Parametric Linear Temporal Logics

Joint work with Peter Faymonville, Florian Horn, Wolfgang Thomas, and Nico Wallmeier

Martin Zimmermann

Saarland University

March 10th, 2015

Aalborg University, Aalborg, Denmark

Linear Temporal Logic (LTL) as specification language:

- Simple and variable-free syntax and intuitive semantics.
- Expressively equivalent to first-order logic on words.
- LTL model checking routinely applied in industrial settings.

Linear Temporal Logic (LTL) as specification language:

- Simple and variable-free syntax and intuitive semantics.
- Expressively equivalent to first-order logic on words.
- LTL model checking routinely applied in industrial settings.

Shortcomings:

1. LTL cannot express timing constraints.

Linear Temporal Logic (LTL) as specification language:

- Simple and variable-free syntax and intuitive semantics.
- Expressively equivalent to first-order logic on words.
- LTL model checking routinely applied in industrial settings.

Shortcomings:

1. LTL cannot express timing constraints.

2. LTL cannot express all ω -regular properties.

Linear Temporal Logic (LTL) as specification language:

- Simple and variable-free syntax and intuitive semantics.
- Expressively equivalent to first-order logic on words.
- LTL model checking routinely applied in industrial settings.

Shortcomings:

- 1. LTL cannot express timing constraints.
 - Add $\mathbf{F}_{\leq k}$ for $k \in \mathbb{N}$.

2. LTL cannot express all ω -regular properties.

Linear Temporal Logic (LTL) as specification language:

- Simple and variable-free syntax and intuitive semantics.
- Expressively equivalent to first-order logic on words.
- LTL model checking routinely applied in industrial settings.

Shortcomings:

- 1. LTL cannot express timing constraints.
 - Add $\mathbf{F}_{\leq k}$ for $k \in \mathbb{N}$. Not practical: how to determine appropriate k.

2. LTL cannot express all ω -regular properties.

Linear Temporal Logic (LTL) as specification language:

- Simple and variable-free syntax and intuitive semantics.
- Expressively equivalent to first-order logic on words.
- LTL model checking routinely applied in industrial settings.

Shortcomings:

- 1. LTL cannot express timing constraints.
 - Add $\mathbf{F}_{\leq k}$ for $k \in \mathbb{N}$. Not practical: how to determine appropriate k.
 - Add $\mathbf{F}_{\leq x}$ for variable x.
- 2. LTL cannot express all ω -regular properties.

Linear Temporal Logic (LTL) as specification language:

- Simple and variable-free syntax and intuitive semantics.
- Expressively equivalent to first-order logic on words.
- LTL model checking routinely applied in industrial settings.

Shortcomings:

- 1. LTL cannot express timing constraints.
 - Add $\mathbf{F}_{\leq k}$ for $k \in \mathbb{N}$. Not practical: how to determine appropriate k.
 - Add **F**_{≤x} for variable x. Now: does there exist a valuation for x s.t. specification is satisfied?
- 2. LTL cannot express all ω -regular properties.

Linear Temporal Logic (LTL) as specification language:

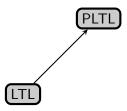
- Simple and variable-free syntax and intuitive semantics.
- Expressively equivalent to first-order logic on words.
- LTL model checking routinely applied in industrial settings.

Shortcomings:

- 1. LTL cannot express timing constraints.
 - Add $\mathbf{F}_{\leq k}$ for $k \in \mathbb{N}$. Not practical: how to determine appropriate k.
 - Add **F**_{≤x} for variable x. Now: does there exist a valuation for x s.t. specification is satisfied?
- 2. LTL cannot express all ω -regular properties.
 - Many extensions that are equivalent to ω-regular languages: add regular expression-, grammar-, or automata-operators to LTL.

Overview

Overview



Parametric LTL

Alur et al. '99: add parameterized operators to LTL $\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \varphi \mathbf{R}\varphi \mid \mathbf{F}_{\leq x}\varphi \mid \mathbf{G}_{\leq y}\varphi$ with $x \in \mathcal{X}, y \in \mathcal{Y} \ (\mathcal{X} \cap \mathcal{Y} = \emptyset)$.

Parametric LTL

Alur et al. '99: add parameterized operators to LTL $\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \varphi \mathbf{R}\varphi \mid \mathbf{F}_{\leq x}\varphi \mid \mathbf{G}_{\leq y}\varphi$ with $x \in \mathcal{X}$, $y \in \mathcal{Y} \ (\mathcal{X} \cap \mathcal{Y} = \emptyset)$.

Semantics w.r.t. variable valuation $\alpha \colon \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$:

As usual for LTL operators.

Parametric LTL

Alur et al. '99: add parameterized operators to LTL $\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \varphi \mathbf{R}\varphi \mid \mathbf{F}_{\leq x}\varphi \mid \mathbf{G}_{\leq y}\varphi$ with $x \in \mathcal{X}, y \in \mathcal{Y} \ (\mathcal{X} \cap \mathcal{Y} = \emptyset)$.

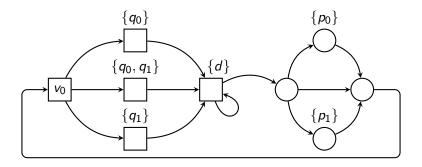
Semantics w.r.t. variable valuation $\alpha \colon \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$:

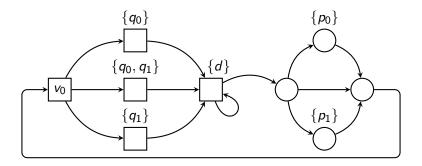
As usual for LTL operators.

Fragments:

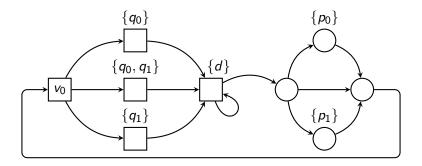
PLTL_F: no parameterized always operators $\mathbf{G}_{\leq y}$.

■ PLTL_G: no parameterized eventually operators $\mathbf{F}_{\leq x}$.

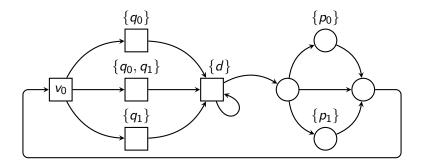




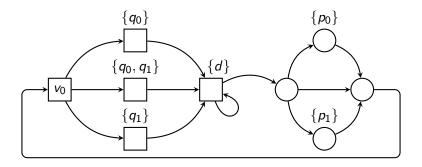
• $\varphi_1 = \mathbf{FG}d \vee \bigwedge_{i \in \{0,1\}} \mathbf{G}(q_i \to \mathbf{F}p_i)$: Player 0 wins.



- $\varphi_1 = \mathbf{FG}d \vee \bigwedge_{i \in \{0,1\}} \mathbf{G}(q_i \to \mathbf{F}p_i)$: Player 0 wins.
- $\varphi_2 = \mathbf{FG}d \vee \bigwedge_{i \in \{0,1\}} \mathbf{G}(q_i \to \mathbf{F}_{\leq x_i}p_i)$: Player 1 wins w.r.t. every α .



 $W_i(\mathcal{G}) = \{ \alpha \mid \text{Player } i \text{ has winning strategy for } \mathcal{G} \text{ w.r.t. } \alpha \}$



 $W_i(\mathcal{G}) = \{ \alpha \mid \text{Player } i \text{ has winning strategy for } \mathcal{G} \text{ w.r.t. } \alpha \}$

Lemma (Determinacy)

 $\mathcal{W}_0(\mathcal{G})$ is the complement of $\mathcal{W}_1(\mathcal{G})$.

Decision Problems

- Membership: given \mathcal{G} , $i \in \{0, 1\}$, and α , is $\alpha \in \mathcal{W}_i(\mathcal{G})$?
- Emptiness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ empty?
- Finiteness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ finite?
- Universality: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ universal?

Decision Problems

- Membership: given \mathcal{G} , $i \in \{0, 1\}$, and α , is $\alpha \in \mathcal{W}_i(\mathcal{G})$?
- Emptiness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ empty?
- Finiteness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ finite?
- Universality: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ universal?

The benchmark:

Theorem (Pnueli, Rosner '89)

Solving LTL games is **2EXPTIME**-complete.

Decision Problems

- Membership: given \mathcal{G} , $i \in \{0, 1\}$, and α , is $\alpha \in \mathcal{W}_i(\mathcal{G})$?
- Emptiness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ empty?
- Finiteness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ finite?
- Universality: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ universal?

The benchmark:

Theorem (Pnueli, Rosner '89)

Solving LTL games is **2EXPTIME**-complete.

Adding parameterized operators does not increase complexity:

Theorem (Z. '11)

All four decision problems are 2EXPTIME-complete.

Proof Sketch (Emptiness)

- 1. Replacing $\mathbf{G}_{\leq y}\psi$ by ψ preserves emptiness (monotonicity).
- 2. Apply alternating color technique (Kupferman et al. '06):
 - \blacksquare Add new proposition p and replace every $\mathbf{F}_{\leq \mathbf{x}} \psi$ by

$$(p \rightarrow p \mathbf{U}(\neg p \mathbf{U}\psi)) \land (\neg p \rightarrow \neg p \mathbf{U}(p \mathbf{U}\psi))$$

(ψ satisfied within one color change), obtain $c(\varphi)$.

Proof Sketch (Emptiness)

- 1. Replacing $\mathbf{G}_{\leq y}\psi$ by ψ preserves emptiness (monotonicity).
- 2. Apply alternating color technique (Kupferman et al. '06):
 - \blacksquare Add new proposition p and replace every $\mathbf{F}_{\leq \mathbf{x}} \psi$ by

$$(p \rightarrow p \mathbf{U}(\neg p \mathbf{U}\psi)) \land (\neg p \rightarrow \neg p \mathbf{U}(p \mathbf{U}\psi))$$

(ψ satisfied within one color change), obtain $c(\varphi)$.

Lemma

 φ and c($\varphi) \;$ "equivalent" on traces where distance between color changes is bounded.

Proof Sketch (Emptiness)

- 1. Replacing $\mathbf{G}_{\leq y}\psi$ by ψ preserves emptiness (monotonicity).
- 2. Apply alternating color technique (Kupferman et al. '06):
 - \blacksquare Add new proposition p and replace every $\mathbf{F}_{\leq \mathbf{x}} \psi$ by

$$(p
ightarrow p \mathbf{U}(\neg p \mathbf{U}\psi)) \land (\neg p
ightarrow \neg p \mathbf{U}(p \mathbf{U}\psi))$$

(ψ satisfied within one color change), obtain $c(\varphi)$.

Lemma

 φ and c($\varphi)$ "equivalent" on traces where distance between color changes is bounded.

- **3.** Emptiness for game with condition φ equivalent to Player 0 winning LTL game with condition $c(\varphi) \wedge \mathbf{GF}p \wedge \mathbf{GF}\neg p$, as finite state strategies bound distance between color changes.
- 4. Yields doubly-exponential upper bound.

For $PLTL_F$ and $PLTL_G$ winning conditions, synthesis is an optimization problem:

For $PLTL_F$ and $PLTL_G$ winning conditions, synthesis is an optimization problem:

Theorem (Z. '11)

Let $\mathcal{G}_{\mathbf{F}}$ be a PLTL_F game with winning condition $\varphi_{\mathbf{F}}$ and let $\mathcal{G}_{\mathbf{G}}$ be a PLTL_G game with winning condition $\varphi_{\mathbf{G}}$. The following values (and winning strategies realizing them) can be computed in triply-exponential time.

1. $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathbf{F}})} \min_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x).$

For $PLTL_F$ and $PLTL_G$ winning conditions, synthesis is an optimization problem:

Theorem (Z. '11)

Let $\mathcal{G}_{\mathbf{F}}$ be a PLTL_F game with winning condition $\varphi_{\mathbf{F}}$ and let $\mathcal{G}_{\mathbf{G}}$ be a PLTL_G game with winning condition $\varphi_{\mathbf{G}}$. The following values (and winning strategies realizing them) can be computed in triply-exponential time.

- **1.** $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathbf{F}})} \min_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x).$
- **2.** $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathbf{F}})} \max_{x \in var(\varphi_{\mathbf{F}})} \alpha(x).$

For $PLTL_F$ and $PLTL_G$ winning conditions, synthesis is an optimization problem:

Theorem (Z. '11)

Let $\mathcal{G}_{\mathbf{F}}$ be a PLTL_F game with winning condition $\varphi_{\mathbf{F}}$ and let $\mathcal{G}_{\mathbf{G}}$ be a PLTL_G game with winning condition $\varphi_{\mathbf{G}}$. The following values (and winning strategies realizing them) can be computed in triply-exponential time.

- 1. $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathsf{F}})} \min_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x).$
- 2. $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathsf{F}})} \max_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x).$
- **3.** $\max_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathbf{G}})} \max_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y).$

4.
$$\max_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathbf{G}})} \min_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y).$$

Proof Sketch

• $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_F)} \max_{x \in var(\varphi_F)} \alpha(x)$ for $PLTL_F$ -formula φ_F .

- 1. Replacing every variable by z preserves optimum (monotonicity).
- 2. Doubly-exponential upper bound on optimum.
- 3. Models of φ w.r.t. α recognized by deterministic parity automaton of triply-exponential size, provided $\alpha(z)$ is at most doubly-exponential.
- 4. Thus, $\alpha \in \mathcal{W}_0(\mathcal{G}_F)$ can be decided in triply-exponential time.
- 5. Run binary search over doubly-exponential search space.

Proof Sketch

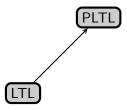
• $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_F)} \max_{x \in var(\varphi_F)} \alpha(x)$ for $PLTL_F$ -formula φ_F .

- 1. Replacing every variable by z preserves optimum (monotonicity).
- 2. Doubly-exponential upper bound on optimum.
- 3. Models of φ w.r.t. α recognized by deterministic parity automaton of triply-exponential size, provided $\alpha(z)$ is at most doubly-exponential.
- 4. Thus, $\alpha \in \mathcal{W}_0(\mathcal{G}_F)$ can be decided in triply-exponential time.
- 5. Run binary search over doubly-exponential search space.

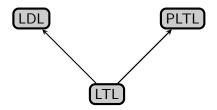
Note:

Doubly-exponential lower bound on optimum rules out doublyexponential running time for this algorithm.

Overview



Overview



Linear Dynamic Logic

Vardi '11: Another extension of LTL expressing exactly the ω -regular languages: use PDL-like operators

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \langle r \rangle \varphi \mid [r] \varphi$$
$$r ::= \phi \mid \varphi? \mid r + r \mid r; r \mid r^*$$

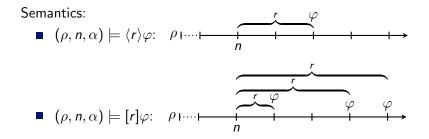
where ϕ ranges over boolean formulas over atomic propositions.

Linear Dynamic Logic

Vardi '11: Another extension of LTL expressing exactly the ω -regular languages: use PDL-like operators

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \langle r \rangle \varphi \mid [r] \varphi$$
$$r ::= \phi \mid \varphi? \mid r + r \mid r; r \mid r^*$$

where ϕ ranges over boolean formulas over atomic propositions.



Results

Theorem (Vardi '11)

LDL can be translated into linearly-sized alternating automata.

Results

Theorem (Vardi '11)

LDL can be translated into linearly-sized alternating automata.

Corollary

- **1.** LDL model checking is PSPACE-complete.
- **2.** Solving games with LDL winning conditions is 2EXPTIME-complete.

Results

Theorem (Vardi '11)

LDL can be translated into linearly-sized alternating automata.

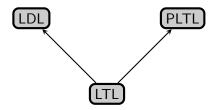
Corollary

- **1.** LDL model checking is PSPACE-complete.
- **2.** Solving games with LDL winning conditions is 2EXPTIME-complete.

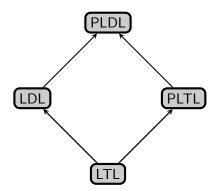
Theorem (Vardi '11)

LDL defines exactly the ω -regular languages.

Overview



Overview



Parametric LDL

Faymonville, Z. '14: add parameterized operators to LDL.

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \langle r \rangle \varphi \mid [r] \varphi \mid \langle r \rangle_{\leq x} \varphi \mid [r]_{\leq y} \varphi$$
$$r ::= \phi \mid \varphi? \mid r + r \mid r; r \mid r^*$$

Parametric LDL

Faymonville, Z. '14: add parameterized operators to LDL.

 $\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \langle r \rangle \varphi \mid [r] \varphi \mid \langle r \rangle_{\leq x} \varphi \mid [r]_{\leq y} \varphi$ $r ::= \phi \mid \varphi? \mid r + r \mid r; r \mid r^*$

We are interested in same decision problems as for PLTL

- Membership: given \mathcal{G} , $i \in \{0, 1\}$, and α , is $\alpha \in \mathcal{W}_i(\mathcal{G})$?
- Emptiness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ empty?
- Finiteness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ finite?
- Universality: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ universal?

as well as the optimization problems.

The Alternating Color Technique for PLDL

1. Eliminate $[r]_{\leq y}\psi$:

Lemma

For every r there is an \hat{r} such that $[r]_{\leq y}\psi$ holds for $\alpha(y) = 0$ if and only if $[\hat{r}]\psi$ holds.

The Alternating Color Technique for PLDL

1. Eliminate $[r]_{\leq y}\psi$:

Lemma

For every r there is an \hat{r} such that $[r]_{\leq y}\psi$ holds for $\alpha(y) = 0$ if and only if $[\hat{r}]\psi$ holds.

- **2.** Eliminate $\langle r \rangle_{\leq x} \psi$ using alternating color technique:
 - Need to match r and $p^*(\neg p)^* + (\neg p)^*p^*$.
 - Introduce color change aware operators: $\langle r \rangle_{cc}$ only takes into account matches of r within at most one color change.
 - Thus, replace $\langle r \rangle_{\leq x} \psi$ by $\langle r \rangle_{cc} \psi$, obtain $c(\varphi)$.

The Alternating Color Technique for PLDL

1. Eliminate $[r]_{\leq y}\psi$:

Lemma

For every r there is an \hat{r} such that $[r]_{\leq y}\psi$ holds for $\alpha(y) = 0$ if and only if $[\hat{r}]\psi$ holds.

- **2.** Eliminate $\langle r \rangle_{\leq x} \psi$ using alternating color technique:
 - Need to match r and $p^*(\neg p)^* + (\neg p)^*p^*$.
 - Introduce color change aware operators: $\langle r \rangle_{cc}$ only takes into account matches of r within at most one color change.
 - Thus, replace $\langle r \rangle_{\leq x} \psi$ by $\langle r \rangle_{cc} \psi$, obtain $c(\varphi)$.

Lemma

 φ and c($\varphi)$ "equivalent" on traces where distance between color changes is bounded.

 LDL_{cc} -formulas can be translated into linearly-sized alternating automata.

Proof Sketch:

Bottom up construction:

Atomic formulas, conjunction, and disjunction straightforward.

LDL_{cc}-formulas can be translated into linearly-sized alternating automata.

Proof Sketch:

Bottom up construction:

- Atomic formulas, conjunction, and disjunction straightforward.
- ⟨r⟩ψ: construct NFA 𝔅_r for r and alternating automaton 𝔅_ψ for ψ, connect final states of 𝔅_r with initial state of 𝔅_ψ.

LDL_{cc}-formulas can be translated into linearly-sized alternating automata.

Proof Sketch:

Bottom up construction:

- Atomic formulas, conjunction, and disjunction straightforward.
- ⟨r⟩ψ: construct NFA 𝔅_r for r and alternating automaton 𝔅_ψ for ψ, connect final states of 𝔅_r with initial state of 𝔅_ψ.
- [r]ψ: as for ⟨r⟩ψ, but make all states of 𝔄_r universal to test for all matches of r.

LDL_{cc}-formulas can be translated into linearly-sized alternating automata.

Proof Sketch:

Bottom up construction:

- Atomic formulas, conjunction, and disjunction straightforward.
- ⟨r⟩ψ: construct NFA 𝔅_r for r and alternating automaton 𝔅_ψ for ψ, connect final states of 𝔅_r with initial state of 𝔅_ψ.
- [r]ψ: as for ⟨r⟩ψ, but make all states of 𝔄_r universal to test for all matches of r.
- $\langle r \rangle_{cc} \psi$: as for $\langle r \rangle \psi$, but take intersection of \mathfrak{A}_r and automaton checking for at most one color change.

Results for LDL

Theorem (Faymonville, Z. '14) *PLDL model checking is* PSPACE-complete.

PLDL model checking is PSPACE-complete.

Theorem (Faymonville, Z. '14)

Solving games with PLDL winning conditions is 2EXPTIME-complete.

PLDL model checking is PSPACE-complete.

Theorem (Faymonville, Z. '14)

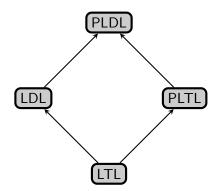
Solving games with PLDL winning conditions is 2EXPTIME-complete.

Theorem (Faymonville, Z. '14)

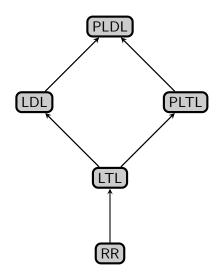
PLDL optimization problems are solvable in

- polynomial space for model checking, and
- triply-exponential time for games.

Overview



Overview



For propositions q_j (requests) and p_j (responses)

$$arphi = igwedge_{j=1}^k \mathbf{G}(q_j o \mathbf{F} p_j)$$

For propositions q_j (requests) and p_j (responses)

$$arphi = igwedge_{j=1}^k {f G}(q_j o {f F} p_j)$$

From now on:

- **R** RR game $(\mathcal{A}, (Q_j, P_j)_{j=1,...,k})$.
- Player 0 wins if every request is answered by corresponding response, i.e., if φ is satisfied.

For propositions q_j (requests) and p_j (responses)

$$arphi = igwedge_{j=1}^k {f G}(q_j o {f F} p_j)$$

From now on:

- **R** RR game $(\mathcal{A}, (Q_j, P_j)_{j=1,...,k})$.
- Player 0 wins if every request is answered by corresponding response, i.e., if φ is satisfied.

Theorem (Wallmeier, Hütten, Thomas '03)

RR games can be reduced to Büchi games of size $|A|k2^{k+1}$.

For propositions q_j (requests) and p_j (responses)

$$arphi = igwedge_{j=1}^k {f G}(q_j o {f F} p_j)$$

From now on:

- **R** RR game $(\mathcal{A}, (Q_j, P_j)_{j=1,...,k})$.
- Player 0 wins if every request is answered by corresponding response, i.e., if φ is satisfied.

Theorem (Wallmeier, Hütten, Thomas '03)

RR games can be reduced to Büchi games of size $|A|k2^{k+1}$.

Corollary

- Finite-state winning strategies of size $k2^{k+1}$ for both players.
- Solvable in EXPTIME.

•
$$\operatorname{wt}_{j}(\varepsilon) = 0$$
, and
 $\operatorname{wt}_{j}(wv) = \begin{cases} 0 \\ \end{cases}$

$$\text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j,$$

•
$$\operatorname{wt}_{j}(\varepsilon) = 0$$
, and
 $\operatorname{wt}_{j}(wv) = \begin{cases} 0\\ 1 \end{cases}$

•
$$\operatorname{wt}_{j}(\varepsilon) = 0$$
, and
 $\operatorname{wt}_{j}(wv) = \begin{cases} 0\\ 1\\ 0 \end{cases}$

$$\begin{split} &\text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\ &\text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\ &\text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \in P_j, \end{split}$$

•
$$\operatorname{wt}_j(\varepsilon) = 0$$
, and
 $\operatorname{wt}_j(wv) = \begin{cases} 0 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\ 1 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\ 0 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \in P_j, \\ \operatorname{wt}_j(w) + 1 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \notin P_j. \end{cases}$

$$\operatorname{wt}_{j}(\varepsilon) = 0, \text{ and}$$

$$\operatorname{wt}_{j}(wv) = \begin{cases} 0 & \text{if } \operatorname{wt}_{j}(w) = 0 \text{ and } v \notin Q_{j} \setminus P_{j}, \\ 1 & \text{if } \operatorname{wt}_{j}(w) = 0 \text{ and } v \in Q_{j} \setminus P_{j}, \\ 0 & \text{if } \operatorname{wt}_{j}(w) > 0 \text{ and } v \in P_{j}, \\ \operatorname{wt}_{j}(w) + 1 & \text{if } \operatorname{wt}_{j}(w) > 0 \text{ and } v \notin P_{j}. \end{cases}$$

•
$$\operatorname{val}(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=0}^{n-1} \sum_{j=1,\dots,k} \operatorname{wt}_j(\rho_0 \cdots \rho_\ell)$$

$$\operatorname{wt}_{j}(\varepsilon) = 0, \text{ and}$$

$$\operatorname{wt}_{j}(wv) = \begin{cases} 0 & \text{if } \operatorname{wt}_{j}(w) = 0 \text{ and } v \notin Q_{j} \setminus P_{j}, \\ 1 & \text{if } \operatorname{wt}_{j}(w) = 0 \text{ and } v \in Q_{j} \setminus P_{j}, \\ 0 & \text{if } \operatorname{wt}_{j}(w) > 0 \text{ and } v \in P_{j}, \\ \operatorname{wt}_{j}(w) + 1 & \text{if } \operatorname{wt}_{j}(w) > 0 \text{ and } v \notin P_{j}. \end{cases}$$

■
$$\operatorname{val}(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=0}^{n-1} \sum_{j=1,\dots,k} \operatorname{wt}_j(\rho_0 \cdots \rho_\ell)$$

■ $\operatorname{val}(\sigma, \mathbf{v}) = \sup_{\rho \in \operatorname{Beh}(\mathbf{v}, \sigma)} \operatorname{val}(\rho)$

•
$$\operatorname{wt}_j(\varepsilon) = 0$$
, and
 $\operatorname{wt}_j(wv) = \begin{cases} 0 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j \\ 1 & \text{if } \operatorname{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j \\ 0 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \in P_j, \\ \operatorname{wt}_j(w) + 1 & \text{if } \operatorname{wt}_j(w) > 0 \text{ and } v \notin P_j. \end{cases}$

■
$$\operatorname{val}(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=0}^{n-1} \sum_{j=1,\dots,k} \operatorname{wt}_j(\rho_0 \cdots \rho_\ell)$$

■ $\operatorname{val}(\sigma, \nu) = \sup_{\rho \in \operatorname{Beh}(\nu, \sigma)} \operatorname{val}(\rho)$

Goal:

、、

Prove that optimal winning strategies exist and are computable.

, ,

Main Theorem

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Main Theorem

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

1. Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

- **1.** Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

- **1.** Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.
- **2.** Expand arena by keeping track of waiting time vectors up to bound from 1.). RR-values equal to mean-payoff condition.

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

- **1.** Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.
- **2.** Expand arena by keeping track of waiting time vectors up to bound from 1.). RR-values equal to mean-payoff condition.
 - Optimal strategy for mean-payoff yields optimal strategy for RR game.

Dickson's Lemma

Dickson pair: $((x_1, \ldots, x_k), (y_1, \ldots, y_k)) \in \mathbb{N}^k$ s.t. $x_j \leq y_j$ for all j. Lemma (Dickson '13)

 (\mathbb{N}^k, \leq) is a WQO, i.e., every infinite sequence has dickson pair.

Dickson's Lemma

Dickson pair: $((x_1, \ldots, x_k), (y_1, \ldots, y_k)) \in \mathbb{N}^k$ s.t. $x_j \leq y_j$ for all j. Lemma (Dickson '13)

 (\mathbb{N}^k, \leq) is a WQO, i.e., every infinite sequence has dickson pair.

However, Dickson's Lemma does not give any bound on length of infixes without dickson pairs (as there is none for \mathbb{N}^k).

Dickson's Lemma

Dickson pair: $((x_1, \ldots, x_k), (y_1, \ldots, y_k)) \in \mathbb{N}^k$ s.t. $x_j \leq y_j$ for all j. Lemma (Dickson '13)

 (\mathbb{N}^k, \leq) is a WQO, i.e., every infinite sequence has dickson pair.

However, Dickson's Lemma does not give any bound on length of infixes without dickson pairs (as there is none for \mathbb{N}^k).

Waiting time vectors are special:

- either increment, or
- reset to zero.

Lemma

There is a function $b(|\mathcal{A}|, k) \in \mathcal{O}(2^{2^{|\mathcal{A}| \cdot k+2}})$ such that every play infix of length $b(|\mathcal{A}|, k)$ has a dickson pair.

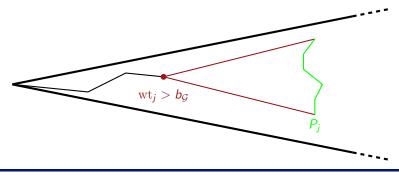
We have σ with $val(\sigma, v) \leq \sum_{j=1,...,k} |\mathcal{A}| k 2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

We have σ with $val(\sigma, v) \leq \sum_{j=1,...,k} |\mathcal{A}| k 2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma

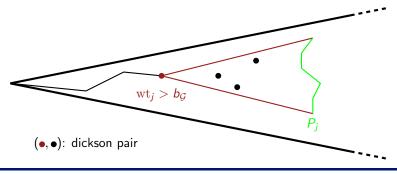
We have σ with $val(\sigma, v) \leq \sum_{j=1,...,k} |\mathcal{A}| k 2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma



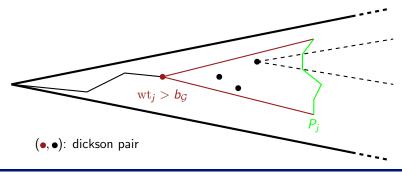
We have σ with $val(\sigma, v) \leq \sum_{j=1,...,k} |\mathcal{A}| k 2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma



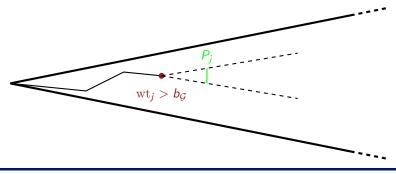
We have σ with $val(\sigma, v) \leq \sum_{j=1,...,k} |\mathcal{A}| k 2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma



We have σ with $val(\sigma, v) \leq \sum_{j=1,...,k} |\mathcal{A}| k 2^k =: b_{\mathcal{G}}$ for all $v \in W_0(\mathcal{G})$.

Lemma



• Let
$$t_{\max_i} = \operatorname{val}_{\mathcal{G}} + b(|\mathcal{A}|, k-1).$$

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(|\mathcal{A}|, k-1).$$

Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(|\mathcal{A}|, k-1).$$

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).
- **T**ake cartesian product of \mathcal{A} and \mathfrak{A} .

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(|\mathcal{A}|, k-1).$$

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).
- **T**ake cartesian product of \mathcal{A} and \mathfrak{A} .
- \blacksquare Define w by $w((v,\bot),(v',\bot))=1+\sum_{j=1,...,k}t_{\mathsf{max}_j}$ and

$$w((v,(t_1,\ldots,t_k)),(v',(t'_1,\ldots,t'_k))) = \sum_{j=1,\ldots,k} t_j$$

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(|\mathcal{A}|, k-1).$$

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).
- **T**ake cartesian product of \mathcal{A} and \mathfrak{A} .
- \blacksquare Define w by $w((v,\bot),(v',\bot))=1+\sum_{j=1,...,k}t_{\mathsf{max}_j}$ and

$$w((v,(t_1,\ldots,t_k)),(v',(t'_1,\ldots,t'_k))) = \sum_{j=1,\ldots,k} t_j$$

• Obtain mean-payoff game $\mathcal{G}' = (\mathcal{A} \times \mathfrak{A}, w).$

• Let
$$t_{\max_j} = \operatorname{val}_{\mathcal{G}} + b(|\mathcal{A}|, k-1).$$

- Let 𝔅 be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_i} (sink state ⊥).
- **T**ake cartesian product of \mathcal{A} and \mathfrak{A} .
- \blacksquare Define w by $w((v,\bot),(v',\bot))=1+\sum_{j=1,\dots,k}t_{\mathsf{max}_j}$ and

$$w((v,(t_1,\ldots,t_k)),(v',(t_1',\ldots,t_k'))) = \sum_{j=1,\ldots,k} t_j$$

• Obtain mean-payoff game $\mathcal{G}' = (\mathcal{A} \times \mathfrak{A}, w)$.

Theorem

Optimal strategy for mean-payoff game can be translated into optimal strategy for RR game.

