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Motivation

Linear Temporal Logic (LTL) as specification language:

Simple and variable-free syntax and intuitive semantics.

Expressively equivalent to first-order logic on words.

LTL model-checking routinely applied in industrial settings.

But LTL cannot express timing constraints.

Possible remedies:

Add F≤k for k ∈ N. Problem: finding “right” k impracticable.

Alur et. al, Kupferman et. al: add F≤x for variable x . Now:

does there exist a value x such that F≤xϕ holds?
what is the best value x such that F≤xϕ holds?

In Model-Checking: adding variable time bounds does not increase
complexity.
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Infinite Games

Arena A = (V ,V0,V1,E ):

finite directed graph (V ,E ),

V0 ⊆ V positions of Player 0 (circles),

V1 = V \ V0 positions of Player 1 (squares).

10 2

Play: path ρ0ρ1 · · · through A.

Strategy for Player i : σ : V ∗Vi → V s.t. (v , σ(wv)) ∈ E .

ρ0ρ1 · · · consistent with σ: ρn+1 = σ(ρ0 · · · ρn) for all n s.t.
ρn ∈ Vi .

Finite-state strategy: implemented by finite automaton with
output.
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PLTL: Syntax and Semantics

Parametric LTL: p atomic proposition, x ∈ X , y ∈ Y (X ∩ Y = ∅).

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | F≤xϕ | G≤yϕ

Semantics w.r.t. variable valuation α : X ∪ Y → N:

As usual for LTL operators.

(ρ, n, α) |= F≤xϕ: ρ
n n + α(x)

ϕ

(ρ, n, α) |= G≤yϕ: ρ
n n + α(y)

ϕ ϕ ϕ ϕ ϕ

Fragments:

PLTLF: no parameterized always operators G≤y .

PLTLG: no parameterized eventually operators F≤x .
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PLTL Games

PLTL game: G = (A, v0, ϕ) with arena A (labeled by ` : V → 2P),
initial vertex v0, and PLTL formula ϕ.

Rules:

all plays start in v0.

Player 0 wins ρ0ρ1 · · · w.r.t. α, if (`(ρ0)`(ρ1) · · · , α) |= ϕ.

Player 1 wins ρ0ρ1 · · · w.r.t. α, if (`(ρ0)`(ρ1) · · · , α) 6|= ϕ.

σ is winning strategy for Player i w.r.t. α, if every consistent
play is winning for Player i w.r.t. α.

Winning valuations for Player i

Wi (G) = {α | Player i has winning strategy for G w.r.t. α}

Lemma
Determinacy: W0(G) is the complement of W1(G).
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An Example

v0

{q0}

{q1}

{q0, q1} {d}

{p0}

{p1}

ϕ1 = FGd ∨
∧

i∈{0,1}G(qi → Fpi ) : W1(G1) = ∅.

ϕ2 = FGd ∨
∧

i∈{0,1}G(qi → F≤xipi ) : W0(G2) = ∅.
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More Example Properties

Bounded Büchi: GF≤xp

Finitary parity (Chatterjee, Henzinger, Horn):

FG
∧

c odd

c → F≤x
∨
c′>c

c ′ even

c ′



Finitary Streett (CHH):

FG
k∧

j=1

(Rj → F≤xGj)
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Decision Problems

Membership: given G, i ∈ {0, 1}, and α, is α ∈ Wi (G)?

Emptiness: given G and i ∈ {0, 1}, is Wi (G) empty?

Finiteness: given G and i ∈ {0, 1}, is Wi (G) finite?

Universality: given G and i ∈ {0, 1}, is Wi (G) universal?

The benchmark:

Theorem (Pnueli, Rosner 1989)

Solving LTL games is 2Exptime-complete.

Adding parameterized operators does not increase complexity:

Theorem
All four decision problems are 2Exptime-complete.
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Proof Idea

Emptiness for PLTLF games, i.e., only F≤x in ϕ.

1. Duplicate arena, color one copy red, the other green. Player 0
can change between copies after every move.

2. Inductively replace every F≤xψ by

(red → (redU(greenUψ)))∧(green→ (greenU(redUψ)))

3. Add conjunct GFred ∧ GFgreen to ϕ, obtain ϕ′.

4. Player 0 wins LTL game (A′, ϕ′) iff there exists α s.t. Player 0
wins (A, ϕ) w.r.t. α.

5. Proof relies on finite-state determinacy of LTL games.

Corollary: doubly-exponential upper bound on α.

Full PLTL and other problems: use monotonicity and duality of
F≤x and G≤y
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Optimization Problems

For PLTLF and PLTLG winning conditions, synthesis is an
optimization problem: what is the best variable valuation in Wi (G)?

Theorem
Let GF be a PLTLF game with winning condition ϕF and let GG be
a PLTLG game with winning condition ϕG. The following values
(and winning strategies realizing them) can be computed in
triply-exponential time.

1. minα∈W0(GF) minx∈var(ϕF) α(x).

2. minα∈W0(GF) maxx∈var(ϕF) α(x).

3. maxα∈W0(GG) maxy∈var(ϕG) α(y).

4. maxα∈W0(GG) miny∈var(ϕG) α(y).

All values are at most doubly-exponential in the size of the game.
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Proof Idea

1. All problems reducible to minα∈W0(G) α(x) for ϕ with
var(ϕ) = {x}.

2. Recall: algorithm for emptiness of W0(G) yields
doubly-exponential upper bound b on minα∈W0(G) α(x).

3. For every n ∈ [0, b] test whether n is optimum:

3.1 Translate ϕ into Büchi automaton Aϕ (treat F≤x as F).
3.2 Add a counter with range [0, n] for every occurence of x

to simulate semantics of F≤x , obtain A′ϕ of size 2|ϕ| · n|ϕ|.
3.3 Determize A′ϕ to obtain parity automaton Pϕ of size

2O(|ϕ|
2·(2n)2|ϕ|) and O(|ϕ| · n|ϕ|) colors.

3.4 Solve the parity game A×Pϕ.

Algorithm has triply exponential running time, since n is at most
doubly-exponential.

Martin Zimmermann Universität des Saarlandes Parametric LTL Games 11/13



Proof Idea

1. All problems reducible to minα∈W0(G) α(x) for ϕ with
var(ϕ) = {x}.

2. Recall: algorithm for emptiness of W0(G) yields
doubly-exponential upper bound b on minα∈W0(G) α(x).

3. For every n ∈ [0, b] test whether n is optimum:
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Lower Bounds

For PLTLF games: doubly-exponential lower bound

Theorem
For every n ≥ 1, there exists a PLTLF game Gn with winning
condition ϕn with |Gn| ∈ O(n2) and var(ϕn) = {x} such that
W0(Gn) 6= ∅, but Player 1 wins Gn with respect to every variable
valuation α such that α(x) ≤ 22

n
.

For PLTLG games: doubly-exponential lower bound (by duality)

Theorem
For every n ≥ 1, there exists a PLTLG game Gn with winning
condition ϕn with |Gn| ∈ O(n2) and var(ϕn) = {y} such that
W0(Gn) is not universal, but Player 0 wins Gn with respect to every
variable valuation α such that α(x) ≤ 22

n
.
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Open Problems

Optimization problems in 2Exptime?

Tradeoff quality vs. size of finite-state strategies.

Change order of quantifiers: emptiness ≡ ∃σ∃α∀ρ. What
about ∃σ∀ρ∃α (non-uniform bounds)?

Explicit representation of Wi (G) for PLTLF and PLTLG

games (upwards-closed and semi-linear)?

How big has such a representation to be?

Once again: Optimization problems in 2Exptime?
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How big has such a representation to be?

Once again: Optimization problems in 2Exptime?
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The Game for the Lower Bounds

s

{s}
h0

{0}

l0
{1}

h1

{0}

l1
{1}

· · ·

· · ·

· · ·

hn−1

{0}

ln−1

{1}

hn

{0′}

ln
{1′}

e

{e} f0

∅

f1
{f }

d0

∅

d1
{$}
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A Play in Gn

We start in d1. The trace of a play looks as follows:

{$}{s}{b00} · · · {b0n−1}{b0n}{e}F0D0

{s}{b10} · · · {b1n−1}{b1n}{e}F1D1

{s}{b20} · · · {b2n−1}{b2n}{e}F2D2 · · ·

where

bj0, . . . , b
j
n−1 ∈ {0, 1} ⇒ encoding of cj ∈ {0, 1, . . . , 2n − 1}

bjn ∈ {0′, 1′}
Fj is {f } or ∅ (a flag for Player 0)

Dj is {$} or ∅ (a flag for Player 1)

Infinitely many $: primed bits encode numbers d` ∈ N
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The Winning Condition

Recall: numbers cj (adresses) and numbers d` whose bits are
adressed by the cj

There is an LTL formula ψ1 which expresses:

1. Structure: Infinitely many $

2. Initialization: after each $, the next cj is zero.

3. Increment: if cj < 2n − 1, then cj+1 = cj + 1.

4. Reset: if cj is 2n − 1, then it is followed by $.

ψ1 uses n nested next-operators to check condition 3.

Lemma
ϕ1 ⇒ d` ∈ {0, 1, . . . , 22

n − 1}.
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The Winning Condition, Part 2

ϕn = ψ1 → (ψf ∧ ψerr ∧ F≤x f )

where

ψf : exactly one f

ψerr: Player 0 used f to mark

a single bit that is incorrectly updated from d` to d`+1

(formula uses adresses to verify this), or
a d` with d` = 22

n − 1 (no primed 0 between two $).

Player 0 wins, since Player 1 has to reach 22
n − 1 or has to

introduce an increment-error. But this can take more than 22
n − 1

moves using correct updates.
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