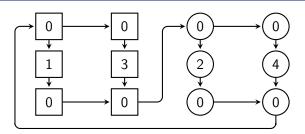
Easy to Win, Hard to Master: Playing Parity Games with Costs Optimally

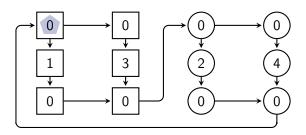
Joint work with Alexander Weinert (Saarland University)

Martin Zimmermann

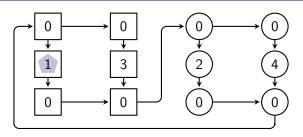
Saarland University

December 16th, 2016 AVeRTS 2016, Chennai, India

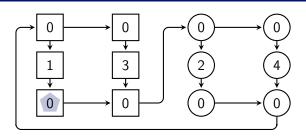




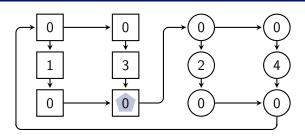
C



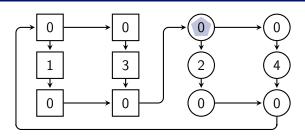
 $0 \rightarrow 1$



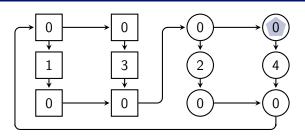
$$0 \rightarrow 1 \rightarrow 0$$



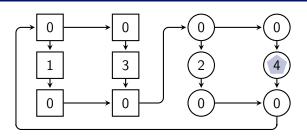
$$0 \rightarrow 1 \rightarrow 0 \rightarrow 0$$



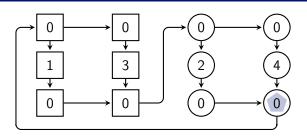
$$0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \longrightarrow 0$$



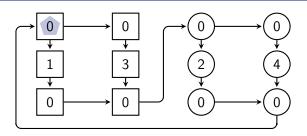
$$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$



$$0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \longrightarrow 0 \rightarrow 4$$

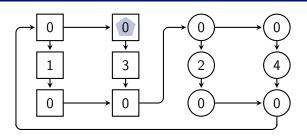


$$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0$$



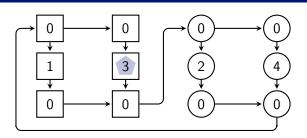
$$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0$$

$$\downarrow 0$$



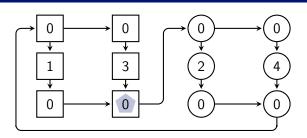
$$0 \to 1 \to 0 \to 0 \longrightarrow 0 \to 0 \to 4 \to 0$$

$$0 \to 0$$



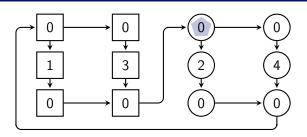
$$0 \to 1 \to 0 \to 0 \longrightarrow 0 \to 0 \to 4 \to 0$$

$$0 \to 0 \to 3$$



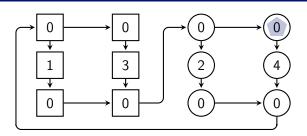
$$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0$$

$$0 \longrightarrow 0 \longrightarrow 3 \longrightarrow 0$$



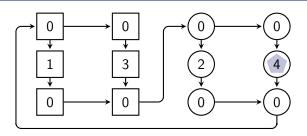
$$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0$$

$$0 \longrightarrow 0 \longrightarrow 3 \longrightarrow 0 \longrightarrow 0$$



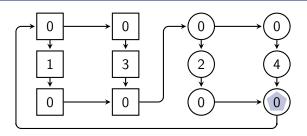
$$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0$$

$$0 \longrightarrow 0 \longrightarrow 3 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$



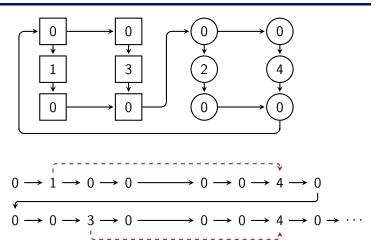
$$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0$$

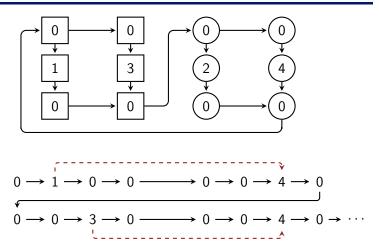
$$0 \longrightarrow 0 \longrightarrow 3 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4$$



$$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0$$

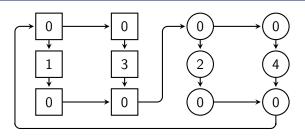
$$0 \longrightarrow 0 \longrightarrow 3 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0 \longrightarrow \cdots$$

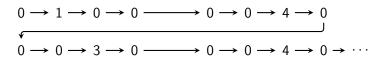




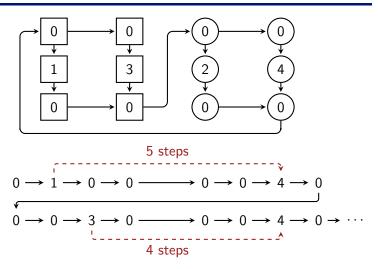
■ Various applications: μ -calculus model checking, Rabin's theorem, reactive synthesis, alternating automata,...

Finitary Parity Games

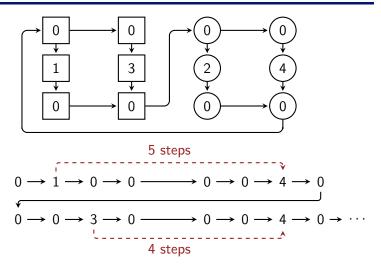




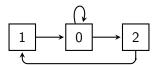
Finitary Parity Games

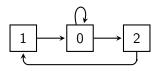


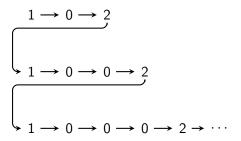
Finitary Parity Games

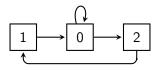


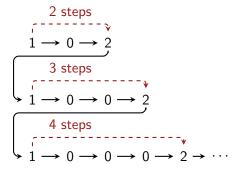
■ A quantitative strengthening of parity games.

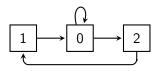


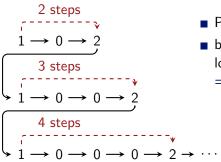












- Player 1 wins from every vertex,
- but needs to stay longer and longer in vertex of color 0.
 - \Rightarrow requires infinite memory.

Previous Work

- Parity: Almost all requests are answered.
- Finitary Parity: There is a bound *b* such that almost all requests are answered within *b* steps.

Previous Work

- Parity: Almost all requests are answered.
- **Finitary Parity:** There is a bound *b* such that almost all requests are answered within *b* steps.

Condition	Complexity	Memory Pl. 0	Memory Pl. 1
Parity	UP∩co-UP	Memoryless	Memoryless
Finitary Parity	PTime	Memoryless	Infinite

Previous Work

- Parity: Almost all requests are answered.
- **Finitary Parity:** There is a bound *b* such that almost all requests are answered within *b* steps.

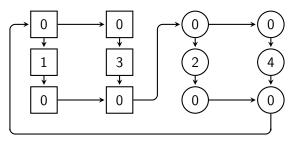
Condition	Complexity	Memory Pl. 0	Memory Pl. 1
Parity	UP∩co-UP	Memoryless	Memoryless
Finitary Parity	PTime	Memoryless	Infinite

Corollary

If Player 0 wins a finitary parity game G, then a uniform bound $b \le |G|$ suffices.

A trivial example shows that the upper bound $|\mathcal{G}|$ is tight.

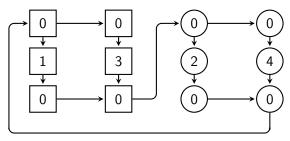
Back to the Example



Answering requests as soon as possible requires memory.

- Every request can be answered within four steps:
 - a 1 by a 2
 - a 3 by a 4
 - \Rightarrow requires one bit of memory.

Back to the Example



Answering requests as soon as possible requires memory.

- Every request can be answered within four steps:
 - a 1 by a 2
 - a 3 by a 4
 - \Rightarrow requires one bit of memory.
- But answering a 1 by a 4 takes five steps.
 - \Rightarrow every memoryless strategy has at least *cost* 5.

Playing Finitary Parity Games Optimally

Questions

- 1. How much memory is needed to play finitary parity games optimally?
- **2.** How hard is it to determine the optimal bound *b* for a finitary parity game?
- **3.** There is a tradeoff between size and cost of strategies! What is its extent?

Outline

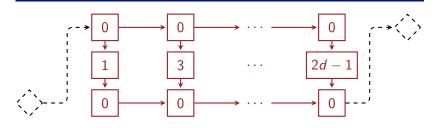
- 1. Memory Requirements of Optimal Strategies
- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

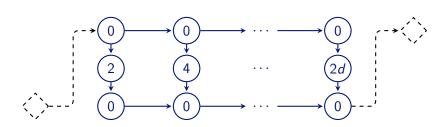
Outline

1. Memory Requirements of Optimal Strategies

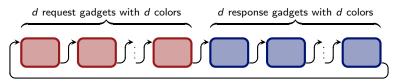
- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Memory Requirements



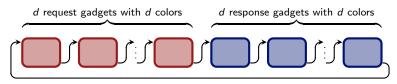


Memory Requirements



- Player 0 has winning strategy with cost $d^2 + 2d$: answer j-th unique request in j-th response-gadget.
 - \Rightarrow requires exponential memory (in d).
- Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of requests.

Memory Requirements



- Player 0 has winning strategy with cost $d^2 + 2d$: answer j-th unique request in j-th response-gadget.
 - \Rightarrow requires exponential memory (in d).
- Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of requests.

Theorem

For every d>1, there exists a finitary parity game \mathcal{G}_d such that

- ullet $|\mathcal{G}_d| \in \mathcal{O}(d^2)$ and \mathcal{G}_d has d odd colors, and
- every optimal strategy for Player 0 has at least size $2^d 2$.

Outline

- 1. Memory Requirements of Optimal Strategies
- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

PSPACE-Hardness

Lemma

The following problem is PSPACE-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

PSPACE-Hardness

Lemma

The following problem is PSPACE-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

Proof

- By a reduction from QBF (w.l.o.g. in CNF).
- Checking the truth of $\varphi = \forall x \exists y. \ (x \lor \neg y) \land (\neg x \lor y)$ as a two-player game (Player 0 wants to prove truth of φ):

PSPACE-Hardness

Lemma

The following problem is PSPACE-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

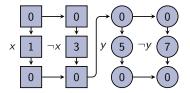
Proof

- By a reduction from QBF (w.l.o.g. in CNF).
- Checking the truth of $\varphi = \forall x \exists y. \ (x \lor \neg y) \land (\neg x \lor y)$ as a two-player game (Player 0 wants to prove truth of φ):
 - **1.** Player 1 picks truth value for *x*.
 - **2.** Player 0 picks truth value for y.
 - **3.** Player 1 picks clause *C*.
 - **4.** Player 0 picks literal ℓ from C.
 - **5.** Player 0 wins $\Leftrightarrow \ell$ is picked to be satisfied in step 1 or 2.

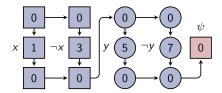
$$\varphi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

$$\varphi = \forall x \exists y . \ (x \lor \neg y) \land (\neg x \lor y)$$

$$\varphi = \forall x \exists y. (x \lor \neg y) \land (\neg x \lor y)$$



$$\varphi = \forall x \exists y . \ \overbrace{(x \lor \neg y) \land (\neg x \lor y)}$$



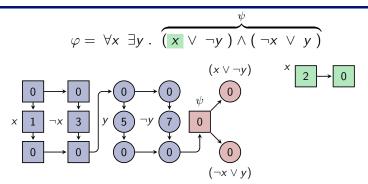
$$\varphi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

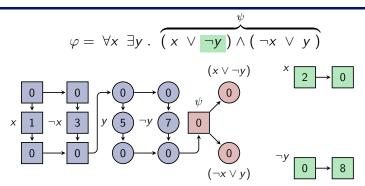
$$x \downarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$$

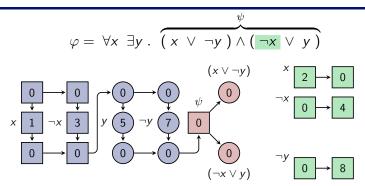
$$x \downarrow 1 \rightarrow x \downarrow 3 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$$

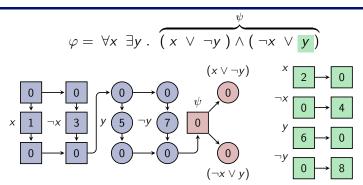
$$x \downarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$$

$$(\neg x \lor y)$$



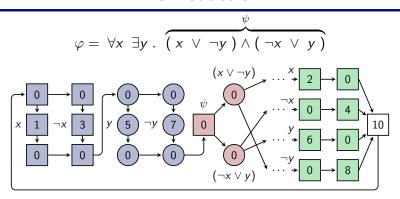


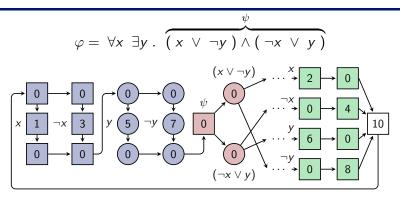


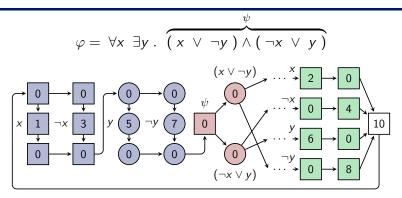


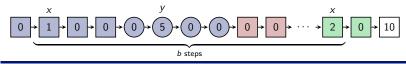
$$\varphi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

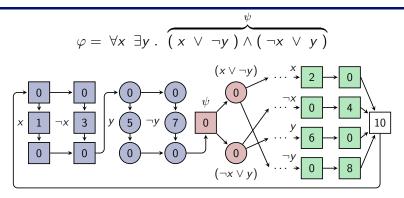
$$\downarrow 0 \qquad \downarrow 0 \qquad \downarrow$$

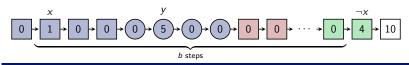


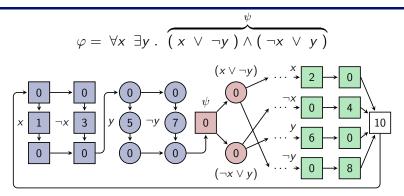


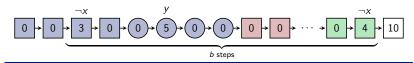












PSPACE-Membership

Lemma

The following problem is in PSPACE: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

PSPACE-Membership

Lemma

The following problem is in PSPACE: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

Proof Sketch

Fix \mathcal{G} and b (w.l.o.g. $b \leq |\mathcal{G}|$).

1. Construct equivalent parity game \mathcal{G}' storing the costs of open requests (up to bound b) and the number of overflows (up to bound $|\mathcal{G}|) \Rightarrow |\mathcal{G}'| \in |\mathcal{G}|^{\mathcal{O}(d)}$.

PSPACE-Membership

Lemma

The following problem is in PSPACE: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

Proof Sketch

Fix \mathcal{G} and b (w.l.o.g. $b \leq |\mathcal{G}|$).

- 1. Construct equivalent parity game \mathcal{G}' storing the costs of open requests (up to bound b) and the number of overflows (up to bound $|\mathcal{G}|$) \Rightarrow $|\mathcal{G}'| \in |\mathcal{G}|^{\mathcal{O}(d)}$.
- **2.** Define equivalent finite-duration variant \mathcal{G}'_f of \mathcal{G}' with polynomial play-length.
- 3. \mathcal{G}_f' can be solved on alternating polynomial-time Turing machine.
- **4.** APTIME = PSPACE concludes the proof.

Upper Bounds on Memory

Equivalence between finitary parity game \mathcal{G} w.r.t. bound b and parity game \mathcal{G}' yields upper bounds on memory requirements.

Corollary

Let \mathcal{G} be a finitary parity game with costs with d odd colors. If Player 0 has a strategy for \mathcal{G} with cost b, then she also has a strategy with cost b and size $(b+2)^d = 2^{d \log(b+2)}$.

Upper Bounds on Memory

Equivalence between finitary parity game \mathcal{G} w.r.t. bound b and parity game \mathcal{G}' yields upper bounds on memory requirements.

Corollary

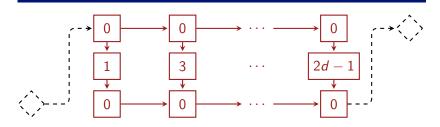
Let \mathcal{G} be a finitary parity game with costs with d odd colors. If Player 0 has a strategy for \mathcal{G} with cost b, then she also has a strategy with cost b and size $(b+2)^d = 2^{d \log(b+2)}$.

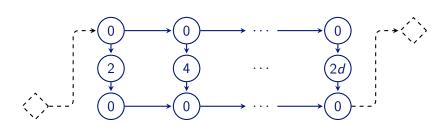
- \blacksquare Recall: lower bound 2^d .
- The same bounds hold for Player 1.

Outline

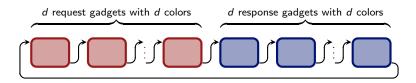
- 1. Memory Requirements of Optimal Strategies
- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Tradeoffs





Tradeoffs



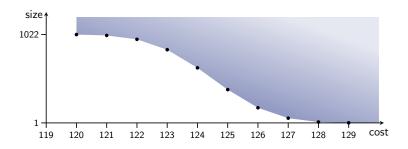
- Recall: Player 0 has winning strategy with cost $d^2 + 2d$: answer j-th unique request in j-th response-gadget, which requires memory of size $2^d 2$.
- Only store first *i* unique requests, then go to largest answer in next gadget.
 - \Rightarrow achieves cost $d^2 + 3d i$ and size $\sum_{j=1}^{i-1} {d \choose j}$.
- Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of *i* requests.

Tradeoffs

Theorem

Fix some finitary parity game \mathcal{G}_d as before. For every i with $1 \leq i \leq d$ there exists a strategy σ_i for Player 0 in \mathcal{G}_d such that σ_i has cost $d^2 + 3d - i$ and size $\sum_{j=1}^{i-1} {d \choose j}$.

Also, every strategy σ' for Player 0 in \mathcal{G}_d whose cost is at most the cost of σ_i has at least the size of σ_i .



Outline

- 1. Memory Requirements of Optimal Strategies
- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Generalizations 1: Cost

Parity Games with costs

- In a finitary parity game, every edge has unit cost.
- In parity games with costs, allow arbitrary weights from \mathbb{N} .
- Subsumes parity games (cost zero for every edge) and finitary parity games (cost one for every edge) as special cases.

Generalizations 1: Cost

Parity Games with costs

- In a finitary parity game, every edge has unit cost.
- In parity games with costs, allow arbitrary weights from \mathbb{N} .
- Subsumes parity games (cost zero for every edge) and finitary parity games (cost one for every edge) as special cases.

New challenges:

- Arbitrarily long infixes of cost zero have to be dealt with.
 - ⇒ Use techniques for parity games.
- A binary encoding of the weights only allows an exponential upper bound on the cost of an optimal strategy.
 - \Rightarrow Adapt finite-duration game \mathcal{G}'_f accordingly.

Generalizations 2: Streett

Streett Games

- In parity games, requests and responses are hierarchical.
- In Streett games, use a finite collection $(Q_j, P_j)_j$ of sets of vertices, requests Q_j and responses P_j of condition j.

Generalizations 2: Streett

Streett Games

- In parity games, requests and responses are hierarchical.
- In Streett games, use a finite collection $(Q_j, P_j)_j$ of sets of vertices, requests Q_j and responses P_j of condition j.

Finitary Streett Games / Streett Games with Costs

■ Streett condition and weights from $\{1\}$ / \mathbb{N} .

Generalizations 2: Streett

Streett Games

- In parity games, requests and responses are hierarchical.
- In Streett games, use a finite collection $(Q_j, P_j)_j$ of sets of vertices, requests Q_i and responses P_i of condition j.

Finitary Streett Games / Streett Games with Costs

■ Streett condition and weights from $\{1\}$ / \mathbb{N} .

New relief:

- Finitary Streett games are already EXPTIME-complete and exponential memory is necessary
 - \Rightarrow Appropriate adaption of \mathcal{G}' can be solved straightaway in exponential time, yielding exponential upper bounds on memory

More Results

Condition	Complexity	Mem. Pl. 0	Mem. Pl. 1
Parity	$\mathrm{UP}\cap\mathrm{co}\text{-}\mathrm{UP}$	Memoryless	Memoryless
Finitary Parity	PTIME	Memoryless	Infinite

More Results

Condition	Complexity	Mem. Pl. 0	Mem. Pl. 1
Parity Finitary Parity Parity with Cost	$UP \cap co$ - UP $PTIME$ $UP \cap co$ - UP	Memoryless Memoryless Memoryless	Memoryless Infinite Infinite
Streett Finitary Streett Streett with Cost	$ \begin{array}{c} {\rm CO\text{-}NP\text{-}complete} \\ {\rm EXPTIME\text{-}compl.} \\ {\rm EXPTIME\text{-}compl.} \end{array} $	Exponential Exponential Exponential	

More Results

Condition	Complexity	Mem. Pl. 0	Mem. Pl. 1
Parity	$\begin{array}{c} \text{UP} \cap \text{co-UP} \\ \text{PTIME} \\ \text{UP} \cap \text{co-UP} \end{array}$	Memoryless	Memoryless
Finitary Parity		Memoryless	Infinite
Parity with Cost		Memoryless	Infinite
Streett	$ \begin{array}{c} {\rm CO\text{-}NP\text{-}complete} \\ {\rm EXPTIME\text{-}compl.} \\ {\rm EXPTIME\text{-}compl.} \end{array} $	Exponential	Memoryless
Finitary Streett		Exponential	Infinite
Streett with Cost		Exponential	Infinite
Opt. Finitary Parity Opt. Parity with Cost* Opt. Finitary Streett Opt. Streett with Cost*	PSPACE-compl. PSPACE-compl. EXPTIME-compl. EXPTIME-compl.	Exponential Exponential Exponential Exponential	Exponential Exponential Exponential Exponential

^{*} Holds for binary encoding of the weights.

Outline

- 1. Memory Requirements of Optimal Strategies
- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Conclusion

Results

- Playing finitary games/games with costs optimally is harder than just winning them.
- Both in terms of memory requirements and computational complexity.
- Quality can (gradually) be traded for memory and vice versa.

Conclusion

Results

- Playing finitary games/games with costs optimally is harder than just winning them.
- Both in terms of memory requirements and computational complexity.
- Quality can (gradually) be traded for memory and vice versa.

Open problems

- Parity games with mutiple cost functions
- Multi-dimensional games
- Tradeoffs in other games (first results for parametric LTL and energy games)