Delay Games with WMSO+U Winning Conditions

Martin Zimmermann

Saarland University

March 6th, 2015

AVACS Meeting, Freiburg, Germany

1/18

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

 Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

- Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc.
- We consider two extensions:
 - Type of interaction: one player may delay her moves.
 - Type of winning conditions: quantitative instead of qualitative.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

- Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc.
- We consider two extensions:
 - Type of interaction: one player may delay her moves.
 - Type of winning conditions: quantitative instead of qualitative.
- Weak MSO with the unbounding quantifier:
 - quantitative extension of (weak) MSO
 - able to express many high-level quantitative specification languages, e.g., parameterized LTL, finitary parity conditions, etc.

Outline

1. WMSO with the Unbounding Quantifier

- 2. Delay Games
- 3. WMSO+U Delay Games w.r.t. Constant Lookahead
- 4. Constant Lookahead is not Sufficient
- 5. Conclusion

Monadic Second-order Logic

- Monadic Second-order Logic (MSO)
 - Existential/universal quantification of elements: $\exists x, \forall x$.
 - Existential/universal quantification of sets: $\exists X, \forall X$.
 - Unary predicates P_a for every $a \in \Sigma$.
 - \blacksquare Order relation < and successor relation S.

Monadic Second-order Logic

Monadic Second-order Logic (MSO)

- Existential/universal quantification of elements: $\exists x, \forall x$.
- Existential/universal quantification of sets: $\exists X, \forall X$.
- Unary predicates P_a for every $a \in \Sigma$.
- \blacksquare Order relation < and successor relation S.

weak MSO (WMSO)

Restrict second-order quantifiers to finite sets.

Monadic Second-order Logic

Monadic Second-order Logic (MSO)

- Existential/universal quantification of elements: $\exists x, \forall x$.
- Existential/universal quantification of sets: $\exists X, \forall X$.
- Unary predicates P_a for every $a \in \Sigma$.
- \blacksquare Order relation < and successor relation S.
- weak MSO (WMSO)
 - Restrict second-order quantifiers to finite sets.

Theorem (Büchi '62)

The following are (effectively) equivalent:

- 1. L MSO-definable.
- 2. L WMSO-definable.
- 3. L recognized by Büchi automaton.

Bojańczyk: Let's add a new quantifier

UXφ(X) holds, if there are arbitrarily large finite sets X such that φ(X) holds.

Bojańczyk: Let's add a new quantifier

UXφ(X) holds, if there are arbitrarily large finite sets X such that φ(X) holds.

 $L = \{a^{n_0} b a^{n_1} b a^{n_2} b \cdots \mid \limsup_i n_i = \infty\}$

Bojańczyk: Let's add a new quantifier

UXφ(X) holds, if there are arbitrarily large finite sets X such that φ(X) holds.

$$L = \{a^{n_0} b a^{n_1} b a^{n_2} b \cdots \mid \limsup_i n_i = \infty\}$$

L defined by

$$\begin{aligned} \forall x \exists y (y > x \land P_b(y)) \land \\ UX \ [\forall x \forall y \forall z (x < y < z \land x \in X \land z \in X \rightarrow y \in X) \\ \land \forall x (x \in X \rightarrow P_a(x))] \end{aligned}$$

Bojańczyk: Let's add a new quantifier

UXφ(X) holds, if there are arbitrarily large finite sets X such that φ(X) holds.

 $L = \{a^{n_0} b a^{n_1} b a^{n_2} b \cdots \mid \limsup_i n_i = \infty\}$

Decidability is a delicate issue:

Theorem (Bojańczyk et al. '14)

There is no algorithm that decides MSO+U on infinite trees and has a correctness proof using the axioms of ZFC.

Bojańczyk: Let's add a new quantifier

UXφ(X) holds, if there are arbitrarily large finite sets X such that φ(X) holds.

 $L = \{a^{n_0} b a^{n_1} b a^{n_2} b \cdots \mid \limsup_i n_i = \infty\}$

Decidability is a delicate issue:

Theorem (Bojańczyk et al. '14)

There is no algorithm that decides MSO+U on infinite trees and has a correctness proof using the axioms of ZFC.

Theorem (Bojańczyk et al. '15)

MSO+U on infinite words is undecidable.

Restricting the second-order quantifiers saves the day:

Theorem (Bojańczyk '09)

WMSO+U over infinite words is decidable.

Restricting the second-order quantifiers saves the day:

Theorem (Bojańczyk '09)

WMSO+U over infinite words is decidable.

Theorem (Bojańczyk, Torunczyk '12)

WMSO+U over infinite trees is decidable.

Restricting the second-order quantifiers saves the day:

Theorem (Bojańczyk '09)

WMSO+U over infinite words is decidable.

Theorem (Bojańczyk, Torunczyk '12)

WMSO+U over infinite trees is decidable.

Theorem (Bojańczyk '14)

WMSO+U with path quantifiers over infinite trees is decidable.

Restricting the second-order quantifiers saves the day:

Theorem (Bojańczyk '09)

WMSO+U over infinite words is decidable.

Theorem (Bojańczyk, Torunczyk '12)

WMSO+U over infinite trees is decidable.

Theorem (Bojańczyk '14)

WMSO+U with path quantifiers over infinite trees is decidable.

Corollary

Games with WMSO+U winning conditions are decidable.

6/18

Max-Automata

Equivalent automaton model for WMSO+U on infinite words:

- Deterministic finite automata with counters
- counter actions: incr, reset, max
- **\blacksquare** acceptance: boolean combination of "counter γ is bounded".

Max-Automata

Equivalent automaton model for $\mathsf{WMSO}{+}\mathsf{U}$ on infinite words:

- Deterministic finite automata with counters
- counter actions: incr, reset, max
- **acceptance**: boolean combination of "counter γ is bounded".

a:
$$\operatorname{inc}(\gamma)$$
 \longrightarrow b: $\operatorname{reset}(\gamma)$; $\operatorname{inc}(\gamma')$

Max-Automata

Equivalent automaton model for WMSO+U on infinite words:

- Deterministic finite automata with counters
- counter actions: incr, reset, max
- **\blacksquare** acceptance: boolean combination of "counter γ is bounded".

a:
$$\operatorname{inc}(\gamma)$$
 \longrightarrow b: $\operatorname{reset}(\gamma)$; $\operatorname{inc}(\gamma')$

Theorem (Bojańczyk '09)

The following are (effectively) equivalent:

- **1.** *L WMSO*+*U*-*definable*.
- 2. L recognized by max-automaton.

Outline

- 1. WMSO with the Unbounding Quantifier
- 2. Delay Games
- 3. WMSO+U Delay Games w.r.t. Constant Lookahead
- 4. Constant Lookahead is not Sufficient
- 5. Conclusion

The delay game $\Gamma_f(L)$:

- Delay function: $f: \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (I) vs. Output (O).

The delay game $\Gamma_f(L)$:

- Delay function: $f: \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:
 - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).

The delay game $\Gamma_f(L)$:

- Delay function: $f: \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:
 - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).

• *O* wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L$.

The delay game $\Gamma_f(L)$:

- Delay function: $f: \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:
 - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).

• *O* wins iff
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$
.

Definition: f is constant, if f(i) = 1 for every i > 0.

Outline

- 1. WMSO with the Unbounding Quantifier
- 2. Delay Games
- 3. WMSO+U Delay Games w.r.t. Constant Lookahead
- 4. Constant Lookahead is not Sufficient
- 5. Conclusion

Delay Games with WMSO+U winning conditions w.r.t fixed delay functions are determined.

Delay Games with WMSO+U winning conditions w.r.t fixed delay functions are determined.

Proof idea:

- Winning condition recognized by some automaton \mathcal{A} .
- Encode game as parity game in countable arena. States store:
 - Current lookahead (queue over Σ_I)
 - state \mathcal{A} reaches on current play prefix.
 - Current counter values after this run prefix.
 - Maximal counter values seen thus far.
 - Flag marking whether maximum was increased during last transition.
- Thus: counter γ unbounded if corresponding flag is raised infinitely often ⇒ parity condition.

The following problem is decidable: given a max-automaton A, does Player O win $\Gamma_f(L(A))$ for some constant delay function f.

The following problem is decidable: given a max-automaton A, does Player O win $\Gamma_f(L(A))$ for some constant delay function f.

Proof Idea:

- Adapt technique for parity automata to max-automata.
- Capture behavior of *A*, i.e., evolution of counter values:
 - Transfers from counter γ to γ' .
 - Existence of increments, but not how many.
 - $\blacksquare \Rightarrow$ equivalence relation \equiv of exponential index.

The following problem is decidable: given a max-automaton A, does Player O win $\Gamma_f(L(A))$ for some constant delay function f.

Proof Idea:

- Adapt technique for parity automata to max-automata.
- Capture behavior of *A*, i.e., evolution of counter values:
 - Transfers from counter γ to γ' .
 - Existence of increments, but not how many.
 - $\blacksquare \Rightarrow$ equivalence relation \equiv of exponential index.

Lemma

Let $(x_i)_{i \in \mathbb{N}}$ and $(x'_i)_{i \in \mathbb{N}}$ be two sequences of words over Σ^* with $\sup_i |x_i| < \infty$, $\sup_i |x'_i| < \infty$, and $x_i \equiv x'_i$ for all *i*. Then, $x = x_0 x_1 x_2 \cdots \in L(\mathcal{A})$ if and only if $x' = x'_0 x'_1 x'_2 \cdots \in L(\mathcal{A})$.

Removing Delay

- Player *I* picks equivalence classes,
- Player O constructs run on representatives (always one step behind to account for delay).

Removing Delay

■ Player / picks equivalence classes,

Player O constructs run on representatives (always one step behind to account for delay).

Resulting game is delay-free with WMSO+U winning condition.

- Can be solved effectively by a reduction to a satisfiability problem for WMSO+U with path quantifiers over infinite trees.
- Doubly-exponential upper bound on necessary constant lookahead.

Outline

- 1. WMSO with the Unbounding Quantifier
- 2. Delay Games
- 3. WMSO+U Delay Games w.r.t. Constant Lookahead
- 4. Constant Lookahead is not Sufficient
- 5. Conclusion

Constant Lookahead is not Sufficient

•
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}.$

- Input block: #w with $w \in \{0,1\}^+$. Length: |w|.
- Output block:

$$\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}\in(\Sigma_I\times\Sigma_O)^+$$

for $\alpha(j) \in \{0, 1\}$. Length: *n*.

Constant Lookahead is not Sufficient

•
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}.$

- Input block: #w with $w \in \{0,1\}^+$. Length: |w|.
- Output block:

$$\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}\in(\Sigma_I\times\Sigma_O)^+$$

for $\alpha(j) \in \{0, 1\}$. Length: *n*.

Define language L: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Constant Lookahead is not Sufficient

•
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}.$

- Input block: #w with $w \in \{0,1\}^+$. Length: |w|.
- Output block:

$$\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}\in(\Sigma_I\times\Sigma_O)^+$$

for $\alpha(j) \in \{0, 1\}$. Length: *n*.

Define language L: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Theorem (Z. '14)

I wins $\Gamma_f(L)$, if f is a constant delay function, O if f is unbounded.

1. Let *f* be constant:

 $I: \# 0 0 \cdots 0$

- Lookahead contains only input blocks of length f(0).
 Player I can react to Player O's declaration at beginning of an output block to bound size of output blocks while producing arbitrarily large input blocks.

- Lookahead contains only input blocks of length f(0).
- Player I can react to Player O's declaration at beginning of an output block to bound size of output blocks while producing arbitrarily large input blocks.
- **2.** Let *f* be unbounded:
 - If Player *I* produces arbitrarily long input blocks, then the lookahead will contain arbitrarily long input blocks.
 - Thus, Player O can produce arbitrarily long output blocks.

Outline

- 1. WMSO with the Unbounding Quantifier
- 2. Delay Games
- 3. WMSO+U Delay Games w.r.t. Constant Lookahead
- 4. Constant Lookahead is not Sufficient
- 5. Conclusion

Conclusion

- Delay games with WMSO+U winning conditions w.r.t. constant delay functions are decidable.
- But constant delay is not always sufficient for Player *O*.

Conclusion

- Delay games with WMSO+U winning conditions w.r.t. constant delay functions are decidable.
- But constant delay is not always sufficient for Player *O*.

Current work:

Solve games w.r.t. arbitrary delay functions.

Conjecture

The following are equivalent for L definable in WMSO+U:

- **1.** Player O wins $\Gamma_f(L)$ for some f.
- **2.** Player O wins $\Gamma_f(L)$ for every unbounded f.

Conclusion

- Delay games with WMSO+U winning conditions w.r.t. constant delay functions are decidable.
- But constant delay is not always sufficient for Player *O*.

Current work:

Solve games w.r.t. arbitrary delay functions.

Conjecture

The following are equivalent for L definable in WMSO+U:

- **1.** Player O wins $\Gamma_f(L)$ for some f.
- **2.** Player O wins $\Gamma_f(L)$ for every unbounded f.
 - Matching bounds on necessary lookahead for the case of constant delay functions.
 - A general determinacy theorem.