Cost-Parity and Cost-Streett Games

Joint work with Nathanaël Fijalkow (LIAFA & University of Warsaw)

Martin Zimmermann

University of Warsaw

November 28th, 2012

Algosyn Seminar, Aachen

Introduction

Boundedness problems in automata theory

- Star-height problem, finite power problem
- Automata with counters: BS-automata, max-automata, R-automata
- Logics with bounds: MSO+U, Cost-MSO

Introduction

Boundedness problems in automata theory

- Star-height problem, finite power problem
- Automata with counters: BS-automata, max-automata, R-automata
- Logics with bounds: MSO+U, Cost-MSO

What about games?

- Finitary games: bounds between requests and responses
- Consumption and energy games: resources are consumed and recharged along edges
- Use automata with counters as winning conditions

Introduction

Boundedness problems in automata theory

- Star-height problem, finite power problem
- Automata with counters: BS-automata, max-automata, R-automata
- Logics with bounds: MSO+U, Cost-MSO

What about games?

- Finitary games: bounds between requests and responses
- Consumption and energy games: resources are consumed and recharged along edges
- Use automata with counters as winning conditions

Here: an extension of ω -regular and finitary games

Outline

- 1. Cost-Parity Games
- 2. Cost-Streett Games
- 3. Conclusion

Parity Games and Extensions

Games are played in arena G colored by $\Omega \colon V \to \mathbb{N}$

Parity condition: Player 0 wins play \Leftrightarrow maximal color seen infinitely often is even

Parity Games and Extensions

Games are played in arena G colored by $\Omega \colon V \to \mathbb{N}$

Parity condition: Player 0 wins play \Leftrightarrow maximal color seen infinitely often is even

Equivalently:

- Request: vertex of odd color
- Response: vertex of larger even color
- Parity condition: almost all requests are answered

Parity condition: almost all requests are answered

Parity condition: almost all requests are answered
Finitary parity condition [Chatterjee, Henzinger, Horn]: there exists a b ∈ N s.t. almost all requests are answered within b steps

Parity condition: almost all requests are answered
Finitary parity condition [Chatterjee, Henzinger, Horn]: there exists a b ∈ N s.t. almost all requests are answered within b steps

Now, label edges with costs in \mathbb{N}

• Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Parity condition: almost all requests are answered
Finitary parity condition [Chatterjee, Henzinger, Horn]: there exists a b ∈ N s.t. almost all requests are answered within b steps

Now, label edges with costs in \mathbb{N}

• Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

condition	complexity	memory PI. 0	memory Pl. 1
parity finitary parity cost-parity	NP ∩ coNP PTIME	positional positional	positional infinite

Parity condition: almost all requests are answered
Finitary parity condition [Chatterjee, Henzinger, Horn]: there exists a b ∈ N s.t. almost all requests are answered within b steps

Now, label edges with costs in \mathbb{N}

• Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

condition	complexity	memory Pl. 0	memory Pl. 1
parity finitary parity cost-parity	NP ∩ coNP PTIME	positional positional	positional infinite

Note: cost-parity subsumes parity and finitary parity

Parity condition: almost all requests are answered
Finitary parity condition [Chatterjee, Henzinger, Horn]: there exists a b ∈ N s.t. almost all requests are answered within b steps

Now, label edges with costs in \mathbb{N}

• Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

condition	complexity	memory Pl. 0	memory Pl. 1
parity finitary parity cost-parity	$\begin{array}{l} NP \cap coNP \\ PTIME \\ " \geq NP \cap coNP" \end{array}$	positional positional " \geq positional"	positional infinite infinite

Note: cost-parity subsumes parity and finitary parity

Another example

Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Another example

Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Player 0 wins since only finitely many requests are seenPlayer 1 wins since he can stay longer and longer in loop

From Cost-Parity to Bounded Cost-Parity

• Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

From Cost-Parity to Bounded Cost-Parity

- Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b
- Bounded Cost-parity condition: there exists a b ∈ N s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

From Cost-Parity to Bounded Cost-Parity

- Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b
- Bounded Cost-parity condition: there exists a b ∈ N s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

Lemma

- Let $C = (G, \operatorname{CostParity}(\Omega))$ and let $\mathcal{B} = (G, \operatorname{BndCostParity}(\Omega))$.
 - **1.** $W_0(\mathcal{B}) \subseteq W_0(\mathcal{C}).$
 - **2.** If $W_0(\mathcal{B}) = \emptyset$, then $W_0(\mathcal{C}) = \emptyset$.

Corollary

"To solve cost-parity games, it suffices to solve bounded cost-parity games."

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

- Parity(Ω): plays satisfying the parity condition
- FinCost: plays with finite cost
- $\operatorname{RR}(\Omega)$: plays in which every request is answered

 $\operatorname{PFRR}(\Omega) = (\operatorname{Parity}(\Omega) \cap \operatorname{FinCost}) \cup \operatorname{RR}(\Omega)$

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

- Parity(Ω): plays satisfying the parity condition
- FinCost: plays with finite cost
- $\operatorname{RR}(\Omega)$: plays in which every request is answered

 $\operatorname{PFRR}(\Omega) = (\operatorname{Parity}(\Omega) \cap \operatorname{FinCost}) \cup \operatorname{RR}(\Omega)$

Lemma

Let $\mathcal{B} = (G, \operatorname{BndCostParity}(\Omega))$, and let $\mathcal{P} = (G, \operatorname{PFRR}(\Omega))$. Then, $W_i(\mathcal{B}) = W_i(\mathcal{P})$ for $i \in \{0, 1\}$.

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

- Parity(Ω): plays satisfying the parity condition
- FinCost: plays with finite cost
- $\operatorname{RR}(\Omega)$: plays in which every request is answered

 $\operatorname{PFRR}(\Omega) = (\operatorname{Parity}(\Omega) \cap \operatorname{FinCost}) \cup \operatorname{RR}(\Omega)$

Lemma

Let $\mathcal{B} = (G, \operatorname{BndCostParity}(\Omega))$, and let $\mathcal{P} = (G, \operatorname{PFRR}(\Omega))$. Then, $W_i(\mathcal{B}) = W_i(\mathcal{P})$ for $i \in \{0, 1\}$.

- $\operatorname{PFRR}(\Omega)$ is ω -regular
- $\blacksquare \mathcal{P}$ can be reduced to parity game using small memory
- \blacksquare Thus, small finite-state winning strategies for both players in $\mathcal P$

Computational Complexity

- n: number of vertices
- m: number of edges
- d: number of colors

Theorem

Given an algorithm that solves parity games in time T(n, m, d), there is an algorithm that solves cost-parity games in time $O(n \cdot T(d \cdot n, d \cdot m, d + 2)).$

Computational Complexity

- n: number of vertices
- m: number of edges
- d: number of colors

Theorem

Given an algorithm that solves parity games in time T(n, m, d), there is an algorithm that solves cost-parity games in time $O(n \cdot T(d \cdot n, d \cdot m, d + 2)).$

Theorem

The following problem is in $NP \cap coNP$: given a cost-parity game \mathcal{G} and a vertex v, has Player 0 a winning strategy from v?

Half-positional Determinacy

Recall: Player 0 has finite state winning strategy σ in (bounded) cost-parity game

Theorem

Player 0 *has positional winning strategies in (bounded) cost-parity games.*

Half-positional Determinacy

Recall: Player 0 has finite state winning strategy σ in (bounded) cost-parity game

Theorem

Player 0 *has positional winning strategies in (bounded) cost-parity games.*

Idea: use quality measure $\mathrm{Sh} \colon V^+ \to (D, \leq)$ for play prefixes with:

•
$$(D, \leq)$$
 is total order

- Sh is congruence, i.e., $Sh(x) \leq Sh(y) \implies Sh(xv) \leq Sh(yv)$
- ${\rm Sh}(w) \mid w \sqsubseteq \rho$ is finite $\implies \rho$ is winning or Player 0
- Finite-state strategies only allow plays \(\rho\) s.t. {Sh(w) | w \(\sum \rho\)} is finite

Half-positional Determinacy

Recall: Player 0 has finite state winning strategy σ in (bounded) cost-parity game

Theorem

Player 0 *has positional winning strategies in (bounded) cost-parity games.*

Idea: use quality measure $\mathrm{Sh} \colon V^+ \to (D, \leq)$ for play prefixes with:

•
$$(D, \leq)$$
 is total order

- Sh is congruence, i.e., $Sh(x) \leq Sh(y) \implies Sh(xv) \leq Sh(yv)$
- ${\rm Sh}(w) \mid w \sqsubseteq \rho$ is finite $\implies \rho$ is winning or Player 0
- Finite-state strategies only allow plays \(\rho\) s.t. {Sh(w) | w \(\box)\) \(\rho\)} is finite

Positional winning strategy: always play like you are in the worst situation possible that is consistent with σ

Outline

1. Cost-Parity Games

- 2. Cost-Streett Games
- 3. Conclusion

- Requests: sets of vertices Q_i for $i = 1, \ldots, d$
- Responses: sets of vertices P_i for $i = 1, \ldots, d$
- Cost functions for every pair (Q_i, P_i)
- Cost-Streett condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

- Requests: sets of vertices Q_i for $i = 1, \ldots, d$
- Responses: sets of vertices P_i for $i = 1, \ldots, d$
- Cost functions for every pair (Q_i, P_i)
- Cost-Streett condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Theorem

Given an algorithm that solves Streett games in time T(n, m, d), there is an algorithm that solves cost-Streett games in time $O(n \cdot T(2^d \cdot n, 2^d \cdot m, 2d)).$

- Requests: sets of vertices Q_i for $i = 1, \ldots, d$
- Responses: sets of vertices P_i for $i = 1, \ldots, d$
- Cost functions for every pair (Q_i, P_i)
- Cost-Streett condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Theorem

Given an algorithm that solves Streett games in time T(n, m, d), there is an algorithm that solves cost-Streett games in time $O(n \cdot T(2^d \cdot n, 2^d \cdot m, 2d)).$

condition	complexity	memory PI. 0	memory Pl. 1
Streett	coNP-com.	d!d ²	positional
finitary Streett	EXPTIME-com.	d2 ^d	infinite

- Requests: sets of vertices Q_i for $i = 1, \ldots, d$
- Responses: sets of vertices P_i for $i = 1, \ldots, d$
- Cost functions for every pair (Q_i, P_i)
- Cost-Streett condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Theorem

Given an algorithm that solves Streett games in time T(n, m, d), there is an algorithm that solves cost-Streett games in time $O(n \cdot T(2^d \cdot n, 2^d \cdot m, 2d)).$

condition	complexity	memory PI. 0	memory Pl. 1
Streett	coNP-com.	d!d ²	positional
finitary Streett	EXPTIME-com.	d2 ^d	infinite
cost-Streett	EXPTIME-com.	2 ^d (2d)!(2d) ²	infinite

Outline

- 1. Cost-Parity Games
- 2. Cost-Streett Games
- 3. Conclusion

Overview of Results

condition	complexity	memory Pl. 0	memory Pl. 1
parity	NP ∩ coNP	positional	positional
finitary parity	PTIME	positional	infinite
cost-parity	NP ∩ coNP	positional	infinite
Streett	coNP-com.	d!d ²	positional
finitary Streett	EXPTIME-com.	d2 ^d	infinite
cost-Streett	EXPTIME-com.	2 ^d (2d)!(2d) ²	infinite

Open Questions

- Memory requirements of Player 1 in bounded cost-parity games
- Memory requirements in (bounded) cost-Streett games

Open Questions

- Memory requirements of Player 1 in bounded cost-parity games
- Memory requirements in (bounded) cost-Streett games

Cost-parity games with multiple cost functions (one for each odd color). Preliminary results:

- Complexity: between **PSPACE**-hard and **EXPTIME**
- Both Players need exponential memory

Open Questions

- Memory requirements of Player 1 in bounded cost-parity games
- Memory requirements in (bounded) cost-Streett games

Cost-parity games with multiple cost functions (one for each odd color). Preliminary results:

- Complexity: between **PSPACE**-hard and **EXPTIME**
- Both Players need exponential memory

Tackle stronger winning conditions:

- Max-automata: deterministic automata, with multiple counters than can be incremented and reset, acceptance condition is boolean combination of boundedness requirements
- Equivalent to WMSO+U