Optimal Bounds in Parametric LTL Games

Martin Zimmermann

Universität des Saarlandes
October 28th, 2013

AVACS Meeting
Freiburg, Germany

Motivation

Linear Temporal Logic (LTL) as specification language:
■ Simple and variable-free syntax and intuitive semantics.

- Expressively equivalent to first-order logic on words.

■ LTL model-checking routinely applied in industrial settings.

But LTL cannot express timing constraints.

Motivation

Linear Temporal Logic (LTL) as specification language:
■ Simple and variable-free syntax and intuitive semantics.

- Expressively equivalent to first-order logic on words.

■ LTL model-checking routinely applied in industrial settings.

But LTL cannot express timing constraints. Possible remedies:
■ Add $\mathbf{F}_{\leq k}$ for $k \in \mathbb{N}$. Problem: finding "right" k impracticable.

Motivation

Linear Temporal Logic (LTL) as specification language:
■ Simple and variable-free syntax and intuitive semantics.

- Expressively equivalent to first-order logic on words.

■ LTL model-checking routinely applied in industrial settings.

But LTL cannot express timing constraints. Possible remedies:
■ Add $\mathbf{F}_{\leq k}$ for $k \in \mathbb{N}$. Problem: finding "right" k impracticable.
■ Alur et. al, Kupferman et. al: add $\mathbf{F}_{\leq x}$ for variable x. Now:

- does there exist a value x such that $\mathbf{F}_{\leq x} \varphi$ holds?

■ what is the best value x such that $\mathbf{F}_{\leq x} \varphi$ holds?

In Model-Checking: adding variable time bounds does not increase complexity.

Infinite Games

Arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$:
■ finite directed graph (V, E),

- $V_{0} \subseteq V$ positions of Player 0 (circles),
- $V_{1}=V \backslash V_{0}$ positions of Player 1 (squares).

Infinite Games

Arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$:
■ finite directed graph (V, E),

- $V_{0} \subseteq V$ positions of Player 0 (circles),
- $V_{1}=V \backslash V_{0}$ positions of Player 1 (squares).

■ Play: path $\rho_{0} \rho_{1} \cdots$ through \mathcal{A}.
■ Strategy for Player $i: \sigma: V^{*} V_{i} \rightarrow V$ s.t. $(v, \sigma(w v)) \in E$.

- $\rho_{0} \rho_{1} \cdots$ consistent with $\sigma: \rho_{n+1}=\sigma\left(\rho_{0} \cdots \rho_{n}\right)$ for all n s.t. $\rho_{n} \in V_{i}$.
■ Finite-state strategy: implemented by finite automaton with output.

PLTL: Syntax and Semantics

Parametric LTL: p atomic proposition, $x \in \mathcal{X}, y \in \mathcal{Y}(\mathcal{X} \cap \mathcal{Y}=\emptyset)$.

- $\varphi::=p|\neg p| \varphi \wedge \varphi|\varphi \vee \varphi| \mathbf{X} \varphi|\varphi \mathbf{U} \varphi| \varphi \mathbf{R} \varphi\left|\mathbf{F}_{\leq x} \varphi\right| \mathbf{G}_{\leq y} \varphi$

PLTL: Syntax and Semantics

Parametric LTL: p atomic proposition, $x \in \mathcal{X}, y \in \mathcal{Y}(\mathcal{X} \cap \mathcal{Y}=\emptyset)$.

$$
\text { ■ } \varphi:=p|\neg p| \varphi \wedge \varphi|\varphi \vee \varphi| \mathbf{X} \varphi|\varphi \mathbf{U} \varphi| \varphi \mathbf{R} \varphi\left|\mathbf{F}_{\leq x} \varphi\right| \mathbf{G}_{\leq y} \varphi
$$

Semantics w.r.t. variable valuation $\alpha: \mathcal{X} \cup \mathcal{Y} \rightarrow \mathbb{N}$:

- As usual for LTL operators.

PLTL: Syntax and Semantics

Parametric LTL: p atomic proposition, $x \in \mathcal{X}, y \in \mathcal{Y}(\mathcal{X} \cap \mathcal{Y}=\emptyset)$.

- $\varphi::=p|\neg p| \varphi \wedge \varphi|\varphi \vee \varphi| \mathbf{X} \varphi|\varphi \mathbf{U} \varphi| \varphi \mathbf{R} \varphi\left|\mathbf{F}_{\leq x} \varphi\right| \mathbf{G}_{\leq y} \varphi$

Semantics w.r.t. variable valuation $\alpha: \mathcal{X} \cup \mathcal{Y} \rightarrow \mathbb{N}$:
■ As usual for LTL operators.

Fragments:
■ PLTL $_{\mathbf{F}}$: no parameterized always operators $\mathbf{G}_{\leq y}$.
■ PLTL $_{G}$: no parameterized eventually operators $\mathbf{F}_{\leq x}$.

PLTL Games

PLTL game: $\mathcal{G}=\left(\mathcal{A}, v_{0}, \varphi\right)$ with arena \mathcal{A} (labeled by $\left.\ell: V \rightarrow 2^{P}\right)$, initial vertex v_{0}, and PLTL formula φ.

PLTL Games

PLTL game: $\mathcal{G}=\left(\mathcal{A}, v_{0}, \varphi\right)$ with arena \mathcal{A} (labeled by $\left.\ell: V \rightarrow 2^{P}\right)$, initial vertex v_{0}, and PLTL formula φ.

Rules:

- all plays start in v_{0}.

■ Player 0 wins $\rho_{0} \rho_{1} \cdots$ w.r.t. α, if $\left(\ell\left(\rho_{0}\right) \ell\left(\rho_{1}\right) \cdots, \alpha\right) \models \varphi$.
■ Player 1 wins $\rho_{0} \rho_{1} \cdots$ w.r.t. α, if $\left(\ell\left(\rho_{0}\right) \ell\left(\rho_{1}\right) \cdots, \alpha\right) \not \vDash \varphi$.

PLTL Games

PLTL game: $\mathcal{G}=\left(\mathcal{A}, v_{0}, \varphi\right)$ with arena \mathcal{A} (labeled by $\left.\ell: V \rightarrow 2^{P}\right)$, initial vertex v_{0}, and PLTL formula φ.

Rules:

- all plays start in v_{0}.

■ Player 0 wins $\rho_{0} \rho_{1} \cdots$ w.r.t. α, if $\left(\ell\left(\rho_{0}\right) \ell\left(\rho_{1}\right) \cdots, \alpha\right) \models \varphi$.
■ Player 1 wins $\rho_{0} \rho_{1} \cdots$ w.r.t. α, if $\left(\ell\left(\rho_{0}\right) \ell\left(\rho_{1}\right) \cdots, \alpha\right) \not \vDash \varphi$.

- σ is winning strategy for Player i w.r.t. α, if every consistent play is winning for Player i w.r.t. α.
- Winning valuations for Player i

$$
\mathcal{W}_{i}(\mathcal{G})=\{\alpha \mid \text { Player } i \text { has winning strategy for } \mathcal{G} \text { w.r.t. } \alpha\}
$$

PLTL Games

PLTL game: $\mathcal{G}=\left(\mathcal{A}, v_{0}, \varphi\right)$ with arena \mathcal{A} (labeled by $\left.\ell: V \rightarrow 2^{P}\right)$, initial vertex v_{0}, and PLTL formula φ.

Rules:

- all plays start in v_{0}.

■ Player 0 wins $\rho_{0} \rho_{1} \cdots$ w.r.t. α, if $\left(\ell\left(\rho_{0}\right) \ell\left(\rho_{1}\right) \cdots, \alpha\right) \models \varphi$.
■ Player 1 wins $\rho_{0} \rho_{1} \cdots$ w.r.t. α, if $\left(\ell\left(\rho_{0}\right) \ell\left(\rho_{1}\right) \cdots, \alpha\right) \not \vDash \varphi$.
■ σ is winning strategy for Player i w.r.t. α, if every consistent play is winning for Player i w.r.t. α.

- Winning valuations for Player i

$$
\mathcal{W}_{i}(\mathcal{G})=\{\alpha \mid \text { Player } i \text { has winning strategy for } \mathcal{G} \text { w.r.t. } \alpha\}
$$

Lemma

Determinacy: $\mathcal{W}_{0}(\mathcal{G})$ is the complement of $\mathcal{W}_{1}(\mathcal{G})$.

An Example

An Example

- $\varphi_{1}=\mathbf{F G} d \vee \bigwedge_{i \in\{0,1\}} \mathbf{G}\left(q_{i} \rightarrow \mathbf{F} p_{i}\right): \mathcal{W}_{1}\left(\mathcal{G}_{1}\right)=\emptyset$.

An Example

- $\varphi_{1}=\mathbf{F G} d \vee \bigwedge_{i \in\{0,1\}} \mathbf{G}\left(q_{i} \rightarrow \mathbf{F} p_{i}\right): \mathcal{W}_{1}\left(\mathcal{G}_{1}\right)=\emptyset$.
- $\varphi_{2}=\mathbf{F G} d \vee \bigwedge_{i \in\{0,1\}} \mathbf{G}\left(q_{i} \rightarrow \mathbf{F}_{\leq x_{i}} p_{i}\right): \mathcal{W}_{0}\left(\mathcal{G}_{2}\right)=\emptyset$.

More Example Properties

■ Bounded Büchi: $\mathbf{G F}_{\leq x} p$

More Example Properties

- Bounded Büchi: $\mathbf{G F}_{\leq x} p$

■ Finitary parity (Chatterjee, Henzinger, Horn):

$$
\text { FG } \bigwedge_{c \text { odd }}\left(c \rightarrow \mathbf{F}_{\leq x} \bigvee_{\substack{c^{\prime}>c \\ c^{\prime} \text { even }}} c^{\prime}\right)
$$

More Example Properties

- Bounded Büchi: $\mathbf{G F}_{\leq x} p$

■ Finitary parity (Chatterjee, Henzinger, Horn):

$$
\text { FG } \bigwedge_{c \text { odd }}\left(c \rightarrow \mathbf{F}_{\leq x} \bigvee_{\substack{c^{\prime}>c \\ c^{\prime} \text { even }}} c^{\prime}\right)
$$

■ Finitary Streett (CHH):

$$
\mathbf{F G} \bigwedge_{j=1}^{k}\left(R_{j} \rightarrow \mathbf{F}_{\leq x} G_{j}\right)
$$

Decision Problems

■ Membership: given $\mathcal{G}, i \in\{0,1\}$, and α, is $\alpha \in \mathcal{W}_{i}(\mathcal{G})$?
■ Emptiness: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ empty?

- Finiteness: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ finite?

■ Universality: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ universal?

Decision Problems

■ Membership: given $\mathcal{G}, i \in\{0,1\}$, and α, is $\alpha \in \mathcal{W}_{i}(\mathcal{G})$?
■ Emptiness: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ empty?
■ Finiteness: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ finite?
■ Universality: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ universal?

The benchmark:
Theorem (Pnueli, Rosner 1989)
Solving LTL games is 2Exptime-complete.

Decision Problems

■ Membership: given $\mathcal{G}, i \in\{0,1\}$, and α, is $\alpha \in \mathcal{W}_{i}(\mathcal{G})$?
■ Emptiness: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ empty?
■ Finiteness: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ finite?
■ Universality: given \mathcal{G} and $i \in\{0,1\}$, is $\mathcal{W}_{i}(\mathcal{G})$ universal?

The benchmark:
Theorem (Pnueli, Rosner 1989)
Solving LTL games is 2Exptime-complete.

Adding parameterized operators does not increase complexity:
Theorem
All four decision problems are 2Exptime-complete.

Proof Idea

Emptiness for PLTL $_{F}$ games, i.e., only $\mathbf{F}_{\leq x}$ in φ.

1. Duplicate arena, color one copy red, the other green. Player 0 can change between copies after every move.
2. Inductively replace every $F_{\leq x} \psi$ by

$$
(\text { red } \rightarrow(\text { red } \mathbf{U}(\text { green } \mathbf{U} \psi))) \wedge(\text { green } \rightarrow(\operatorname{green} \mathbf{U}(\text { red } \mathbf{U} \psi)))
$$

3. Add conjunct GFred $\wedge \mathbf{G F g r e e n}$ to φ, obtain φ^{\prime}.

Proof Idea

Emptiness for PLTL $_{F}$ games, i.e., only $\mathbf{F}_{\leq x}$ in φ.

1. Duplicate arena, color one copy red, the other green. Player 0 can change between copies after every move.
2. Inductively replace every $F_{\leq x} \psi$ by

$$
(\text { red } \rightarrow(\text { red } \mathbf{U}(\text { green } \mathbf{U} \psi))) \wedge(\operatorname{green} \rightarrow(\operatorname{green} \mathbf{U}(\text { red } \mathbf{U} \psi)))
$$

3. Add conjunct GFred $\wedge \mathbf{G F}$ green to φ, obtain φ^{\prime}.
4. Player 0 wins LTL game $\left(\mathcal{A}^{\prime}, \varphi^{\prime}\right)$ iff there exists α s.t. Player 0 wins (\mathcal{A}, φ) w.r.t. α.
5. Proof relies on finite-state determinacy of LTL games.

Proof Idea

Emptiness for PLTL $_{F}$ games, i.e., only $\mathbf{F}_{\leq x}$ in φ.

1. Duplicate arena, color one copy red, the other green. Player 0 can change between copies after every move.
2. Inductively replace every $F_{\leq x} \psi$ by

$$
(\text { red } \rightarrow(\text { red } \mathbf{U}(\text { green } \mathbf{U} \psi))) \wedge(\operatorname{green} \rightarrow(\operatorname{green} \mathbf{U}(\text { red } \mathbf{U} \psi)))
$$

3. Add conjunct GFred $\wedge \mathbf{G F}$ green to φ, obtain φ^{\prime}.
4. Player 0 wins LTL game $\left(\mathcal{A}^{\prime}, \varphi^{\prime}\right)$ iff there exists α s.t. Player 0 wins (\mathcal{A}, φ) w.r.t. α.
5. Proof relies on finite-state determinacy of LTL games.

Corollary: doubly-exponential upper bound on α.

Proof Idea

Emptiness for PLTL $_{F}$ games, i.e., only $\mathbf{F}_{\leq x}$ in φ.

1. Duplicate arena, color one copy red, the other green. Player 0 can change between copies after every move.
2. Inductively replace every $F_{\leq x} \psi$ by

$$
(\text { red } \rightarrow(\text { red } \mathbf{U}(\text { green } \mathbf{U} \psi))) \wedge(\operatorname{green} \rightarrow(\operatorname{green} \mathbf{U}(\text { red } \mathbf{U} \psi)))
$$

3. Add conjunct GFred $\wedge \mathbf{G F g r e e n}$ to φ, obtain φ^{\prime}.
4. Player 0 wins LTL game $\left(\mathcal{A}^{\prime}, \varphi^{\prime}\right)$ iff there exists α s.t. Player 0 wins (\mathcal{A}, φ) w.r.t. α.
5. Proof relies on finite-state determinacy of LTL games.

Corollary: doubly-exponential upper bound on α.
Full PLTL and other problems: use monotonicity and duality of $\mathbf{F}_{\leq x}$ and $\mathbf{G}_{\leq y}$

Optimization Problems

For PLTL $_{\mathbf{F}}$ and PLTL $_{\mathbf{G}}$ winning conditions, synthesis is an optimization problem: what is the best variable valuation in $\mathcal{W}_{i}(\mathcal{G})$?

Optimization Problems

For PLTL $_{\mathbf{F}}$ and PLTL $_{\mathbf{G}}$ winning conditions, synthesis is an optimization problem: what is the best variable valuation in $\mathcal{W}_{i}(\mathcal{G})$?

Theorem

Let $\mathcal{G}_{\mathbf{F}}$ be a PLTL $_{\mathbf{F}}$ game with winning condition $\varphi_{\mathbf{F}}$ and let $\mathcal{G}_{\mathbf{G}}$ be a PLTL $_{\mathbf{G}}$ game with winning condition $\varphi_{\mathbf{G}}$. The following values (and winning strategies realizing them) can be computed in triply-exponential time.

1. $\min _{\alpha \in \mathcal{W}_{0}\left(\mathcal{G}_{\mathbf{F}}\right)} \min _{x \in \operatorname{var}\left(\varphi_{\mathbf{F}}\right)} \alpha(x)$.

Optimization Problems

For PLTL $_{\mathbf{F}}$ and PLTL $_{\mathbf{G}}$ winning conditions, synthesis is an optimization problem: what is the best variable valuation in $\mathcal{W}_{i}(\mathcal{G})$?

Theorem

Let $\mathcal{G}_{\mathbf{F}}$ be a PLTL $_{\mathbf{F}}$ game with winning condition $\varphi_{\mathbf{F}}$ and let $\mathcal{G}_{\mathbf{G}}$ be a PLTL $_{\mathbf{G}}$ game with winning condition $\varphi_{\mathbf{G}}$. The following values (and winning strategies realizing them) can be computed in triply-exponential time.

1. $\min _{\alpha \in \mathcal{W}_{0}\left(\mathcal{G}_{\mathrm{F}}\right)} \min _{x \in \operatorname{var}\left(\varphi_{\mathrm{F}}\right)} \alpha(x)$.
2. $\min _{\alpha \in \mathcal{W}_{0}\left(\mathcal{G}_{\mathrm{F}}\right)} \max _{x \in \operatorname{var}\left(\varphi_{\mathbf{F}}\right)} \alpha(x)$.

Optimization Problems

For PLTL $_{\mathbf{F}}$ and PLTL $_{\mathbf{G}}$ winning conditions, synthesis is an optimization problem: what is the best variable valuation in $\mathcal{W}_{i}(\mathcal{G})$?

Theorem

Let $\mathcal{G}_{\mathbf{F}}$ be a PLTL $_{\mathbf{F}}$ game with winning condition $\varphi_{\mathbf{F}}$ and let $\mathcal{G}_{\mathbf{G}}$ be a PLTL $_{\mathbf{G}}$ game with winning condition $\varphi_{\mathbf{G}}$. The following values (and winning strategies realizing them) can be computed in triply-exponential time.

1. $\min _{\alpha \in \mathcal{W}_{0}\left(\mathcal{G}_{\mathbf{F}}\right)} \min _{x \in \operatorname{var}\left(\varphi_{\mathbf{F}}\right)} \alpha(x)$.
2. $\min _{\alpha \in \mathcal{W}_{0}\left(\mathcal{G}_{\mathbf{F}}\right)} \max _{x \in \operatorname{var}\left(\varphi_{\mathbf{F}}\right)} \alpha(x)$.
3. $\max _{\alpha \in \mathcal{W}_{0}\left(\mathcal{G}_{\mathbf{G}}\right)} \max _{y \in \operatorname{var}\left(\varphi_{\mathbf{G}}\right)} \alpha(y)$.
4. $\max _{\alpha \in \mathcal{W}_{0}\left(\mathcal{G}_{\mathbf{G}}\right)} \min _{y \in \operatorname{var}\left(\varphi_{\mathbf{G}}\right)} \alpha(y)$.

All values are at most doubly-exponential in the size of the game.

Proof Idea

1. All problems reducible to $\min _{\alpha \in \mathcal{W}_{0}(\mathcal{G})} \alpha(x)$ for φ with $\operatorname{var}(\varphi)=\{x\}$.
2. Recall: algorithm for emptiness of $\mathcal{W}_{0}(\mathcal{G})$ yields doubly-exponential upper bound b on $\min _{\alpha \in \mathcal{W}_{0}(\mathcal{G})} \alpha(x)$.
3. For every $n \in[0, b]$ test whether n is optimum:

Proof Idea

1. All problems reducible to $\min _{\alpha \in \mathcal{W}_{0}(\mathcal{G})} \alpha(x)$ for φ with $\operatorname{var}(\varphi)=\{x\}$.
2. Recall: algorithm for emptiness of $\mathcal{W}_{0}(\mathcal{G})$ yields doubly-exponential upper bound b on $\min _{\alpha \in \mathcal{W}_{0}(\mathcal{G})} \alpha(x)$.
3. For every $n \in[0, b]$ test whether n is optimum:
3.1 Translate φ into Büchi automaton \mathfrak{A}_{φ} (treat $\mathbf{F}_{\leq x}$ as \mathbf{F}).
3.2 Add a counter with range $[0, n]$ for every occurence of x to simulate semantics of $\mathbf{F}_{\leq x}$, obtain $\mathfrak{A}_{\varphi}^{\prime}$ of size $2^{|\varphi|} \cdot n^{|\varphi|}$.
3.3 Determize $\mathfrak{A}_{\varphi}^{\prime}$ to obtain parity automaton \mathfrak{P}_{φ} of size $2^{\mathcal{O}\left(|\varphi|^{2} \cdot(2 n)^{2|\varphi|}\right)}$ and $\mathcal{O}\left(|\varphi| \cdot n^{|\varphi|}\right)$ colors.
3.4 Solve the parity game $\mathcal{A} \times \mathfrak{P}_{\varphi}$.

Proof Idea

1. All problems reducible to $\min _{\alpha \in \mathcal{W}_{0}(\mathcal{G})} \alpha(x)$ for φ with $\operatorname{var}(\varphi)=\{x\}$.
2. Recall: algorithm for emptiness of $\mathcal{W}_{0}(\mathcal{G})$ yields doubly-exponential upper bound b on $\min _{\alpha \in \mathcal{W}_{0}(\mathcal{G})} \alpha(x)$.
3. For every $n \in[0, b]$ test whether n is optimum:
3.1 Translate φ into Büchi automaton \mathfrak{A}_{φ} (treat $\mathbf{F}_{\leq x}$ as \mathbf{F}).
3.2 Add a counter with range $[0, n]$ for every occurence of x to simulate semantics of $\mathbf{F}_{\leq x}$, obtain $\mathfrak{A}_{\varphi}^{\prime}$ of size $2^{|\varphi|} \cdot n^{|\varphi|}$.
3.3 Determize $\mathfrak{A}_{\varphi}^{\prime}$ to obtain parity automaton \mathfrak{P}_{φ} of size $2^{\mathcal{O}\left(|\varphi|^{2} \cdot(2 n)^{2|\varphi|}\right)}$ and $\mathcal{O}\left(|\varphi| \cdot n^{|\varphi|}\right)$ colors.
3.4 Solve the parity game $\mathcal{A} \times \mathfrak{P}_{\varphi}$.

Algorithm has triply exponential running time, since n is at most doubly-exponential.

Lower Bounds

For PLTL $_{\text {F }}$ games: doubly-exponential lower bound

Theorem

For every $n \geq 1$, there exists a PLTL $_{\mathbf{F}}$ game \mathcal{G}_{n} with winning condition φ_{n} with $\left|\mathcal{G}_{n}\right| \in \mathcal{O}\left(n^{2}\right)$ and $\operatorname{var}\left(\varphi_{n}\right)=\{x\}$ such that $\mathcal{W}_{0}\left(\mathcal{G}_{n}\right) \neq \emptyset$, but Player 1 wins \mathcal{G}_{n} with respect to every variable valuation α such that $\alpha(x) \leq 2^{2^{n}}$.

Lower Bounds

For PLTL $_{\text {F }}$ games: doubly-exponential lower bound

Theorem

For every $n \geq 1$, there exists a PLTL $_{\mathbf{F}}$ game \mathcal{G}_{n} with winning condition φ_{n} with $\left|\mathcal{G}_{n}\right| \in \mathcal{O}\left(n^{2}\right)$ and $\operatorname{var}\left(\varphi_{n}\right)=\{x\}$ such that $\mathcal{W}_{0}\left(\mathcal{G}_{n}\right) \neq \emptyset$, but Player 1 wins \mathcal{G}_{n} with respect to every variable valuation α such that $\alpha(x) \leq 2^{2^{n}}$.

For PLTL $_{\mathbf{G}}$ games: doubly-exponential lower bound (by duality)

Theorem

For every $n \geq 1$, there exists a PLTL $_{\mathbf{G}}$ game \mathcal{G}_{n} with winning condition φ_{n} with $\left|\mathcal{G}_{n}\right| \in \mathcal{O}\left(n^{2}\right)$ and $\operatorname{var}\left(\varphi_{n}\right)=\{y\}$ such that $\mathcal{W}_{0}\left(\mathcal{G}_{n}\right)$ is not universal, but Player 0 wins \mathcal{G}_{n} with respect to every variable valuation α such that $\alpha(x) \leq 2^{2^{n}}$.

Open Problems

■ Optimization problems in 2Exptime?

Open Problems

- Optimization problems in 2Exptime?

■ Tradeoff quality vs. size of finite-state strategies.

Open Problems

- Optimization problems in 2Exptime?
- Tradeoff quality vs. size of finite-state strategies.

■ Change order of quantifiers: emptiness $\equiv \exists \sigma \exists \alpha \forall \rho$. What about $\exists \sigma \forall \rho \exists \alpha$ (non-uniform bounds)?

Open Problems

- Optimization problems in 2Exptime?

■ Tradeoff quality vs. size of finite-state strategies.
■ Change order of quantifiers: emptiness $\equiv \exists \sigma \exists \alpha \forall \rho$. What about $\exists \sigma \forall \rho \exists \alpha$ (non-uniform bounds)?
■ Explicit representation of $\mathcal{W}_{i}(\mathcal{G})$ for $\operatorname{PLTL}_{\mathbf{F}}$ and $\operatorname{PLTL}_{\mathbf{G}}$ games (upwards-closed and semi-linear)?
■ How big has such a representation to be?

Open Problems

■ Optimization problems in 2Exptime?
■ Tradeoff quality vs. size of finite-state strategies.
■ Change order of quantifiers: emptiness $\equiv \exists \sigma \exists \alpha \forall \rho$. What about $\exists \sigma \forall \rho \exists \alpha$ (non-uniform bounds)?

- Explicit representation of $\mathcal{W}_{i}(\mathcal{G})$ for $\mathrm{PLTL}_{\mathbf{F}}$ and $\mathrm{PLTL}_{\mathbf{G}}$ games (upwards-closed and semi-linear)?
■ How big has such a representation to be?
■ Once again: Optimization problems in 2Exptime?

The Game for the Lower Bounds

A Play in \mathcal{G}_{n}

We start in d_{1}. The trace of a play looks as follows:

$$
\begin{aligned}
\{\$\}\{s\}\left\{b_{0}^{0}\right\} & \cdots\left\{b_{n-1}^{0}\right\}\left\{b_{n}^{0}\right\}\{e\} F_{0} D_{0} \\
\{s\}\left\{b_{0}^{1}\right\} & \cdots\left\{b_{n-1}^{1}\right\}\left\{b_{n}^{1}\right\}\{e\} F_{1} D_{1} \\
\{s\}\left\{b_{0}^{2}\right\} & \cdots\left\{b_{n-1}^{2}\right\}\left\{b_{n}^{2}\right\}\{e\} F_{2} D_{2} \cdots
\end{aligned}
$$

where
■ $b_{0}^{j}, \ldots, b_{n-1}^{j} \in\{0,1\} \Rightarrow$ encoding of $c_{j} \in\left\{0,1, \ldots, 2^{n}-1\right\}$

- $b_{n}^{j} \in\left\{0^{\prime}, 1^{\prime}\right\}$
- F_{j} is $\{f\}$ or \emptyset (a flag for Player 0)
- D_{j} is $\{\$\}$ or \emptyset (a flag for Player 1)

A Play in \mathcal{G}_{n}

We start in d_{1}. The trace of a play looks as follows:

$$
\begin{aligned}
\{\$\}\{s\}\left\{b_{0}^{0}\right\} & \cdots\left\{b_{n-1}^{0}\right\}\left\{b_{n}^{0}\right\}\{e\} F_{0} D_{0} \\
\{s\}\left\{b_{0}^{1}\right\} & \cdots\left\{b_{n-1}^{1}\right\}\left\{b_{n}^{1}\right\}\{e\} F_{1} D_{1} \\
\{s\}\left\{b_{0}^{2}\right\} & \cdots\left\{b_{n-1}^{2}\right\}\left\{b_{n}^{2}\right\}\{e\} F_{2} D_{2} \cdots
\end{aligned}
$$

where
■ $b_{0}^{j}, \ldots, b_{n-1}^{j} \in\{0,1\} \Rightarrow$ encoding of $c_{j} \in\left\{0,1, \ldots, 2^{n}-1\right\}$

- $b_{n}^{j} \in\left\{0^{\prime}, 1^{\prime}\right\}$
- F_{j} is $\{f\}$ or \emptyset (a flag for Player 0)
- D_{j} is $\{\$\}$ or \emptyset (a flag for Player 1)

Infinitely many $\$$: primed bits encode numbers $d_{\ell} \in \mathbb{N}$

The Winning Condition

Recall: numbers c_{j} (adresses) and numbers d_{ℓ} whose bits are adressed by the c_{j}

There is an LTL formula ψ_{1} which expresses:

1. Structure: Infinitely many \$
2. Initialization: after each $\$$, the next c_{j} is zero.
3. Increment: if $c_{j}<2^{n}-1$, then $c_{j+1}=c_{j}+1$.
4. Reset: if c_{j} is $2^{n}-1$, then it is followed by $\$$.
ψ_{1} uses n nested next-operators to check condition 3.

The Winning Condition

Recall: numbers c_{j} (adresses) and numbers d_{ℓ} whose bits are adressed by the c_{j}

There is an LTL formula ψ_{1} which expresses:

1. Structure: Infinitely many \$
2. Initialization: after each $\$$, the next c_{j} is zero.
3. Increment: if $c_{j}<2^{n}-1$, then $c_{j+1}=c_{j}+1$.
4. Reset: if c_{j} is $2^{n}-1$, then it is followed by $\$$.
ψ_{1} uses n nested next-operators to check condition 3.

Lemma
$\varphi_{1} \Rightarrow d_{\ell} \in\left\{0,1, \ldots, 2^{2^{n}}-1\right\}$.

The Winning Condition, Part 2

$$
\varphi_{n}=\psi_{1} \rightarrow\left(\psi_{f} \wedge \psi_{\text {err }} \wedge \mathbf{F}_{\leq x} f\right)
$$

where

- ψ_{f} : exactly one f
- $\psi_{\text {err }}$: Player 0 used f to mark
- a single bit that is incorrectly updated from d_{ℓ} to $d_{\ell+1}$ (formula uses adresses to verify this), or
- a d_{ℓ} with $d_{\ell}=2^{2^{n}}-1$ (no primed 0 between two $\$$).

The Winning Condition, Part 2

$$
\varphi_{n}=\psi_{1} \rightarrow\left(\psi_{f} \wedge \psi_{\mathrm{err}} \wedge \mathbf{F}_{\leq x} f\right)
$$

where

- ψ_{f} : exactly one f
- $\psi_{\text {err }}$: Player 0 used f to mark
- a single bit that is incorrectly updated from d_{ℓ} to $d_{\ell+1}$ (formula uses adresses to verify this), or
- a d_{ℓ} with $d_{\ell}=2^{2^{n}}-1$ (no primed 0 between two $\$$).

Player 0 wins, since Player 1 has to reach $2^{2^{n}}-1$ or has to introduce an increment-error. But this can take more than $2^{2^{n}}-1$ moves using correct updates.

