
RESEARCH

Received: 26 November 2024 / Accepted: 16 July 2025
© The Author(s) 2025

	
 Sarah Winter
winter@irif.fr

	
 Martin Zimmermann
mzi@cs.aau.dk

1	 IRIF, Université Paris Cité, Paris, France
2	 Aalborg University, Aalborg, Denmark

Tracy, traces, and transducers: computable counterexamples
and explanations for HyperLTL model-checking

Sarah Winter1 · Martin Zimmermann2

Acta Informatica (2025) 62:31
https://doi.org/10.1007/s00236-025-00499-7

Abstract
HyperLTL model-checking enables the automated verification of information-flow prop-
erties for security-critical systems. However, it only provides a binary answer. Here, we
consider the problem of computing counterexamples and explanations for HyperLTL
model-checking, thereby considerably increasing its usefulness. Based on the maxim
“counterexamples/explanations are Skolem functions for the existentially quantified trace
variables”, we consider (Turing machine) computable Skolem functions. As not every
finite transition system and formula have computable Skolem functions witnessing that
the system satisfies the formula, we consider the problem of deciding whether such func-
tions exist. Our main result shows that this problem is decidable by reducing it to solving
multiplayer games with hierarchical imperfect information. Furthermore, our algorithm
also computes transducers implementing such functions, if they exist.

1  Introduction

Prologue. Tracy sits in her office and needs to print her latest travel reimbursement claim.
After hitting the print button, she walks to the printer room only to find out that the docu-
ment has not been printed. So, she walks back to her office, hits the print button again, walks
to the printer and is slightly surprised to find her document. Sometimes Tracy wonders
whether the print system is nondeterministic. If only there was a way to find out.

Information-flow properties, which are crucial in the specification of security-critical
systems, require the simultaneous reasoning about multiple executions of a system. How-
ever, most classical specification languages like LTL and CTL∗ refer to a single execution
trace at a time. Clarkson and Schneider [11] coined the term hyperproperties for properties

1 3

https://doi.org/10.1007/s00236-025-00499-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-025-00499-7&domain=pdf&date_stamp=2025-8-14

S. Winter, M. Zimmermann

that require the reasoning about multiple traces. Just like ordinary trace and branching-
time properties, hyperproperties can be specified using temporal logics, e.g., HyperLTL and
HyperCTL∗ [8], expressive, but intuitive specification languages that are able to express
typical information-flow properties such as noninterference, noninference, declassification,
and input determinism. Due to their practical relevance and theoretical elegance, hyperprop-
erties and their specification languages have received considerable attention during the last
decade.

HyperLTL is obtained by extending LTL [29], the most influential specification
language for linear-time properties, by trace quantifiers to refer to multiple execu-
tions of a system. Hence, a HyperLTL formula is indeed evaluated over a set of traces,
which forms the universe for the quantifiers. For example, the HyperLTL formula
φid = ∀π, π′. G(iπ ↔ iπ′) → G(oπ ↔ oπ′) expresses input determinism, i.e., every pair
of traces that always has the same input (represented by the proposition i) also always has
the same output (represented by the proposition o). Having learned about HyperLTL, Tracy
wonders whether she can formally prove that the print system violates φid.

In this work, we focus on the model-checking problem for HyperLTL, which intuitively
asks whether a given (finite model of a) system satisfies a given HyperLTL specification.
This problem is decidable, albeit Tower-complete [27, 30].

But the model-checking problem as described above is “just” a decision problem, i.e.,
the user only learns whether the system satisfies the specification or not, but not the rea-
son it does or does not. It has been argued that this binary answer is in general not useful
[25]: Most real-life systems are too complex to be modelled faithfully by a finite transition
system. Hence, one always checks an abstraction, not the actual system. Then, a positive
answer to the model-checking problem does not show that the actual system is correct,
bugs in it might have been abstracted away when constructing a finite transition system
modelling it. The actual killer application of model-checking is the automated generation
of counterexamples in case the specification is not satisfied by the abstraction. Given a
counterexample in the abstraction one can then check whether this (erroneous) behaviour
also exists in the actual system, or whether it was introduced during the abstraction [9].
In the latter case, the abstraction has to be refined and checked again. But if the erroneous
behaviour can be found in the actual system, then this bug can be fixed in the actual system.

But what is a counterexample in HyperLTL model-checking? For the formula φid
expressing input determinism this is straightforward: if a transition system does not sat-
isfy the formula, then it has two traces that coincide on their input, but not on their out-
put. However, the situation becomes more interesting in the presence of existentially
quantified variables and quantifier alternations. Consider, for example, a formula of the
form φ = ∃π∀π′. ψ with quantifier-free ψ and let T be a transition system with set Tr(T) of
traces. If T ̸|= φ, then for every choice of t ∈ Tr(T) there is a t′ ∈ Tr(T) such that the vari-
able assignment {π �→ t, π′ �→ t′} does not satisfy ψ. Thus, a counterexample is described
by a Skolem function f :Tr(T) → Tr(T) for the existentially quantified variable π′ in the
negation ∀π∃π′. ¬ψ of φ. It gives, for every choice t for the existentially quantified π in φ
a trace f(t) for the universally quantified π′ in φ such that {π �→ t, π′ �→ f(t)} |= ¬ψ, i.e.,
{π �→ t, π′ �→ f(t)} �|= ψ, thereby explaining for every choice of t why it is not a good one.
The maxim “counterexamples are Skolem functions for existentially quantified variables in
the negation of the specification” is true for arbitrary formulas. But before we explore this
approach further, let us first consider a second application.

1 3

 31   Page 2 of 33

Tracy, traces, and transducers: computable counterexamples and…

Explainability, the need to explain to, e.g., users, customers, and regulators, what a sys-
tem does, is an aspect of system design that gains more and more significance. This is in
particular true when it comes to systems designed by algorithms, e.g., machine-learning or
synthesis. For any nontrivial system of this kind, it is impossible for humans to develop an
explanation of their behaviour or a witness for their correctness. This is a major obstacle
preventing the wide-spread use of (unexplained) machine-generated software in safety-
critical applications [3]. Also here, HyperLTL model-checking can be useful: Assuming the
system is supposed to satisfy a HyperLTL specification and indeed does so, then Skolem
functions “explain” why the specification is satisfied.

Our Contributions. In this work, we are interested in computing counterexamples/expla-
nations for HyperLTL, which, as argued above, boils down to computing Skolem functions
for HyperLTL. Before we explain our contributions, let us remark that counterexamples are
just explanations for the negation of the specification, as we have seen above. Hence, in the
following we will focus on explanations, as this setting spares us from dealing with a nega-
tion. Also, let us remark that for every transition system T and every HyperLTL formula φ,
we either have T |= φ or T |= ¬φ. Hence, our framework will either explain why T satisfies
φ or explain why T satisfies ¬φ, i.e., explain why T does not satisfy φ.

In general, we are given a transition system T and a HyperLTL formula φ such that
T |= φ, and we want to compute Skolem functions for the existentially quantified variables
in φ. Note that the actual explanation-phase employing the Skolem functions is an interac-
tive process between the user (i.e., Tracy) and these functions: Tracy has to specify choices
for the universally quantified variables, which are then fed into the Skolem functions, yield-
ing choices for the existentially quantified variables such that the combination of all of these
traces satisfies the quantifier-free part of the specification.

To apply Skolem functions in that manner, they need to be finitely representable. To be as
general as possible, we consider here functions that are computable by Turing machines (in
a very natural sense). But even for such a general model, T |= φ may not have a computable
explanation. The underlying reason is that such Turing machines can only compute continu-
ous functions: Intuitively, if two inputs coincide on a “long” prefix, then the correspond-
ing outputs also coincide on a “long” prefix. However, it is straightforward to construct a
pair T |= φ that does not have continuous Skolem functions (see Theorem 1). Hence, our
main focus is on the following question: given T and φ with T |= φ, is T |= φ witnessed
by computable Skolem functions? Our main result shows that this problem is decidable.
To prove it, we combine techniques developed in the theory of uniformization [15], delay
games [24], and multiplayer games with hierarchical imperfect information [5] to express
the existence of computable Skolem functions by a multi-player game with hierarchical
imperfect information. Intuitively, there is one player for each existentially quantified vari-
able and they form a coalition against a player corresponding to the universally quantified
variables. Hierarchical imperfect information then captures the structure of the quantifier
prefix, e.g., the Skolem function for π1 in a formula of the form ∀π0∃π1∀π2∃π3. ψ depends
only on π0 while the one for π3 depends on π0 and π2 (as usual one can assume that Skolem
functions only depend on universally quantified variables). Furthermore, delay games are
a general approach to deciding the existence of continuous functions in synthesis and uni-
formization [15, 20, 22, 24].

As a byproduct of our game-theoretic characterization, we show that if T |= φ has (Tur-
ing machine) computable Skolem functions, then it also has ones that are computed by

1 3

Page 3 of 33  31

S. Winter, M. Zimmermann

word-to-word (one-way) transducers with bounded delay between input and output, a much
more modest machine model. In fact, our algorithm computes transducers implementing
Skolem functions whenever computable Skolem functions exist. This allows for the effec-
tive computation and simulation of computable Skolem functions as described above.

2  Preliminaries

1 We denote the set of nonnegative integers by N. The domain of a partial function f :A → B
is denoted by dom(f) = {a ∈ A | f(a) is defined}. More generally, we denote the
domain {a ∈ A | (a, b) ∈ R for some b ∈ B} of a relation R ⊆ A × B by dom(R).

2.1  Languages, Transition Systems, and Automata

An alphabet is a nonempty finite set. The sets of finite and infinite words over an alphabet Σ
are denoted by Σ∗ and Σω , respectively. The length of a finite word w is denoted by |w|.
Given n infinite words w0, . . . , wn−1, let their merge (also known as zip), which is an infi-
nite word over Σn, be defined as

	

mrg(w0, . . . , wn−1)
= (w0(0), . . . , wn−1(0))(w0(1), . . . , wn−1(1))(w0(2), . . . , wn−1(2)) · · · .

We define mrg(w0, . . . , wn−1) for finite words w0, . . . , wn−1 of the same length analogously.
The set of prefixes of an infinite word w = w(0)w(1)w(2) · · · ∈ Σω is

Prfs(w) = {w(0) · · · w(i − 1) | i ≥ 0}, which is lifted to languages L ⊆ Σω
via Prfs(L) =

∪
w∈L Prfs(w). A language L ⊆ Σω is closed if {w ∈ Σω

| Prfs(w) ⊆ Prfs(L)} ⊆ L.
Throughout this paper, we fix a finite set AP of atomic propositions. A transition sys-

tem T = (V, E, vI , λ) consists of a finite set V of vertices, a set E ⊆ V × V of (directed)
edges, an initial vertex vI ∈ V , and a labelling λ:V → 2AP of the vertices by sets of atomic
propositions. We assume that every vertex has at least one outgoing edge. A path ρ through T
is an infinite sequence ρ = v0v1v2 · · · of vertices with v0 = vI and (vn, vn+1) ∈ E for
every n ≥ 0. The trace of ρ is defined as λ(ρ) = λ(v0)λ(v1)λ(v2) · · · ∈ (2AP)ω . The set of
traces of T is Tr(T) = {λ(ρ) | ρ is a path of T}.

Remark 1  The following facts follow directly from the definition of closed languages.

1.	 Let T be a transition system. Then, Tr(T) is closed.
2.	 If L0, . . . , Ln−1 ⊆ Σω are closed, then so is {mrg(w0, . . . , wn−1)

| wi ∈ Li for 0 ≤ i < n}.

A Büchi automaton A = (Q, Σ, qI , δ, F) consists of a finite set Q of states containing
the initial state qI ∈ Q and the subset F ⊆ Q of accepting states, an alphabet Σ, and a

1 We like the twentieth letter of the alphabet. In fact, we like it so much that we use t to denote traces, T to
denote sets of traces, T to denote transition systems, and T to denote transducers. We hope this footnote will
help the reader keep track of them.

1 3

 31   Page 4 of 33

Tracy, traces, and transducers: computable counterexamples and…

transition function δ:Q × Σ → 2Q. Let w = w(0)w(1)w(2) · · · ∈ Σω . A run of A on w is a
sequence q0q1q2 · · · with q0 = qI and qn+1 ∈ δ(qn, w(n)) for all n ≥ 0. A run q0q1q2 · · ·
is (Büchi) accepting if there are infinitely many n ∈ N with qn ∈ F . The language (Büchi)
recognized by A, denoted by L(A), is the set of infinite words over Σ that have an accepting
run of A on w that is accepting.

Büchi automata recognize exactly the ω-regular languages, but require nondeterminism
to do so. In the following, it is sometimes prudent to work with deterministic ω-automata,
which also accept exactly the ω-regular languages (see, e.g., [18], for more details). A deter-
ministic parity automaton P = (Q, Σ, qI , δ, Ω) consists of a finite set Q of states containing
the initial state qI ∈ Q, an alphabet Σ, a transition function δ:Q × Σ → Q, and a color-
ing Ω:Q → N of the states by colors in N. Let w = w(0)w(1)w(2) · · · ∈ Σω . Then, P has
a unique run q0q1q2 · · · on w, defined as q0 = qI and qn+1 = δ(qn, w(n)) for all n ≥ 0. A
run q0q1q2 · · · is (parity) accepting if the maximal color appearing infinitely often in the
sequence Ω(q0)Ω(q1)Ω(q2) · · · is even. The language (parity) recognized by A, denoted by
L(A), is the set of infinite words over Σ such that the run of A on w is accepting.

2.2  HyperLTL

The formulas of HyperLTL are given by the grammar

	 φ ::= ∃π. φ | ∀π. φ | ψ ψ ::= aπ | ¬ψ | ψ ∨ ψ | X ψ | ψ U ψ

where a ranges over AP and where π ranges over a fixed countable set V of (trace) vari-
ables. Conjunction (∧), exclusive disjunction (⊕), implication (→), and equivalence (↔) are
defined as usual, and the temporal operators “eventually” (F) and “always” (G) are derived
as F ψ = ¬ψ U ψ and G ψ = ¬ F ¬ψ. A sentence is a formula without free variables, which
are defined as expected.

The semantics of HyperLTL is defined with respect to a trace assignment, a partial map-
ping Π:V → (2AP)ω . The assignment with empty domain is denoted by Π∅. Given a trace
assignment Π, a variable π, and a trace t we denote by Π[π → t] the assignment that coin-
cides with Π everywhere but at π, which is mapped to t. Furthermore, Π[j, ∞) denotes the
trace assignment mapping every π in Π’s domain to Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · ,
the suffix of Π(π) starting at position j.

For sets T of traces and trace assignments Π we define

	● (T, Π) |= aπ if a ∈ Π(π)(0),
	● (T, Π) |= ¬ψ if (T, Π) ̸|= ψ,
	● (T, Π) |= ψ1 ∨ ψ2 if (T, Π) |= ψ1 or (T, Π) |= ψ2,
	● (T, Π) |= X ψ if (T, Π[1, ∞)) |= ψ,
	● (T, Π) |= ψ1 U ψ2 if there is a j ≥ 0 such that (T, Π[j, ∞)) |= ψ2 and for all 0 ≤ j′ < j:

(T, Π[j′, ∞)) |= ψ1,
	● (T, Π) |= ∃π. φ if there exists a trace t ∈ T such that (T, Π[π → t]) |= φ, and
	● (T, Π) |= ∀π. φ if for all traces t ∈ T : (T, Π[π → t]) |= φ.

We say that T satisfies a sentence φ if (T, Π∅) |= φ. In this case, we write T |= φ and say
that T is a model of φ. A transition system T satisfies φ, written T |= φ, if Tr(T) |= φ.

1 3

Page 5 of 33  31

S. Winter, M. Zimmermann

Although HyperLTL sentences are required to be in prenex normal form, they are closed
under Boolean combinations, which can be easily seen by transforming such a formula into
an equivalent formula in prenex normal form. In particular, the negation ¬φ of a sentence φ
satisfies T |= ¬φ iff T ̸|= φ. Also, note that the statement (T, Π) |= ψ for quantifier-free
formulas ψ is independent of T. Hence, we often just write Π |= ψ for the sake of readability.

Remark 2  Let ψ be a quantifier-free HyperLTL formula (with k free variables π0, . . . , πk−1)
and let T be a transition system. There is an (effectively computable) Büchi automaton AT

ψ
such that L(AT

ψ) is equal to

	{mrg(Π(π0), . . . , Π(πk−1)) | Π(πi) ∈ Tr(T) for 0 ≤ i ≤ k − 1 and (Tr(T), Π) |= ψ}.

It can be obtained by noting that ψ is almost an LTL formula as it is quantifier-free, but its
atomic propositions are still labeled by trace variables, i.e., they are all of the form aπi for
some i ∈ {0, . . . , k − 1}. Let ψ′ be the (proper) LTL formula obtained from ψ by replac-
ing each atomic proposition aπj by the atomic proposition (a, j), i.e., ψ′ is defined over the
set AP × {0, . . . , k − 1} of atomic propositions. For ψ′ there exists a Büchi automaton Aψ′
with |ψ| · 2|ψ| many states recognizing the language

	 L(Aψ′) = {t ∈ (2AP×{0,...,k−1})ω | t |= ψ′}

(see, e.g., [4]). By replacing each letter A ∈ 2AP×{0,...,k−1} on a transition of Aψ′ by the
letter

	 ({a ∈ AP | (a, 0) ∈ A}, . . . , {a ∈ AP | (a, k − 1) ∈ A}) ∈
(
2AP)k

we obtain a Büchi automaton Aψ recognizing

	{mrg(Π(π0), . . . , Π(πk−1)) | Π(πj) ∈ (2AP)ω for all 0 ≤ j ≤ k − 1 and (Tr(T), Π) |= ψ}.

Finally, by taking the product of Aψ with k copies of T (where the i-th one restricts the i-th
trace of mrg(Π(π0), . . . , Π(πk−1)) to traces of T), we obtain the desired Büchi automa-
ton AT

ψ recognizing

	{mrg(Π(π0), . . . , Π(πk−1)) | Π(πi) ∈ Tr(T) for 0 ≤ i ≤ k − 1 and (Tr(T), Π) |= ψ}.

Finally, it has |ψ| · 2|ψ| · |T|k many states.

2.3  Skolem functions for HyperLTL

Let φ = Q0π0 · · · Qk−1πk−1. ψ be a HyperLTL sentence such that ψ is quantifier-free and
let T be a set of traces. Moreover, let i ∈ {0, 1, . . . , k − 1} be such that Qi = ∃ and let
Ui = {j < i | Qj = ∀} be the indices of the universal quantifiers preceding Qi. Further-
more, let fi:T |Ui| → T for each such i (note that fi is a constant, if Ui is empty). We say
that a variable assignment Π with dom(Π) ⊇ {π0, π1, . . . , πk−1} is consistent with the fi if
Π(πj) ∈ T for all j with Qj = ∀ and Π(πj) = fj(Π(πi0), Π(πi1), . . . , Π(πi|Uj |−1)) for all

1 3

 31   Page 6 of 33

Tracy, traces, and transducers: computable counterexamples and…

j with Qj = ∃, where Uj = {i0 < i1 < · · · < i|Uj |−1}. If Π |= ψ for each Π that is consis-
tent with the fi, then we say that the fi are Skolem functions witnessing T |= φ.

Remark 3  T |= φ iff there are Skolem functions for the existentially quantified variables of
φ that witness T |= φ.

Note that only traces for universal variables are inputs for Skolem functions, but not
those for existentially quantified variables. As usual, this is not a restriction, as the inputs of
a Skolem function for an existentially quantified variable πi is a superset of the inputs of a
Skolem function for another existentially quantified variable πj with j < i.

Example 1  Let φ = ∀π∃π′∃π′′. G(aπ ↔ (aπ′ ⊕ aπ′′)). We have (2{a})ω |= φ. Now, for
every function f ′:(2{a})ω → (2{a})ω , there is a function f ′′:(2{a})ω → (2{a})ω such that
f ′, f ′′ are Skolem functions witnessing (2{a})ω |= φ, i.e., we need to define f ′′ such that
(f ′′(t))(n) = (f ′(t))(n) for all n ∈ N such that t(n) = ∅ and (f ′′(t))(n) = (f ′(t))(n) for
all n ∈ N such that t(n) = {a}, where {a} = ∅ and ∅ = {a}. Hence, f ′′ depends on f ′, but
the value of f ′(t) (for the existentially quantified π1) does not need to be an input to f ′′, it
can be determined from the input t for the universally quantified π. This is not surprising,
but needs to be taken into account in our constructions.

3  Problem statement

Our goal is to construct (Turing machine) computable Skolem functions that serve as algo-
rithmic explanations for the satisfaction of a HyperLTL property. At first glance, this is a
very ambitious goal, as it requires working with Turing machines processing infinite inputs
and producing infinite outputs. To tackle this issue, we re-formulate our problem as a (rather
non-standard, more synthesis-like) uniformization problem.

Here, we consider the variant where one is given a relation R ⊆ A × B and the goal is
to determine whether there is a function uniformizing R (i.e., a partial function f :A → B
such that dom(f) = dom(R) and {(a, f(a)) | a ∈ dom(R)} ⊆ R) that is computed by a
machine from some fixed class of machines. For the case where A is the Cartesian product of
the set of traces of a transition system and B is the set of traces of the same transition system,
we have captured the problem of computing a Skolem function as a uniformization problem.

Thus, for a sentence with quantifier prefix ∀∗∃∗ we can obtain computable Skolem func-
tions by interpreting the problem as a uniformization problem. However, for more complex
quantifier prefixes, this is no longer straightforward, as the dependencies between the vari-
ables have to be considered, e.g., the Skolem function of an existentially quantified vari-
able only has inputs corresponding to outermore universally quantified variables, but may
also depend on outermore existentially quantified variables, i.e., outputs are also (implicit)
inputs for other functions.

Another issue is that Turing machines are a very expressive model of computation. Filiot
and Winter [15] studied synthesis of computable functions from rational specifications (e.g.,
specifications recognized by a Büchi automaton): they proved that uniformization by Turing
machines coincides with uniformization by transducers with bounded delay (if the domain
of the specification is closed), a much nicer class of machines computing functions from

1 3

Page 7 of 33  31

S. Winter, M. Zimmermann

infinite words to infinite words. Crucially, the functions computed by such transducers are
also continuous in the Cantor topology over infinite words (we refer to [15] for definitions
and details). In the setting of Skolem functions for HyperLTL model-checking for ∀∗∃∗

-sentences, that means that if two inputs agree on a “long” prefix, then the corresponding
outputs also agree on a “long” prefix. Continuity is a desirable property when using Skolem
functions on-the-fly: If Tracy has fixed a long prefix of the inputs for the Skolem functions,
then future inputs do not change the output prefixes already produced by the Skolem func-
tions for the fixed prefix.

However, we will show that there is a HyperLTL sentence that does not have continu-
ous Skolem functions (and thus also no computable ones). Hence, it is natural to ask if it is
decidable whether a given pair (T, φ) has a computable explanation. We prove that this is
indeed the case, even for sentences with arbitrary quantifier prefixes.

3.1  Uniformization by computable functions

In the following, ω-regular for languages over the alphabet Σ × Γ, i.e., L ⊆ (Σ × Γ)ω , we
speak about its induced relation RL = {(x, y) ∈ Σω × Γω | mrg(x, y) ∈ L}. For the sake
of readability, we often do not distinguish between languages L ⊆ (Σ × Γ)ω and induced
relations RL ⊆ Σω × Γω and call RL ω-regular if L is ω-regular. A function f :Σω → Γω
uniformizes a relation R ⊆ Σω × Γω if the domain of f is equal to the domain of R and the
graph {(w, f(w)) | w ∈ dom(f)} of f is a subset of R. In our setting, the uniformization
problem asks whether, for a given relation, there is a computable function that uniformizes it.

To define the computability of a function from Σω to Γω , we consider deterministic
three-tape Turing machines M with the following setup (following [15]): the first tape is a
read-only, one-way tape and contains the input in Σω , the second one is a two-way working
tape, and the third one is a write-only, one-way tape on which the output in Γω is generated.
Formally, we say that M computes the partial function f :Σω → Γω if, when started with
input w ∈ dom(f) on the first tape, M produces (in the limit) the output f(w) on the third
tape. Note that we do not require the Turing machine to check whether its input is in the
domain of f. We just require it to compute the correct output for those inputs in the domain,
it may behave arbitrarily on inputs outside of the domain of f. This is done so that the uni-
formization function only has to capture the complexity of transforming possible inputs into
outputs, but does not have to capture the complexity of checking whether an input is in the
domain. In our setting, this can be taken care of by deterministic ω-automata that can be
effectively computed.

We say that such an M has bounded delay, if there is a d ∈ N such that to compute the
first n letters of the output only n + d letters of the input are read (i.e., the other cells of the
input tape are not visited before n output letters have been generated).

Lemma 1  Let f be computable and let dom(f) be closed. Then f is computable by a Turing
machine with bounded delay.

Proof  This follows from the fact that the set Σω is a compact space when equipped with
the Cantor distance. A closed subset of a compact space is compact (see, e.g., [2]). Hence,
dom(f) is a compact space. Further, every computable function is continuous (see, e.g.,
[15]). Now, the Heine-Cantor theorem states that every continuous function between metric

1 3

 31   Page 8 of 33

Tracy, traces, and transducers: computable counterexamples and…

spaces f :M → N where M is a compact space is in fact uniformly continuous. Thus, f lies
in the intersection of the classes of computable and uniformly continuous functions which
implies that f can also be computed with bounded delay:

Intuitively, f being uniformly continuous means there exists some k such that in order to
get i output symbols it suffices to consider i + k input symbols. Assume a Turing machine
M computes f. We briefly sketch how to obtain a Turing machine M′ from M that com-
putes f and has delay at most k.

As long as M maintains that the i-th output symbol is produced before the (i + k + 1)-th
input symbol is read, M′ behaves like M. However, as soon as M would violate this, M′
continues to simulate M on a fixed valid continuation of the input word (regardless of how
the actual input word is continued). We refer to this as dummy continuation. We note here
that our input words are traces of some transition system. Hence, an input word is a trace and
valid continuations of some trace prefix can easily be generated from the transition system.
After M has produced another output symbol (while reading the dummy continuation), M′
produces the same output symbol. The choice of the dummy continuation has no relevance
for the produced output symbol, as f is uniformly continuous: Towards a contradiction,
assume the output symbol changes for different dummy inputs. That means there exist α
and α′ in the domain of f that agree on a prefix of length i + k, but the i-th symbol of f(α)
is different from the i-th symbol of f(α′) which contradicts that f is uniformly continuous.

After the output symbol has been produced (using the dummy continuation), the dummy
continuation can be discarded and M′ can restart the simulation of M on the actual input in
the configuration that M was in before the simulation on the dummy continuation started.
It is important to note that the next output symbol that is computed by M (on the actual
continuation) does not have to be produced by M′ as it was already determined using
the dummy continuation (whereas the concrete dummy continuation does not influence the
symbol as argued above). Hence, M′ must keep track of the size of the lead of the output
symbols obtained on dummy continuations compared to the number of output symbols com-
puted on the actual input word as not to produce outputs multiple times. � □

3.2  Transducers

Of course, Turing machines are a very expressive model of computation. Filiot and Winter
show that for the uniformization of ω-regular relations, much less expressiveness is suffi-
cient, i.e., for such relations, transducers, i.e., finite automata with output, suffice.

Formally, a (one-way deterministic finite) transducer T is a tuple (Q, Σ, Γ, qI , δ, Ω) that
consists of a finite set Q of states containing the initial state qI , an input alphabet Σ, an
output alphabet Γ, a transition function δ:Q × Σ → Q × Γ∗, and a coloring Ω:Q → N. The
(unique) run of T on an input w = w(0)w(1)w(2) · · · ∈ Σω is the sequence q0q1q2 · · ·
of states defined by q0 = qI and qi+1 being the unique state with δ(qi, w(i)) = (qi+1, xi)
for some xi ∈ Γ∗. The run is accepting if the maximal color appearing infinitely often
in Ω(q0)Ω(q1)Ω(q2) · · · is even. With the run q0q1q2 · · · on w we associate the out-
put x0x1x2 · · · , where the xi are as defined above. As the transducer is deterministic, it
induces a map from inputs to outputs. Note that the output may, a priori, be a finite or
an infinite word over Γ. In the following, we only consider transducers where the output
is infinite for every input with an accepting run. In this case, T computes a partial func-

1 3

Page 9 of 33  31

S. Winter, M. Zimmermann

tion fT :Σω → Γω defined as follows: the domain of fT is the set of infinite words w ∈ Σω
such that the run of T on w is accepting and fT (w) is the output induced by this (unique)
run.

We say that T has delay d ∈ N if for every accepting run and every induced
sequence x0x1x2 · · · of outputs (xi is the output on the i-th transition), we have
i − d ≤ |x0 · · · xi−1| ≤ i for all i ≥ 0, i.e., the output is, at any moment during an accept-
ing run, at most d letters shorter than the input and never longer. We say that a transducer T
is a bounded-delay transducer if there exists a d such that T has delay d.

Proposition 1  ([15]) The following are equivalent for a relation R encoded by a Büchi
automaton A and with closed dom(R):

1.	 R is uniformized by a computable function.
2.	 R is uniformized by a function implemented by a bounded-delay transducer.

As explained above, this covers the case of ∀∗∃∗ formulas. In the remainder, we general-
ize this result to full HyperLTL, i.e., arbitrary quantifier alternations.

4  Computing Skolem Functions for HyperLTL

Our goal is to determine under which circumstances T |= φ has a computable explana-
tion, i.e., there are computable Skolem functions witnessing T |= φ, and whether such
Skolem functions can be computed by “simpler” models of computation, i.e., bounded-
delay transducers.

We start by showing that T |= φ does not necessarily have a computable explanation.

Theorem 1  There is a HyperLTL sentence φ and a transition system T such that T |= φ is
not witnessed by computable Skolem functions.

Proof  Consider φ = ∀π∃π′. (F aπ) ↔ (X aπ′) and T with Tr(T) = ∅(2{a})ω .

Towards a contradiction, assume there is a computable Skolem function for π′. Then, due
to Lemma 1, there is also one that is implemented by a bounded-delay Turing machine M,
say with delay d. Now, let M run on an input with prefix ∅d+2 ∈ Prfs(Tr(T)). As M has
bounded delay, it will produce the first two output letters ∅A ∈ ∅2{a} after processing the
prefix ∅d+2 (note that all traces of T start with ∅, the label of the initial state).

If A = ∅, then the output of M on the input ∅d+2{a}ω starts with ∅∅ (as this output
only depends on the prefix ∅d+2), but the input contains an {a}. These traces do not sat-
isfy (F aπ) ↔ (X aπ′). On the other hand, if A = {a}, then the output of M on the input ∅ω
starts with ∅{a} (again, the output only depends on the prefix ∅d+2), but the input contains
no {a}. Again, these traces do not satisfy (F aπ) ↔ (X aπ′). So, in both cases, M does not
implement a Skolem function for π′, i.e., we have the desired contradiction. � □

So, as not every T |= φ is witnessed by computable Skolem functions, it is natural to
ask whether it is decidable, given T and φ, if T |= φ has such a witness. Before we study
this problem, we consider another example showing that for some transition system T and

1 3

 31   Page 10 of 33

Tracy, traces, and transducers: computable counterexamples and…

sentence φ, even if T |= φ does have computable Skolem functions, not every (computable)
Skolem function is a “good” Skolem function: Fixing a Skolem function for an outermore
variable may block innermore variables having computable Skolem functions.

Example 2  Consider the sentence ∃π∀π′∃π′′. (X aπ) → ((F aπ′) ↔ (X aπ′′)) and a transi-
tion system T with Tr(T) = ∅(2{a})ω . Note that every trace of T starts with ∅. Also, as the
quantification of π is not in the scope of any other quantifier we can identify Skolem func-
tions for π with traces that are assigned to π.

Now, if we pick a trace t for π with a ∈ t(1) then there is no computable Skolem function
for π′′ (see Theorem 1). However, if we pick a trace t for π with a /∈ t(1) then every func-
tion is a Skolem function for π′′, as satisfaction is independent of the choices for π′ and π′′
in this case. In particular, π′′ has a computable Skolem function.

Thus, the wrong choice of a (computable) Skolem function for some variable may result
in other variables not having computable Skolem functions. By carefully accounting for
the dependencies between the Skolem functions we show that the existence of computable
Skolem functions is decidable.

Theorem 2  The following problem is decidable: “Given a transition system T and a Hyper-
LTL sentence φ with T |= φ, is T |= φ witnessed by computable Skolem functions?” If
the answer is yes, our algorithm computes bounded-delay transducers implementing such
Skolem functions.

The next section is dedicated to presenting a decidable game-theoretic characterization
of the existence of computable Skolem functions, thereby proving Theorem 2.

5  A game for computable Skolem functions

Recall that in Subsection 3.1, we have explained that the special case of ∀∗∃∗ sentences
can be solved by a reduction to a uniformization problem. We begin this section by giving
some intuition for this reduction. To simplify our notation, we consider a sentence of the
form ∀π∃π′. ψ where ψ is quantifier-free. Here, we need to decide whether there is a com-
putable function f :Tr(T) → Tr(T) such that {π �→ t, π′ �→ f(t)} |= ψ for all t. Note that
{mrg(t, t′) | t, t′ ∈ Tr(T) and {π �→ t, π′ �→ t′} |= ψ} is accepted by a Büchi automaton
(see Remark 2). Hence, the problem indeed boils down to a uniformization problem for
an ω-regular relation. This problem was first posed (and partially solved) by Hosch and
Landweber in 1971 [22] and later completely solved in a series of works [15, 20, 24]. Let us
sketch the main ideas underlying the solution, as we will generalize them in the following.

Let L ⊆ (ΣI × ΣO)ω be ω-regular. Then, the existence of a function f :Σω
I → Σω

O
that uniformizes L is captured by a (perfect information) two-player game Γ(L) of infi-
nite duration played between Player I (the input player) and Player O (the output player)
in rounds r = 0, 1, 2, . . . as follows: In each round r, Player I picks an ar ∈ ΣI and
then Player O picks a br ∈ ΣO ∪ {ε}. Thus, the outcome of a play of Γ(L) is an infinite
word a0a1a2 · · · ∈ Σω

I picked by Player I and a finite or infinite word b0b1b2 · · · ∈ Σ∗
O ∪ Σω

O
picked by Player O. The outcome is winning for Player O if a0a1a2 · · · ∈ dom(L) implies

1 3

Page 11 of 33  31

S. Winter, M. Zimmermann

mrg(a0a1a2 · · · , b0b1b2 · · ·) ∈ L (which requires that b0b1b2 · · · is infinite, i.e., Player O
has to pick infinitely often a letter from ΣO). Now, one can show that a winning strategy for
Player O can be turned into a function that uniformizes L and every function uniformizing
L can be turned into a winning strategy for Player O.

So far, the uniformizing function may be arbitrary, in particular not computable. Also, the
delay between input and output in plays that are consistent with a strategy can be unbounded,
e.g., if Player O picks ε in every second round. A crucial insight is that this is not necessary:
for every ω-regular L ⊆ (ΣI × ΣO)ω such that Player O wins Γ(L), there is a bound ℓ (that
only depends on the size of a (minimal) Büchi automaton accepting L) such that she has a
winning strategy that picks ε at most ℓ times [20].

This insight allows to change the rules of Γ(L), giving Player O the advantage gained
by using ε a bounded number of times from the beginning of a play and grouping moves
into blocks of letters of a fixed length. How the block length is obtained is explained below.

The block game Γb(L) is played in rounds r = 0, 1, 2, . . . as follows: In round 0, Player I
picks two blocks x0, x1 ∈ Σℓ

I and then Player O picks a block y0 ∈ Σℓ
O. Then, in every

round r > 0, Player I picks a block xr+1 ∈ Σℓ
I and then Player O picks a block yr ∈ Σℓ

O. Note
that Player I is one block ahead, as he has to pick two blocks in round 0. This accounts for the
delay allowed in the definition of computable functions. The outcome of a play of Γb(L) is
an infinite word x0x1x2 · · · ∈ Σω

I picked by Player I and an infinite word y0y1y2 · · · ∈ Σω
O

picked by Player O. The outcome is winning for Player O if x0x1x2 · · · ∈ dom(L) implies
mrg(x0x1x2 · · · , y0y1y2 · · ·) ∈ L.

Now, one can show that L is uniformizable iff Player O has a winning strategy for
Γb(L). As Γb(L) is a finite two-player game with ω-regular winning condition, Player O
has a finite-state winning strategy (one implemented by a transducer). Such a finite-state
winning strategy can be turned into a computable function uniformizing L, as a transducer
can be simulated by a Turing machine. Hence, Γb(L) does indeed characterize uniformiz-
ability of ω-regular relations by computable functions.

Next, let us give some intuition of how to obtain the bound ℓ. To this end, let A be a
Büchi automaton over some alphabet ΣI × ΣO (we first ignore the acceptance condition
in this discussion and later hint at how this is taken into account). As usual, if two finite
words w0 ∈ (ΣI × ΣO)∗ and w1 ∈ (ΣI × ΣO)∗ induce the same state transformations
(e.g., for all states p and q, processing w0 from p leads A to q iff processing w1 from p leads
A to q), then these words are indistinguishable for A (again, we are ignoring acceptance for
the time being), i.e., one can replace w0 by w1 without changing the possible runs that A
has. This indistinguishability is captured by an equivalence relation over (ΣI × ΣO)∗ with
finite index, i.e., the equivalence relation has only finitely many equivalence classes.

However, to capture the interaction described in Γ(L) above, we need a more refined
approach. Assume Player I picks a sequence x ∈ Σ∗

I of letters. Then, Player O will have
to “complete” this block by picking a block y ∈ Σ|x|

I so that mrg(x, y) is processed by the
automaton. In this situation, we can say that x0 and x1 ∈ Σ∗ are equivalent if they are indis-
tinguishable w.r.t. to their completions to words of the form mrg(xi, yi), e.g., for all states p
and q, there is a completion mrg(x0, y0) ∈ (ΣI × ΣO)∗ of x0 that leads A from p to q iff
there is a completion mrg(x1, y1) ∈ (ΣI × ΣO)∗ of x1 that leads A from p to q. Intuitively,
one does not need to distinguish between x0 and x1 because they allow Player O to achieve
the same state transformations in A. This indistinguishability is captured by an equivalence

1 3

 31   Page 12 of 33

Tracy, traces, and transducers: computable counterexamples and…

relation over Σ∗
I of finite index. Now, ℓ can be picked as an upper bound on the length of a

minimal word in all equivalence classes.

Thus, the intuition behind the definition of Γb(L) is that blocks of length ℓ are rich
enough to capture the full strategic choices for both players in Γ(L): every longer word has
an equivalent one of length at most ℓ.

Finally, let us briefly mention how to deal with the Büchi acceptance condition we have
ignored thus far. As the state transformations are concerned with finite runs of the automa-
ton, we can just keep track of whether an accepting state has been visited or not during this
run, all other information is irrelevant. Thus, the equivalence relation will take this (single
bit of) information into account as well.

After having sketched the special case of a sentence of the form ∀π∃π′. ψ, let us now
illustrate the challenges we have to address to deal with more quantifier alternations, e.g.,
for a sentence of the form φ = ∀π0∃π1 · · · ∀πk−2∃πk−1. ψ.

	● We will consider a multi-player game with one player being in charge of providing
traces for the universally quantified variables (generalizing Player I above) and one
variable player for each existentially quantified variable (generalizing Player O above),
i.e., altogether we have k

2 + 1 players. Thus, the player in charge of the universally
quantified variables produces traces t0, t2, . . . , tk−2 while each variable player produc-
es a trace ti (one for each odd i). These traces are again picked block-wise in rounds.

	● The choices by the variable player producing ti (i.e., i is odd) may only depend on
the traces t0, t1, . . . , ti−1 in order to faithfully capture the semantics of φ. Hence, we
need to consider a game of imperfect information, which allows us to hide the trac-
es ti+1, . . . , tk−1 from the player in charge of πi.

	● Recall that Player I is always one block ahead of Player O in Γb(L), which accounts for
the delay allowed in the definition of computable functions. With k traces to be picked
(and ti depending on t0, t1, . . . , ti−1), there must be a gap of one block for each even i.

Now, we are able to present the details of our construction. For the remainder of this sec-
tion, we fix a HyperLTL sentence φ and a transition system T with T |= φ. We assume2
φ = ∀π0∃π1 · · · ∀πk−2∃πk−1. ψ, and use the Büchi automaton AT

ψ = (Q, (2AP)k, qI , δ, F)
constructed in Remark 2 recognizing the language

	{mrg(Π(π0), . . . , Π(πk−1)) | Π(πi) ∈ Tr(T) for all 0 ≤ i < k and (Tr(T), Π) |= ψ}.

In the following, we often need to work with tuples of finite words of the same length. To
simplify our notation, from now on we only write (w0, w1, . . . , wi−1) if each wj is a word
in (2AP)∗ such that |w0| = |w1| = · · · = |wi−1|.

Equivalence Relations.
We begin by defining equivalence relations that capture the concept of indistinguishabil-

ity discussed in the intuition above.
We write A : p

w→q for states p, q of a Büchi automaton A over an alphabet Σ, if A has a
run from p to q processing the word w ∈ Σ∗. Furthermore, we write A : p

w=⇒q, if A has a
run from p to q processing the word w ∈ Σ∗ such that the run visits at least one accepting

2 The following reasoning can easily be extended to general sentences with arbitrary quantifier prefixes, albeit
at the cost of more complex notation. We substantiate this claim in Remark 4.

1 3

Page 13 of 33  31

S. Winter, M. Zimmermann

state. Finally, we write T : u
w→v for vertices u, v of a transition system T, if T has a path

from u to v labeled by the word w ∈ (2AP)∗.
We continue by defining, for each 1 ≤ i ≤ k, an equivalence relation ≡i between i-tuples

of (finite) words with the intuition that two such tuples are i-equivalent if they do not need
to be distinguished. For i = k, this means that the two tuples cannot be distinguished by AT

ψ
while for 1 ≤ i < k this means that both i-tuples can be completed (by adding an (i + 1)-th
component) so that the resulting (i + 1)-tuples are ≡i+1-equivalent.

Formally, we define

	 (w0, w1, . . . , wk−1) ≡k (w̃0, w̃1, . . . , w̃k−1)

if

	● for all states p, q of AT
ψ we have AT

ψ : p
mrg(w0,w1,...,wk−1)−→ q if and only if

AT
ψ : p

mrg(w̃0,w̃1,...,w̃k−1)−→ q,

	● for all states p, q of AT
ψ we have AT

ψ : p
mrg(w0,w1,...,wk−1)

=⇒ q if and only if

AT
ψ : p

mrg(w̃0,w̃1,...,w̃k−1)
=⇒ q, and

	● for all vertices u, v of T and all 0 ≤ j ≤ k − 1 we have T : u
wj−→v if and only if

T : u
w̃j−→v.

Lemma 2  Let

	 w = mrg(w0
0w1

0w2
0 · · · , w0

1w1
1w2

1 · · · , . . . , w0
k−1w1

k−1w2
k−1 · · ·)

and

	 w̃ = mrg(w̃0
0w̃1

0w̃2
0 · · · , w̃0

1w̃1
1w̃2

1 · · · , . . . , w̃0
k−1w̃1

k−1w̃2
k−1 · · ·)

be such that

	 (wn
0 , wn

1 , . . . , wn
k−1) ≡k (w̃n

0 , w̃n
1 , . . . , w̃n

k−1)

for all n ∈ N.
1.	 w ∈ L(AT

ψ) if and only if w̃ ∈ L(AT
ψ).

2.	 For all 0 ≤ i ≤ k − 1, we have w0
i w1

i w2
i · · · ∈ Tr(T) if and only if w̃0

i w̃1
i w̃2

i · · · ∈ Tr(T).

Proof  1.) Let w ∈ L(AT
ψ), Then, there exists an accepting run of AT

ψ on w. Let qn+1 be the
state reached by the run after the prefix

	 mrg(w0
0 · · · wn−1

0 , w0
1 · · · wn−1

1 , . . . , w0
k−1 · · · wn−1

k−1),

1 3

 31   Page 14 of 33

Tracy, traces, and transducers: computable counterexamples and…

which implies q0 = qI . Then, we have AT
ψ : qn−1

(wn
0 ,wn

1 ,...,wn
k−1)

−→ qn for all n and

AT
ψ : qn−1

(wn
0 ,wn

1 ,...,wn
k−1)

=⇒ qn for infinitely many n.

Due to

	 (wn
0 , wn

1 , . . . , wn
k−1) ≡k (w̃n

0 , w̃n
1 , . . . , w̃n

k−1)

for all n, we also have AT
ψ : qn−1

(w̃n
0 ,w̃n

1 ,...,w̃n
k−1)

−→ qn for all n and AT
ψ : qn−1

(w̃n
0 ,w̃n

1 ,...,w̃n
k−1)

=⇒ qn
for infinitely many n. This allows us to conclude that there is also an accepting run of AT

ψ
on w̃.

2.) The proof is very analogous one to the previous one, we just have to argue about paths
and vertices of T instead of runs and states of AT

ψ (and ignore acceptance) and consider the
words wn

i and w̃n
i from the i-th component instead of full k-tuples (wn

0 , wn
1 , . . . , wn

k−1) and
(w̃n

0 , w̃n
1 , . . . , w̃n

k−1). � □

Now, for 1 ≤ i < k, we define ≡i inductively as follows:

	 (w0, w1, . . . , wi−1) ≡i (w̃0, w̃1, . . . , w̃i−1)

if

	● for all wi with |wi| = |w0| there exists a w̃i with |w̃i| = |w̃0| such that

	 (w0, w1, . . . , wi) ≡i+1 (w̃0, w̃1, . . . , w̃i),

 and

	● for all w̃i with |w̃i| = |w̃0| there exists a wi with |wi| = |w0| such that

	 (w0, w1, . . . , wi) ≡i+1 (w̃0, w̃1, . . . , w̃i).

Let us show that each ≡i is indeed an equivalence relation and has only finitely many
equivalence classes.

Lemma 3  Every ≡i is an equivalence relation of finite index.

Proof  By induction over i from k to 1. The induction start i = k was proven by Büchi [31],
so consider i < k.

First, it is straightforward to verify that ≡i is an equivalence relation, as ≡i+1
is an equivalence relation. Now, we define ext((w0, w1, . . . , wi−1)) to be the
set of ≡i+1-equivalence classes containing a (w0, w1, . . . , wi) for some wi with
|wi| = |w0|. Now, we define (w0, w1, . . . , wi−1)≡i

′(w̃0, w̃1, . . . , w̃i−1) if and only if
ext((w0, w1, . . . , wi−1)) = ext((w̃0, w̃1, . . . , w̃i−1)), which is an equivalence relation of
finite index: The codomain of ext has at most 2n elements, where n is the index of ≡i+1.
Finally, ≡i

′ refines ≡i, which implies that ≡i has finite index as well. � □

1 3

Page 15 of 33  31

S. Winter, M. Zimmermann

Let ℓ be minimal such that each word w with |w| ≥ ℓ is in an infinite ≡1 equivalence
class. This is well-defined, as ≡1 has finite index, which implies that there are only finitely
many words in finite equivalence classes. A block is a word in (2AP)ℓ.

Now we have the definitions at hand to define the game G(T, φ) that captures the exis-
tence of computable Skolem functions. To keep the notation manageable, we describe the
game abstractly and defer the concrete definition as a multi-player graph game of imperfect
information to Section 5.1.

The Abstract Game. The game G(T, φ) is played between Player U who picks traces for
the universally quantified variables (by picking blocks) and a coalition of variable play-
ers {1, 3, . . . , k − 1}, who pick traces for the existentially quantified variables (Player i
for πi), also by picking blocks. As in the intuition given above for the case of a formula of
the form ∀π∃π′. ψ, the rules of the game G(T, φ) need to account for the delay inherent to
the definition of computable functions. In the ∀∃ setting, this is covered by the fact that the
player in charge of π is one block ahead of the player in charge of π′. With more quantifier
alternations, we generalize this as follows for φ = ∀π0∃π1 · · · ∀πk−2∃πk−1. ψ:

	● The player in charge of πk−2 must be one block ahead of the player in charge of πk−1.
	● The player in charge of πk−3 does not have to be ahead of the player in charge of πk−2,

but must also not be behind.
	● The player in charge of πk−4 must be one block ahead of the player in charge of πk−3.

This implies that the player in charge of πk−4 must be two blocks ahead of the player
in charge of πk−1.

	● And so on.
So, the player in charge of πk−1 picks one block in round 0, the player in charge of πk−2
picks two blocks in round 0 (to be one block ahead), the player in charge of πk−3 picks two
blocks in round 0, the player in charge of πk−4 picks three blocks in round 0 and so on.
In general, we define ∆i = k−(i−1)

2 for (odd) i ∈ {1, 3, . . . , k − 1} and ∆i = ∆i+1 + 1
for (even) i ∈ {0, 2, . . . , k − 2}, e.g., we have ∆k−1 = 1, ∆k−2 = 2, ∆k−3 = 2, and
∆k−4 = 3 capturing the “delay” described above.

Now, we split each round r = 0, 1, 2, . . . into subrounds (r, i) for by i = 0, 1, . . . , k − 1.

	● In subround (0, i) of round 0 for even i, Player U picks ∆i blocks t0
i−1, t1

i−1, . . . , t∆i−1
i−1 .

	● In subround (0, i) of round 0 for odd i, Player i picks ∆i blocks t0
i , t1

i , . . . , t∆i−1
i .

	● In subround (r, i) of round r > 0 for even i, Player U picks a block t∆i+r
i−1 .

	● In subround (r, i) of round r > 0 for odd i, Player i picks a block t∆i−1+r
i .

Figure 1 illustrates the evolution of a play and illustrates the number of blocks picked in
round 0 and the resulting “delay” between the selection of blocks for the different variables.

During a play of G(T, φ) the players build traces t0, t1, . . . , tk−1 defined as ti = t0
i t1

i t2
i · · · .

We call (t0, t1, . . . , tk−1) the outcome of the play. The coalition of variable players wins
the play if ti /∈ Tr(T) for some even i or if mrg(t0, t1, . . . , tk−1) ∈ L(AT

ψ), i.e., the variable
assignment mapping each πi to ti satisfies ψ and each ti is in Tr(T).

As already alluded to above, the game described above must be a game of imperfect
information to capture the fact that the Skolem function for an existentially quantified πi

1 3

 31   Page 16 of 33

Tracy, traces, and transducers: computable counterexamples and…

depends only on the universally quantified variables πj with j ∈ {0, 2, . . . , i − 1}. Intui-
tively, we capture this by giving Player i access to all blocks picked in subrounds (r, j) with
j ∈ {0, 2, . . . , i − 1}, but hiding all other picks made by the players in subrounds (r, j) with
j ∈ {1, 3, . . . , i − 2, i, i + 1, i + 2, . . . , k − 1}. Note that Player i not having access to their
own moves is not a restriction, as they can always be reconstructed, if necessary.

Formally, a strategy for Player i is a function σi mapping sequences of the form3

	

(t0
0, t0

2, . . . , t0
i−1)(t1

0, t1
2, . . . , t1

i−1) · · · (t∆i+r
0 , t∆i+r

2 , . . . , t∆i+r
i−1)(t∆i+r+1

0 , t∆i+r+1
2 , . . . , t∆i+r+1

i−3)

(t∆i+r+2
0 , t∆i+r+2

2 , . . . , t∆i+r+2
i−5) · · · (t∆i+r+ i

2 −1
0 , t

∆i+r+ i
2 −1

2)
(

t
∆i+r+ i

2
0

) � (1)

for r ≥ 0 to a block (or a sequence of ∆i blocks for r = 0). The vectors getting shorter at
the end is a manifestation the fact that the players in charge of variables πj with smaller j are
ahead of the players in charge of variables with larger j′ (see Figure 1).

A (finite or infinite) play is consistent with σi, if the pick of Player i in each round r is
the one prescribed by σi. A collection (σi)i∈{1,3,...,k−1} of strategies, one for each variable
player, is winning, if every play that is consistent with all σi is won by the variable players.
We say that a strategy σi is finite-state, if it is implemented by a transducer that reads inputs
as in Equation (1) (over some suitable finite alphabet) and produces an output block (or a
sequence of ∆i blocks in round 0).

The following lemma shows that the existence of a winning collection of strategies char-
acterizes the existence of computable Skolem functions. Note that there is a slight mis-
match, as the first implication requires the strategies to be finite-state, while the second
implication only yields arbitrary strategies. This gap will be closed later.

3 In this equation, we use column vectors for a more compact presentation.

Fig. 1  The evolution of a play of G(T, φ) for a sentence φ with six variables. Each gray shape is a
subround, consisting of a move of Player U or a move of one variable player. We have ∆5 = 1,
∆4 = ∆3 = 2, ∆2 = ∆1 = 3, and ∆0 = 4, which corresponds to the number of blocks picked by the
player in charge of variable πi in round 0

1 3

Page 17 of 33  31

S. Winter, M. Zimmermann

Lemma 4  1.	 If the coalition of variable players has a winning collection of finite-state
strategies then T |= φ has computable Skolem functions.

2.	 If T |= φ has computable Skolem functions, then the coalition of variable players has a
winning collection of strategies.

Proof  We first show Item 1. So, let (σi)i∈{1,3,...,k−1} be a winning collection of finite-
state strategies for the variable players. We construct computable Skolem func-
tions (fi)i∈{1,3,...,k−1} witnessing T |= φ. So, fix some i ∈ {1, 3, . . . , k − 1}.

The machine Mi computing fi works in iterations n = 0, 1, 2, . . . coinciding with the
rounds of G(T, φ). Its input is mrg(t0, t2, . . . , ti−1) (encoding i

2 input traces as a single
infinite word on the input tape), where we split each tj into blocks t0

j t1
j t2

j · · · . Recall that the
block length ℓ is a constant, i.e., Mi can read its input blockwise.

Now, in iteration 0, Mi reads the first ∆i + i
2 blocks of the input, which yields ∆i + i

2
blocks of each tj . These blocks can be used to simulate the moves of Player U in sub-
rounds (0, j) for even j < i. Note that this does not require all blocks of the tj for j > 0.
These have to be stored in the working tape for later use, as the reading tape is one-way. The
simulated moves by Player U can be fed into the finite-state implementation of σi, yielding
blocks t0

i , t1
i , . . . , t∆i−1

i as output. The word t0
i t1

i · · · t∆i−1
i is then written to the output tape

of Mi, which completes iteration 0.
In general, assume Mi has completed iteration n − 1 and now starts iteration n > 0. This

iteration begins with Mi reading another block of the input, which yields another block of
each tj . The new block of t0, and the oldest stored block for each tj with j > 0 can be used
to continue the simulated play (restricted to moves by Player U in subrounds for the vari-
ables πj for j ∈ {0, 2, . . . , i − 1}) by feeding them into the finite-state implementation of
σi, yielding a block t as output. This block is then appended on the output tape. The unused
new blocks of tj with j > 0 are again stored on the working tape. This ends iteration n.

To simulate the play, Mi can just store the whole play prefix on the working tape. To
process the play prefix by the finite-state implementation of σi, Mi can just store the whole
run prefix on the working tape, although a more economical approach is be possible (see the
proof of Theorem 2 on Page 29).

Now, we show that the functions fi computed by the Mi constructed above are indeed
Skolem functions witnessing T |= φ. To this end, let Π with dom(Π) ⊇ {π0, π1, . . . , πk−1}
be a variable assignment that is consistent with the fi, i.e., each Π(πi) with even i is in
Tr(T) and each Π(πi) with odd i is equal to fi(Π(π0), Π(π2), . . . , Π(πi−1)). We need to
show that each Π(πi) for odd i is in Tr(T) (i.e., the functions fi are well-defined) and that
Π |= ψ, i.e., mrg(Π(π0), Π(π1), . . . , Π(πk−1)) ∈ L(AT

ψ).
By construction, (Π(π0), Π(π1), . . . , Π(πk−1)) is the outcome of a play of G(T, φ) that

is consistent with the σi and therefore winning for the variable players. As each Π(πi) with
even i is in Tr(T), we conclude mrg(Π(π0), Π(π1), . . . , Π(πk−1)) ∈ L(AT

ψ), as required.
Note that this does also imply Π(πi) for odd i is in Tr(T), as L(AT

ψ) only contains tuples
of traces from Tr(T).

Now, let us consider Item 2. Let fi:(Tr(T))
i+1

2 → Tr(T) for i ∈ {1, 3, . . . , k − 1} be
computable Skolem functions witnessing T |= φ, say each fi is implemented by a Turing
machine Mi. By Lemma 1, each Mi can be assumed to have bounded delay: there is a
di such that to compute the first n letters of the output only n + di letters of the input are

1 3

 31   Page 18 of 33

Tracy, traces, and transducers: computable counterexamples and…

read. Note that we can run such a Turing machine Mi with delay di on a finite input w of
length n + di and obtain the first n letters of the output fi(w′) of every infinite w′ that starts
with the prefix w. We will apply this fact to simulate the Mi on-the-fly on longer and longer
prefixes.

Also note that our definition of a function f being computed by a Turing machine M only
requires it to compute the output f(w) for all w ∈ dom(f), but it can produce arbitrary (even
finite) outputs for w /∈ dom(f). To simplify our construction, we assume here that each Mi
produces an infinite output for every input, even if it is not in the domain of fi. This can
be done w.l.o.g., as the Mi have bounded delay di: as soon as Mi wants to access input
letter n + di + 1 without having produced n + 1 output letters so far (this can be detected,
as di is a constant), the run does not have delay di, which implies that the input cannot be
in dom(fi). Hence, a designated state can be entered, which produces an arbitrary infinite
output while ignoring the remaining input. The resulting machine still has delay di, but a
complete domain.

Let d ∈ N be minimal such that each Mi has delay at most d. We inductively define a
winning collection of strategies for the variable players.

Round 0.
Subrounds (0, 0) and (0, 1). Assume Player U picks t0

0, t1
0, . . . , t∆0−1

0 in subround (0, 0)
to start a play. We fix t̃0

0 = t0
0 and fix t̃n

0 for n ∈ {1, 2, . . . , ∆0 − 1} such that t̃n
0 ≡1 tn

0 and
|t̃0

0t̃1
0 · · · t̃n

0 | ≥ |t̃0
0t̃1

0 · · · t̃n−1
0 | + d for all such n. This is always possible, as the ≡1 equiva-

lence class of each tn
0 is infinite and therefore contains arbitrarily long words.

Let t̃0
1t̃1

1 · · · t̃∆0−2
1 be the output of M1 when given the partial input t̃0

0t̃1
0 · · · t̃∆0−1

0 such
that |t̃n

1 | = |t̃n
0 | for all n. This is well-defined by the choice of the length of the t̃n

0 and the
fact that M1 has delay d. Note that M1 might produce even more output on that input. Any
such additional output is ignored in this subround.

As we have tn
0 ≡1 t̃n

0 for all such n, there also exists a tn
1 with |tn

1 | = |tn
0 | such that

(tn
0 , tn

1) ≡2 (t̃n
0 , t̃n

1). We define σ1 such that it picks t0
1, t1

1, . . . , t∆0−2
1 in subround (0, 1).

As ∆0 − 2 = ∆1 − 1, these are ∆1 many blocks, as required by the definition of G(T, φ).
Subrounds (0, 2) and (0, 3). Now, assume Player U picks t0

2, t1
2, . . . , t∆2−1

2 in subround (0, 2).
We fix ̃t0

2 = t0
2 and then fix ̃tn

2 for n ∈ {1, 2, . . . , ∆2 − 1} such that (t̃n
0 , t̃n

1 , t̃n
2) ≡3 (tn

0 , tn
1 , tn

2).
This is possible, as we have (tn

0 , tn
1) ≡2 (t̃n

0 , t̃n
1) for all such n. Let t̃0

3t̃1
3 · · · t̃∆2−2

3 be the
output of M3 when given the partial input mrg(t̃0

0t̃1
0 · · · t̃∆2−1

0 , t̃0
2t̃1

2 · · · t̃∆2−1
2) such that

|t̃n
3 | = |t̃n

0 | for all n (again, this is well-defined due to the choice of the length of the t̃n
0 and

M3 having delay d, and might require to ignore some output).
As we have (t̃n

0 , t̃n
1 , t̃n

2) ≡3 (tn
0 , tn

1 , tn
2) for all such n, there also exists a tn

3 with
|tn

3 | = |tn
0 | such that (tn

0 , tn
1 , . . . , tn

3) ≡4 (t̃n
0 , t̃n

1 , . . . , t̃n
3). We define σ3 such that it picks

t0
3, t1

3, . . . , t∆2−2
3 in subround (0, 3). As ∆2 − 2 = ∆3 − 1, these are ∆3 many blocks, as

required by the definition of G(T, φ).
Subrounds (0, i − 1) and (0, i) for odd i ∈ {5, 7, . . . , k − 1}. Assume Player U picks

t0
i−1, t1

i−1, . . . , t
∆i−1−1
i−1 in subround (0, i − 1). As before, we fix t̃0

i−1 = t0
i−1 and then fix

t̃n
i−1 for n ∈ {1, 2, . . . , ∆i−1 − 1} such that (t̃n

0 , t̃n
1 , . . . , t̃n

i−1) ≡i (tn
0 , tn

1 , . . . , tn
i−1). This is

possible, as (tn
0 , tn

1 , . . . , tn
i−2) ≡i−1 (t̃n

0 , t̃n
1 , . . . , t̃n

i−2) for all such n is an invariant of our
construction.

Let t̃0
i t̃1

i · · · t̃
∆i−1−2
i be the output of Mi when given the partial input

	 mrg(t̃0
0t̃1

0 · · · t̃
∆i−1−1
0 , t̃0

2t̃1
2 · · · t̃

∆i−1−1
2 , . . . , t̃0

i−1t̃1
i−1 · · · t̃

∆i−1−1
i−1)

1 3

Page 19 of 33  31

S. Winter, M. Zimmermann

such that |t̃n
i | = |t̃n

0 | for all n. As in the previous cases, this is well-defined.
As we have (t̃n

0 , t̃n
1 , . . . , t̃n

i−1) ≡i (tn
0 , tn

1 , . . . , tn
i−1) for all such n, there also exists a

tn
i with |tn

i | = |tn
0 | such that (tn

0 , tn
1 , . . . , tn

i) ≡i+1 (t̃n
0 , t̃n

1 , . . . , t̃n
i) for all n, satisfying the

invariant again. We define σi such that it picks t0
i , t1

i , . . . , t
∆i−1−2
i in subround (0, i). As

∆i−1 − 2 = ∆i − 1, these are ∆i many blocks, as required by the definition of G(T, φ).

Round r > 0. Now, we consider a round r > 0, assuming the σi are already defined for
all earlier rounds. The construction is very similar to the one for round 0, but simpler as each
player (also Player U!) only picks a single block in each subround (r, i) of round r.

Subrounds (r, 0) and (r, 1) Assume Player U picks t∆0−1+r
0 in subround (r, 0). We

fix ̃t∆0−1+r
0 such that t∆0−1+r

0 ≡1 t̃∆0−1+r
0 and |t̃0

0t̃1
0 · · · t̃∆0−1+r

0 | ≥ |t̃0
0t̃1

0 · · · t̃∆0+r−2
0 | + d.

This is possible, as the ≡1 equivalence class of t∆0−1+r
0 is infinite and therefore contains

arbitrarily long words.
We run M1 on t̃0

0t̃1
0 · · · t̃∆0−1+r

0 and obtain another block t̃∆0+r−2
1 . There is a t∆0+r−2

1
with |t∆0+r−2

1 | = |t∆0+r−2
0 | such that (t∆0+r−2

0 , t∆0+r−2
1) ≡2 (t̃∆0+r−2

0 , t̃∆0+r−2
1), as

we have t∆0+r−2
0 ≡1 t̃∆0+r−2

0 . We define σ1 such that it picks the block t∆0+r−2
1 in sub-

round (r, 1) (note that ∆0 + r − 2 = ∆1 − 1 + r).
Subrounds (r, i − 1) and (r, i) for i ∈ {3, 5, . . . , k − 1}. Now, assume

Player U picks t
∆i−1−1+r
i−1 in subround (r, i − 1). We fix t̃

∆i−1−1+r
i−1 such that

(t̃∆i−1−1+r
0 , t̃

∆i−1−1+r
1 , . . . , t̃

∆i−1−1+r
i−1) ≡i (t∆i−1−1+r

0 , t
∆i−1−1+r
1 , . . . , t

∆i−1−1+r
i−1). This

is possible, as (t̃∆i−1−1+r
0 , t̃

∆i−1−1+r
1 , . . . , t̃

∆i−1−1+r
i−2) ≡i−1 (t∆i−1−1+r

0 , t∆i−1−1+r
1 , . . . ,

t
∆i−1−1+r
i−2) is an invariant of our construction.

We run Mi on

	 mrg(t̃0
0t̃1

0 · · · t̃
∆i−1−1+r
0 , t̃0

2t̃1
0 · · · t̃

∆i−1−1+r
2 , . . . , t̃0

i−1t̃1
i−1 · · · t̃

∆i−1−1+r
i−1),

yielding another block t̃∆i−1+r−2
i . As

	(t̃
∆i−1+r−2
0 , t̃

∆i−1+r−2
1 , . . . , t̃

∆i−1+r−2
i−1) ≡i (t∆i−1+r−2

0 , t
∆i−1+r−2
1 , . . . , t

∆i−1+r−2
i−1),

there also exists a t
∆i−1+r−2
i with |t∆i−1+r−2

i | = |t∆i−1+r−2
0 | such that

(t∆i−1+r−2
0 , t

∆i−1+r−2
1 , . . . , t

∆i−1+r−2
i) ≡i+1 (t̃∆i−1+r−2

0 , t̃
∆i−1+r−2
1 , . . . ,

t̃
∆i−1+r−2
i). We define σi such that it picks t∆i−1+r−2

i in subround (r, i) (note that ∆i−1
+r − 2 = ∆i − 1 + r).

This completes the definition of the σi. Note that each σi does indeed only depend on the
blocks picked in subrounds (r, j) with j ∈ {0, 2, . . . , i − 1}, i.e., σi is indeed a strategy for
Player i in G(T, φ).

It remains to show that the σi are a winning collection of strategies. To this end, let
(t0, t1, . . . , tk−1) be an outcome of a play that is consistent with the σi. If a ti with even i
is not in Tr(T), then the variable players win immediately. So, assume each ti with even i
is in Tr(T). Let t̃0, t̃1, . . . , t̃k−1 be the traces constructed during the inductive definition of
the σi. By applying Remark 2.2, we obtain that each t̃i with even i is in Tr(T) as well. Also,
the t̃i for odd i satisfy t̃i = fi(t̃0, t̃2, . . . , t̃i−1) by construction, i.e., they are obtained by

1 3

 31   Page 20 of 33

Tracy, traces, and transducers: computable counterexamples and…

applying the Skolem functions. Hence, the variable assignment mapping πi to t̃i satisfies ψ,
which implies that mrg(t̃0, t̃1, . . . , t̃i−1) is in L(AT

ψ).
Now, as (t̃n

0 , t̃n
1 , . . . , t̃n

k−1) ≡k (tn
0 , tn

1 , . . . , tn
k−1) for all n, applying Lemma 2.1 yields

that mrg(t0, t1, . . . , ti−1) is in L(AT
ψ) as well, i.e., the variable players do indeed win. � □

Remark 4  Let us substantiate the claim in Footnote 2 that our construction can also be
applied to formulas with arbitrary, i.e., not strictly alternating, quantifier prefixes. Then, we
have one player in the coalition for each block of existentially quantified variables in the
prefix, who selects traces for these variables. The variables of each of these players share
their ∆i values, as these only depend on the number of alternations between quantifiers that
are outermore than the currently considered one.

For example, for a formula of the form

	 ∀π0∃π1∃π2∀π3∃π4∃π5. ψ

with quantifier-free ψ, we have just two players (say, Player 12 and Player 45) in the coali-
tion. Player 12 is in charge of the variables π1 and π2, and Player 45 is in charge of the
variables π4 and π5. These two players are in a coalition against Player U, who is in charge
of the variables π0 and π3. In Round 0, Player U picks three blocks for π0, then Player 12
picks two blocks for π1 and two blocks for π2, then Player U picks two blocks for π3, and
then Player 45 picks one block for π4 and one block for π5. Afterwards, the players pick
in alternation (one block for each of their variables), i.e., π0 is always one block ahead of
both π1 and π2 and two blocks ahead of both π4 and π5, and π3 is always one block ahead
of both π4 and π5.

Note that just adding universally quantified dummy variables between any pair of con-
secutive existentially quantified variables is logically equivalent, but makes explanations
more complex (as they may depend on the dummy variables now) and increases the com-
plexity of our approach (as that depends on the number of players (see Subsection 5.2)).

Now, one can formalize G(T, φ) as a multi-player graph game of (hierarchical) imperfect
information. The existence of a winning collection of strategies is decidable for such games
[5, 28]. Furthermore, if there is a winning collection of strategies, then also a winning col-
lection of finite-state strategies, which closes the gap in the statement of Lemma 4: T |= φ
has computable Skolem functions iff the coalition of variable players has a winning col-
lection of finite-state strategies. Furthermore, similarly to the proof of Lemma 4.1, one can
show that such finite-state strategies can even be implemented by bounded-delay transduc-
ers, thereby completing the proof of Theorem 2.

5.1  The concrete game

After having shown that the abstract game G(T, φ) characterizes the existence of comput-
able Skolem functions, we now model G(T, φ) as a multi-player graph game of imperfect
information using the notation of Berwanger et al. [5]. In Subsection 5.1.1, we introduce the
necessary definitions before we model the game in Subsection 5.1.2. The games considered
by Berwanger et al. are concurrent games (i.e., the players make their moves simultane-

1 3

Page 21 of 33  31

S. Winter, M. Zimmermann

ously), while G(T, φ) is turn-based, i.e., the players make their moves one after the other.
Hence, we will also introduce some notation for the special case of turn-based games, which
simplifies our modeling.

5.1.1  Distributed games

Game Graphs Fix some set N = {1, . . . , n} of players and a distinguished agent called
Nature (which is not in N!). A profile is a list p = (p1, . . . , pn) of elements pi ∈ Pi for
sets Pi that will be clear from context. For each player i ∈ N we fix a finite set Ai of
actions and a finite set Bi of observations. A game graph G = (V, E, vI , (βi)i∈N) consists
of a finite set V of positions, an edge relation E ⊆ V × A × V representing simultane-
ous moves labeled by action profiles (i.e., A = A1 × · · · × An), an initial position vI ∈ V ,
and a profile (βi)i∈N of observation functions βi:V → Bi that label, for each player, the
positions with observations. We require that E has no dead ends, i.e., for every v ∈ V and
every a ∈ A there is a v′ ∈ V with (v, a, v′) ∈ E.

A game graph (V, E, vI , (βi)i∈N) yields hierarchical information if there exists
a total order ⪯ over N such that if i ⪯ j then for all v, v′ ∈ V , βi(v) = βi(v′) implies
βj(v) = βj(v′), i.e., if Player i cannot distinguish v and v′, then neither can Player j for
i ⪯ j.

Plays Intuitively, a play starts at position vI ∈ V and proceeds in rounds. In a round at
position v, each Player i chooses simultaneously and independently an action ai ∈ Ai, then
Nature chooses a successor position v′ such that (v, a, v′) ∈ E. Now, each player receives
the observation βi(v′) and the next round is played at position v′. Thus, a play of G is
an infinite sequence v0v1v2 · · · of vertices such that v0 = vI and for all r ≥ 0 there is an
ar ∈ A such that (vr, ar, vr+1) ∈ E.

A history is a prefix v0v1 · · · vr of a play. We denote the set of all histo-
ries by Hist(G) and extend βi:V → Bi to plays and histories by defining
βi(v0v1v2 · · ·) = βi(v1)βi(v2)βi(v3) · · · . Note that the observation of the initial position
is discarded for technical reasons [5]. We say two histories h and h′ are indistinguishable to
Player i, denoted by h ∼i h′, if βi(h) = βi(h′).

Strategies A strategy for Player i is a mapping si:V ∗ → Ai that satisfies si(h) = si(h′)
for all h, h′ with h ∼i h′ (i.e., the action selected by the strategy only depends on the obser-
vations of the history). A play v0v1v2 · · · is consistent with si if for every r ≥ 0, there is an
ar = (a1, . . . , an) ∈ A with (vr, ar, vr+1) ∈ E and ai = si(v0v1 · · · vr). A play is consis-
tent with a strategy profile (s1, . . . , sn) if it is consistent with each si. The set of possible
outcomes of a strategy profile is the set of all plays that are consistent with s.

A distributed game G = (G, W) consists of a game graph and a winning condi-
tion W ⊆ V ω , where V is the set of positions of G. A play is winning if it is in W and a
strategy profile S is winning in G if all its outcomes are winning.

Finite-state Strategies Next, we define what it means for a strategy for Player i to be
finite-state. So far, we used transducers, i.e., automata with output on transitions to imple-
ment strategies in a finitary manner. From now on, we follow the definitions used by
Berwanger et al. [5] and use Moore machines, i.e., finite automata with output on states.
However, each Moore machine can be transformed into a transducer by “moving” the out-
put from a state to all its outgoing transitions.

1 3

 31   Page 22 of 33

Tracy, traces, and transducers: computable counterexamples and…

Let Ai and Bi be the actions and observations of Player i. A Moore
machine S = (M, mI , upd, nxt) for Player i consists of a finite set M of memory states
containing the initial memory state mI , a memory update function upd:M × Bi → M ,
and a next-move function nxt:M → Ai. We extend upd to words over Bi by defining
upd(ε) = mI and upd(b0b1 · · · br) = upd(upd(b0b1 · · · br−1), br). We say S implements
the strategy mapping v0v1 · · · vr to nxt(upd(βi(v0v1 · · · vr))). A strategy is finite-state, if it
is implemented by some Moore machine.

Proposition 2  ([5, 28])

1.	 The following problem is decidable: Given a distributed game with ω-regular winning
condition, does it have a winning strategy profile?

2.	 A distributed game with ω-regular winning condition has a winning strategy profile if
and only if it has a winning profile of finite-state strategies.

Turn-based Game Graphs We say that a game graph G = (V, E, vI , (βi)i∈N) is turn-
based, if there is a function o:V → N such that if (v, a, v′) ∈ E, (v, a′, v′′) ∈ E, and the
action profiles a and a′ having the same action for Player o(v) implies v′ = v′′. To simplify
our notation, we label the edges leaving v only by actions of Player o(v). Thus, in a turn-
based game graph, at every position v Player o(v) determines the possible next moves,
and Nature selects one of them. Turn-based distributed games are distributed games whose
game graphs are turn-based.

5.1.2  Formalization of the abstract game

Now, we are finally ready to formalize the abstract game G(T, φ) described in Section 5 as
a turn-based distributed game.

We begin by introducing notation for the positions of the game, which intuitively keep
track of blocks picked by the players of G(T, φ) until they can be processed by an automa-
ton recognizing the winning condition. Due to the delay between the choices by the different
players, this requires some notation.

Recall that we have defined ∆i for even i to be the number of blocks Player U picks in
subround (0, i) for variable i and for odd i to be the number of blocks Player i picks in sub-
round (0, i) for variable i. Now, let

	 D = {(j, x) | j ∈ {0, 1, . . . , k − 1} and x ∈ {0, 1, . . . , ∆i − 1}}.

A configuration is a partial function c:D → B, where B = (2AP)ℓ denotes the set of blocks.
Let C denote the set of all configurations. The following definitions are visualized in
Figure 2.

We only need certain types of configurations c for our construction. We say that c is

	● a full configuration if dom(c) = D,
	● an initial i-configuration (for i ∈ {0, 1, . . . , k − 1}) if

	 dom(c) = {(j, x) | j ∈ {0, 1, . . . , i − 1} and x ∈ {0, 1, . . . , ∆j − 1}},

1 3

Page 23 of 33  31

S. Winter, M. Zimmermann

 and

	● a looping i-configuration (again for i ∈ {0, 1, . . . , k − 1}) if

	

dom(c) = {(j, x) | j ∈ {0, 1, . . . , i − 1} and x ∈ {0, 1, . . . , ∆j − 1}}∪
{(j, x) | j ∈ {i, i + 1, . . . , k − 1} and x ∈ {0, 1, . . . , ∆j − 2}}.

Note that for i = k − 1, both the definition of initial and looping i-configuration coincides,
as we have ∆k−1 = 1. Hence, in the following, we will just speak of (k − 1)-configurations
whenever convenient.

Given an initial i-configuration c and a sequence b = b0, b1, . . . , b∆i−1 of ∆i blocks, we
define ext(c, b) to be the configuration c′ defined as

	
c′(j, x) =

{
c(j, x) if (j, x) ∈ dom(c),
bx if j = i,
undefined otherwise.

Furthermore, given a looping i-configuration c and a block b, we define ext(c, b) to be the
configuration c′ defined as

	
c′(j, x) =

{
c(j, x) if (j, x) ∈ dom(c),
b if j = i and x = ∆i − 1,
undefined otherwise.

Fig. 2  Illustrating configurations for a formula with six variables, where a filled circle denotes an element
in the domain, and an unfilled circle an element that is not in the domain. The upper row shows initial i-
configurations for i = 0, 1, 2, . . . , 5 (from left to right), the lower row shows looping i-configurations for
i = 0, 1, 2, . . . , 5 (from left to right), and the configuration on the right in between the rows is full. Solid
arrows show the effect of extending and shifting configurations. The shifting operation is illustrated using
the numbers in the circles. Finally, in a play of G(T, φ) the configurations stored in positions follow the
solid arrows, but take the dashed shortcuts avoiding full configurations

1 3

 31   Page 24 of 33

Tracy, traces, and transducers: computable counterexamples and…

Finally, given a full configuration c, we define shft(c) to be the configuration c′ defined as

	
c′(j, x) =

{
c(j, x + 1) if x < ∆j − 1,
undefined otherwise.

The following remark collects how these operations update initial and looping configurations.

Remark 5  1.	 If c is an initial i-configuration for i < k − 1, then ext(c, b) is an initial
(i + 1)-configuration.

2.	 If c is a (k − 1)-configuration, then ext(c, b) is a full configuration.
3.	 If c is a full configuration, then shft(c) is a looping 0-configuration.
4.	 If c is a looping i-configuration for i < k − 1, then ext(c, b) is a looping (i + 1)

-configuration.
Finally, let P = (Q, (2AP)k, qI , δ, Ω) be a deterministic parity automaton accepting

the language of words of the form mrg(t0, t1, . . . , tk−1) ∈ ((2AP)k)ω such that either
ti /∈ Tr(T) for some even i or if mrg(t0, t1, . . . , tk−1) ∈ L(AT

ψ) (i.e., accepting the winning
outcomes of plays of G(T, φ)).

Now, we are able to formally define G(T, φ). It will be played by the players in
N = {1, 3, . . . , k − 1} (ignoring, for the sake of readability, the fact that N is not of the
form {1, 2, . . . , n} for some n, as required by the definitions in Subsection 5.1.1). Further-
more, the role of Player U will be played by Nature.

We define the set of positions to contain all tuples (i, c, q) where i ∈ {0, 1, . . . , k − 1}, c
is an (initial or looping) i-configuration, and q is a state of P , together with a sink state s⊥.
The initial position is (0, c⊥, qI) where c⊥ is the configuration with empty domain (which
is the unique initial 0-configuration).

We define the action set for Player i (for odd i) as B∆i ∪ B, where actions in B∆i are
intended for round 0 and those in B are intended for all other rounds. If the wrong action is
used, then the sink state will be reached. Next, we define the function o determining which
player picks an action to continue a play: we have o(i, c, q) = i for odd i, o(i, c, q) = 1 for
even i (we will soon explain how Player U moves are simulated even though Player 1 owns
the corresponding positions), and o(s⊥) = 1.

The set E of edges is defined as follows (recall that we label edges by actions of a single
player, as we define a turn-based game):

	● We begin by modelling the moves of Player U. Recall that in a turn-based distributed
game, Nature resolves the nondeterminism left after the player who is in charge at that
positions has picked an action. Thus, we simulate a move of Player U by giving the posi-
tion to (say) Player 1. Then, we define the edges such that Player 1’s move is irrelevant,
but the nondeterminism models the choice of Player U.

	 Formally, for i ∈ {0, 2, . . . , k − 2}, an initial i-configuration c, and a state q of P , we
have the edge ((i, c, q), a, (i + 1, ext(c, b), q)) for every action a of Player 1 and every
b ∈ B∆i : No matter which action a Player 1 picks, Nature can for each possible b pick
a successor that extends c by b. This indeed simulates the move of Player U in sub-
round (0, i).

	● For i ∈ {1, 3, . . . , k − 3}, an initial i-configuration c, and a state q of P , we have the

1 3

Page 25 of 33  31

S. Winter, M. Zimmermann

edge ((i, c, q), b, (i + 1, ext(c, b), q)) for each b ∈ B∆i (this simulates the move of Play-
er i in subround (0, i)) as well as the edge ((i, c, q), b, s⊥) for each b ∈ B (Player i may
not pick a single block in subround (0, i) if i < k − 1). Note that there is no nondeter-
minism to resolve for Nature, as there is a unique successor position for each action.

	● For a (k − 1)-configuration c and state q of P , we have the
edge ((k − 1, c, q), b, (0, shft(c′), q′)) for each b ∈ B (recall that we have ∆k−1 = 1
here), where c′ = ext(c, b) and q′ is the state reached by P when processing
mrg(c′(0, 0), c′(1, 0), . . . , c′(k − 1, 0)) from q.

	● For i ∈ {0, 2, . . . , k − 2}, a looping i-configuration c, and a state q of P , we have the
edge ((i, c, q), a, (i + 1, ext(c, b), q)) for every action a of Player 1 and every b ∈ B: No
matter which action a Player 1 picks, Nature can for each possible b pick a successor
that extends c by b. This simulates the move of Player U in a subround (r, i + 1) for
r > 0 using the same mechanism as described above for moves of Player U in initial
configurations.

	● For i ∈ {1, 3, . . . , k − 3}, a looping i-configuration c, and a state q of P , we have the
edge ((i, c, q), b, (i + 1, ext(c, b), q)) for each b ∈ B (this simulates the move of Player i
in subround (r, i) for r > 0) as well as the edge ((i, c, q), b, s⊥) for each b ∈ B∆i (Play-
er i may not pick a sequence of blocks in a subround (r, i)). Again, there is no nonde-
terminism to resolve for Nature, as there is a unique successor position for each action.

	● For completeness, we have the edge (s⊥, a, s⊥) for every action a of Player 1.

It remains to define the observation functions βi as βi(i, c, q) = c↾ i where c↾ i is the con-
figuration defined as

	
(c↾ i)(j, x) =

{
c(j, x) if j ∈ {0, 2, . . . , i − 1},
undefined otherwise,

i.e., Player i can only observe the blocks picked for the variables πj with even j < i. For com-
pleteness, we also define the observation of the sink state s⊥ to be ⊥, where ⊥ /∈ C. Then, the
order 1 ⪰ 3 ⪰ · · · ⪰ k − 1 witnesses that the game graph yields hierarchical information.

This completes the definition of the game graph. To complete the definition of the game
we define the winning condition as follows: Let (i0, c0, q0)(i1, c1, q1)(i2, c2, q2) · · · be a
play and let (i0, c0, q0)(ik, ck, qk)(i2k, c2k, q2k) · · · be the subsequence of all (initial and
looping) 0-configurations. Recall that the state qrk in such a position (for r > 0) is obtained
by processing some mrg(b0, . . . , bk−1) from q(r−1)k, where the bi are blocks picked by
the players. We say (i0, c0, q0)(i1, c1, q1)(i2, c2, q2) · · · is in the winning condition, if
Ω(q0)Ω(qk)Ω(q2k) · · · satisfies the parity condition, which is an ω-regular winning condi-
tion. In particular, no winning play may visit the sink s⊥.

Remark 6  The (concrete) distributed game constructed here is a formalization of the abstract
game G(T, φ) described in Section 5. In particular, a winning collection of (finite-state)
strategies for the coalition of players in the abstract game corresponds to a winning (finite-
state) strategy profile in the concrete game and vice versa.

Hence, whenever convenient below, we do not distinguish between the concrete and the
abstract game.

1 3

 31   Page 26 of 33

Tracy, traces, and transducers: computable counterexamples and…

Lemma 5  If G(T, φ) has a winning profile of finite-state strategies, then T |= φ is witnessed
by Skolem functions computed by bounded-delay transducers which can be effectively com-
puted from the finite-state strategies.

Proof  Let (s1, s3, . . . , sk−1) be a winning profile of finite-state strategies in (the concrete)
G(T, φ). We show by induction over i how the finite-state strategies si can be turned into
bounded-delay transducers Ti computing Skolem functions witnessing T |= φ. The proof
follows closely the analogous results shown in Lemma 4.1 for Turing machine computable
Skolem functions.

Let us fix some i ∈ {1, 3, . . . , k − 1} and let Si be a Moore machine for Player i imple-
menting si. Recall that Si reads observations of Player i (configurations of the form c↾ i for
initial and looping configurations) and returns actions of Player i.

On the other hand, Ti reads an input mrg(t0, t2, . . . , ti−1) ∈ ((2AP) i
2)ω where we split

each tj into blocks tj = t0
j t1

j t2
j · · · .

We construct Ti so that it works in two phases, an initialization phase and a looping
phase, that is repeated ad infinitum. We begin by describing the initialization. It begins by
Ti reading ∆i blocks from each tj . These blocks can now be assembled into a sequence of
observations of Player i corresponding to the play prefix of G(T, φ) in which Player U picks
these blocks. Note that this requires to process each such observation twice, as Player i’s
observation does not get updated, when Player j for odd j < i makes a move. All unused
blocks are stored in the state space of T . Now, Ti simulates the run of the Moore machine Si
implementing si on this sequence of observations, yielding an action ai. As si is winning,
this action is a sequence b = b0, b1, . . . , b∆i−1 of blocks. Then, Ti outputs b0b1 · · · b∆i−1.
Now, we process the last observation another k − i times with Si, simulating the moves for
the remaining variables (which are hidden from Player i which implies the observation is
unchanged). This concludes the initialization phase.

The looping phase begins with Ti reading another block from each tj . Again, these
blocks and the ones stored in the state space can be assembled into observations of Player i
corresponding to a continuation of the simulated play prefix in which Player U pick these
blocks. Then, the run of the Moore machine Si implementing si can be continued, yielding
an action ai. This is now a block b, which is output by Ti. Again, we process the last obser-
vation just assembled another k − i times to simulate the moves for the remaining variables,
which concludes one looping phase. Note that the delay of Ti is bounded by k · ℓ, where ℓ
is the block length.

By storing blocks from the input that have been read but not yet used in observations, by
discarding blocks no longer needed, and by keeping track of the state the simulated run of
Si ends in, this behaviour can indeed be implemented using a finite state-space. We leave
the tedious, but straightforward, formal definition of Ti to the reader. □

Now, our main theorem (Theorem 2) is a direct consequence of Proposition 2, Lemma 4,
and Lemma 5. Recall that the theorem states that the problem “Given a transition system T
and a HyperLTL sentence φ with T |= φ, is T |= φ witnessed by computable Skolem func-
tions?” is decidable and that, if the answer is yes, our algorithm computes bounded-delay
transducers implementing such Skolem functions.

1 3

Page 27 of 33  31

S. Winter, M. Zimmermann

Proof of Theorem 2  Due to Lemma 4 and Proposition 2.2, the following statements are
equivalent:

	● T |= φ has computable Skolem functions.
	● G(T, φ) has a winning strategy profile.
	● G(T, φ) has a winning profile of finite-state strategies.

The last statement can be decided effectively due to Proposition 2.1. Thus, the existence of
computable Skolem functions is decidable. Finally, bounded-delay transducers computing
Skolem functions witnessing T |= φ can be effectively computed due to Lemma 5. � □

5.2  Complexity analysis

In this subsection, we determine the complexity of our algorithm. Our benchmark here is
the complexity of the model-checking problem for HyperLTL, which is Tower-complete.
More precisely, checking whether a given transition system T satisfies a given formula φ is
complete for nondeterministic space bounded by a k-fold exponential in |φ|, where k is the
number of alternations in φ [14, 30].

In the following, we bound the size of G(T, φ) constructed in Subsection 5.1.2 and then
apply known complexity results for solving distributed games, thereby giving an upper
bound on the complexity of deciding whether T |= φ is witnessed by computable Skolem
functions.

Recall that we start the construction of G(T, φ) with a transition system T and a Hyper-
LTL sentence φ = ∀π0∃π1 · · · ∀πk−2∃πk−1. ψ. First, we construct the Büchi automa-
ton AT

ψ recognizing the language

	{mrg(Π(π0), . . . , Π(πk−1)) | Π(πi) ∈ Tr(T) for all 0 ≤ i < k and (Tr(T), Π) |= ψ}.

Due to Remark 2, we can bound the size of AT
ψ by

	 |ψ| · 2|ψ| · |T|k ≤ 2log(|ψ|·2|ψ|·|T|k) = 2log(|ψ|)+|ψ|+k·log(|T|) ≤ 2O(|ψ|·|T|),

i.e., exponentially in |ψ| · |T|.
Now, let n denote the size of AT

ψ and s the size of T. Then, ≡k has index at
most 3n2 · 2ks2 ≤ 2O(n2+ks2): There are 3 choices for each pair (p, q) of states of AT

ψ , i.e.,

1.	 there is a run between p and q that visits at least one accepting state,
2.	 there is a run between p and q, but none that visits an accepting state, and
3.	 there is no run between p and q at all,

resulting in the factor 3n2
, and there are two choices for each j ∈ {0, 1, . . . , k − 1} and each

pair (u, v) of vertices of T, i.e.,

1.	 there is a path of T from u to v and
2.	 there is no path of T from u to v,

1 3

 31   Page 28 of 33

Tracy, traces, and transducers: computable counterexamples and…

resulting in the factor 2ks2
.

Furthermore, every equivalence class of ≡k, which is a language of finite words over the
alphabet (2AP)k, is recognized by a DFA with at most

	 (3n)n · (2s)s·k = 3n2
· 2ks2

≤ 2O(n2+ks2)

states: For each state q of AT
ψ the DFA keeps track of which states are reachable from q

(with and without having seen an accepting state) by processing the input word, which
requires the product of n modified powerset automata derived from AT

ψ , each with 3n states.
Furthermore, for each component j and each vertex v of T, it also keeps track of which
vertices are reachable from v by paths labeled with the j-th component of the input word,
again requiring s powerset automata derived from T, each with 2s states. The DFA accepts
if exactly the right states and vertices (i.e., those uniquely identifying the equivalence class)
are reachable.

Now, let ≡i+1 for 0 < i < k have index idx and let each of its equivalence classes be
accepted by a DFA of size at most sz. Then, the reasoning used to prove Lemma 3 shows that
≡i has index at most 2idx and that each equivalence class of ≡i is recognized by a DFA with
at most szidx states, as membership in an ≡i equivalence class is determined by membership
and non-membership in ≡i+1 equivalence classes. This can be checked by the product of
idx many DFA for the equivalence classes (or their complements) of ≡i+1. Note that we are
working with DFA, so complementation is for free.

Now, one can show by an induction that the index of ≡i is bounded by a (k − i + 2)
-fold exponential in |ψ| · |T|. Using this, a second induction shows that each equivalence
class of ≡i is recognized by a DFA whose size is bounded by a (k − i + 3)-fold exponen-
tial in |ψ| · |T|. This relies on the fact that (2x)y is equal to 2xy , which implies that szidx
is “just” exponentially larger than sz, even though both idx and sz are in general towers of
exponentials.

Now, we can bound ℓ, which is defined so that every w in a finite equivalence class of ≡1
satisfies |w| < ℓ. As a DFA with n states recognizing a finite language can only accept words
of length at most n − 1, we can bound ℓ by the size of the DFA accepting the equivalence
classes of ≡1, i.e., by a (k + 2)-fold exponential in |ψ| · |T|.

The number of vertices of G(T, φ) is k · |C| · |P| where C is the set of configurations
and where P is a deterministic parity automaton recognizing the language of words of the
form mrg(t0, t1, . . . , tk−1) ∈ ((2AP)k)ω such that either ti /∈ Tr(T) for some even i or if
mrg(t0, t1, . . . , tk−1) ∈ L(AT

ψ).

The number of configurations can be bounded by

	 |C| ≤ |B||D| ≤
(
(|2AP|)ℓ

)k2

,

i.e., by a (k + 3)-fold exponential in |ψ| · |T|. Furthermore, the size of P can be bounded
doubly-exponentially in |φ| · |T|, as it can be constructed as the product of a deterministic
parity automaton that is equivalent to the nondeterministic Büchi automaton AT

ψ and k
2

deterministic parity automata for the language (2AP)ω \ Tr(T). Altogether, the number of
vertices of G(T, φ) is bounded by a (k + 3)-fold exponential in |ψ| · |T|.

1 3

Page 29 of 33  31

S. Winter, M. Zimmermann

As distributed games with hierarchical information can be solved in time that is bounded
by an (n + c)-fold exponential in the number of states (where n is the number of players
and where c is a small constant that depends on the type of winning condition) [28], we
conclude that G(T, φ) can be solved in time that is bounded by a (k

2 + c)-fold exponential
in the number of vertices of G(T, φ).

Combining these estimations, we obtain an upper bound on the runtime of our algo-
rithm for a given transition system T and formula φ = ∀π0∃π1 · · · ∀πk−2∃πk−1. ψ with
quantifier-free ψ.
Lemma 6  The algorithm described in Section 5 determining whether T |= φ is witnessed by
computable Skolem functions whose runtime is bounded by a (k + k

2 + c′)-fold exponential
in |ψ| · |T| for a small constant c′.

This results should again be contrasted with HyperLTL model-checking being Tower-
complete [27, 30] (in the number of quantifier-alternations).

6  Related work

As explained in the introduction, computing counterexamples for debugging is the most
important application of model-checking. In the framework of LTL model-checking, a coun-
terexample is a single trace of the system that violates the specification. Such a counterex-
ample is typically obtained by running a model-checking algorithm (which are in fact based
on searching for such counterexamples). Variations of the problem include bounded model-
checking [7], which searches for “short” counterexamples. Also, counterexample-guided
abstraction refinement [9] and bounded synthesis [16] rely on counterexample computation.

Counterexamples have not only been studied in the realm of linear-time logics, but also
for many other frameworks, e.g., for ∀CTL [10], for CTL [19, 32], for probabilistic temporal
logics [13, 23], and for discrete-time Markov models [1].

Furthermore, counterexamples have also been studied in the realm of HyperLTL model-
checking. Horak et al. [21] developed HyperVis, a webtool which provides interactive
visualizations of a given model, specification, and counterexample computed by the Hyper-
LTL model-checker MCHyper [14]. In complementary work, Coenen et al. [12] present a
causality-based explanation method for HyperLTL counterexamples, again computed by
MCHyper. However, the counterexamples computed by MCHyper are just sets of traces
that violate the formula. More specifically, MCHyper only considers the outermost univer-
sal quantifiers and returns a variable assignment to those. This is obviously complete for for-
mulas with quantifier-prefix ∀∗, i.e., without existential quantifiers, but not for more general
formulas. In fact, this approach ignores the dynamic dependencies between universally and
existentially quantified variables that is captured by Skolem functions, which we analyze
here. Finally, let us also mention that counterexamples are the foundation of the bounded
synthesis algorithm for ∀∗HyperLTL specifications [17]. In this setting, it is again sufficient
to only consider sets of traces and not general Skolem functions.

Beutner and Finkbeiner [6] have presented a reduction from HyperLTL model-checking
to nondeterministic multi-agent planning so that if the resulting planning problem admits a
plan, then the original model-checking problem is satisfied. Conceptually, their techniques

1 3

 31   Page 30 of 33

Tracy, traces, and transducers: computable counterexamples and…

are similar to ours presented here, i.e., for general formulas they rely on multiple planning
agents (as here, one for each existentially quantified variable), nondeterminism in the plan-
ning domain (selecting traces for the universally quantified variables as our Player U), and
incomplete information (to capture the dependencies of the variables, as here). The plans
computed by solving the planning problem can be understood as Skolem functions for the
existentially quantified variables. They note that their approach is sound, but incomplete
in the sense that there might be instances where T |= φ, but the resulting planning prob-
lem admits no plan. However, they left open whether their approach is complete for all
instances T |= φ being witnessed by computable Skolem functions.

Finally, Beutner and Finkbeiner also presented a sound and complete model-checking
algorithm for ∀∗∃∗-sentences that relies on a delay-free game extended with prophecies that
require the player in charge of the universal variables to make commitments about future
moves (w.r.t. to membership in a finite list of ω-regular properties). Winter and Zimmer-
mann [33] recently extended the prophecy-based approach to full HyperLTL with arbitrary
quantifier alternations, thereby making game-based HyperLTL model-checking complete:
their (multi-player incomplete information) game characterizes T |= φ, even if there are no
computable Skolem functions witnessing satisfaction.

7  Conclusion

Based on the maxim “counterexamples/explanations are Skolem functions for the existen-
tially quantified trace variables”, we have shown how to explain why a given transition
system satisfies a given HyperLTL formula or, equivalently, to provide counterexamples
in case the system does not satisfy the formula. We consider arbitrary computable Skolem
functions as explanations. However, this leads to incompleteness as not every T |= φ is wit-
nessed by computable Skolem functions. Nevertheless, we have shown that the existence of
computable explanations is decidable, and that they are effectively computable (whenever
they exist).

Recall that the runtime of our algorithm is bounded by a (k + k
2 + c)-fold exponen-

tial while HyperLTL model-checking is complete for nondeterministic space bounded by a
k-fold exponential in |φ|, where k is the number of alternations in φ [14, 30]. In future work
we aim to determine whether computing counterexamples/explanations is inherently harder
than model-checking.

After having laid the theoretical foundations, it remains to investigate under which cir-
cumstances such explanations can be useful in the verification work-flow. For restricted set-
tings, this line of work has been studied as discussed in Section 6. We propose to continue
this line of work for more expressive fragments of HyperLTL and explanations. However,
for fragments with few quantifier alternations, the situation is clearer. For example, we con-
jecture that results on delay games with LTL winning conditions [26] and uniformization of
LTL definable relations [15] can be adapted to show that deciding the existence of comput-
able Skolem functions for ∀∗∃∗-sentences is 3ExpTime-complete.

Epilogue After her lunch break, Tracy walks by the printer room and finds a second copy
of her document in the printer tray. It turns out the print system satisfies φid, but the explana-
tion shows that there is a large delay in the network.

1 3

Page 31 of 33  31

S. Winter, M. Zimmermann

Acknowledgements  Supported by DIREC - Digital Research Centre Denmark.

Author Contributions  S.W. and M.Z. contributed equally.

Funding  Open access funding provided by Aalborg University

Data Availability  No datasets were generated or analysed during the current study.

Declarations

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1.	 Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J., Wimmer, R.: Counterexample generation
for discrete-time Markov models: An introductory survey. In: Bernardo, M., Damiani, F., Hähnle, R.,
Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, (2014). ​h​t​t​p​s​:​/​/​d​o​
i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​3​1​9​-​0​7​3​1​7​-​0​_​3​​​​​​​

2.	 Arkhangel’skiĭ, A.V., Fedorchuk, V.V.: The basic concepts and constructions of general topology. In:
Arkhangel’skiĭ, L.S. A. V.and Pontryagin (ed.) General Topology I: Basic Concepts and Constructions
Dimension Theory, pp. 1–90. Springer, (1990). https://doi.org/10.1007/978-3-642-61265-7_1

3.	 Arrieta, A.B., Rodríguez, N.D., Ser, J.D., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-Lopez, S.,
Molina, D., Benjamins, R., Chatila, R., Herrera, F.: Explainable artificial intelligence (XAI): concepts,
taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). ​h​t​t​p​s​:​/​
/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​i​n​f​f​u​s​.​2​0​1​9​.​1​2​.​0​1​2​​​​​​​

4.	 Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
5.	 Berwanger, D., Mathew, A.B., Bogaard, M.: Hierarchical information and the synthesis of distributed

strategies. Acta Informatica 55(8), 669–701 (2018). https://doi.org/10.1007/S00236-017-0306-5
6.	 Beutner, R., Finkbeiner, B.: Non-deterministic planning for hyperproperty verification. In: Bernardini,

S., Muise, C. (eds.) ICAPS 2024, pp. 25–30. AAAI Press, (2024). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​6​0​9​/​I​C​A​P​S​.​V​3​4​I​
1​.​3​1​4​5​7​​​​​​​

7.	 Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput.
58, 117–148 (2003). ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​S​0​0​6​5​-​2​4​5​8​(​0​3​)​5​8​0​0​3​-​2

8.	 Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal log-
ics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 265–284.
Springer, (2014). https://doi.org/10.1007/978-3-642-54792-8_15

9.	 Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM 50(5), 752–794 (2003). https://doi.org/10.1145/876638.876643

10.	 Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking. In: LICS 2002,
pp. 19–29. IEEE Computer Society, (2002). https://doi.org/10.1109/LICS.2002.1029814

11.	 Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–1210 (2010). ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​3​2​3​3​/​J​C​S​-​2​0​0​9​-​0​3​9​3​​​​​​​

12.	 Coenen, N., Dachselt, R., Finkbeiner, B., Frenkel, H., Hahn, C., Horak, T., Metzger, N., Siber, J.:
Explaining hyperproperty violations. In: Shoham, S., Vizel, Y. (eds.) CAV 2022, Part I. LNCS, vol.
13371, pp. 407–429. Springer, (2022). https://doi.org/10.1007/978-3-031-13185-1_20

13.	 Damman, B., Han, T., Katoen, J.: Regular expressions for PCTL counterexamples. In: QEST 2008, pp.
179–188. IEEE Computer Society, (2008). https://doi.org/10.1109/QEST.2008.11

1 3

 31   Page 32 of 33

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-642-61265-7_1
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1007/S00236-017-0306-5
https://doi.org/10.1609/ICAPS.V34I1.31457
https://doi.org/10.1609/ICAPS.V34I1.31457
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1145/876638.876643
https://doi.org/10.1109/LICS.2002.1029814
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1109/QEST.2008.11

Tracy, traces, and transducers: computable counterexamples and…

14.	 Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for Model Checking HyperLTL and HyperCTL∗.
In: Kroening, D., Pasareanu, C.S. (eds.) CAV 2015, Part I. LNCS, vol. 9206, pp. 30–48. Springer, (2015).
https://doi.org/10.1007/978-3-319-21690-4_3

15.	 Filiot, E., Winter, S.: Synthesizing computable functions from rational specifications over infinite words.
Int. J. Found. Comput. Sci. 35(1 &2), 179–214 (2024). https://doi.org/10.1142/S012905412348009X

16.	 Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf. 15(5–6), 519–539
(2013). https://doi.org/10.1007/S10009-012-0228-Z

17.	 Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesis from hyperproperties. Acta
Informatica 57(1–2), 137–163 (2020). https://doi.org/10.1007/s00236-019-00358-2

18.	 Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current
Research. LNCS, vol. 2500. Springer, (2002). https://doi.org/10.1007/3-540-36387-4

19.	 Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: Garavel, H., Hatcliff, J. (eds.) TACAS
2003. LNCS, vol. 2619, pp. 160–175. Springer, (2003). https://doi.org/10.1007/3-540-36577-X_12

20.	 Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in regular infinite games. Log. Methods
Comput. Sci. 8(3) (2012) https://doi.org/10.2168/LMCS-8(3:24)2012

21.	 Horak, T., Coenen, N., Metzger, N., Hahn, C., Flemisch, T., Méndez, J., Dimov, D., Finkbeiner, B.,
Dachselt, R.: Visual analysis of hyperproperties for understanding model checking results. IEEE Trans.
Vis. Comput. Graph. 28(1), 357–367 (2022). https://doi.org/10.1109/TVCG.2021.3114866

22.	 Hosch, F.A., Landweber, L.H.: Finite delay solutions for sequential conditions. In: ICALP 1972, pp.
45–60 (1972)

23.	 Han, T., Katoen, J.: Counterexamples in probabilistic model checking. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86. Springer, (2007). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​5​4​
0​-​7​1​2​0​9​-​1​_​8​​​​​​​

24.	 Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games? Log. Methods
Comput. Sci. 12(3) (2016) https://doi.org/10.2168/LMCS-12(3:4)2016

25.	 Kurshan, R.P.: Verification technology transfer. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model
Checking - History, Achievements, Perspectives. LNCS, vol. 5000, pp. 46–64. Springer, (2008). ​h​t​t​p​s​:​/​
/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​5​4​0​-​6​9​8​5​0​-​0​_​3​​​​​​​

26.	 Klein, F., Zimmermann, M.: Prompt delay. In: Lal, A., Akshay, S., Saurabh, S., Sen, S. (eds.) FSTTCS
2016. LIPIcs, vol. 65, pp. 43–14314. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2016). ​h​t​t​p​s​
:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​4​2​​3​0​/​L​I​​P​I​C​S​.​​F​S​T​T​C​S​​.​2​0​1​​6​.​4​3

27.	 Mascle, C., Zimmermann, M.: The keys to decidable HyperLTL satisfiability: Small models or very sim-
ple formulas. In: Fernández, M., Muscholl, A. (eds.) CSL 2020. LIPIcs, vol. 152, pp. 29–12916. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, (2020). https://doi.org/10.4230/LIPIcs.CSL.2020.29

28.	 Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: FOCS 1990, Volume II,
pp. 746–757. IEEE Computer Society, (1990). https://doi.org/10.1109/FSCS.1990.89597

29.	 Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE, (1977). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​1​0​9​/​S​F​C​S​.​1​9​7​7​.​3​2​​​​​​​

30.	 Rabe, M.N.: A temporal logic approach to information-flow control. PhD thesis, Saarland University
(2016). ​h​t​t​p​:​/​​/​s​c​i​d​​o​k​.​s​u​l​​b​.​u​n​​i​-​s​a​a​​r​l​a​n​d​​.​d​e​/​v​o​​l​l​t​e​​x​t​e​/​2​0​1​6​/​6​3​8​7​/

31.	 Richard Büchi, J.: Symposium on decision problems: On a decision method in restricted second order
arithmetic. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Logic, Methodology and Philosophy of Science.
Studies in Logic and the Foundations of Mathematics, vol. 44, pp. 1–11. Elsevier, (1966). ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​
g​/​​1​0​.​​1​0​​1​6​/​S​0​​0​4​9​-​2​3​7​X​(​0​9​)​7​0​5​6​4​-​6

32.	 Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and 3-valued abstrac-
tion-refinement. ACM Trans. Comput. Log. 9(1), 1 (2007). https://doi.org/10.1145/1297658.1297659

33.	 Winter, S., Zimmermann, M.: Prophecies all the way: Game-based model-checking for hyperqptl
beyond ∀∗∃∗. arXiv:2504.08575 (2025) https://doi.org/10.48550/ARXIV.2504.08575

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

Page 33 of 33  31

https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1142/S012905412348009X
https://doi.org/10.1007/S10009-012-0228-Z
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36577-X_12
https://doi.org/10.2168/LMCS-8(3:24)2012
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1007/978-3-540-71209-1_8
https://doi.org/10.1007/978-3-540-71209-1_8
https://doi.org/10.2168/LMCS-12(3:4)2016
https://doi.org/10.1007/978-3-540-69850-0_3
https://doi.org/10.1007/978-3-540-69850-0_3
https://doi.org/10.4230/LIPICS.FSTTCS.2016.43
https://doi.org/10.4230/LIPICS.FSTTCS.2016.43
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1145/1297658.1297659
http://arxiv.org/abs/2504.08575
https://doi.org/10.48550/ARXIV.2504.08575

	﻿Tracy, traces, and transducers: computable counterexamples and explanations for HyperLTL model-checking
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Preliminaries
	﻿2.1﻿ ﻿Languages, Transition Systems, and Automata
	﻿2.2﻿ ﻿HyperLTL
	﻿2.3﻿ ﻿Skolem functions for HyperLTL

	﻿3﻿ ﻿Problem statement
	﻿﻿3.1﻿ ﻿Uniformization by computable functions
	﻿3.2﻿ ﻿Transducers

	﻿4﻿ ﻿Computing Skolem Functions for HyperLTL
	﻿﻿5﻿ ﻿A game for computable Skolem functions
	﻿﻿5.1﻿ ﻿The concrete game
	﻿﻿5.1.1﻿ ﻿Distributed games
	﻿﻿5.1.2﻿ ﻿Formalization of the abstract game

	﻿﻿5.2﻿ ﻿Complexity analysis
	﻿﻿6﻿ ﻿Related work
	﻿7﻿ ﻿Conclusion
	﻿References

