Optimal Strategy Synthesis for Request-Response Games

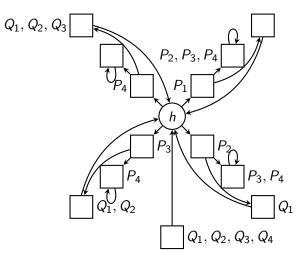
Joint work with Florian Horn, Nico Wallmeier, and Wolfgang Thomas

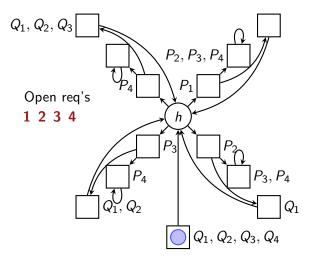
Martin Zimmermann

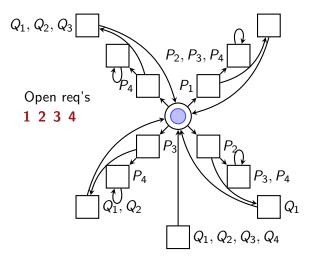
Saarland University

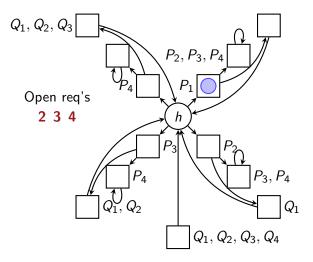
September 26th, 2014

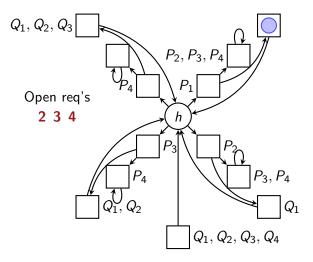
AVACS Meeting, Saarbrücken, Germany

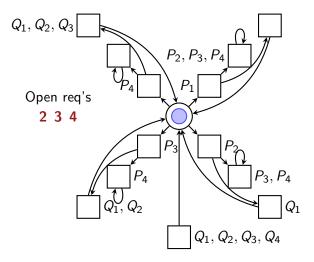


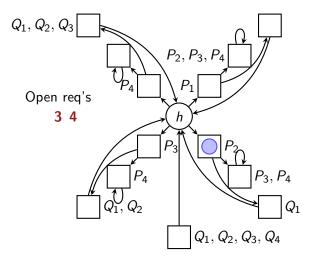


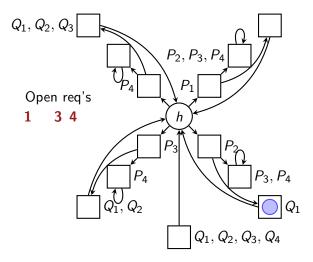


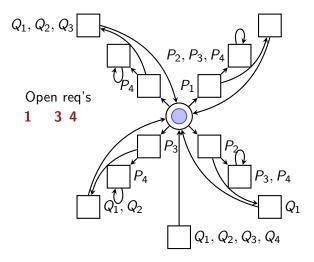


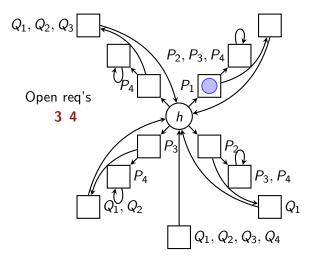


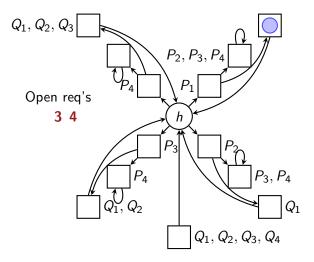


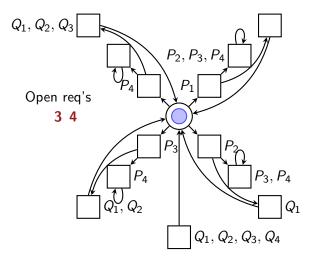


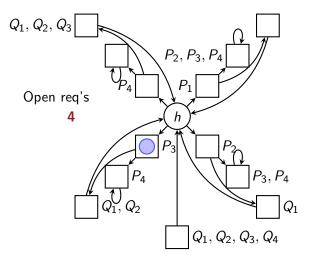


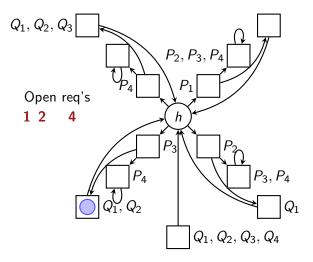


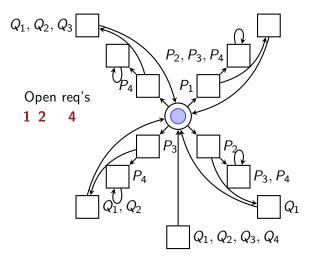


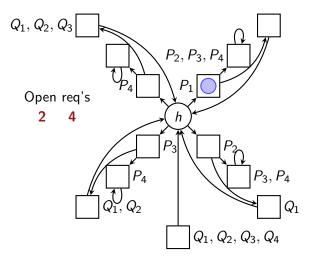


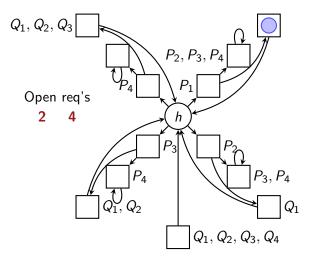


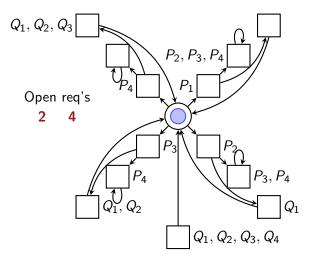


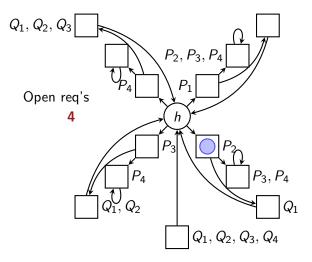


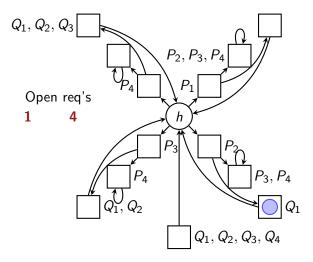


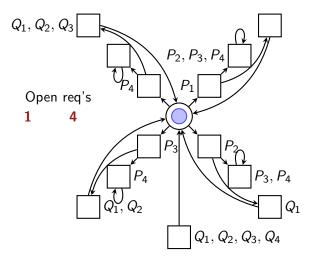


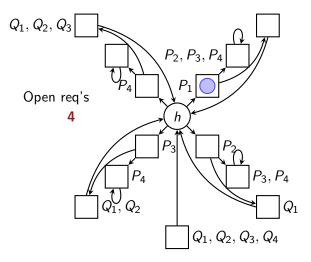


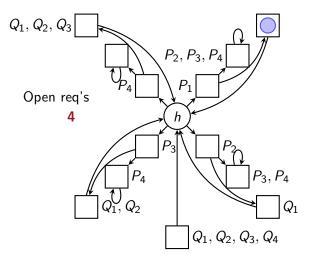


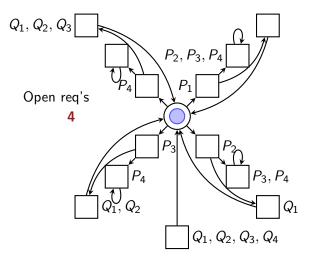


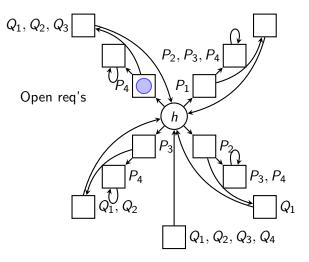


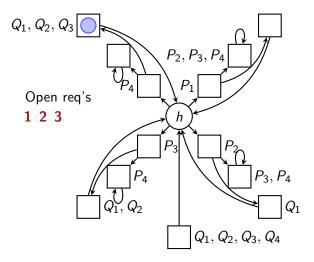


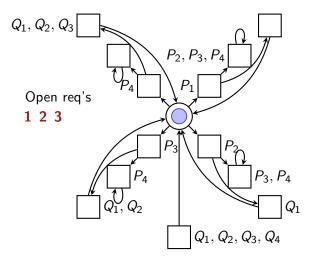


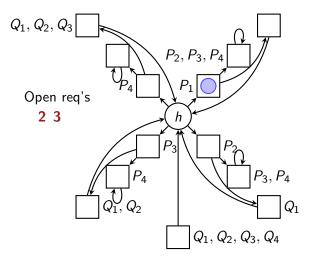


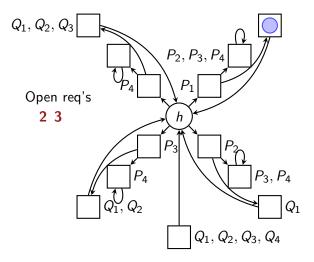


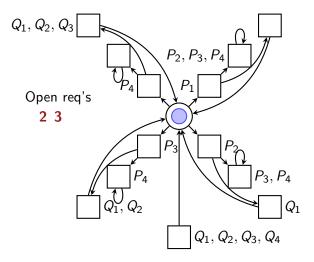


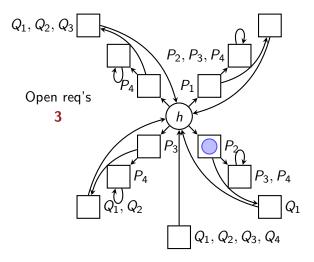


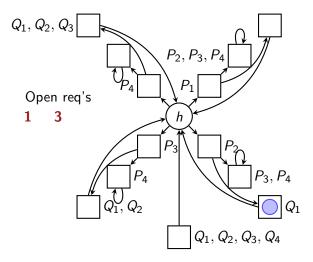


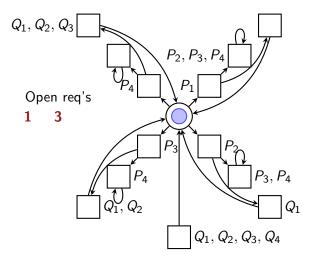


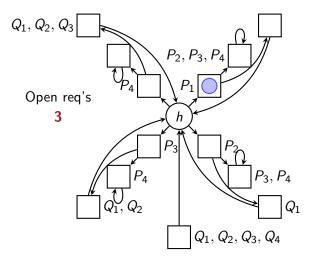


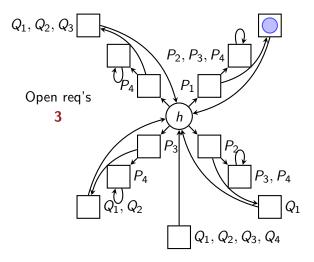


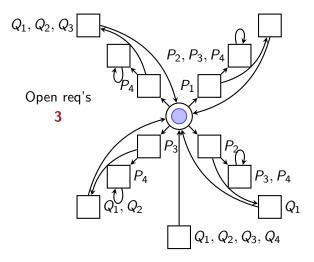


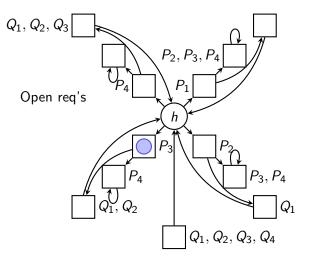


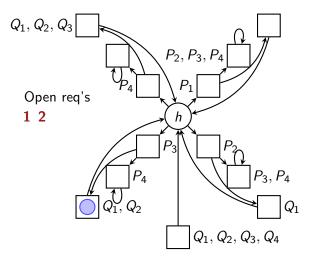


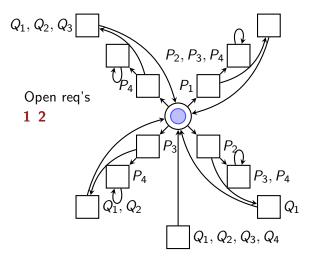


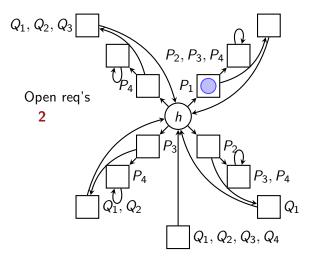


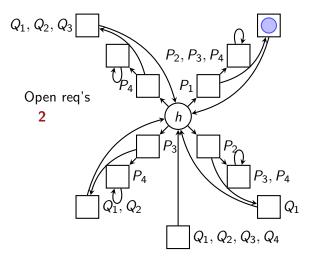


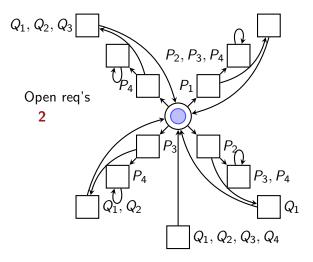


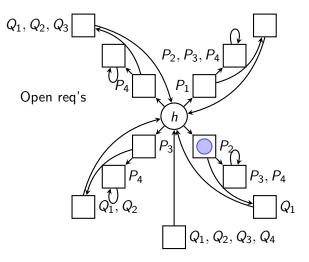


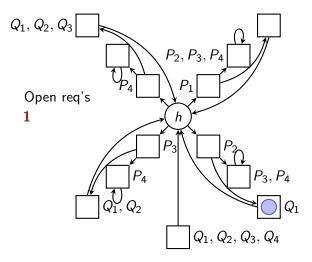


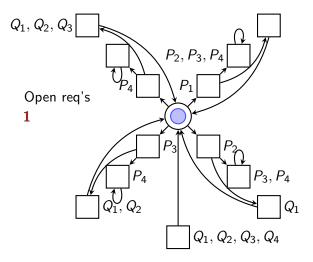


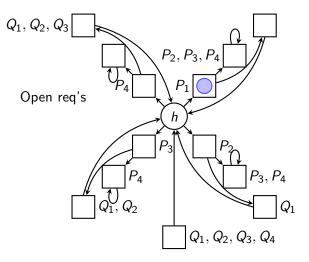


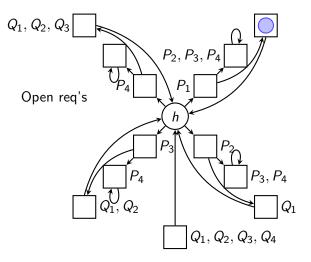


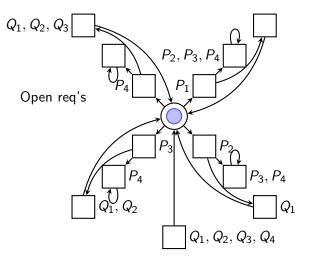


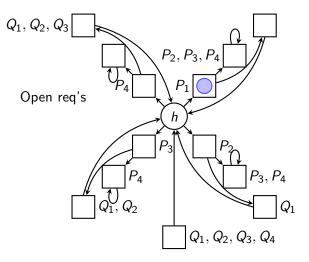


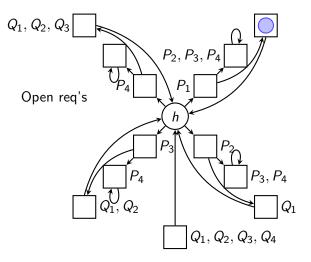


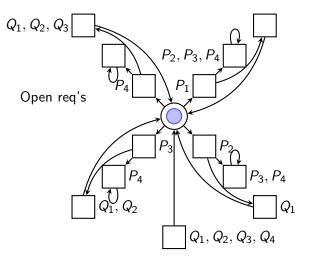












Arena: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).

- Arena: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- Play: infinite path through A

- Arena: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- \blacksquare Play: infinite path through $\mathcal A$
- Game: G = (A, Win) with set Win ⊆ V^ω of winning plays for Player 0. Player 1 wins all other plays.

- Arena: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- \blacksquare Play: infinite path through $\mathcal A$
- Game: G = (A, Win) with set Win ⊆ V^ω of winning plays for Player 0. Player 1 wins all other plays.
- Strategy for Player 0: $\sigma: V^*V_0 \to V$ s.t. $(v, \sigma(wv)) \in E$ for all $wv \in V^*V_0$.

- Arena: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- Play: infinite path through A
- Game: G = (A, Win) with set Win ⊆ V^ω of winning plays for Player 0. Player 1 wins all other plays.
- Strategy for Player 0: $\sigma: V^*V_0 \to V$ s.t. $(v, \sigma(wv)) \in E$ for all $wv \in V^*V_0$.
- ρ consistent with σ : $\rho_{n+1} = \sigma(\rho_0 \cdots \rho_n)$ for all n s.t. $\rho_n \in V_0$.

 $Beh(v, \sigma) = \{ \rho \mid \rho \text{ starting in } v, \text{ consistent with } \sigma \}$

- Arena: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- \blacksquare Play: infinite path through $\mathcal A$
- Game: G = (A, Win) with set Win ⊆ V^ω of winning plays for Player 0. Player 1 wins all other plays.
- Strategy for Player 0: $\sigma: V^*V_0 \to V$ s.t. $(v, \sigma(wv)) \in E$ for all $wv \in V^*V_0$.
- ρ consistent with σ : $\rho_{n+1} = \sigma(\rho_0 \cdots \rho_n)$ for all n s.t. $\rho_n \in V_0$.

Beh $(v, \sigma) = \{ \rho \mid \rho \text{ starting in } v, \text{ consistent with } \sigma \}$

• σ winning from v for Player 0: Beh $(v, \sigma) \subseteq$ Win.

- Arena: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- \blacksquare Play: infinite path through $\mathcal A$
- Game: G = (A, Win) with set Win ⊆ V^ω of winning plays for Player 0. Player 1 wins all other plays.
- Strategy for Player 0: $\sigma: V^*V_0 \to V$ s.t. $(v, \sigma(wv)) \in E$ for all $wv \in V^*V_0$.
- ρ consistent with σ : $\rho_{n+1} = \sigma(\rho_0 \cdots \rho_n)$ for all n s.t. $\rho_n \in V_0$.

 $Beh(v, \sigma) = \{ \rho \mid \rho \text{ starting in } v, \text{ consistent with } \sigma \}$

- σ winning from v for Player 0: Beh $(v, \sigma) \subseteq$ Win.
- Winning region of Player 0:

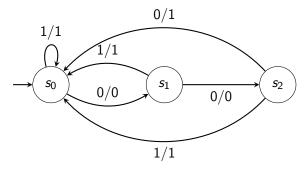
$$W_0 = \{v \mid \text{Player 0 has winning strategy from } v\}$$

Reductions and Finite-state Strategies

Positional Strategies: move only depends on last vertex

 $\sigma(wv) = \sigma(v)$

Finite-state strategies: implemented by DFA with output reading play prefix $\rho_0 \cdots \rho_n$ and outputting $\sigma(\rho_0 \cdots \rho_n)$.



Request-response game (RR game): $(A, (Q_j, P_j)_{j \in [k]})$ with

• arena
$$\mathcal{A} = (V, V_0, V_1, E)$$
,

•
$$Q_j \subseteq V$$
: reQuests of condition j , and

• $P_j \subseteq V$: resPonses of condition *j*.

Request-response game (RR game): $(\mathcal{A}, (Q_j, P_j)_{j \in [k]})$ with

- \blacksquare arena $\mathcal{A} = (V, V_0, V_1, E)$,
- $Q_j \subseteq V$: reQuests of condition j, and
- $P_j \subseteq V$: resPonses of condition j.
- Player 0 wins if every request is answered by corresponding response: \$\langle_{j ∈ [k]} G(Q_j → FP_j)\$

Request-response game (RR game): $(\mathcal{A}, (Q_j, P_j)_{j \in [k]})$ with

• arena
$$\mathcal{A} = (V, V_0, V_1, E)$$
,

- $Q_j \subseteq V$: reQuests of condition j, and
- $P_j \subseteq V$: resPonses of condition *j*.
- Player 0 wins if every request is answered by corresponding response: \$\langle_{j ∈ [k]} G(Q_j → FP_j)\$

Theorem (Wallmeier, Hütten, Thomas '03)

RR games can be reduced to Büchi games of size $sk2^{k+1}$, where s = |V|.

Request-response game (RR game): $(A, (Q_j, P_j)_{j \in [k]})$ with

• arena
$$\mathcal{A} = (V, V_0, V_1, E)$$
,

- $Q_j \subseteq V$: reQuests of condition j, and
- $P_j \subseteq V$: resPonses of condition *j*.
- Player 0 wins if every request is answered by corresponding response: $\bigwedge_{j \in [k]} \mathbf{G}(Q_j \to \mathbf{F}P_j)$

Theorem (Wallmeier, Hütten, Thomas '03)

RR games can be reduced to Büchi games of size $sk2^{k+1}$, where s = |V|.

Corollary

- Finite-state winning strategies of size $k2^{k+1}$ for both players.
- **Solvable in** EXPTIME.

•
$$\operatorname{wt}_{j}(\varepsilon) = 0$$
, and
 $\operatorname{wt}_{j}(wv) = \begin{cases} 0 \\ \end{cases}$

$$\text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_{j_j}$$

$$\mathrm{wt}_j(arepsilon) = 0$$
, and
 $\mathrm{wt}_j(wv) = egin{cases} 0 \\ 1 \end{bmatrix}$

$$\begin{array}{l} \text{if } \operatorname{wt}_j(w) = 0 \ \text{and} \ v \notin Q_j \setminus P_j, \\ \text{if } \operatorname{wt}_j(w) = 0 \ \text{and} \ v \in Q_j \setminus P_j, \end{array} \end{array}$$

$$\operatorname{wt}_{j}(\varepsilon) = 0$$
, and
 $\operatorname{wt}_{j}(wv) = \begin{cases} 0\\ 1\\ 0 \end{cases}$

$$\begin{split} & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\ & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\ & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \in P_j, \end{split}$$

•
$$\operatorname{wt}_j(\varepsilon) = 0$$
, and

$$\operatorname{wt}_j(wv) = \begin{cases} 0 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\ 1 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\ 0 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \in P_j, \\ \operatorname{wt}_j(w) + 1 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \notin P_j. \end{cases}$$

•
$$\operatorname{wt}_j(\varepsilon) = 0$$
, and

$$\operatorname{wt}_j(wv) = egin{cases} 0 & ext{if } \operatorname{wt}_j(w) = 0 ext{ and } v \notin Q_j \setminus P_j, \ 1 & ext{if } \operatorname{wt}_j(w) = 0 ext{ and } v \in Q_j \setminus P_j, \ 0 & ext{if } \operatorname{wt}_j(w) > 0 ext{ and } v \in P_j, \ \operatorname{wt}_j(w) + 1 & ext{if } \operatorname{wt}_j(w) > 0 ext{ and } v \notin P_j. \end{cases}$$

•
$$\overline{\mathrm{wt}}(w) = (\mathrm{wt}_1(w), \ldots, \mathrm{wt}_k(w)) \in \mathbb{N}^k$$

•
$$\operatorname{wt}_j(\varepsilon) = 0$$
, and

$$\operatorname{wt}_j(wv) = egin{cases} 0 & ext{if } \operatorname{wt}_j(w) = 0 ext{ and } v \notin Q_j \setminus P_j, \ 1 & ext{if } \operatorname{wt}_j(w) = 0 ext{ and } v \in Q_j \setminus P_j, \ 0 & ext{if } \operatorname{wt}_j(w) > 0 ext{ and } v \in P_j, \ \operatorname{wt}_j(w) + 1 & ext{if } \operatorname{wt}_j(w) > 0 ext{ and } v \notin P_j. \end{cases}$$

•
$$\operatorname{wt}_j(\varepsilon) = 0$$
, and

$$\operatorname{wt}_j(wv) = \begin{cases} 0 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\ 1 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\ 0 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \in P_j, \\ \operatorname{wt}_j(w) + 1 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \notin P_j. \end{cases}$$

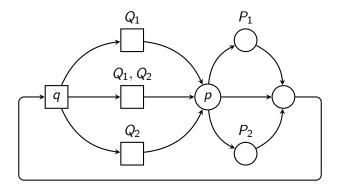
•
$$\operatorname{wt}_j(\varepsilon) = 0$$
, and

$$\operatorname{wt}_j(wv) = \begin{cases} 0 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\ 1 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\ 0 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \in P_j, \\ \operatorname{wt}_j(w) + 1 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \notin P_j. \end{cases}$$

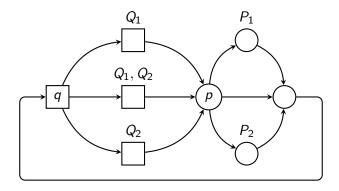
Goal:

Prove that optimal winning strategies exist and are computable.

Example



Example



Winning strategy σ: answer Q₁ and Q₂ alternatingly
 val(σ, ν) = ⁵⁶/₁₀ for every ν

Player 0 has a winning strategy σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^{k+1}$ for every $v \in W_0(\mathcal{G})$.

Player 0 has a winning strategy σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^{k+1}$ for every $v \in W_0(\mathcal{G})$.

Consequence: Upper bound on value of optimal strategies.

Player 0 has a winning strategy σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^{k+1}$ for every $v \in W_0(\mathcal{G})$.

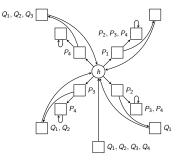
Consequence: Upper bound on value of optimal strategies.

Lower bounds:

Player 0 has a winning strategy σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^{k+1}$ for every $v \in W_0(\mathcal{G})$.

Consequence: Upper bound on value of optimal strategies.

Lower bounds:

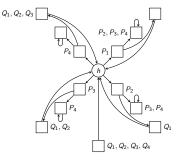


Player 0 has a winning strategy σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^{k+1}$ for every $v \in W_0(\mathcal{G})$.

Consequence: Upper bound on value of optimal strategies.

Lower bounds:

■ It takes 2³ visits to *h* to answer *Q*₄.

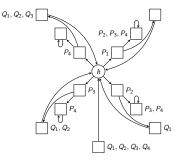


Player 0 has a winning strategy σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^{k+1}$ for every $v \in W_0(\mathcal{G})$.

Consequence: Upper bound on value of optimal strategies.

Lower bounds:

- It takes 2³ visits to h to answer Q₄.
- Generalizable to k pairs.
- Lower bound 2^{*k*−1}



Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

1. Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

- **1.** Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

- **1.** Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.
- **2.** Expand arena by keeping track of waiting time vectors up to bound from 1.). RR-values equal to mean-payoff condition.

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

- **1.** Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.
- **2.** Expand arena by keeping track of waiting time vectors up to bound from 1.). RR-values equal to mean-payoff condition.
 - Optimal strategy for mean-payoff yields optimal strategy for RR game.

Fix k > 0 and order \mathbb{N}^k componentwise: $(3,7) \leq (7,11)$.

- Fix k > 0 and order \mathbb{N}^k componentwise: $(3,7) \leq (7,11)$.
- A partial order (D, ≤) is a well-quasi-order (WQO), if every infinite sequence a₀a₁a₂···∈ D^ω has two positions m < n with a_m ≤ a_n. (m, n) is called dickson pair.

- Fix k > 0 and order \mathbb{N}^k componentwise: $(3,7) \leq (7,11)$.
- A partial order (D, ≤) is a well-quasi-order (WQO), if every infinite sequence a₀a₁a₂···∈ D^ω has two positions m < n with a_m ≤ a_n. (m, n) is called dickson pair.
 - (\mathbb{N}, \leq) is a WQO.
 - (\mathbb{Z}, \leq) is not a WQO.
 - $(2^{\mathbb{N}}, \subseteq)$ is not a WQO.

Fix k > 0 and order \mathbb{N}^k componentwise: $(3,7) \leq (7,11)$.

A partial order (D, ≤) is a well-quasi-order (WQO), if every infinite sequence a₀a₁a₂···∈ D^ω has two positions m < n with a_m ≤ a_n. (m, n) is called dickson pair.

Lemma (Dickson '13)

 (\mathbb{N}^k, \leq) is a WQO.

Fix k > 0 and order \mathbb{N}^k componentwise: $(3,7) \leq (7,11)$.

A partial order (D, ≤) is a well-quasi-order (WQO), if every infinite sequence a₀a₁a₂···∈ D^ω has two positions m < n with a_m ≤ a_n. (m, n) is called dickson pair.

Lemma (Dickson '13)

 (\mathbb{N}^k, \leq) is a WQO.

However, Dickson's Lemma does not give any bound on length of infixes without dickson pairs.

Fix k > 0 and order \mathbb{N}^k componentwise: $(3,7) \leq (7,11)$.

A partial order (D, ≤) is a well-quasi-order (WQO), if every infinite sequence a₀a₁a₂···∈ D^ω has two positions m < n with a_m ≤ a_n. (m, n) is called dickson pair.

Lemma (Dickson '13)

 (\mathbb{N}^k, \leq) is a WQO.

However, Dickson's Lemma does not give any bound on length of infixes without dickson pairs. Indeed, there is no such bound:

$$(n)(n-1)(n-2)\cdots(0)$$

Quantitative Dickson for RR Games

Waiting times vectors are special:

- either increment, or
- reset to zero.

Quantitative Dickson for RR Games

Waiting times vectors are special:

- either increment, or
- reset to zero.

Lemma

Let \mathcal{G} be an RR game with s vertices and k RR conditions. There is a function $b(s,k) \in \mathcal{O}(2^{2^{s\cdot k+2}})$ such that every play infix of length b(s,k) has a dickson pair.

Quantitative Dickson for RR Games

Waiting times vectors are special:

- either increment, or
- reset to zero.

Lemma

Let \mathcal{G} be an RR game with s vertices and k RR conditions. There is a function $b(s,k) \in \mathcal{O}(2^{2^{s\cdot k+2}})$ such that every play infix of length b(s,k) has a dickson pair.

Lemma (Czerwiński, Gogac, Kopczyński '14) Lower bound: $2^{2^{k/2}}$.

We have σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

We have σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

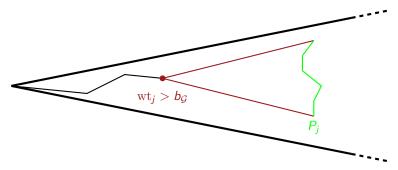
Lemma

Let σ be s.t. $val(\sigma, v) \leq b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$. There is σ' with $val(\sigma', v) \leq val(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_{\mathcal{G}} + b(s, k - 1)$.

We have σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma

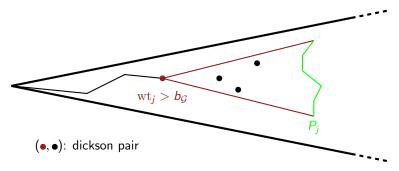
Let σ be s.t. $val(\sigma, v) \leq b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$. There is σ' with $val(\sigma', v) \leq val(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_{\mathcal{G}} + b(s, k - 1)$.



We have σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma

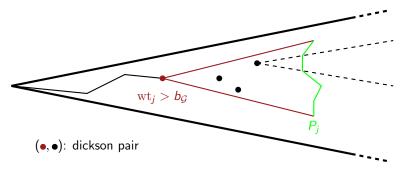
Let σ be s.t. $val(\sigma, v) \leq b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$. There is σ' with $val(\sigma', v) \leq val(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_{\mathcal{G}} + b(s, k - 1)$.



We have σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma

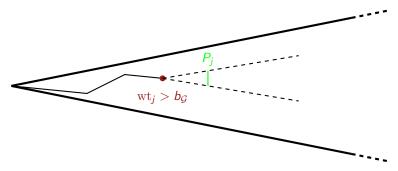
Let σ be s.t. $val(\sigma, v) \leq b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$. There is σ' with $val(\sigma', v) \leq val(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_{\mathcal{G}} + b(s, k - 1)$.



We have σ with $val(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma

Let σ be s.t. $val(\sigma, v) \leq b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$. There is σ' with $val(\sigma', v) \leq val(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_{\mathcal{G}} + b(s, k - 1)$.



Mean-payoff game: $\mathcal{G} = (\mathcal{A}, w)$ with $w \colon E \to \{-W, \dots, W\}$. • Given $\rho = \rho_0 \rho_1 \rho_2 \cdots$ define value for • Player 0: $\nu_0(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$

Mean-payoff game: $\mathcal{G} = (\mathcal{A}, w)$ with $w : E \to \{-W, \dots, W\}$. **a** Given $\rho = \rho_0 \rho_1 \rho_2 \cdots$ define value for **b** Player 0: $\nu_0(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$ **b** Player 1: $\nu_1(\rho) = \liminf_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$

Mean-payoff game:
$$\mathcal{G} = (\mathcal{A}, w)$$
 with $w: E \to \{-W, \dots, W\}$.
a Given $\rho = \rho_0 \rho_1 \rho_2 \cdots$ define value for
b Player 0: $\nu_0(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$
b Player 1: $\nu_1(\rho) = \liminf_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$
c $-W \le \nu_1(\rho) \le \nu_0(\rho) \le W$

Mean-payoff game: $\mathcal{G} = (\mathcal{A}, w)$ with $w : E \to \{-W, \dots, W\}$. **a** Given $\rho = \rho_0 \rho_1 \rho_2 \cdots$ define value for **b** Player 0: $\nu_0(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$ **b** Player 1: $\nu_1(\rho) = \liminf_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$ **b** $-W \le \nu_1(\rho) \le \nu_0(\rho) \le W$

Theorem (Ehrenfeucht, Mycielski '79)

For every mean-payoff game there exist positional strategies σ_{opt} for Player 0 and τ_{opt} for Player 1 and values $\nu(v)$ such that

- 1. every play $ho \in \mathrm{Beh}(v, \sigma_{\mathrm{opt}})$ satisfies $u_0(
 ho) \leq \nu(v)$, and
- **2.** every play $\rho \in Beh(v, \tau_{opt})$ satisfies $\nu_1(\rho) \ge \nu(v)$.

Strategies and values are computable in pseudo-polynomial time.

Mean-payoff game: $\mathcal{G} = (\mathcal{A}, w)$ with $w: E \to \{-W, \dots, W\}$. **a** Given $\rho = \rho_0 \rho_1 \rho_2 \cdots$ define value for **b** Player 0: $\nu_0(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$ **b** Player 1: $\nu_1(\rho) = \liminf_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n w(\rho_{\ell-1}, \rho_\ell)$ **b** $-W \le \nu_1(\rho) \le \nu_0(\rho) \le W$

Theorem (Ehrenfeucht, Mycielski '79)

For every mean-payoff game there exist positional strategies σ_{opt} for Player 0 and τ_{opt} for Player 1 and values $\nu(v)$ such that

- 1. every play $ho \in \mathrm{Beh}(v, \sigma_{\mathrm{opt}})$ satisfies $u_0(
 ho) \leq \nu(v)$, and
- **2.** every play $\rho \in Beh(v, \tau_{opt})$ satisfies $\nu_1(\rho) \ge \nu(v)$.

Strategies and values are computable in pseudo-polynomial time.

•
$$\rho \in Beh(v, \sigma_{opt}) \cap Beh(v, \tau_{opt})$$
 satisfies $\nu_0(\rho) = \nu_1(\rho) = \nu(v)$

• Let
$$t_{\max_i} = \operatorname{val}_{\mathcal{G}} + b(s, k-1)$$
.

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(s, k-1)$$
.

Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(s, k-1)$$
.

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).
- **T**ake cartesian product of \mathcal{A} and \mathfrak{A} .

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(s, k-1)$$
.

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).
- **Take cartesian product of** \mathcal{A} and \mathfrak{A} .
- Define w by $w((v, \bot), (v', \bot)) = 1 + \sum_{j \in [k]} t_{\max_j}$ and

$$w((v,(t_1,\ldots,t_k)),(v',(t_1',\ldots,t_k'))) = \sum_{j\in[k]} t_j$$

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(s, k-1)$$
.

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).
- **Take cartesian product of** \mathcal{A} and \mathfrak{A} .
- \blacksquare Define w by $w((v,\bot),(v',\bot))=1+\sum_{j\in[k]}t_{\mathsf{max}_j}$ and

$$w((v,(t_1,\ldots,t_k)),(v',(t_1',\ldots,t_k'))) = \sum_{j\in[k]} t_j$$

• Obtain mean-payoff game $\mathcal{G}' = (\mathcal{A} \times \mathfrak{A}, w).$

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(s, k-1)$$
.

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).
- **Take cartesian product of** \mathcal{A} and \mathfrak{A} .
- \blacksquare Define w by $w((v,\bot),(v',\bot))=1+\sum_{j\in[k]}t_{\mathsf{max}_j}$ and

$$w((v,(t_1,\ldots,t_k)),(v',(t_1',\ldots,t_k'))) = \sum_{j\in [k]} t_j$$

• Obtain mean-payoff game $\mathcal{G}' = (\mathcal{A} \times \mathfrak{A}, w).$

Lemma

Let $\rho = \rho_0 \rho_1 \rho_2 \cdots$ be a play in \mathcal{G} , ρ' the corresponding one in \mathcal{G}' .

1.
$$\rho'$$
 does not reach \perp : $val(\rho) = \nu_0(\rho') < 1 + \sum_{j \in [k]} t_{\max_j}$.

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(s, k-1)$$
.

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_j} (sink state ⊥).
- **Take cartesian product of** \mathcal{A} and \mathfrak{A} .
- \blacksquare Define w by $w((v,\bot),(v',\bot))=1+\sum_{j\in[k]}t_{\mathsf{max}_j}$ and

$$w((v,(t_1,\ldots,t_k)),(v',(t_1',\ldots,t_k'))) = \sum_{j\in [k]} t_j$$

• Obtain mean-payoff game $\mathcal{G}' = (\mathcal{A} \times \mathfrak{A}, w).$

Lemma

Let $\rho = \rho_0 \rho_1 \rho_2 \cdots$ be a play in \mathcal{G} , ρ' the corresponding one in \mathcal{G}' .

1.
$$\rho'$$
 does not reach \perp : val $(\rho) = \nu_0(\rho') < 1 + \sum_{j \in [k]} t_{\max_j}$.

2.
$$\rho'$$
 reaches \perp : $\nu_0(\rho') = 1 + \sum_{j \in [k]} t_{\max_j}$.

Proof of Main Theorem

RR game $\mathcal{G}\text{,}$ mean-payoff game $\mathcal{G}^{\prime}\text{.}$

- σ uniformly bounds the waiting times in \mathcal{G} by t_{\max_i} .
- Turn into σ' for \mathcal{G}' which never reaches \bot , bounds $\nu(v)$ strictly below $1 + \sum_{j \in [k]} t_{\max_j}$.

Proof of Main Theorem

RR game $\mathcal{G}\text{,}$ mean-payoff game $\mathcal{G}^{\prime}\text{.}$

- σ uniformly bounds the waiting times in \mathcal{G} by t_{\max_i} .
- Turn into σ' for \mathcal{G}' which never reaches \bot , bounds $\nu(v)$ strictly below $1 + \sum_{j \in [k]} t_{\max_j}$.
- σ'_{opt} is optimal strategy for G' (never reaches ⊥).
 Turn into σ_{opt} for G with bounded waiting times (as σ'_{opt} never reaches ⊥).

Claim: σ_{opt} is optimal.

Proof of Main Theorem

RR game $\mathcal{G}\text{,}$ mean-payoff game $\mathcal{G}^{\prime}\text{.}$

- σ uniformly bounds the waiting times in \mathcal{G} by t_{\max_i} .
- Turn into σ' for \mathcal{G}' which never reaches \bot , bounds $\nu(v)$ strictly below $1 + \sum_{j \in [k]} t_{\max_j}$.
- σ'_{opt} is optimal strategy for G' (never reaches ⊥).
 Turn into σ_{opt} for G with bounded waiting times (as σ'_{opt} never reaches ⊥).

Claim: σ_{opt} is optimal.

assume $\widehat{\sigma}_{opt}$ is strictly better.

Turn into $\hat{\sigma}'_{opt}$ for \mathcal{G}' , which is strictly better than σ'_{opt} .

Contradiction.

Conclusion

Optimal strategies for RR games exist and can be effectively computed.

- But they are larger than arbitrary strategies.
- Is this avoidable or is there a price to pay for optimality?
- What about heuristics, approximation algorithms?

Same questions can be asked for other winning conditions and other combinations of quality measures.