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Introduction

Büchi-Landweber: The winner of a zero-sum two-player game of
infinite duration with ω-regular winning condition can be
determined effectively.

Many possible extensions: non-zero-sum, n > 2 players, type
of winning condition, concurrency, imperfect information, etc.

We consider two extensions:

Type of interaction: one player may delay her moves.
Type of winning conditions: quantitative instead of
qualitative.

Weak MSO with the unbounding quantifier:

quantitative extension of (weak) MSO

able to express many high-level quantitative specification
languages, e.g., parameterized LTL, finitary parity conditions,
etc.
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Monadic Second-order Logic

Monadic Second-order Logic (MSO)

Existential/universal quantification of elements: ∃x , ∀x .
Existential/universal quantification of sets: ∃X , ∀X .
Unary predicates Pa for every a ∈ Σ.
Order relation < and successor relation S.

weak MSO (WMSO)

Restrict second-order quantifiers to finite sets.

Theorem (Büchi ’62)

The following are (effectively) equivalent:

1. L MSO-definable.

2. L WMSO-definable.

3. L recognized by Büchi automaton.
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The Unbounding Quantifier

Bojańczyk: Let’s add a new quantifier

UXϕ(X ) holds, if there are arbitrarily large finite sets X such
that ϕ(X ) holds.

L = {an0ban1ban2b · · · | lim supi ni =∞}
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UXϕ(X ) holds, if there are arbitrarily large finite sets X such
that ϕ(X ) holds.

L = {an0ban1ban2b · · · | lim supi ni =∞}

L defined by

∀x∃y(y > x ∧ Pb(y))∧
UX [∀x∀y∀z(x < y < z ∧ x ∈ X ∧ z ∈ X → y ∈ X )

∧ ∀x(x ∈ X → Pa(x)) ]
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L = {an0ban1ban2b · · · | lim supi ni =∞}

Decidability is a delicate issue:

Theorem (Bojańczyk et al. ’14)

There is no algorithm that decides MSO+U on infinite trees and
has a correctness proof using the axioms of ZFC.

Theorem (Bojańczyk et al. ’15)

MSO+U on infinite words is undecidable.
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WMSO+U

Restricting the second-order quantifiers saves the day:

Theorem (Bojańczyk ’09)

WMSO+U over infinite words is decidable.

Theorem (Bojańczyk, Torunczyk ’12)

WMSO+U over infinite trees is decidable.

Theorem (Bojańczyk ’14)

WMSO+U with path quantifiers over infinite trees is decidable.

Corollary

Games with WMSO+U winning conditions are decidable.
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Theorem (Bojańczyk, Torunczyk ’12)

WMSO+U over infinite trees is decidable.

Theorem (Bojańczyk ’14)
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Max-Automata

Equivalent automaton model for WMSO+U on infinite words:

Deterministic finite automata with counters

counter actions: incr, reset, max

acceptance: boolean combination of “counter γ is bounded”.

a: inc(γ) b: reset(γ); inc(γ′)

Theorem (Bojańczyk ’09)

The following are (effectively) equivalent:

1. L WMSO+U-definable.

2. L recognized by max-automaton.
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The following are (effectively) equivalent:

1. L WMSO+U-definable.

2. L recognized by max-automaton.

Martin Zimmermann Saarland University Delay Games with WMSO+U Winning Conditions 7/18



Max-Automata

Equivalent automaton model for WMSO+U on infinite words:

Deterministic finite automata with counters

counter actions: incr, reset, max

acceptance: boolean combination of “counter γ is bounded”.

a: inc(γ) b: reset(γ); inc(γ′)

Theorem (Bojańczyk ’09)
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Delay Games

The delay game Γf (L):

Delay function: f : N→ N+.

ω-language L ⊆ (ΣI × ΣO)ω.

Two players: Input (I ) vs. Output (O).

In round i:

I picks word ui ∈ Σ
f (i)
I (building α = u0u1 · · · ).

O picks letter vi ∈ ΣO (building β = v0v1 · · · ).

O wins iff
(α(0)
β(0)

)(α(1)
β(1)

)
· · · ∈ L.

Definition: f is constant, if f (i) = 1 for every i > 0.
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Determinacy

Theorem (Z. ’14)

Delay Games with WMSO+U winning conditions w.r.t fixed delay
functions are determined.

Proof idea:

Winning condition recognized by some automaton A.
Encode game as parity game in countable arena. States store:

Current lookahead (queue over ΣI )
state A reaches on current play prefix.
Current counter values after this run prefix.
Maximal counter values seen thus far.
Flag marking whether maximum was increased during
last transition.

Thus: counter γ unbounded if corresponding flag is raised
infinitely often ⇒ parity condition.
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Capturing Finite Runs of Max-Automata

Theorem (Z. ’14)

The following problem is decidable: given a max-automaton A,
does Player O win Γf (L(A)) for some constant delay function f .

Proof Idea:

Adapt technique for parity automata to max-automata.

Capture behavior of A, i.e., evolution of counter values:

Transfers from counter γ to γ′.
Existence of increments, but not how many.
⇒ equivalence relation ≡ of exponential index.

Lemma
Let (xi )i∈N and (x ′i )i∈N be two sequences of words over Σ∗ with
supi |xi | <∞, supi |x ′i | <∞, and xi ≡ x ′i for all i . Then,
x = x0x1x2 · · · ∈ L(A) if and only if x ′ = x ′0x

′
1x
′
2 · · · ∈ L(A).
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Removing Delay

Player I picks equivalence classes,

Player O constructs run on representatives (always one step
behind to account for delay).

Resulting game is delay-free with WMSO+U winning condition.

Can be solved effectively by a reduction to a satisfiability
problem for WMSO+U with path quantifiers over infinite
trees.

Doubly-exponential upper bound on necessary constant
lookahead.

Martin Zimmermann Saarland University Delay Games with WMSO+U Winning Conditions 13/18



Removing Delay

Player I picks equivalence classes,

Player O constructs run on representatives (always one step
behind to account for delay).

Resulting game is delay-free with WMSO+U winning condition.

Can be solved effectively by a reduction to a satisfiability
problem for WMSO+U with path quantifiers over infinite
trees.

Doubly-exponential upper bound on necessary constant
lookahead.

Martin Zimmermann Saarland University Delay Games with WMSO+U Winning Conditions 13/18



Outline

1. WMSO with the Unbounding Quantifier

2. Delay Games

3. WMSO+U Delay Games w.r.t. Constant Lookahead

4. Constant Lookahead is not Sufficient

5. Conclusion

Martin Zimmermann Saarland University Delay Games with WMSO+U Winning Conditions 14/18



Constant Lookahead is not Sufficient

ΣI = {0, 1,#} and ΣO = {0, 1, ∗}.
Input block: #w with w ∈ {0, 1}+. Length: |w |.
Output block:(

#

α(n)

)(
α(1)

∗

)(
α(2)

∗

)
· · ·

(
α(n − 1)

∗

)(
α(n)

α(n)

)
∈ (ΣI×ΣO)+

for α(j) ∈ {0, 1}. Length: n.

Define language L: if infinitely many # and arbitrarily long input
blocks, then arbitrarily long output blocks.

Theorem (Z. ’14)

I wins Γf (L), if f is a constant delay function, O if f is unbounded.
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Define language L: if infinitely many # and arbitrarily long input
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Proof Idea

1. Let f be constant:

I : # 0 0 · · · 0 1 1 1 · · ·
O: 0 ∗ ∗ · · ·

Lookahead contains only input blocks of length f (0).
Player I can react to Player O’s declaration at beginning
of an output block to bound size of output blocks while
producing arbitrarily large input blocks.

2. Let f be unbounded:

If Player I produces arbitrarily long input blocks, then the
lookahead will contain arbitrarily long input blocks.
Thus, Player O can produce arbitrarily long output
blocks.
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Conclusion

Delay games with WMSO+U winning conditions w.r.t.
constant delay functions are decidable.
But constant delay is not always sufficient for Player O.

Current work:

Solve games w.r.t. arbitrary delay functions.

Conjecture

The following are equivalent for L definable in WMSO+U:

1. Player O wins Γf (L) for some f .

2. Player O wins Γf (L) for every unbounded f .

Matching bounds on necessary lookahead for the case of
constant delay functions.
A general determinacy theorem.
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