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Definitions

Arena: A = (V ,V0,V1,E ) with finite, directed graph (V ,E ),
V0 ⊆ V , and V1 = V \ V0 (positions of the players).

Play: infinite path through A
Game: G = (A,Win) with set Win ⊆ V ω of winning plays for
Player 0. Player 1 wins all other plays.

Strategy for Player 0: σ : V ∗V0 → V s.t. (v , σ(wv)) ∈ E for
all wv ∈ V ∗V0.

ρ consistent with σ: ρn+1 = σ(ρ0 · · · ρn) for all n s.t. ρn ∈ V0.

Beh(v , σ) = {ρ | ρ starting in v , consistent with σ}

σ winning from v for Player 0: Beh(v , σ) ⊆Win.

Winning region of Player 0:

W0 = {v | Player 0 has winning strategy from v}
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Reductions and Finite-state Strategies

Positional Strategies: move only depends on last vertex

σ(wv) = σ(v)

Finite-state strategies: implemented by DFA with output
reading play prefix ρ0 · · · ρn and outputting σ(ρ0 · · · ρn).

s0 s1 s2

1/1

0/0

1/1

0/0

1/1

0/1
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RR Games

Request-response game (RR game): (A, (Qj ,Pj)j∈[k]) with

arena A = (V ,V0,V1,E ),

Qj ⊆ V : reQuests of condition j , and

Pj ⊆ V : resPonses of condition j .

Player 0 wins if every request is answered by corresponding
response:

∧
j∈[k] G(Qj → FPj)

Theorem (Wallmeier, Hütten, Thomas ’03)

RR games can be reduced to Büchi games of size sk2k+1, where
s = |V |.

Corollary

Finite-state winning strategies of size k2k+1 for both players.

Solvable in Exptime.
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Waiting Times

wtj(ε) = 0, and

wtj(wv) =


0 if wtj(w) = 0 and v /∈ Qj \ Pj ,

1 if wtj(w) = 0 and v ∈ Qj \ Pj ,

0 if wtj(w) > 0 and v ∈ Pj ,

wtj(w) + 1 if wtj(w) > 0 and v /∈ Pj .

wt(w) = (wt1(w), . . . ,wtk(w)) ∈ Nk

val(ρ) = lim supn→∞
1
n

∑n−1
`=0

∑
j∈[k]wtj(ρ0 · · · ρ`)

val(σ, v) = supρ∈Beh(v ,σ) val(ρ)

Goal:
Prove that optimal winning strategies exist and are computable.
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Example

q

Q1

Q2

Q1,Q2

p

P1

P2

Winning strategy σ: answer Q1 and Q2 alternatingly

val(σ, v) = 56
10 for every v
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Waiting Times: Upper Bounds

Lemma
Player 0 has a winning strategy σ with val(σ, v) ≤

∑
j∈[k] sk2k+1

for every v ∈W0(G).

Consequence: Upper bound on value of optimal strategies.

Lower bounds:

It takes 23 visits to h to
answer Q4.

Generalizable to k pairs.

Lower bound 2k−1

h

Q1,Q2,Q3,Q4

P1

P2,P3,P4

P2

P3,P4

Q1

P3

P4

Q1,Q2

P4

Q1,Q2,Q3
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Main Theorem

Theorem
Optimal strategies for RR games exist, are effectively computable,
and finite-state.

Proof strategy:

1. Strategies of small value can be turned into strategies with
bounded waiting times without increasing the value.

This applies to optimal strategies as well.
Makes the search space for optimal strategies finite.
Involves removing parts of plays with large waiting times.

2. Expand arena by keeping track of waiting time vectors up to
bound from 1.). RR-values equal to mean-payoff condition.

Optimal strategy for mean-payoff yields optimal strategy
for RR game.
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Dickson’s Lemma

Fix k > 0 and order Nk componentwise: (3, 7) ≤ (7, 11).

A partial order (D,≤) is a well-quasi-order (WQO), if every
infinite sequence a0a1a2 · · · ∈ Dω has two positions m < n
with am ≤ an. (m, n) is called dickson pair.

Lemma (Dickson ’13)

(Nk ,≤) is a WQO.

However, Dickson’s Lemma does not give any bound on length of
infixes without dickson pairs. Indeed, there is no such bound:(

n
) (

n − 1
) (

n − 2
)
· · ·
(
0
)
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Quantitative Dickson for RR Games

Waiting times vectors are special:

either increment, or

reset to zero.

Lemma
Let G be an RR game with s vertices and k RR conditions. There
is a function b(s, k) ∈ O(22

s·k+2
) such that every play infix of

length b(s, k) has a dickson pair.

Lemma (Czerwiński, Gogac, Kopczyński ’14)

Lower bound: 22
k/2

.
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Bounding the Waiting Times

We have σ with val(σ, v) ≤
∑

j∈[k] sk2k =: bG for all v ∈W0(G).

Lemma
Let σ be s.t. val(σ, v) ≤ bG for all v ∈W0(G). There is σ′ with
val(σ′, v) ≤ val(σ, v) for all v that uniformly bounds the waiting
times for every condition j by bG + b(s, k − 1).

wtj > bG

Pj

( , ): dickson pair

Pj
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times for every condition j by bG + b(s, k − 1).

wtj > bG

Pj

( , ): dickson pair

Pj
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Mean-Payoff Games

Mean-payoff game: G = (A,w) with w : E → {−W , . . . ,W }.
Given ρ = ρ0ρ1ρ2 · · · define value for

Player 0: ν0(ρ) = lim supn→∞
1
n

∑n
`=1 w(ρ`−1, ρ`)

Player 1: ν1(ρ) = lim infn→∞
1
n

∑n
`=1 w(ρ`−1, ρ`)

−W ≤ ν1(ρ) ≤ ν0(ρ) ≤W

Theorem (Ehrenfeucht, Mycielski ’79)

For every mean-payoff game there exist positional strategies σopt
for Player 0 and τopt for Player 1 and values ν(v) such that

1. every play ρ ∈ Beh(v , σopt) satisfies ν0(ρ) ≤ ν(v), and

2. every play ρ ∈ Beh(v , τopt) satisfies ν1(ρ) ≥ ν(v).

Strategies and values are computable in pseudo-polynomial time.

ρ ∈ Beh(v , σopt) ∩ Beh(v , τopt) satisfies ν0(ρ) = ν1(ρ) = ν(v)
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From RR Games to Mean-Payoff Games

Let tmaxj = valG +b(s, k − 1).

Let A be DFA that keeps track of waiting vectors as long as
each coordinate j is bounded by tmaxj (sink state ⊥).
Take cartesian product of A and A.
Define w by w((v ,⊥), (v ′,⊥)) = 1 +

∑
j∈[k] tmaxj and

w((v , (t1, . . . , tk)), (v ′, (t ′1, . . . , t
′
k))) =

∑
j∈[k]

tj

Obtain mean-payoff game G′ = (A× A,w).

Lemma
Let ρ = ρ0ρ1ρ2 · · · be a play in G, ρ′ the corresponding one in G′.

1. ρ′ does not reach ⊥: val(ρ) = ν0(ρ′) < 1 +
∑

j∈[k] tmaxj .

2. ρ′ reaches ⊥: ν0(ρ′) = 1 +
∑

j∈[k] tmaxj .

Martin Zimmermann Saarland University Optimal Strategy Synthesis for Request-Response Games 14/16



From RR Games to Mean-Payoff Games

Let tmaxj = valG +b(s, k − 1).
Let A be DFA that keeps track of waiting vectors as long as
each coordinate j is bounded by tmaxj (sink state ⊥).

Take cartesian product of A and A.
Define w by w((v ,⊥), (v ′,⊥)) = 1 +

∑
j∈[k] tmaxj and

w((v , (t1, . . . , tk)), (v ′, (t ′1, . . . , t
′
k))) =

∑
j∈[k]

tj

Obtain mean-payoff game G′ = (A× A,w).

Lemma
Let ρ = ρ0ρ1ρ2 · · · be a play in G, ρ′ the corresponding one in G′.

1. ρ′ does not reach ⊥: val(ρ) = ν0(ρ′) < 1 +
∑

j∈[k] tmaxj .

2. ρ′ reaches ⊥: ν0(ρ′) = 1 +
∑

j∈[k] tmaxj .

Martin Zimmermann Saarland University Optimal Strategy Synthesis for Request-Response Games 14/16



From RR Games to Mean-Payoff Games

Let tmaxj = valG +b(s, k − 1).
Let A be DFA that keeps track of waiting vectors as long as
each coordinate j is bounded by tmaxj (sink state ⊥).
Take cartesian product of A and A.

Define w by w((v ,⊥), (v ′,⊥)) = 1 +
∑

j∈[k] tmaxj and

w((v , (t1, . . . , tk)), (v ′, (t ′1, . . . , t
′
k))) =

∑
j∈[k]

tj

Obtain mean-payoff game G′ = (A× A,w).

Lemma
Let ρ = ρ0ρ1ρ2 · · · be a play in G, ρ′ the corresponding one in G′.

1. ρ′ does not reach ⊥: val(ρ) = ν0(ρ′) < 1 +
∑

j∈[k] tmaxj .

2. ρ′ reaches ⊥: ν0(ρ′) = 1 +
∑

j∈[k] tmaxj .

Martin Zimmermann Saarland University Optimal Strategy Synthesis for Request-Response Games 14/16



From RR Games to Mean-Payoff Games

Let tmaxj = valG +b(s, k − 1).
Let A be DFA that keeps track of waiting vectors as long as
each coordinate j is bounded by tmaxj (sink state ⊥).
Take cartesian product of A and A.
Define w by w((v ,⊥), (v ′,⊥)) = 1 +

∑
j∈[k] tmaxj and

w((v , (t1, . . . , tk)), (v ′, (t ′1, . . . , t
′
k))) =

∑
j∈[k]

tj

Obtain mean-payoff game G′ = (A× A,w).

Lemma
Let ρ = ρ0ρ1ρ2 · · · be a play in G, ρ′ the corresponding one in G′.

1. ρ′ does not reach ⊥: val(ρ) = ν0(ρ′) < 1 +
∑

j∈[k] tmaxj .

2. ρ′ reaches ⊥: ν0(ρ′) = 1 +
∑

j∈[k] tmaxj .

Martin Zimmermann Saarland University Optimal Strategy Synthesis for Request-Response Games 14/16



From RR Games to Mean-Payoff Games

Let tmaxj = valG +b(s, k − 1).
Let A be DFA that keeps track of waiting vectors as long as
each coordinate j is bounded by tmaxj (sink state ⊥).
Take cartesian product of A and A.
Define w by w((v ,⊥), (v ′,⊥)) = 1 +

∑
j∈[k] tmaxj and

w((v , (t1, . . . , tk)), (v ′, (t ′1, . . . , t
′
k))) =

∑
j∈[k]

tj

Obtain mean-payoff game G′ = (A× A,w).

Lemma
Let ρ = ρ0ρ1ρ2 · · · be a play in G, ρ′ the corresponding one in G′.

1. ρ′ does not reach ⊥: val(ρ) = ν0(ρ′) < 1 +
∑

j∈[k] tmaxj .

2. ρ′ reaches ⊥: ν0(ρ′) = 1 +
∑

j∈[k] tmaxj .

Martin Zimmermann Saarland University Optimal Strategy Synthesis for Request-Response Games 14/16



From RR Games to Mean-Payoff Games

Let tmaxj = valG +b(s, k − 1).
Let A be DFA that keeps track of waiting vectors as long as
each coordinate j is bounded by tmaxj (sink state ⊥).
Take cartesian product of A and A.
Define w by w((v ,⊥), (v ′,⊥)) = 1 +

∑
j∈[k] tmaxj and

w((v , (t1, . . . , tk)), (v ′, (t ′1, . . . , t
′
k))) =

∑
j∈[k]

tj

Obtain mean-payoff game G′ = (A× A,w).

Lemma
Let ρ = ρ0ρ1ρ2 · · · be a play in G, ρ′ the corresponding one in G′.

1. ρ′ does not reach ⊥: val(ρ) = ν0(ρ′) < 1 +
∑

j∈[k] tmaxj .

2. ρ′ reaches ⊥: ν0(ρ′) = 1 +
∑

j∈[k] tmaxj .

Martin Zimmermann Saarland University Optimal Strategy Synthesis for Request-Response Games 14/16



From RR Games to Mean-Payoff Games

Let tmaxj = valG +b(s, k − 1).
Let A be DFA that keeps track of waiting vectors as long as
each coordinate j is bounded by tmaxj (sink state ⊥).
Take cartesian product of A and A.
Define w by w((v ,⊥), (v ′,⊥)) = 1 +

∑
j∈[k] tmaxj and

w((v , (t1, . . . , tk)), (v ′, (t ′1, . . . , t
′
k))) =

∑
j∈[k]

tj

Obtain mean-payoff game G′ = (A× A,w).

Lemma
Let ρ = ρ0ρ1ρ2 · · · be a play in G, ρ′ the corresponding one in G′.

1. ρ′ does not reach ⊥: val(ρ) = ν0(ρ′) < 1 +
∑

j∈[k] tmaxj .

2. ρ′ reaches ⊥: ν0(ρ′) = 1 +
∑

j∈[k] tmaxj .

Martin Zimmermann Saarland University Optimal Strategy Synthesis for Request-Response Games 14/16



Proof of Main Theorem

RR game G, mean-payoff game G′.
σ uniformly bounds the waiting times in G by tmaxj .

Turn into σ′ for G′ which never reaches ⊥, bounds ν(v)
strictly below 1 +

∑
j∈[k] tmaxj .

σ′
opt is optimal strategy for G′ (never reaches ⊥).

Turn into σopt for G with bounded waiting times (as σ′
opt

never reaches ⊥).

Claim: σopt is optimal.

assume σ̂opt is strictly better.

Turn into σ̂′
opt for G′, which is strictly better than σ′

opt.

Contradiction.
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Conclusion

Optimal strategies for RR games exist and can be effectively
computed.

But they are larger than arbitrary strategies.

Is this avoidable or is there a price to pay for optimality?

What about heuristics, approximation algorithms?

Same questions can be asked for other winning conditions and
other combinations of quality measures.
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