
Inf. Process. Lett. 188 (2025) 106522

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

Robust probabilistic temporal logics

Martin Zimmermann

Aalborg University, Aalborg, Denmark

A R T I C L E I N F O A B S T R A C T

Keywords:

Probabilistic temporal logics

Robustness

Model-checking

We robustify PCTL and PCTL∗, the most important specification languages for probabilistic systems, and show
that robustness does not increase the complexity of their model-checking problems.
1. Introduction

Specifications of reactive systems are typically implications 𝜑𝑎 → 𝜑𝑔
where 𝜑𝑎 is an environment assumption and 𝜑𝑔 is a system guaran-

tee, both specified in a temporal logic. Such a specification is satisfied
whenever the assumption is violated, independently of the system’s be-

haviour. Assume, for example, that both the assumption and the guar-

antee are invariants 𝜑𝑎 = 𝜓𝑎 and 𝜑𝑔 = 𝜓𝑔 for propositional formu-

las 𝜓𝑔 and 𝜓𝑎. Then, the specification 𝜓𝑎 → 𝜓𝑔 is satisfied if the
formula 𝜓𝑎 is violated just once, even if the formula 𝜓𝑔 never holds.
Such a behaviour is clearly undesirable, but the classical semantics of
temporal logics are not sufficiently robust to deal with violations of the
environment assumption.

Considerable effort has been put into overcoming this “defect” to
provide robust semantics for temporal logics. However, the notion of
robustness is hard to formalize, which is witnessed by the plethora of
incomparable notions of robustness in the literature on verification (see,
e.g., the introduction of [1] for a recent overview). Here, we further de-

velop an approach due to Tabuada and Neider based on a novel, robust
semantics for temporal logics, originally introduced for Linear Tempo-

ral Logic (LTL) [2]. They argue that there are four canonical degrees a
formula of the form 𝜓 can be violated:

1. 𝜓 is violated only finitely often.

2. 𝜓 is violated infinitely often, but also holds infinitely often.

3. 𝜓 is satisfied only finitely often.

4. 𝜓 is never satisfied.

Note that there is a natural order between these cases. Consequently,
their robust semantics uses five truth values, one for satisfaction and four
more to capture the four degrees of violation. Furthermore, Tabuada

and Neider defined the semantics of implication such that 𝜓𝑎 → 𝜓𝑔
is satisfied whenever the degree of violation of the guarantee 𝜓𝑔 is
not more severe than the violation of the assumption 𝜓𝑔 . Thus, the
semantics indeed robustly handles violations of environment assump-

tions.

The resulting logic, called robust LTL (rLTL), has been extensively
studied with very encouraging results: robustness can be added with-

out increasing the complexity of model-checking and synthesis [1–3],
robust semantics increases the usefulness of runtime monitoring [4],
and rLTL can even be extended with increased expressiveness or tim-

ing constraints, again without an increase in complexity [5]. This ap-

proach towards robustness even extends to other temporal logics, e.g.,
branching-time logics like CTL and CTL* [6] and alternating-time logics
like ATL and ATL* [7], where robustness can again be added without
increasing the complexity of the most important verification problems.

Beyond the fact that this form of robustness comes for free (in terms
of computational complexity), it only changes the semantics of the log-

ics, but not the syntax. Furthermore, these logics are also evaluated over
classical transition systems with the classical binary satisfaction relation
for atomic propositions, i.e., robustness does not emerge from multi-

valued semantics of the models (which might be hard to determine),
but purely from the semantics. These aspects allow for a smooth transi-

tion from classical semantics to robust semantics for temporal logics. In
conclusion, Tabuada and Neider introduced a natural and lightweight
approach to add robustness that is applicable to a wide range of logics.

However, these logics capture only robustness in the temporal di-

mension, i.e., they are concerned with a single execution. Statements
like “99% of the executions answer each request eventually” require
robustness in terms of the whole set of executions, which is orthogo-

nal to the capabilities of the robust logics studied thus far. To express
such specifications, Hansson and Jonsson introduced probabilistic CTL
Available online 8 August 2024
0020-0190/© 2024 The Author(s). Published by Elsevier B.V. This is an open access

E-mail address: mzi@cs.aau.dk.

https://doi.org/10.1016/j.ipl.2024.106522

Received 9 June 2023; Received in revised form 30 July 2024; Accepted 31 July 20
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

24

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:mzi@cs.aau.dk
https://doi.org/10.1016/j.ipl.2024.106522
https://doi.org/10.1016/j.ipl.2024.106522
http://creativecommons.org/licenses/by/4.0/

M. Zimmermann

(PCTL) [8], while Aziz, Singhal, and Balarin introduced probabilistic
CTL* (PCTL*) [9]. PCTL and PCTL* replace the existential and uni-

versal quantification over paths in CTL and CTL* by the probabilistic
operator 𝐼 (Φ), where 𝐼 ⊆ [0, 1] is an interval with rational endpoints
and Φ is a property of paths. Intuitively, 𝐼 (Φ) is satisfied in a state 𝑠

if the probability that a path starting in 𝑠 satisfies Φ is in the inter-

val 𝐼 . As CTL, PCTL requires each temporal operator to be preceded
by a while PCTL* (as CTL*) allows arbitrary nesting of Boolean con-

nectives, temporal operators, and . For example, the property “99%
of the executions answer each request eventually” is expressed by the
PCTL* formula ≥.99((𝑞→ 𝑝)), where 𝑞 represents a request and 𝑝
a response.

In this work, we further the study of robust semantics for tempo-

ral logics a la Tabuada and Neider by robustifying PCTL and PCTL*,
obtaining the logics rPCTL and rPCTL*. In line with the design goals
of the approach, the robust variants have (essentially) the same syntax
as the non-robust variants and are evaluated over the same structures,
simplifying the transition from the non-robust to the robust setting. The
semantics of rPCTL and rPCTL* also follow the blueprint, i.e., they are
five-valued employing the four degrees of violation described above.
This simplifies the transition from robust semantics for linear, branch-

ing, and alternating time to the robust probabilistic setting.

As our main contribution, we show that this robustification comes
again for free: the automata-based model-checking algorithms for rPCTL
and rPCTL* can be generalized to the robust semantics. This result is in
line with those on the robust temporal logics studied thus far, once more
showing the versatility of robustness a la Tabuada and Neider.

2. Preliminaries

We denote the set of non-negative integers by ℕ. Throughout the
paper, we fix a finite set 𝐴𝑃 of atomic propositions we use to label our
models and to build our formulas. For algorithmic purposes, we assume
that all probabilities used in the following are rational.

A discrete-time Markov chain (DTMC) = (𝑆, 𝑠𝐼 , 𝛿, 𝓁) consists of a
finite set 𝑆 of states containing the initial state 𝑠𝐼 , a (stochastic) transi-

tion function 𝛿∶ 𝑆×𝑆 → [0, 1] satisfying
∑
𝑠′∈𝑆 𝛿(𝑠, 𝑠′) = 1 for all 𝑠 ∈ 𝑆 ,

and a labelling function 𝓁∶ 𝑆 → 2𝐴𝑃 . The size || of is defined as ∑
𝑠,𝑠′∈𝑆 |𝛿(𝑠, 𝑠′)|, where |𝑝| denotes the length of the binary encoding of

𝑝 ∈ℚ.

A path of is an infinite sequence 𝜋 = 𝑠0𝑠1𝑠2⋯ ∈ 𝑆𝜔 such that
𝛿(𝑠𝑛, 𝑠𝑛+1) > 0 for all 𝑛 ∈ ℕ. We say that 𝜋 starts in 𝑠0. For 𝑛 ∈ ℕ, we
write 𝜋(𝑛) = 𝑠𝑛 for the 𝑛-th state of 𝜋 and 𝜋[𝑛, ∞) = 𝑠𝑛𝑠𝑛+1𝑠𝑛+2⋯ for
the suffix of 𝜋 starting at position 𝑛. We write Π(, 𝑠) for the set of all
paths of starting in 𝑠 ∈ 𝑆 and define Π() =

⋃
𝑠∈𝑆 Π(, 𝑠).

The probability measure 𝜇𝑠 on sets of paths starting in some state 𝑠 ∈
𝑆 is defined as usual: Fix some non-empty path prefix 𝜌 = 𝑠0⋯ 𝑠𝑛. The
probability of the cylinder set 𝐶𝜌 = {𝜋 ∈Π(, 𝑠) ∣ 𝜌 is a prefix of 𝜋} is

𝜇𝑠(𝐶𝜌) =

{
0 if 𝑠0 ≠ 𝑠,∏𝑛−1
𝑗=0 𝛿(𝜌(𝑗), 𝜌(𝑗 + 1)) if 𝑠0 = 𝑠.

Using Carathéodory’s extension theorem, we lift 𝜇𝑠 to a measure on
the 𝜎-algebra induced by the cylinder sets of path prefixes starting in 𝑠
(see, e.g., [10, Theorem 1.41] for details. All sets of paths used in the
following are 𝜔-regular (see, e.g., [11, Chapter 1] for background on
𝜔-regular languages) and therefore measurable.

3. Robust PCTL

In this section, we robustify PCTL [8]. Following the general de-

sign goals of the robustification a la Tabuada and Neider, robust PCTL
(rPCTL) and PCTL share the same syntax (but for the dots to distinguish
them), i.e., the formulas of rPCTL are given by the grammar
2

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧𝜑 ∣ 𝜑 ∨𝜑 ∣ 𝜑→ 𝜑 ∣
Information Processing Letters 188 (2025) 106522

∼𝜆(𝜑) ∣ ∼𝜆(𝜑) ∣ ∼𝜆(𝜑) ∣ ∼𝜆(𝜑U𝜑) ∣ ∼𝜆(𝜑R𝜑)

where 𝑝 ranges over 𝐴𝑃 , ∼ ∈ {<, ≤, =, ≥, >}, and 𝜆 ∈ [0, 1] is a ratio-

nal probability threshold. The size |𝜑| of a formula 𝜑 is defined as the
number of subformulas of 𝜑 plus the maximal length |𝜆| of the binary
encodings of the thresholds 𝜆 ∈ ℚ appearing in 𝜑. Note that we have
all Boolean operators in the grammar, as the semantics of negation is
non-classical and implication cannot be derived from negation and dis-

junction. This is due to the five-valued robust semantics (see [2, Section
3.3] for a detailed discussion). For didactic reasons, we also prefer to
explicitly have the operators eventually () and always () as they al-

ready capture the essence of the robust semantics. The robust semantics
of until (U) and release (R) then generalize these.

Again, following the design goals of the robustification a la Tabuada
and Neider, rPCTL is evaluated over the same structures as PCTL, i.e.,
over discrete-time Markov chains. Let = (𝑆, 𝑠𝐼 , 𝛿, 𝓁) be a DTMC.
The semantics of rPCTL is defined via an evaluation function 𝑉 map-

ping a vertex 𝑠 of and a formula 𝜑 to a truth value in the (or-

dered) set 𝔹4 = {1111 ≻ 0111 ≻ 0011 ≻ 0001 ≻ 0000}. Given a truth
value 𝑡 = 𝑏1𝑏2𝑏3𝑏4 ∈ 𝔹4, we write 𝑡[𝑘] for 𝑏𝑘.

The evaluation function is defined inductively via

• 𝑉(𝑠, 𝑝) =

{
1111 if 𝑝 ∈ 𝓁(𝑠),
0000 if 𝑝 ∉ 𝓁(𝑠),

• 𝑉(𝑠, ¬𝜑) =

{
1111 if 𝑉(𝑠,𝜑) ≺ 1111,
0000 if 𝑉(𝑠,𝜑) = 1111,

• 𝑉(𝑠, 𝜑0 ∧𝜑1) =min(𝑉(𝑠, 𝜑0), 𝑉(𝑠, 𝜑1)),
• 𝑉(𝑠, 𝜑0 ∨𝜑1) =max(𝑉(𝑠, 𝜑0), 𝑉(𝑠, 𝜑1)),

• 𝑉(𝑠, 𝜑0 → 𝜑1) =

{
1111 if 𝑉(𝑠,𝜑0) ⪯ 𝑉(𝑠,𝜑1),
𝑉(𝑠,𝜑1) if 𝑉(𝑠,𝜑0) ≻ 𝑉(𝑠,𝜑1),

• 𝑉(𝑠, ∼𝜆(𝜑)) = 𝑏1𝑏2𝑏3𝑏4 ∈ 𝔹4 where for all 𝑘 ∈ {1, 2, 3, 4}: 𝑏𝑘 =
1 iff 𝜇𝑠({𝜋 ∈Π(, 𝑠) ∣ 𝑉(𝜋(1), 𝜑)[𝑘] = 1}) ∼ 𝜆,

• 𝑉(𝑠, ∼𝜆(𝜑)) = 𝑏1𝑏2𝑏2𝑏4 ∈ 𝔹4 where for all 𝑘 ∈ {1, 2, 3, 4}: 𝑏𝑘 =
1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[𝑘] = 1 for some 𝑛 ∈ ℕ}) ∼ 𝜆,
and

• 𝑉(𝑠, ∼𝜆(𝜑)) = 𝑏1𝑏2𝑏3𝑏4 ∈ 𝔹4 with

– 𝑏1 = 1 iff 𝜇𝑠({𝜋 ∈Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[1] = 1 for all 𝑛 ∈ℕ}) ∼
𝜆,

– 𝑏2 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[2] = 1 for all but

finitely many 𝑛 ∈ ℕ}) ∼ 𝜆,

– 𝑏3 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[3] = 1 for infinitely

many 𝑛 ∈ ℕ}) ∼ 𝜆,

– 𝑏4 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[4] = 1 for some 𝑛 ∈
ℕ}) ∼ 𝜆,

• 𝑉(𝑠, ∼𝜆(𝜑 U𝜓)) = 𝑏1𝑏2𝑏2𝑏4 ∈ 𝔹4 where for all 𝑘 ∈ {1, 2, 3, 4}:
𝑏𝑘 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ there exists 𝑛 ∈ ℕ s.t. (𝑉(𝜋(𝑛),
𝜓))[𝑘] = 1 and (𝑉(𝜋(𝑛′), 𝜑))[𝑘] = 1 for all 𝑛′ < 𝑛}) ∼ 𝜆, and

• 𝑉(𝑠, ∼𝜆(𝜑 R𝜓)) = 𝑏1𝑏2𝑏3𝑏4 ∈ 𝔹4 with

– 𝑏1 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ for all 𝑛 ∈ ℕ (𝑉(𝜋(𝑛), 𝜓))[1] =
1 or (𝑉(𝜋(𝑛), 𝜑))[1] = 1 some 𝑛′ < 𝑛}) ∼ 𝜆,

– 𝑏2 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜓))[2] = 1 for all but

finitely many 𝑛 ∈ ℕ or (𝑉(𝜋(𝑛), 𝜑))[2] = 1 some 𝑛 ∈ ℕ}) ∼ 𝜆,

– 𝑏3 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜓))[3] = 1 for infinitely

many 𝑛 ∈ ℕ or (𝑉(𝜋(𝑛), 𝜑))[3] = 1 some 𝑛′ < 𝑛}) ∼ 𝜆, and

– 𝑏4 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜓))[4] = 1 for some 𝑛 ∈
ℕ or (𝑉(𝜋(𝑛), 𝜑))[4] = 1 some 𝑛′ < 𝑛}) ∼ 𝜆.

Here, the cases for Boolean connectives and temporal operators fol-

low the blueprint introduced by Tabuada and Neider for rLTL (which
also have been used for the robust variants of CTL, CTL*, ATL, and
ATL*). For a detailed motivation and description, we refer to [2, Sec-

tion 3]. On the other hand, the semantics of generalizes the classical
two-valued semantics of PCTL to five truth values, just as the path quan-
tifiers in robust CTL [6] generalizes the path quantifiers of CTL and the

M. Zimmermann

strategy quantifier of robust ATL [7] generalizes the strategy quantifier
of ATL.

Example 1. Consider the formula 𝜑 = ≥.9(𝑎) → ≥.95(𝑔) express-

ing a robust assume-guarantee property. Assume 𝜑 evaluates to 1111
and consider the following cases:

• Assume ≥.9(𝑎) evaluates to 1111, i.e., with probability ≥ .9, 𝑎
holds at every position of a path. Then, by the semantics of the
implication, with probability ≥ .95, 𝑔 holds at every position.

• Assume ≥.9(𝑎) evaluates to 0111, i.e., with probability ≥ .9, 𝑎
holds at all but finitely many positions of a path (but not at every

position of a path with probability ≥ .9). Then, by the semantics of
the implication, with probability ≥ .95, 𝑔 holds at least at all but
finitely many positions.

• Similar arguments hold for the truth values 0011 and 0001: Assume
with probability ≥ .9, 𝑎 holds infinitely often (𝑎 holds at least once).
Then, with probability ≥ .95, 𝑔 holds infinitely often) (𝑔 holds at
least once).

Thus, the semantics of 𝜑 ensures that a violation of the assumption 𝑎

is met with (at most) a proportional violation of the guarantee 𝑔.

But we can even derive useful information if 𝜑 does not evaluate
to 1111. Assume, 𝜑 evaluates to 𝑡 ≺ 1111. This can only be the case if
the assumption ≥.9(𝑎) evaluates to some truth value strictly smaller
than 𝑡 and the guarantee ≥.95(𝑔) evaluates to 𝑡. Hence, even if the
implication does not hold, it still yields the degree of satisfaction of the
guarantee.

The above example shows that the robust semantics does indeed cap-

ture the intuition described in the introduction.

3.1. Expressiveness

In this section, we discuss the expressiveness of rPCTL; in particular,
we compare it to the expressiveness of PCTL.

Our first result shows that rPCTL is at least as expressive as PCTL. It
follows directly from the design goals of the robust semantics: they are
defined such the first bit represents standard (non-robust) semantics.

Note that the restriction to implication-free formulas is just technical,
as implications 𝜑 → 𝜓 in PCTL formulas can always be rewritten as ¬𝜑 ∨
𝜓 . The need for the implication-removal stems from the fact that robust
implication does not generalize classical implication [4, Footnote 3].

Lemma 1. Let 𝜑 be a PCTL formula without implications, and let be a
DTMC with initial state 𝑠𝐼 . Then, , 𝑠𝐼 ⊧ 𝜑 iff 𝑉(𝑠𝐼 , �̇�) = 1111, where �̇�
is the rPCTL formula obtained from 𝜑 by dotting all temporal operators.

Proof. By induction over the construction of 𝜑, formalizing the fact
that the first bit of the robust semantics captures the classical semantics
of PCTL. This can be seen by a careful inspection of the robust seman-

tics.

Corollary 1. rPCTL is at least as expressive as PCTL.

Let us briefly discuss the other inclusion, e.g., is rPCTL strictly more
expressive than PCTL? This is true for the non-probabilistic setting,
where rCTL (robust CTL) is strictly more expressive than CTL [6], as
𝑉(𝑠𝐼 , ∀ 𝑝) ⪰ 0111 holds iff 𝑝 holds at all but finitely many positions
of every path starting in 𝑠. This property cannot be expressed in CTL [12,
Theorem 6.21]. However, the analogous property “𝑝 holds at all but
finitely many positions often with probability one” can be expressed
in PCTL [12, Theorem 10.48] (when considering finite DTMCs), rely-

ing on the fact that a path ends up with probability one in a bottom
3

strongly-connected component. We leave open the question whether
Information Processing Letters 188 (2025) 106522

similar arguments are sufficient to show that rPCTL can be embedded
into PCTL (w.r.t. finite DTMCs).

Let us conclude this section with a consequence of the embedding
proven in Lemma 1. rPCTL satisfiability asks, given a formula 𝜑 and a
truth value 𝑡∗ whether there is a DTMC with initial state 𝑠𝐼 such
that 𝑉(𝑠𝐼 , 𝜑) ⪰ 𝑡∗. PCTL satisfiability has recently been shown to be
undecidable [13]. So, due to Lemma 1, which allows us to embed PCTL
in rPCTL, rPCTL satisfiability is also undecidable.

3.2. Model-checking

In this section, we prove that model-checking rPCTL is not harder
than model-checking PCTL, which is in PTime [8], i.e., robustness can be
added for free. Formally, rPCTL model-checking is the following prob-

lem: Given a DTMC with initial state 𝑠𝐼 , an rPCTL formula 𝜑, and a
truth value 𝑡∗ ∈ 𝔹4, is 𝑉(𝑠𝐼 , 𝜑) ⪰ 𝑡∗?

In the following, we prove that rPCTL model-checking is not harder
than PCTL model-checking by combining techniques developed for ro-

bustified temporal logics with a generalization of an automata-based
model-checking algorithm for PCTL.

Theorem 1. rPCTL model-checking is in PTime.

Proof. Fix a DTMC = (𝑆, 𝑠𝐼 , 𝛿, 𝓁) and an rPCTL formula 𝜑, and let
cl(𝜑) denote the set of subformulas of 𝜑 (which is defined as expected).
We show how to inductively compute the satisfaction sets

Sat(𝜓, 𝑡) = {𝑠 ∈ 𝑆 ∣ 𝑉(𝑠,𝜓) ⪰ 𝑡}

for 𝜓 ∈ cl(𝜑) and 𝑡 ∈ 𝔹4. Note that Sat(𝜓, 0000) = 𝑆 holds for all sub-

formulas 𝜓 . Hence, in the following, we only consider 𝑡 ≻ 0000. Also,
the cases for atomic propositions and Boolean connectives are trivial,
as they amount to Boolean combinations of already computed sets (see,
e.g., [6]). For example, we have Sat(𝜓 ′ ∧𝜓 ′′, 𝑡) = Sat(𝜓 ′, 𝑡) ∩ Sat(𝜓 ′′, 𝑡)
and Sat(𝜓 ′ ∨ 𝜓 ′′, 𝑡) = Sat(𝜓 ′, 𝑡) ∪ Sat(𝜓 ′′, 𝑡). Hence, it only remains to
consider subformulas 𝜓 of the form ∼𝜆(𝜓 ′), ∼𝜆(𝜓 ′), ∼𝜆(𝜓 ′),
∼𝜆(𝜓 ′ U𝜓 ′′), or ∼𝜆(𝜓 ′ R𝜓 ′′).

We begin with the next operator. Here, we have 𝑠 ∈ Sat(∼𝜆(𝜓 ′), 𝑡)
iff

𝜇𝑠({𝜋 ∈Π(, 𝑠) ∣ 𝜋(1) ∈ Sat(𝜓 ′, 𝑡)}) =
(∑

𝑠′∈Sat(𝜓 ′ ,𝑡)
𝛿(𝑠, 𝑠′)

)
∼ 𝜆.

The value
∑
𝑠′ 𝛿(𝑠, 𝑠′) can be computed and compared to 𝜆 in polynomial

time, as Sat(𝜓, 𝑡) has already been computed by induction hypothesis.

For the remaining temporal operators, we rely on standard automata-

theoretic characterizations of the sets of paths satisfying a temporal
formula (see, e.g., [11, Section 1] for an introduction to automata on
infinite words). We will then apply the following result due to Baier et
al.: Given a DTMC , one of its states 𝑠, and an unambiguous Büchi
automaton1 with 𝑛 states accepting a language 𝐿, the probability 𝜇𝑠(𝐿)
can be computed in polynomial time in || and 𝑛 [14, Theorem 2].

We begin by considering the always operator and then deal with
the remaining operators, as we can reuse the machinery developed
for the always operator to deal with them. By definition, we have
𝑠 ∈ Sat(∼𝜆(𝜓 ′), 𝑡) iff

• 𝑡 = 1111 and 𝜇𝑠(Safe(Sat(𝜓 ′, 1111))) ∼ 𝜆,

• 𝑡 = 0111 and 𝜇𝑠(CoBüchi(Sat(𝜓 ′, 0111))) ∼ 𝜆,

• 𝑡 = 0011 and 𝜇𝑠(Büchi(Sat(𝜓 ′, 0011))) ∼ 𝜆, and

• 𝑡 = 0001 and 𝜇𝑠(Reach(Sat(𝜓 ′, 0001))) ∼ 𝜆,

where

1 An automaton is unambiguous if it has at most one accepting run on every

input.

Information Processing Letters 188 (2025) 106522M. Zimmermann

𝐒𝐚𝐟𝐞(𝑺′)

𝑆′

𝐂𝐨𝐁�̈�𝐜𝐡𝐢(𝑺′)

𝑆′ 𝑆 𝑆′

𝑆′

𝑆′

𝑆′

𝐁�̈�𝐜𝐡𝐢(𝑺′)

𝑆′ 𝑆′

𝑆′

𝑆′

𝐑𝐞𝐚𝐜𝐡(𝑺′)

𝑆′ 𝑆

𝑆′

𝐔𝐧𝐭𝐢𝐥(𝑺′ , 𝑺′′)

𝑆′ ⧵𝑆′′
𝑆′′

𝑆

𝐔𝐧𝐭𝐢𝐥(𝑺′′ , 𝑺′′ ∩𝑺′) ∪ 𝐒𝐚𝐟𝐞(𝑺′′)

𝑆′′ 𝑆′′ 𝑆

𝑆′′ ∩𝑆′ 𝑆′′

𝐂𝐨𝐁�̈�𝐜𝐡𝐢(𝑺′) ∪ 𝐑𝐞𝐚𝐜𝐡(𝑺′′)

𝑆′ ⧵𝑆′′ 𝑆 ⧵𝑆′′ 𝑆′ ⧵𝑆′′

𝑆′ ⧵𝑆′′

𝑆′ ⧵𝑆′′

𝑆′ ⧵𝑆′′

𝑆′′ 𝑆′′
𝑆′′

𝑆

𝐁�̈�𝐜𝐡𝐢(𝑺′) ∪ 𝐑𝐞𝐚𝐜𝐡(𝑺′′)

𝑆′ ⧵𝑆′′ 𝑆′ ⧵𝑆′′

𝑆′ ⧵𝑆′′

𝑆′ ⧵𝑆′′

𝑆′′ 𝑆′′

𝑆

Fig. 1. The unambiguous Büchi automata for the path properties used in the rPCTL model-checking algorithm. Transitions are labelled by sets of states that represent
all states in them (recall that 𝑆 is the set of all states while 𝑆′ and 𝑆 ′′ are subsets of 𝑆). 𝑆 ′ denotes the complement of 𝑆′ w.r.t. 𝑆 .
• Safe(𝑆′) = {𝜋 ∈Π() ∣ 𝜋(𝑛) ∈ 𝑆′ for all 𝑛 ∈ ℕ},

• CoBüchi(𝑆′) = {𝜋 ∈ Π() ∣ 𝜋(𝑛) ∈ 𝑆′ for all but finitely many 𝑛 ∈
ℕ},

• Büchi(𝑆′) = {𝜋 ∈Π() ∣ 𝜋(𝑛) ∈ 𝑆′ for infinitely many 𝑛 ∈ ℕ},

• Reach(𝑆′) = {𝜋 ∈Π() ∣ 𝜋(𝑛) ∈ 𝑆′ for some 𝑛 ∈ ℕ}.

All these sets are accepted by some unambiguous Büchi automaton with
at most three states (see Fig. 1). As the satisfiability sets Sat(𝜓 ′, 𝑡) are
already computed by induction assumption, we only need to compute
𝜇𝑠(𝐿) for these languages and compare it to the given threshold 𝜆. This
can be achieved in polynomial time as argued above.

Now, let us consider the eventually operator. By definition, we have
𝑠 ∈ Sat(∼𝜆(𝜓 ′), 𝑡) iff 𝜇𝑠(Reach(Sat(𝜓 ′, 𝑡))) ∼ 𝜆, which we have just
seen how to check in polynomial time. For the until operator, we have
𝑠 ∈ Sat(∼𝜆(𝜓 ′ U𝜓 ′′), 𝑡) iff 𝜇𝑠(Until(Sat(𝜓 ′, 𝑡), Sat(𝜓 ′′, 𝑡))) ∼ 𝜆, where

Until(𝑆′, 𝑆′′) = {𝜋 ∈Π() ∣ there is an 𝑛 ∈ℕ s.t. 𝜋(𝑛) ∈ 𝑆′′

and 𝜋(𝑛′) ∈ 𝑆′ for all 𝑛′ < 𝑛}.

There is an unambiguous Büchi automaton with two states accepting
this language (see Fig. 1). Thus, 𝜇𝑠(Until(Sat(𝜓 ′, 𝑡), Sat(𝜓 ′′, 𝑡))) ∼ 𝜆 can
again be checked in polynomial time.

Finally, we consider the release operator. By definition, we have 𝑠 ∈
Sat(∼𝜆(𝜓 ′ R𝜓 ′′), 𝑡) iff

• 𝑡 = 1111 and 𝜇𝑠([Until(Sat(𝜓 ′′, 1111), Sat(𝜓 ′, 1111) ∩ Sat(𝜓 ′′,

1111))] ∪ Safe(Sat(𝜓 ′′, 1111))) ∼ 𝜆,

• 𝑡 = 0111 and 𝜇𝑠(CoBüchi(Sat(𝜓 ′′, 0111) ∪ Reach(Sat(𝜓 ′, 0111)))) ∼
𝜆,

• 𝑡 = 0011 and 𝜇𝑠(Büchi(Sat(𝜓 ′′, 0011) ∪ Reach(Sat(𝜓 ′, 0011))) ∼ 𝜆,
and

• 𝑡 = 0001 and 𝜇𝑠(Reach(Sat(𝜓 ′′, 0001) ∪ Reach(Sat(𝜓 ′, 0001))) ∼ 𝜆.
Note that Reach(𝑆′) ∪ Reach(𝑆′′) = Reach(𝑆′ ∪ 𝑆′′) for all sets 𝑆′

and 𝑆′′, i.e., we can rely on the results for Reach shown above.

Again, all these languages are accepted by unambiguous Büchi automata
(see Fig. 1) with at most four states, which implies that we can again
decide 𝜇𝑠(𝐿) ∼ 𝜆 in polynomial time for these languages 𝐿.

Altogether, our algorithm inductively computes 5|cl(𝜑)| many sat-

isfaction sets, each one in polynomial time (in ||), and then checks
whether 𝑠𝐼 ∈ Sat(𝜑, 𝑡∗). Thus, the algorithm has polynomial running
4

time.
Again, this result is in line with previous work on robustifying tem-

poral logics: The robustification comes for free (here in terms of compu-

tational complexity of the model-checking problem) and the algorithms
for the classical semantics can be adapted to handle the robust semantics
as well.

4. Robust PCTL∗

In this section, we robustify PCTL* [9]. In line with the general ap-

proach, rPCTL* and PCTL* share the same syntax (but for the dots), i.e.,
the formulas of rPCTL are either state formulas or path formulas. State
formulas are given by the grammar

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧𝜑 ∣ 𝜑 ∨𝜑 ∣ 𝜑→ 𝜑 ∣ ∼𝜆(Φ)

where 𝑝 ranges over 𝐴𝑃 , ∼ ∈ {<, ≤, =, ≥, >}, 𝜆 ∈ [0, 1] is a rational prob-

ability threshold, and Φ ranges over path formulas. Path formulas are
given by

Φ ∶∶= 𝜑 ∣ ¬Φ ∣ Φ ∧Φ ∣ Φ ∨Φ ∣ Φ→Φ ∣ Φ ∣ Φ ∣ Φ ∣ ΦUΦ ∣ ΦRΦ

where 𝜑 ranges over state formulas. Formula size is defined as for rPCTL.

Also, rPCTL* is evaluated over discrete-time Markov chains, just as
PCTL*. Let DTMC = (𝑆, 𝑠𝐼 , 𝛿, 𝓁) be a DTMC. The semantics of rPCTL*
is again defined via an evaluation function 𝑉, this time mapping a
vertex 𝑠 of and a state formula, or a path of and a path formula
to a truth value in 𝔹4.

As rPCTL* is designed to extend rPCTL, the definition of the rPCTL*
semantics is (in some parts) very similar to that of rPCTL. This is in
particular true for the Boolean connectives (both for state and path
formulas), which is exactly the same as for rPCTL. However, to easily
accommodate the arbitrary nesting of temporal operators in rPCTL*, we
use an alternative definition of the semantics for path formulas, which
mimics the original semantics for rLTL [2]. This follows the precedent of
robust CTL* [6], where the semantics of path formulas is derived from
the semantics of rLTL as well.

The rPCTL* evaluation function is defined inductively via

• 𝑉(𝑠, 𝑝) =

{
1111 if 𝑝 ∈ 𝓁(𝑠),
0000 if 𝑝 ∉ 𝓁(𝑠),

• 𝑉(𝑠, ¬𝜑) =

{
1111 if 𝑉(𝑠,𝜑) ≺ 1111,
0000 if 𝑉(𝑠,𝜑) = 1111,

• 𝑉(𝑠, 𝜑0 ∧𝜑1) =min(𝑉(𝑠, 𝜑0), 𝑉(𝑠, 𝜑1)),

• 𝑉(𝑠, 𝜑0 ∨𝜑1) =max(𝑉(𝑠, 𝜑0), 𝑉(𝑠, 𝜑1)),

M. Zimmermann

• 𝑉(𝑠, 𝜑0 → 𝜑1) =

{
1111 if 𝑉(𝑠,𝜑0) ⪯ 𝑉(𝑠,𝜑1),
𝑉(𝑠,𝜑1) if 𝑉(𝑠,𝜑0) ≻ 𝑉(𝑠,𝜑1),

• 𝑉(𝑠, ∼𝜆(Φ)) = max{𝑡 ∈ 𝔹4 ∣ 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ 𝑉(𝜋, Φ) ⪰ 𝑡}) ∼
𝜆} with the convention max∅ = 0000,

• 𝑉(𝜋, 𝜑) = 𝑉(𝜋(0), 𝜑),

• 𝑉(𝜋, ¬Φ) =

{
1111 if 𝑉(𝜋,Φ) ≺ 1111,
0000 if 𝑉(𝜋,Φ) = 1111,

• 𝑉(𝜋, Φ0 ∧Φ1) =min(𝑉(𝜋, Φ0), 𝑉(𝜋, Φ1)),
• 𝑉(𝜋, Φ0 ∨Φ1) =max(𝑉(𝜋, Φ0), 𝑉(𝜋, Φ1)),

• 𝑉(𝜋, Φ0 →Φ1) =

{
1111 if 𝑉(𝜋,Φ0) ⪯ 𝑉(𝜋,Φ1),
𝑉(𝑠,Φ1) if 𝑉(𝜋,Φ0) ≻ 𝑉(𝜋,Φ1),

• 𝑉(𝜋, Φ) = 𝑉(𝜋[1, ∞), Φ),
• 𝑉(𝜋, Φ) = 𝑏1𝑏2𝑏3𝑏4 with 𝑏𝑘 = max𝑛≥0(𝑉(𝜋[𝑛, ∞), Φ))[𝑘] for

all 𝑘 ∈ {1, 2, 3, 4},

• 𝑉(𝜋, Φ) = 𝑏1𝑏2𝑏3𝑏4 with

– 𝑏1 = min𝑛≥0(𝑉(𝜋[𝑛, ∞), Φ))[1],
– 𝑏2 = max𝑚≥0(min𝑛≥𝑚 𝑉(𝜋[𝑛, ∞), Φ))[2],
– 𝑏3 = min𝑚≥0(max𝑛≥𝑚 𝑉(𝜋[𝑛, ∞), Φ))[3], and

– 𝑏4 = max𝑛≥0(𝑉(𝜋[𝑛, ∞), Φ))[4],
• 𝑉(𝜋, Φ UΨ) = 𝑏1𝑏2𝑏3𝑏4 with

𝑏𝑘 = max𝑛≥0 min{(𝑉(𝜋[𝑛, ∞), Ψ))[𝑘], min{(𝑉(𝜋[𝑛′, ∞), Φ))[𝑘] ∣
0 ≤ 𝑛′ < 𝑛}} for all 𝑘 ∈ {1, 2, 3, 4}, and

• 𝑉(𝜋, Φ RΨ) = 𝑏1𝑏2𝑏3𝑏4 with

– 𝑏1 = min𝑛′≥0 max{(𝑉(𝜋[𝑛′, ∞), Ψ))[1], max𝑛′′<𝑛′ (𝑉(𝜋[𝑛′′, ∞),
Φ))[1]},

– 𝑏2 = max𝑛≥0 min𝑛′≥𝑛max{(𝑉(𝜋[𝑛′, ∞), Ψ))[2],
max𝑛′′<𝑛′ (𝑉(𝜋[𝑛′′, ∞), Φ))[2]},

– 𝑏3 = min𝑛≥0 max𝑛′≥𝑛max{(𝑉(𝜋[𝑛′, ∞), Ψ))[3],
max𝑛′′<𝑛′ (𝑉(𝜋[𝑛′′, ∞), Φ))[3]}, and

– 𝑏4 = max𝑛′≥0 max{(𝑉(𝜋[𝑛′, ∞), Ψ))[4], max𝑛′′<𝑛′ (𝑉(𝜋[𝑛′′, ∞),
Φ))[4]}.

Note that while the definition of the semantics of the temporal op-

erators differs from the one for rPCTL (to easily accomodate arbitrary
nesting of temporal operators which is not possible in rPCTL), rPCTL is
a fragment of rPCTL*.

Example 2. Consider the formula ≥.9(𝑎 → 𝑔), a variant of the
assume-guarantee property of Example 1. It evaluates to the largest truth
value 𝑡 such that 𝑎 → 𝑔 evaluates to 𝑡 with probability ≥ .9. Now,
on a single path, 𝑎 → 𝑔 evaluates to

• 1111 if 𝑔 evaluates to a larger or equal truth value than 𝑎 and

• to 𝑡 ≺ 1111 if 𝑎 evaluates to 𝑡 and 𝑔 evaluates to a truth value
larger than 𝑡.

4.1. Expressiveness

As usual for temporal logics that allow arbitrary nesting of temporal
operators (e.g., LTL, CTL*, and ATL*) rPCTL* has the same expressive-

ness as its non-robust version: the first bit of the five-valued semantics of
rPCTL* again captures the semantics of non-robust PCTL* (as per design
goals), thereby yielding the first embedding, while arbitrary nesting of
temporal operators allows to mimic the five-valued semantics of rPCTL*
explicitly in non-robust PCTL*, there yielding the second embedding.

Theorem 2. rPCTL* is as expressive as PCTL*. Both translations can be
computed in polynomial time.

Proof. The translation from PCTL* to rPCTL* is a generalization of the
analogous result for PCTL and rPCTL (see Lemma 1): Let 𝜑 be a PCTL*
state formula without implications, and let be a DTMC with initial
state 𝑠𝐼 . Then, , 𝑠𝐼 ⊧ 𝜑 iff 𝑉(𝑠𝐼 , �̇�) = 1111, where �̇� is the rPCTL*
state formula obtained from 𝜑 by dotting all temporal operators. This is
5

again proven by induction over the construction of 𝜑.
Information Processing Letters 188 (2025) 106522

For the other direction, we inductively translate an rPCTL* state for-

mula 𝜑 and a truth value 𝑡 ∈ 𝔹4 into a PCTL* state formula 𝜑𝑡 such that
𝑉(𝑠, 𝜑) ⪰ 𝑡 iff , 𝑠 ⊧ 𝜑𝑡 for all DTMCs and all states 𝑠 of . This
is in line with previous work on LTL [2], CTL* [6], and ATL* [7].

As we have 𝑉(𝑠, 𝜑) ⪰ 0000 for all state formulas 𝜑, we define 𝜑0000
to be some tautology (say 𝑝 ∨ ¬𝑝) and only consider 𝑡 ≻ 0000 in the
following. We start with atomic propositions and define 𝑝𝑡 = 𝑝. The
translation for Boolean connectives is the same for state and path for-

mulas. So, to avoid duplication, 𝜒 ranges in the following over state and
path formulas.

• (¬𝜒)𝑡 = ¬𝜒𝑡,
• (𝜒1 ∨ 𝜒2)𝑡 = (𝜒1)𝑡 ∨ (𝜒2)𝑡 and (𝜒1 ∧ 𝜒2)𝑡 = (𝜒1)𝑡 ∧ (𝜒2)𝑡,
• (𝜒1 → 𝜒2)1111 =

⋀
𝑡⪰0000(𝜒2)𝑡 ∨ ¬(𝜒1)𝑡, and

• (𝜒1 → 𝜒2)𝑡 = (𝜒1 → 𝜒2)1111 ∨ (𝜒2)𝑡 for 𝑡 ≺ 1111.

Next, we define (∼𝜆(Φ))𝑡 = ∼𝜆(Φ𝑡) and consider the temporal opera-

tors:

• (Φ)𝑡 = Φ𝑡 and (Φ)𝑡 = Φ𝑡,
• (Φ)1111 = Φ1111, (Φ)0111 = Φ0111, (Φ)0011 = Φ0011,

and (Φ)0001 = Φ0001,

• (Φ UΨ)𝑡 =Φ𝑡UΨ𝑡,
• (Φ RΨ)1111 = Φ1111 RΨ1111, (Φ RΨ)0111 = Ψ0111 ∨ Φ1111,

and (Φ RΨ)0011 = Ψ0011∨ Φ1111, and (Φ RΨ)0001 = Ψ0001∨
Φ1111.

An induction over the construction of 𝜑 shows that 𝜑𝑡 has the desired
properties.

4.2. Model-checking

The model-checking problem for rPCTL* is defined as for rPCTL:
Given a DTMC with initial state 𝑠𝐼 , an rPCTL* state formula 𝜑, and
a truth value 𝑡∗ ∈ 𝔹4, is 𝑉(𝑠, 𝜑) ⪰ 𝑡∗? It is PSpace-complete, as is the
PCTL* model-checking problem [9,15], i.e., robustness comes again for
free. This result follows directly from the fact that rPCTL* can be (in
polynomial time) translated into PCTL* and follows previous results on
robust CTL* [6] and robust ATL* [7].

Theorem 3. rPCTL* model-checking is PSpace-complete.

Proof. The result follows immediately from Theorem 2 and the PSpace-

completeness of PCTL* model-checking.

5. Related work

There is a plethora of work on the verification of probabilistic sys-

tems and on robustifying verification. Due to space restrictions, we focus
here on the intersection of these two areas, which is our concern in this
work.

A major challenge in the modelling of probabilistic systems is the fact
that determining exact transition probabilities is often impossible. In-

stead one resorts to statistical analyses of the system, which comes with
uncertainties.2 However, verification results are often highly sensitive
to changes in the transition probabilities, i.e., modelling and verifica-

tion are not robust to those changes. Hence, a large body of work is
concerned with capturing uncertainty in probabilistic systems and their
subsequent verification.

Various types of uncertain transition functions for Markov chains
have been introduced, e.g., interval bounded DTMCs [16] where only

2 In fact, even the work introducing PCTL* considered models with unknown

transition probabilities [9].

Information Processing Letters 188 (2025) 106522M. Zimmermann

upper and lower bounds on the transition probabilities are specified,
and convex MDPs, Markov decision processes with convex uncertain-

ties [17], and robust MDPs with rectangular ambiguity sets [18,19].
However, there are uncertainties beyond the transition probabilities,
e.g., in the form of partial observability and adversarial behaviour. A
recent position paper by Badings et al. [20] gives a thorough overview
of the state-of-the-art in decision making under uncertainty, presenting
a survey of uncertainty models that enable more robust modelling and
verification. Finally, other approaches to handling uncertainty include
simulation [21,22] and approximation [23].

6. Conclusion

We have shown how to robustify PCTL and PCTL*, obtaining the log-

ics rPCTL and rPCTL*. The model-checking problems for these robust
logics are as hard as the model-checking problems for the non-robust
variants, i.e., robustness can be added for free. This is in line with pre-

vious work on robust variants of LTL [1] and its extensions [5], as well
as CTL and CTL* [6], and ATL and ATL* [7].

Probably the most interesting problem left for future work concerns
the expressiveness of rPCTL and PCTL. Note that in the non-probabilistic
setting, it is known that rCTL is strictly more expressive than CTL [6, Sec-

tion 3.3]. However, as discussed in Subsection 3.1, it is unclear whether
this separation can be lifted to the probabilistic setting.

CRediT authorship contribution statement

Martin Zimmermann: Writing – review & editing, Writing – original
draft, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

We want to thank Marco Muñiz for proposing to study rPCTL and
rPCTL* and for many fruitful discussions, as well as the reviewers for
their valuable feedback.

This work was supported by DIREC – Digital Research Centre Den-

mark.

References

[1] T. Anevlavis, M. Philippe, D. Neider, P. Tabuada, Being correct is not enough: effi-

cient verification using robust linear temporal logic, ACM Trans. Comput. Log. 23
(2022) 8:1–8:39.

[2] P. Tabuada, D. Neider, Robust linear temporal logic, in: J. Talbot, L. Regnier (Eds.),
CSL 2016, in: LIPIcs, vol. 62, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016, pp. 10:1–10:21.

[3] S.P. Nayak, D. Neider, M. Zimmermann, Robustness-by-construction synthesis:
adapting to the environment at runtime, in: T. Margaria, B. Steffen (Eds.), ISoLA
2022, Part I, in: LNCS, vol. 13701, Springer, 2022, pp. 149–173.

[4] C. Mascle, D. Neider, M. Schwenger, P. Tabuada, A. Weinert, M. Zimmermann, From
LTL to rLTL monitoring: improved monitorability through robust semantics, Form.
Methods Syst. Des. 59 (2021) 170–204.

[5] D. Neider, A. Weinert, M. Zimmermann, Robust, expressive, and quantitative linear
temporal logics: pick any two for free, Inf. Comput. 285 (2022) 104810.

[6] S.P. Nayak, D. Neider, R. Roy, M. Zimmermann, Robust computation tree logic,
Innov. Syst. Softw. Eng. (2024), https://doi .org /10 .1007 /s11334 -024 -00552 -7, in
press.

[7] A. Murano, D. Neider, M. Zimmermann, Robust alternating-time temporal logic, in:
S.A. Gaggl, M.V. Martinez, M. Ortiz (Eds.), JELIA, in: LNCS, vol. 14281, Springer,
2023, pp. 796–813.

[8] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Form. Asp.
Comput. 6 (1994) 512–535.

[9] A. Aziz, V. Singhal, F. Balarin, It usually works: the temporal logic of stochastic sys-

tems, in: P. Wolper (Ed.), CAV 1995, in: LNCS, vol. 939, Springer, 1995, pp. 155–165.

[10] A. Klenke, Probability Theory - a Comprehensive Course, Universitext, Springer,
2008.

[11] E. Grädel, W. Thomas, T. Wilke (Eds.), Automata, Logics, and Infinite Games: A Guide
to Current Research, LNCS, vol. 2500, Springer, 2002.

[12] C. Baier, J. Katoen, Principles of Model Checking, MIT Press, 2008.

[13] M. Chodil, A. Kucera, The general and finite satisfiability problems for PCTL are
undecidable, arXiv :2404 .10648, 2024.

[14] C. Baier, S. Kiefer, J. Klein, D. Müller, J. Worrell, Markov chains and unambiguous
automata, J. Comput. Syst. Sci. 136 (2023) 113–134.

[15] M.Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program
verification (preliminary report), in: LICS 1986, IEEE Computer Society, 1986,
pp. 332–344.

[16] K. Sen, M. Viswanathan, G. Agha, Model-checking Markov chains in the presence of
uncertainties, in: H. Hermanns, J. Palsberg (Eds.), TACAS 2006, in: LNCS, vol. 3920,
Springer, 2006, pp. 394–410.

[17] A. Puggelli, W. Li, A.L. Sangiovanni-Vincentelli, S.A. Seshia, Polynomial-time ver-

ification of PCTL properties of MDPs with convex uncertainties, in: N. Sharygina,
H. Veith (Eds.), CAV 2013, in: LNCS, vol. 8044, Springer, 2013, pp. 527–542.

[18] G.N. Iyengar, Robust dynamic programming, Math. Oper. Res. 30 (2005) 257–280.

[19] A. Nilim, L.E. Ghaoui, Robust control of Markov decision processes with uncertain
transition matrices, Oper. Res. 53 (2005) 780–798.

[20] T.S. Badings, T.D. Simão, M. Suilen, N. Jansen, Decision-making under uncertainty:
beyond probabilities, Int. J. Softw. Tools Technol. Transf. 25 (2023) 375–391.

[21] P. Ashok, J. Kretínský, M. Weininger, PAC statistical model checking for Markov
decision processes and stochastic games, in: I. Dillig, S. Tasiran (Eds.), CAV 2019,
Part I, in: LNCS, vol. 11561, Springer, 2019, pp. 497–519.

[22] W. Wiesemann, D. Kuhn, B. Rustem, Robust Markov decision processes, Math. Oper.
Res. 38 (2013) 153–183.

[23] M. Jaeger, G. Bacci, G. Bacci, K.G. Larsen, P.G. Jensen, Approximating Euclidean by
imprecise Markov decision processes, in: T. Margaria, B. Steffen (Eds.), ISoLA 2020,
Part I, in: LNCS, vol. 12476, Springer, 2020, pp. 275–289.
6

http://refhub.elsevier.com/S0020-0190(24)00052-8/bib6D872719DF0B868D5611B30B4A5D2635s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib6D872719DF0B868D5611B30B4A5D2635s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib6D872719DF0B868D5611B30B4A5D2635s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib9DF4974253F2E7D16C430F54EB9F7F1Cs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib9DF4974253F2E7D16C430F54EB9F7F1Cs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib9DF4974253F2E7D16C430F54EB9F7F1Cs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib3EAF555FAAEEBBF54536CD6C4ADED7BBs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib3EAF555FAAEEBBF54536CD6C4ADED7BBs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib3EAF555FAAEEBBF54536CD6C4ADED7BBs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibB4A619251C5C397F26D05C9B0E7BF97As1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibB4A619251C5C397F26D05C9B0E7BF97As1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibB4A619251C5C397F26D05C9B0E7BF97As1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib9740B9795FBE639423BB9EB6F1EA58EAs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib9740B9795FBE639423BB9EB6F1EA58EAs1
https://doi.org/10.1007/s11334-024-00552-7
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib0C8036335359C7797D87931DEF35B7BFs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib0C8036335359C7797D87931DEF35B7BFs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib0C8036335359C7797D87931DEF35B7BFs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib764143E2B159962086DB768FE0544AB1s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib764143E2B159962086DB768FE0544AB1s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibF284EC94B9BAFDAF02A3928269B5FF9Bs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibF284EC94B9BAFDAF02A3928269B5FF9Bs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibEAC042BCA1C76EEFFED50A9C13A0C00As1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibEAC042BCA1C76EEFFED50A9C13A0C00As1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibA6AA2DEE95AFCCB06F85436AFFD3F586s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibA6AA2DEE95AFCCB06F85436AFFD3F586s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib7E7EC59D1F4B21021577FF562DC3D48Bs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib5E007EEDFE09FC8BAB98653AB9514B3Bs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib5E007EEDFE09FC8BAB98653AB9514B3Bs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibA370E1E3D32B3B78C1CF6ABC85526822s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibA370E1E3D32B3B78C1CF6ABC85526822s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib918DC27E8D5A3C0FF9F0D5F349EDD58Fs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib918DC27E8D5A3C0FF9F0D5F349EDD58Fs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib918DC27E8D5A3C0FF9F0D5F349EDD58Fs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib7B845F06880661F41B6F0E2BA34AE277s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib7B845F06880661F41B6F0E2BA34AE277s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib7B845F06880661F41B6F0E2BA34AE277s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib0F779F2554529718D87D82A4B2EDEF1Fs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib0F779F2554529718D87D82A4B2EDEF1Fs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib0F779F2554529718D87D82A4B2EDEF1Fs1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibA2B2FECE979765A59BA798DFC51DA2C0s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib31B0EF470466B4DC81D586CE31899B18s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib31B0EF470466B4DC81D586CE31899B18s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibAC4B746DA0C76305D2844538BD204135s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibAC4B746DA0C76305D2844538BD204135s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibC27AA30BA3F0201E787D28CCAAA86107s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibC27AA30BA3F0201E787D28CCAAA86107s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bibC27AA30BA3F0201E787D28CCAAA86107s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib624DCB6AF405A6DA8F0391CB4A511947s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib624DCB6AF405A6DA8F0391CB4A511947s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib7D9EB0B2A13E3AC679EF3C0D9A05D7D1s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib7D9EB0B2A13E3AC679EF3C0D9A05D7D1s1
http://refhub.elsevier.com/S0020-0190(24)00052-8/bib7D9EB0B2A13E3AC679EF3C0D9A05D7D1s1

	Robust probabilistic temporal logics
	1 Introduction
	2 Preliminaries
	3 Robust PCTL
	3.1 Expressiveness
	3.2 Model-checking

	4 Robust PCTL∗
	4.1 Expressiveness
	4.2 Model-checking

	5 Related work
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

