \{\{a\}^n\{b\}^n\emptyset^\omega \mid n \in \mathbb{N}\}$ is not ω -regular.

What about Ultimately Periodic Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

What about Ultimately Periodic Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!

References

■ Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In *Proceedings of STACS 2017*.

Outline

- 1. HyperLTL
- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

The HyperLTL satisfiability problem:

Given φ , is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

The HyperLTL satisfiability problem:

Given φ , is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

Proof:

By a reduction from Post's correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb)

The HyperLTL satisfiability problem:

Given φ , is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

Proof:

By a reduction from Post's correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb)

A solution:

The HyperLTL satisfiability problem:

Given φ , is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

Proof:

By a reduction from Post's correspondence problem.

Example

Blocks
$$(a, baa)$$
 (ab, aa) (bba, bb)

A solution:

1. There is a (solution) trace where top matches bottom.

- $\{b\}$ $\{b\}$ $\{a\}$ $\{a\}$ $\{b\}$ $\{b\}$ $\{b\}$ $\{a\}$ $\{a\}$ \emptyset^{ω} $\{b\}$ $\{b\}$ $\{a\}$ $\{a\}$ $\{a\}$ $\{b\}$ $\{b\}$ $\{b\}$ $\{a\}$ $\{a\}$ \emptyset^{ω}
- There is a (solution) trace where top matches bottom.

- $\{b\} \ \{b\} \ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\}$ $\{b\} \{b\} \{a\} \{a\} \{b\} \{b\} \{b\} \{a\} \{a\}$
- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is finite and starts with a block or is empty.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is finite and starts with a block or is empty.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- 3. For every non-empty trace, the trace obtained by removing the first block also exists.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- 3. For every non-empty trace, the trace obtained by removing the first block also exists.

```
 \begin{cases} \{b\} \ \{a\} \ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset^{\omega} \\ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset^{\omega} \\ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset^{\omega} \\ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset^{\omega} \\ \end{cases}
```

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

```
 \begin{cases} \{b\} \ \{a\} \ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset^{\omega} \\ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset^{\omega} \\ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset^{\omega} \\ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset^{\omega} \\ \end{cases}
```

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- 3. For every non-empty trace, the trace obtained by removing the first block also exists.

```
 \begin{cases} \{b\} \ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset^{\omega} \\ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{a\} \ \emptyset^{\omega} \\ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset^{\omega} \\ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset^{\omega} \\ \end{cases}
```

- 1. There is a (solution) trace where top matches bottom.
- Every trace is finite and starts with a block or is empty.
- For every non-empty trace, the trace obtained by removing the first block also exists.

- 1. There is a (solution) trace where top matches bottom.
- Every trace is finite and starts with a block or is empty.
- For every non-empty trace, the trace obtained by removing the first block also exists.

```
 \begin{cases} \{b\} \ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset^{\omega} \\ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset^{\omega} \\ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset^{\omega} \\ \{a\} \ \{a\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset \ \emptyset^{\omega} \\ \{b\} \ \{b\} \ \{a\} \ \{a\} \ \emptyset \ \emptyset \ \emptyset \ \emptyset^{\omega} \ \emptyset^{\omega} \\ \end{cases}
```

- 1. There is a (solution) trace where top matches bottom.
- Every trace is finite and starts with a block or is empty.
- For every non-empty trace, the trace obtained by removing the first block also exists.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- 3. For every non-empty trace, the trace obtained by removing the first block also exists.

```
\{b\} \ \{b\} \ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{a\} \ \{a\}
\{b\} \{b\} \{a\} \{a\} \{b\} \{b\} \{b\} \{a\}
                                                                    M^{\omega}
                                                                    0^{\omega}
```

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- 3. For every non-empty trace, the trace obtained by removing the first block also exists.

```
\{b\} \ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{a\} \ \{a\}
                                                                     M^{\omega}
                                                                     0^{\omega}
```

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- 3. For every non-empty trace, the trace obtained by removing the first block also exists.

```
M^{\omega}
0^{\omega}
\emptyset^{\omega}
```

Theorem

∃*-HyperLTL satisfiability is PSpace-complete.

Theorem

∃*-HyperLTL satisfiability is PSpace-complete.

Proof:

- Membership:
 - Consider $\varphi = \exists \pi_0 \dots \exists \pi_k . \psi$.
 - Obtain ψ' from ψ by replacing each a_{π_j} by a fresh proposition a_i .
 - Then: φ and the LTL formula ψ' are equi-satisfiable.
- Hardness: trivial reduction from LTL satisfiability

Theorem

 \forall^* -HyperLTL satisfiability is PSpace-complete.

Theorem

∀*-HyperLTL satisfiability is PSpace-complete.

Proof:

- Membership:
 - Consider $\varphi = \forall \pi_0 \dots \forall \pi_k . \psi$.
 - Obtain ψ' from ψ by replacing each a_{π_i} by a.
 - Then: φ and the LTL formula ψ' are equi-satisfiable.
- Hardness: trivial reduction from LTL satisfiability

Theorem

 $\exists^* \forall^*$ -HyperLTL satisfiability is ExpSpace-complete.

Decidability

Theorem

 $\exists^* \forall^*$ -HyperLTL satisfiability is ExpSpace-complete.

Proof:

- Membership:
 - Consider $\varphi = \exists \pi_0 \dots \exists \pi_k . \forall \pi'_0 \dots \forall \pi'_\ell . \psi$.
 - Let

$$\varphi' = \exists \pi_0 \dots \exists \pi_k \bigwedge_{j_0=0}^k \dots \bigwedge_{j_\ell=0}^k \psi_{j_0,\dots,j_\ell}$$

where $\psi_{j_0,...,j_\ell}$ is obtained from ψ by replacing each occurrence of π'_i by π_{j_i} .

- Then: φ and φ' are equi-satisfiable.
- Hardness: encoding of exponential-space Turing machines.

Further Results

HyperLTL implication checking: given φ and φ' , does, for every T, $T \models \varphi$ imply $T \models \varphi'$?

Lemma

 φ does not imply φ' iff $(\varphi \wedge \neg \varphi')$ is satisfiable.

Further Results

HyperLTL implication checking: given φ and φ' , does, for every T, $T \models \varphi$ imply $T \models \varphi'$?

Lemma

 φ does not imply φ' iff $(\varphi \wedge \neg \varphi')$ is satisfiable.

Corollary

Implication checking for alternation-free HyperLTL formulas is ExpSpace-complete.

Tool EAHyper:

 satisfiability, implication, and equivalence checking for HyperLTL

References

- Bernd Finkbeiner and Christopher Hahn. Deciding
 Hyperproperties. In Proceedings of CONCUR 2016.
- Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger.
 EAHyper: Satisfiability, Implication, and Equivalence
 Checking of Hyperproperties. In Proceedings of CAV 2017.

Outline

- 1. HyperLTL
- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

The HyperLTL model-checking problem:

Given a transition system S and φ , does $Traces(S) \models \varphi$?

Theorem

The HyperLTL model-checking problem is decidable.

Proof:

- Consider $\varphi = \exists \pi_1. \, \forall \pi_2. \, \ldots \, \exists \pi_{k-1}. \, \forall \pi_k. \, \psi$.
- Rewrite as $\exists \pi_1. \neg \exists \pi_2. \neg \ldots \exists \pi_{k-1}. \neg \exists \pi_k. \neg \psi$.

Proof:

- Consider $\varphi = \exists \pi_1. \, \forall \pi_2. \, \ldots \, \exists \pi_{k-1}. \, \forall \pi_k. \, \psi$.
- Rewrite as $\exists \pi_1. \neg \exists \pi_2. \neg \ldots \exists \pi_{k-1}. \neg \exists \pi_k. \neg \psi$.
- By induction over quantifier prefix construct non-determinstic Büchi automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
 - Induction start: build automaton for LTL formula obtained from $\neg \psi$ by replacing a_{π_i} by a_i .
 - For $\exists \pi_j \theta$ restrict automaton for θ in dimension j to traces of S.
 - For $\neg \theta$ complement automaton for θ .

Proof:

- Consider $\varphi = \exists \pi_1. \, \forall \pi_2. \, \ldots \, \exists \pi_{k-1}. \, \forall \pi_k. \, \psi$.
- Rewrite as $\exists \pi_1. \neg \exists \pi_2. \neg \ldots \exists \pi_{k-1}. \neg \exists \pi_k. \neg \psi$.
- By induction over quantifier prefix construct non-determinstic Büchi automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
 - Induction start: build automaton for LTL formula obtained from $\neg \psi$ by replacing a_{π_i} by a_i .
 - For $\exists \pi_j \theta$ restrict automaton for θ in dimension j to traces of S.
 - For $\neg \theta$ complement automaton for θ .
- ⇒ Non-elementary complexity, but alternation-free fragments are as hard as LTL.

References

Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for Model Checking HyperLTL and HyperCTL*. In Proceedings of CAV 2015.

Outline

- 1. HyperLTL
- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

First-order Logic vs. LTL

FO[<]: first-order order logic over signature $\{<\} \cup \{P_a \mid a \in AP\}$ over structures with universe \mathbb{N} .

Theorem (Kamp '68, Gabbay et al. '80) LTL and FO[<] are expressively equivalent.

First-order Logic vs. LTL

FO[<]: first-order order logic over signature $\{<\} \cup \{P_a \mid a \in AP\}$ over structures with universe \mathbb{N} .

Theorem (Kamp '68, Gabbay et al. '80)

LTL and FO[<] are expressively equivalent.

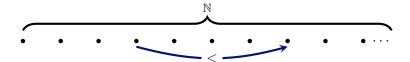
Example

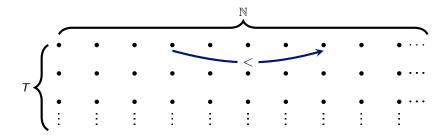
$$\forall x (P_q(x) \land \neg P_p(x)) \rightarrow \exists y (x < y \land P_p(y))$$

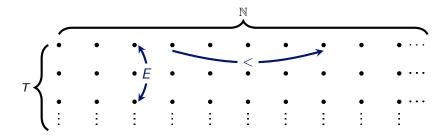
and

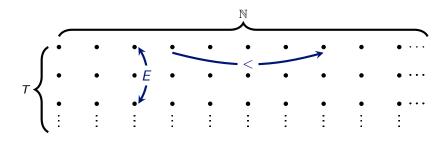
$$G(q \rightarrow Fp)$$

are equivalent.





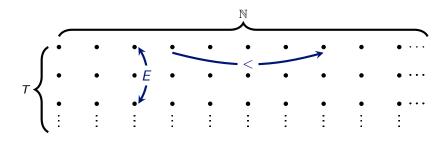




■ FO[<, E]: first-order logic with equality over the signature $\{<$, E} \cup $\{P_a \mid a \in AP\}$ over structures with universe $T \times \mathbb{N}$.

Example

$$\forall x \forall x' \ E(x, x') \rightarrow (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$



■ FO[<, E]: first-order logic with equality over the signature $\{<$, E} \cup { $P_a \mid a \in AP$ } over structures with universe $T \times \mathbb{N}$.

Proposition

For every HyperLTL sentence there is an equivalent FO[<, E] sentence.

A Setback

■ Let φ be the following property of sets $T \subseteq (2^{\{p\}})^{\omega}$:

There is an n such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)

 φ is not expressible in HyperLTL.

A Setback

■ Let φ be the following property of sets $T \subseteq (2^{\{p\}})^{\omega}$:

There is an n such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)

 φ is not expressible in HyperLTL.

■ But, φ is easily expressible in FO[<, E]:

$$\exists x \, \forall y \, E(x,y) \rightarrow \neg P_p(y)$$

Corollary

FO[<, E] strictly subsumes HyperLTL.

HyperFO

- \blacksquare $\exists^M x$ and $\forall^M x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO

- $\exists^M x$ and $\forall^M x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO: sentences of the form

$$\varphi = Q_1^M x_1 \cdots Q_k^M x_k. \ Q_1^G y_1 \ge x_{g_1} \cdots Q_\ell^G y_\ell \ge x_{g_\ell}. \ \psi$$

- $\mathbf{Q} \in \{\exists, \forall\},$
- $\{x_1,\ldots,x_k\}$ and $\{y_1,\ldots,y_\ell\}$ are disjoint,
- \blacksquare every guard x_{g_j} is in $\{x_1, \ldots, x_k\}$, and
- ψ is quantifier-free over signature $\{<, E\} \cup \{P_a \mid a \in AP\}$ with free variables in $\{y_1, \ldots, y_\ell\}$.

Equivalence

Theorem

HyperLTL and HyperFO are equally expressive.

Equivalence

Theorem

HyperLTL and HyperFO are equally expressive.

Proof

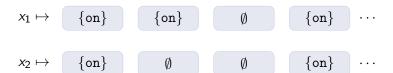
- From HyperLTL to HyperFO: structural induction.
- From HyperFO to HyperLTL: reduction to Kamp's theorem.

$$\forall x \forall x' \ E(x, x') \rightarrow (P_{on}(x) \leftrightarrow P_{on}(x'))$$

$$\forall_X \forall_{X'} \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

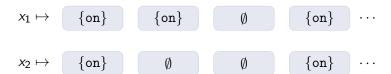
$$\forall^M x_1 \forall^M x_2 \quad \forall^G y_1 \ge x_1 \forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$

$$\forall_X \forall_{X'} \ E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$
$$\forall^M x_1 \forall^M x_2 \ \forall^G y_1 \ge x_1 \forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$



$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^G y_1 \ge x_1 \, \forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$



$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^G y_1 \ge x_1 \,\forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$

$$\forall y_1 \,\forall y_2 \, (y_1 = y_2) \to (P_{(\text{on}, 1)}(y_1) \leftrightarrow P_{(\text{on}, 2)}(y_2))$$

$$\{(\text{on}, 1), \\ (\text{on}, 2)\}$$
 $\{(\text{on}, 1)\}$ \emptyset $\{(\text{on}, 1), \\ (\text{on}, 2)\}$...

$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^G y_1 \ge x_1 \forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$

$$\forall y_1 \forall y_2 \ (y_1 = y_2) \to (P_{(\text{on}, 1)}(y_1) \leftrightarrow P_{(\text{on}, 2)}(y_2))$$

$$\mathbf{G} ((\text{on}, 1) \leftrightarrow (\text{on}, 2))$$

$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^{M} x_{1} \forall^{M} x_{2} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E(y_{1}, y_{2}) \to (P_{\text{on}}(y_{1}) \leftrightarrow P_{\text{on}}(y_{2}))$$

$$\forall y_{1} \forall y_{2} \ (y_{1} = y_{2}) \to (P_{(\text{on}, 1)}(y_{1}) \leftrightarrow P_{(\text{on}, 2)}(y_{2}))$$

$$\mathbf{G} ((\text{on}, 1) \leftrightarrow (\text{on}, 2))$$

$$\{(\text{on}, 1), \\ (\text{on}, 2)\}\$$
 $\{(\text{on}, 1)\}\$ \emptyset $\{(\text{on}, 1), \\ (\text{on}, 2)\}\$...

$$\forall_{X}\forall_{X'} \quad E(x,x') \to (P_{\mathrm{on}}(x) \leftrightarrow P_{\mathrm{on}}(x'))$$

$$\forall^{M}x_{1} \forall^{M}x_{2} \quad \forall^{G}y_{1} \geq x_{1} \forall^{G}y_{2} \geq x_{2}E(y_{1},y_{2}) \to (P_{\mathrm{on}}(y_{1}) \leftrightarrow P_{\mathrm{on}}(y_{2}))$$

$$\forall y_{1} \forall y_{2} \ (y_{1} = y_{2}) \to (P_{(\mathrm{on},1)}(y_{1}) \leftrightarrow P_{(\mathrm{on},2)}(y_{2}))$$

$$\mathbf{G}((\mathrm{on},1) \leftrightarrow (\mathrm{on},2))$$

$$\forall \pi_{1} \forall \pi_{2} \quad \mathbf{G}(\mathrm{on}_{\pi_{1}} \leftrightarrow \mathrm{on}_{\pi_{2}})$$

$$\pi_{1} \mapsto \{\mathrm{on}\} \quad \{\mathrm{on}\} \quad \emptyset \quad \{\mathrm{on}\} \quad \cdots$$

$$\pi_{2} \mapsto \{\mathrm{on}\} \quad \emptyset \quad \{\mathrm{on}\} \quad \cdots$$

References

Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In *Proceedings of STACS 2017*.

Outline

- 1. HyperLTL
- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

Conclusion

HyperLTL behaves quite differently than LTL:

- The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.
- Satisfiability is in general undecidable.
- Model-checking is decidable, but non-elementary.

Conclusion

HyperLTL behaves quite differently than LTL:

- The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.
- Satisfiability is in general undecidable.
- Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things: HyperLTL is a powerful tool for information security and beyond

- Information-flow control
- Symmetries in distributed systems
- Error resistant codes
- Software doping

Open Problems

- Is there a class of languages \mathcal{L} such that every satisfiable HyperLTL sentence has a model from \mathcal{L} ?
- Is the quantifier alternation hierarchy strict?
- HyperLTL synthesis
- Is there a temporal logic that is expressively equivalent to FO[<, E]?
- What about HyperCTL*?
- Software model-checking
- Quantitative hyperproperties

Open Problems

- Is there a class of languages \mathcal{L} such that every satisfiable HyperLTL sentence has a model from \mathcal{L} ?
- Is the quantifier alternation hierarchy strict?
- HyperLTL synthesis
- Is there a temporal logic that is expressively equivalent to FO[<, E]?
- What about HyperCTL*?
- Software model-checking
- Quantitative hyperproperties

Thank you