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We robustify PCTL and PCTL∗, the most important specification languages for probabilistic systems, and show 
that robustness does not increase the complexity of their model-checking problems.
1. Introduction

Specifications of reactive systems are typically implications 𝜑𝑎 → 𝜑𝑔
where 𝜑𝑎 is an environment assumption and 𝜑𝑔 is a system guaran-

tee, both specified in a temporal logic. Such a specification is satisfied 
whenever the assumption is violated, independently of the system’s be-

haviour. Assume, for example, that both the assumption and the guar-

antee are invariants 𝜑𝑎 = 𝜓𝑎 and 𝜑𝑔 = 𝜓𝑔 for propositional formu-

las 𝜓𝑔 and 𝜓𝑎. Then, the specification 𝜓𝑎 → 𝜓𝑔 is satisfied if the 
formula 𝜓𝑎 is violated just once, even if the formula 𝜓𝑔 never holds. 
Such a behaviour is clearly undesirable, but the classical semantics of 
temporal logics are not sufficiently robust to deal with violations of the 
environment assumption.

Considerable effort has been put into overcoming this “defect” to 
provide robust semantics for temporal logics. However, the notion of 
robustness is hard to formalize, which is witnessed by the plethora of 
incomparable notions of robustness in the literature on verification (see, 
e.g., the introduction of [1] for a recent overview). Here, we further de-

velop an approach due to Tabuada and Neider based on a novel, robust 
semantics for temporal logics, originally introduced for Linear Tempo-

ral Logic (LTL) [2]. They argue that there are four canonical degrees a 
formula of the form 𝜓 can be violated:

1. 𝜓 is violated only finitely often.

2. 𝜓 is violated infinitely often, but also holds infinitely often.

3. 𝜓 is satisfied only finitely often.

4. 𝜓 is never satisfied.

Note that there is a natural order between these cases. Consequently, 
their robust semantics uses five truth values, one for satisfaction and four 
more to capture the four degrees of violation. Furthermore, Tabuada 

and Neider defined the semantics of implication such that 𝜓𝑎 → 𝜓𝑔
is satisfied whenever the degree of violation of the guarantee 𝜓𝑔 is 
not more severe than the violation of the assumption 𝜓𝑔 . Thus, the 
semantics indeed robustly handles violations of environment assump-

tions.

The resulting logic, called robust LTL (rLTL), has been extensively 
studied with very encouraging results: robustness can be added with-

out increasing the complexity of model-checking and synthesis [1–3], 
robust semantics increases the usefulness of runtime monitoring [4], 
and rLTL can even be extended with increased expressiveness or tim-

ing constraints, again without an increase in complexity [5]. This ap-

proach towards robustness even extends to other temporal logics, e.g., 
branching-time logics like CTL and CTL* [6] and alternating-time logics 
like ATL and ATL* [7], where robustness can again be added without 
increasing the complexity of the most important verification problems.

Beyond the fact that this form of robustness comes for free (in terms 
of computational complexity), it only changes the semantics of the log-

ics, but not the syntax. Furthermore, these logics are also evaluated over 
classical transition systems with the classical binary satisfaction relation 
for atomic propositions, i.e., robustness does not emerge from multi-

valued semantics of the models (which might be hard to determine), 
but purely from the semantics. These aspects allow for a smooth transi-

tion from classical semantics to robust semantics for temporal logics. In 
conclusion, Tabuada and Neider introduced a natural and lightweight 
approach to add robustness that is applicable to a wide range of logics.

However, these logics capture only robustness in the temporal di-

mension, i.e., they are concerned with a single execution. Statements 
like “99% of the executions answer each request eventually” require 
robustness in terms of the whole set of executions, which is orthogo-

nal to the capabilities of the robust logics studied thus far. To express 
such specifications, Hansson and Jonsson introduced probabilistic CTL 
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(PCTL) [8], while Aziz, Singhal, and Balarin introduced probabilistic 
CTL* (PCTL*) [9]. PCTL and PCTL* replace the existential and uni-

versal quantification over paths in CTL and CTL* by the probabilistic 
operator 𝐼 (Φ), where 𝐼 ⊆ [0, 1] is an interval with rational endpoints 
and Φ is a property of paths. Intuitively, 𝐼 (Φ) is satisfied in a state 𝑠

if the probability that a path starting in 𝑠 satisfies Φ is in the inter-

val 𝐼 . As CTL, PCTL requires each temporal operator to be preceded 
by a  while PCTL* (as CTL*) allows arbitrary nesting of Boolean con-

nectives, temporal operators, and  . For example, the property “99% 
of the executions answer each request eventually” is expressed by the 
PCTL* formula ≥.99( (𝑞→ 𝑝)), where 𝑞 represents a request and 𝑝
a response.

In this work, we further the study of robust semantics for tempo-

ral logics a la Tabuada and Neider by robustifying PCTL and PCTL*, 
obtaining the logics rPCTL and rPCTL*. In line with the design goals 
of the approach, the robust variants have (essentially) the same syntax 
as the non-robust variants and are evaluated over the same structures, 
simplifying the transition from the non-robust to the robust setting. The 
semantics of rPCTL and rPCTL* also follow the blueprint, i.e., they are 
five-valued employing the four degrees of violation described above. 
This simplifies the transition from robust semantics for linear, branch-

ing, and alternating time to the robust probabilistic setting.

As our main contribution, we show that this robustification comes 
again for free: the automata-based model-checking algorithms for rPCTL 
and rPCTL* can be generalized to the robust semantics. This result is in 
line with those on the robust temporal logics studied thus far, once more 
showing the versatility of robustness a la Tabuada and Neider.

2. Preliminaries

We denote the set of non-negative integers by ℕ. Throughout the 
paper, we fix a finite set 𝐴𝑃 of atomic propositions we use to label our 
models and to build our formulas. For algorithmic purposes, we assume 
that all probabilities used in the following are rational.

A discrete-time Markov chain (DTMC)  = (𝑆, 𝑠𝐼 , 𝛿, 𝓁) consists of a 
finite set 𝑆 of states containing the initial state 𝑠𝐼 , a (stochastic) transi-

tion function 𝛿∶ 𝑆×𝑆 → [0, 1] satisfying 
∑
𝑠′∈𝑆 𝛿(𝑠, 𝑠′) = 1 for all 𝑠 ∈ 𝑆 , 

and a labelling function 𝓁∶ 𝑆 → 2𝐴𝑃 . The size || of  is defined as ∑
𝑠,𝑠′∈𝑆 |𝛿(𝑠, 𝑠′)|, where |𝑝| denotes the length of the binary encoding of 

𝑝 ∈ℚ.

A path of  is an infinite sequence 𝜋 = 𝑠0𝑠1𝑠2⋯ ∈ 𝑆𝜔 such that 
𝛿(𝑠𝑛, 𝑠𝑛+1) > 0 for all 𝑛 ∈ ℕ. We say that 𝜋 starts in 𝑠0. For 𝑛 ∈ ℕ, we 
write 𝜋(𝑛) = 𝑠𝑛 for the 𝑛-th state of 𝜋 and 𝜋[𝑛, ∞) = 𝑠𝑛𝑠𝑛+1𝑠𝑛+2⋯ for 
the suffix of 𝜋 starting at position 𝑛. We write Π(, 𝑠) for the set of all 
paths of  starting in 𝑠 ∈ 𝑆 and define Π() =

⋃
𝑠∈𝑆 Π(, 𝑠).

The probability measure 𝜇𝑠 on sets of paths starting in some state 𝑠 ∈
𝑆 is defined as usual: Fix some non-empty path prefix 𝜌 = 𝑠0⋯ 𝑠𝑛. The 
probability of the cylinder set 𝐶𝜌 = {𝜋 ∈Π(, 𝑠) ∣ 𝜌 is a prefix of 𝜋} is

𝜇𝑠(𝐶𝜌) =

{
0 if 𝑠0 ≠ 𝑠,∏𝑛−1
𝑗=0 𝛿(𝜌(𝑗), 𝜌(𝑗 + 1)) if 𝑠0 = 𝑠.

Using Carathéodory’s extension theorem, we lift 𝜇𝑠 to a measure on 
the 𝜎-algebra induced by the cylinder sets of path prefixes starting in 𝑠
(see, e.g., [10, Theorem 1.41] for details. All sets of paths used in the 
following are 𝜔-regular (see, e.g., [11, Chapter 1] for background on 
𝜔-regular languages) and therefore measurable.

3. Robust PCTL

In this section, we robustify PCTL [8]. Following the general de-

sign goals of the robustification a la Tabuada and Neider, robust PCTL 
(rPCTL) and PCTL share the same syntax (but for the dots to distinguish 
them), i.e., the formulas of rPCTL are given by the grammar
2

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧𝜑 ∣ 𝜑 ∨𝜑 ∣ 𝜑→ 𝜑 ∣
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∼𝜆( 𝜑) ∣ ∼𝜆( 𝜑) ∣ ∼𝜆( 𝜑) ∣ ∼𝜆(𝜑U𝜑) ∣ ∼𝜆(𝜑R𝜑)

where 𝑝 ranges over 𝐴𝑃 , ∼ ∈ {<, ≤, =, ≥, >}, and 𝜆 ∈ [0, 1] is a ratio-

nal probability threshold. The size |𝜑| of a formula 𝜑 is defined as the 
number of subformulas of 𝜑 plus the maximal length |𝜆| of the binary 
encodings of the thresholds 𝜆 ∈ ℚ appearing in 𝜑. Note that we have 
all Boolean operators in the grammar, as the semantics of negation is 
non-classical and implication cannot be derived from negation and dis-

junction. This is due to the five-valued robust semantics (see [2, Section 
3.3] for a detailed discussion). For didactic reasons, we also prefer to 
explicitly have the operators eventually ( ) and always ( ) as they al-

ready capture the essence of the robust semantics. The robust semantics 
of until (U) and release (R) then generalize these.

Again, following the design goals of the robustification a la Tabuada 
and Neider, rPCTL is evaluated over the same structures as PCTL, i.e., 
over discrete-time Markov chains. Let  = (𝑆, 𝑠𝐼 , 𝛿, 𝓁) be a DTMC. 
The semantics of rPCTL is defined via an evaluation function 𝑉 map-

ping a vertex 𝑠 of  and a formula 𝜑 to a truth value in the (or-

dered) set 𝔹4 = {1111 ≻ 0111 ≻ 0011 ≻ 0001 ≻ 0000}. Given a truth 
value 𝑡 = 𝑏1𝑏2𝑏3𝑏4 ∈ 𝔹4, we write 𝑡[𝑘] for 𝑏𝑘.

The evaluation function is defined inductively via

• 𝑉(𝑠, 𝑝) =

{
1111 if 𝑝 ∈ 𝓁(𝑠),
0000 if 𝑝 ∉ 𝓁(𝑠),

• 𝑉(𝑠, ¬𝜑) =

{
1111 if 𝑉(𝑠,𝜑) ≺ 1111,
0000 if 𝑉(𝑠,𝜑) = 1111,

• 𝑉(𝑠, 𝜑0 ∧𝜑1) =min(𝑉(𝑠, 𝜑0), 𝑉(𝑠, 𝜑1)),
• 𝑉(𝑠, 𝜑0 ∨𝜑1) =max(𝑉(𝑠, 𝜑0), 𝑉(𝑠, 𝜑1)),

• 𝑉(𝑠, 𝜑0 → 𝜑1) =

{
1111 if 𝑉(𝑠,𝜑0) ⪯ 𝑉(𝑠,𝜑1),
𝑉(𝑠,𝜑1) if 𝑉(𝑠,𝜑0) ≻ 𝑉(𝑠,𝜑1),

• 𝑉(𝑠, ∼𝜆( 𝜑)) = 𝑏1𝑏2𝑏3𝑏4 ∈ 𝔹4 where for all 𝑘 ∈ {1, 2, 3, 4}: 𝑏𝑘 =
1 iff 𝜇𝑠({𝜋 ∈Π(, 𝑠) ∣ 𝑉(𝜋(1), 𝜑)[𝑘] = 1}) ∼ 𝜆,

• 𝑉(𝑠, ∼𝜆( 𝜑)) = 𝑏1𝑏2𝑏2𝑏4 ∈ 𝔹4 where for all 𝑘 ∈ {1, 2, 3, 4}: 𝑏𝑘 =
1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[𝑘] = 1 for some 𝑛 ∈ ℕ}) ∼ 𝜆, 
and

• 𝑉(𝑠, ∼𝜆( 𝜑)) = 𝑏1𝑏2𝑏3𝑏4 ∈ 𝔹4 with

– 𝑏1 = 1 iff 𝜇𝑠({𝜋 ∈Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[1] = 1 for all 𝑛 ∈ℕ}) ∼
𝜆,

– 𝑏2 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[2] = 1 for all but

finitely many 𝑛 ∈ ℕ}) ∼ 𝜆,

– 𝑏3 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[3] = 1 for infinitely

many 𝑛 ∈ ℕ}) ∼ 𝜆,

– 𝑏4 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜑))[4] = 1 for some 𝑛 ∈
ℕ}) ∼ 𝜆,

• 𝑉(𝑠, ∼𝜆(𝜑 U𝜓)) = 𝑏1𝑏2𝑏2𝑏4 ∈ 𝔹4 where for all 𝑘 ∈ {1, 2, 3, 4}: 
𝑏𝑘 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ there exists 𝑛 ∈ ℕ s.t. (𝑉(𝜋(𝑛),
𝜓))[𝑘] = 1 and (𝑉(𝜋(𝑛′), 𝜑))[𝑘] = 1 for all 𝑛′ < 𝑛}) ∼ 𝜆, and

• 𝑉(𝑠, ∼𝜆(𝜑 R𝜓)) = 𝑏1𝑏2𝑏3𝑏4 ∈ 𝔹4 with

– 𝑏1 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ for all 𝑛 ∈ ℕ (𝑉(𝜋(𝑛), 𝜓))[1] =
1 or (𝑉(𝜋(𝑛), 𝜑))[1] = 1 some 𝑛′ < 𝑛}) ∼ 𝜆,

– 𝑏2 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜓))[2] = 1 for all but

finitely many 𝑛 ∈ ℕ or (𝑉(𝜋(𝑛), 𝜑))[2] = 1 some 𝑛 ∈ ℕ}) ∼ 𝜆,

– 𝑏3 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜓))[3] = 1 for infinitely

many 𝑛 ∈ ℕ or (𝑉(𝜋(𝑛), 𝜑))[3] = 1 some 𝑛′ < 𝑛}) ∼ 𝜆, and

– 𝑏4 = 1 iff 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ (𝑉(𝜋(𝑛), 𝜓))[4] = 1 for some 𝑛 ∈
ℕ or (𝑉(𝜋(𝑛), 𝜑))[4] = 1 some 𝑛′ < 𝑛}) ∼ 𝜆.

Here, the cases for Boolean connectives and temporal operators fol-

low the blueprint introduced by Tabuada and Neider for rLTL (which 
also have been used for the robust variants of CTL, CTL*, ATL, and 
ATL*). For a detailed motivation and description, we refer to [2, Sec-

tion 3]. On the other hand, the semantics of  generalizes the classical 
two-valued semantics of PCTL to five truth values, just as the path quan-
tifiers in robust CTL [6] generalizes the path quantifiers of CTL and the 
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strategy quantifier of robust ATL [7] generalizes the strategy quantifier 
of ATL.

Example 1. Consider the formula 𝜑 = ≥.9( 𝑎) → ≥.95( 𝑔) express-

ing a robust assume-guarantee property. Assume 𝜑 evaluates to 1111
and consider the following cases:

• Assume ≥.9( 𝑎) evaluates to 1111, i.e., with probability ≥ .9, 𝑎
holds at every position of a path. Then, by the semantics of the 
implication, with probability ≥ .95, 𝑔 holds at every position.

• Assume ≥.9( 𝑎) evaluates to 0111, i.e., with probability ≥ .9, 𝑎
holds at all but finitely many positions of a path (but not at every

position of a path with probability ≥ .9). Then, by the semantics of 
the implication, with probability ≥ .95, 𝑔 holds at least at all but 
finitely many positions.

• Similar arguments hold for the truth values 0011 and 0001: Assume 
with probability ≥ .9, 𝑎 holds infinitely often (𝑎 holds at least once). 
Then, with probability ≥ .95, 𝑔 holds infinitely often) (𝑔 holds at 
least once).

Thus, the semantics of 𝜑 ensures that a violation of the assumption 𝑎

is met with (at most) a proportional violation of the guarantee 𝑔.

But we can even derive useful information if 𝜑 does not evaluate 
to 1111. Assume, 𝜑 evaluates to 𝑡 ≺ 1111. This can only be the case if 
the assumption ≥.9( 𝑎) evaluates to some truth value strictly smaller 
than 𝑡 and the guarantee ≥.95( 𝑔) evaluates to 𝑡. Hence, even if the 
implication does not hold, it still yields the degree of satisfaction of the 
guarantee.

The above example shows that the robust semantics does indeed cap-

ture the intuition described in the introduction.

3.1. Expressiveness

In this section, we discuss the expressiveness of rPCTL; in particular, 
we compare it to the expressiveness of PCTL.

Our first result shows that rPCTL is at least as expressive as PCTL. It 
follows directly from the design goals of the robust semantics: they are 
defined such the first bit represents standard (non-robust) semantics.

Note that the restriction to implication-free formulas is just technical, 
as implications 𝜑 → 𝜓 in PCTL formulas can always be rewritten as ¬𝜑 ∨
𝜓 . The need for the implication-removal stems from the fact that robust 
implication does not generalize classical implication [4, Footnote 3].

Lemma 1. Let 𝜑 be a PCTL formula without implications, and let  be a 
DTMC with initial state 𝑠𝐼 . Then, , 𝑠𝐼 ⊧ 𝜑 iff 𝑉(𝑠𝐼 , �̇�) = 1111, where �̇�
is the rPCTL formula obtained from 𝜑 by dotting all temporal operators.

Proof. By induction over the construction of 𝜑, formalizing the fact 
that the first bit of the robust semantics captures the classical semantics 
of PCTL. This can be seen by a careful inspection of the robust seman-

tics.

Corollary 1. rPCTL is at least as expressive as PCTL.

Let us briefly discuss the other inclusion, e.g., is rPCTL strictly more 
expressive than PCTL? This is true for the non-probabilistic setting, 
where rCTL (robust CTL) is strictly more expressive than CTL [6], as 
𝑉(𝑠𝐼 , ∀ 𝑝) ⪰ 0111 holds iff 𝑝 holds at all but finitely many positions 
of every path starting in 𝑠. This property cannot be expressed in CTL [12, 
Theorem 6.21]. However, the analogous property “𝑝 holds at all but 
finitely many positions often with probability one” can be expressed 
in PCTL [12, Theorem 10.48] (when considering finite DTMCs), rely-

ing on the fact that a path ends up with probability one in a bottom 
3

strongly-connected component. We leave open the question whether 
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similar arguments are sufficient to show that rPCTL can be embedded 
into PCTL (w.r.t. finite DTMCs).

Let us conclude this section with a consequence of the embedding 
proven in Lemma 1. rPCTL satisfiability asks, given a formula 𝜑 and a 
truth value 𝑡∗ whether there is a DTMC  with initial state 𝑠𝐼 such 
that 𝑉(𝑠𝐼 , 𝜑) ⪰ 𝑡∗. PCTL satisfiability has recently been shown to be 
undecidable [13]. So, due to Lemma 1, which allows us to embed PCTL 
in rPCTL, rPCTL satisfiability is also undecidable.

3.2. Model-checking

In this section, we prove that model-checking rPCTL is not harder 
than model-checking PCTL, which is in PTime [8], i.e., robustness can be 
added for free. Formally, rPCTL model-checking is the following prob-

lem: Given a DTMC  with initial state 𝑠𝐼 , an rPCTL formula 𝜑, and a 
truth value 𝑡∗ ∈ 𝔹4, is 𝑉(𝑠𝐼 , 𝜑) ⪰ 𝑡∗?

In the following, we prove that rPCTL model-checking is not harder 
than PCTL model-checking by combining techniques developed for ro-

bustified temporal logics with a generalization of an automata-based 
model-checking algorithm for PCTL.

Theorem 1. rPCTL model-checking is in PTime.

Proof. Fix a DTMC  = (𝑆, 𝑠𝐼 , 𝛿, 𝓁) and an rPCTL formula 𝜑, and let 
cl(𝜑) denote the set of subformulas of 𝜑 (which is defined as expected). 
We show how to inductively compute the satisfaction sets

Sat(𝜓, 𝑡) = {𝑠 ∈ 𝑆 ∣ 𝑉(𝑠,𝜓) ⪰ 𝑡}

for 𝜓 ∈ cl(𝜑) and 𝑡 ∈ 𝔹4. Note that Sat(𝜓, 0000) = 𝑆 holds for all sub-

formulas 𝜓 . Hence, in the following, we only consider 𝑡 ≻ 0000. Also, 
the cases for atomic propositions and Boolean connectives are trivial, 
as they amount to Boolean combinations of already computed sets (see, 
e.g., [6]). For example, we have Sat(𝜓 ′ ∧𝜓 ′′, 𝑡) = Sat(𝜓 ′, 𝑡) ∩ Sat(𝜓 ′′, 𝑡)
and Sat(𝜓 ′ ∨ 𝜓 ′′, 𝑡) = Sat(𝜓 ′, 𝑡) ∪ Sat(𝜓 ′′, 𝑡). Hence, it only remains to 
consider subformulas 𝜓 of the form ∼𝜆( 𝜓 ′), ∼𝜆( 𝜓 ′), ∼𝜆( 𝜓 ′), 
∼𝜆(𝜓 ′ U𝜓 ′′), or ∼𝜆(𝜓 ′ R𝜓 ′′).

We begin with the next operator. Here, we have 𝑠 ∈ Sat(∼𝜆( 𝜓 ′), 𝑡)
iff

𝜇𝑠({𝜋 ∈Π(, 𝑠) ∣ 𝜋(1) ∈ Sat(𝜓 ′, 𝑡)}) =
(∑

𝑠′∈Sat(𝜓 ′ ,𝑡)
𝛿(𝑠, 𝑠′)

)
∼ 𝜆.

The value
∑
𝑠′ 𝛿(𝑠, 𝑠′) can be computed and compared to 𝜆 in polynomial 

time, as Sat(𝜓, 𝑡) has already been computed by induction hypothesis.

For the remaining temporal operators, we rely on standard automata-

theoretic characterizations of the sets of paths satisfying a temporal 
formula (see, e.g., [11, Section 1] for an introduction to automata on 
infinite words). We will then apply the following result due to Baier et 
al.: Given a DTMC , one of its states 𝑠, and an unambiguous Büchi 
automaton1 with 𝑛 states accepting a language 𝐿, the probability 𝜇𝑠(𝐿)
can be computed in polynomial time in || and 𝑛 [14, Theorem 2].

We begin by considering the always operator and then deal with 
the remaining operators, as we can reuse the machinery developed 
for the always operator to deal with them. By definition, we have 
𝑠 ∈ Sat(∼𝜆( 𝜓 ′), 𝑡) iff

• 𝑡 = 1111 and 𝜇𝑠(Safe(Sat(𝜓 ′, 1111))) ∼ 𝜆,

• 𝑡 = 0111 and 𝜇𝑠(CoBüchi(Sat(𝜓 ′, 0111))) ∼ 𝜆,

• 𝑡 = 0011 and 𝜇𝑠(Büchi(Sat(𝜓 ′, 0011))) ∼ 𝜆, and

• 𝑡 = 0001 and 𝜇𝑠(Reach(Sat(𝜓 ′, 0001))) ∼ 𝜆,

where

1 An automaton is unambiguous if it has at most one accepting run on every 

input.
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𝐒𝐚𝐟𝐞(𝑺′)

𝑆′

𝐂𝐨𝐁�̈�𝐜𝐡𝐢(𝑺′)

𝑆′ 𝑆 𝑆′

𝑆′

𝑆′

𝑆′

𝐁�̈�𝐜𝐡𝐢(𝑺′)

𝑆′ 𝑆′

𝑆′

𝑆′

𝐑𝐞𝐚𝐜𝐡(𝑺′)

𝑆′ 𝑆

𝑆′

𝐔𝐧𝐭𝐢𝐥(𝑺′ , 𝑺′′)

𝑆′ ⧵𝑆′′
𝑆′′

𝑆

𝐔𝐧𝐭𝐢𝐥(𝑺′′ , 𝑺′′ ∩𝑺′) ∪ 𝐒𝐚𝐟𝐞(𝑺′′)

𝑆′′ 𝑆′′ 𝑆

𝑆′′ ∩𝑆′ 𝑆′′

𝐂𝐨𝐁�̈�𝐜𝐡𝐢(𝑺′) ∪ 𝐑𝐞𝐚𝐜𝐡(𝑺′′)

𝑆′ ⧵𝑆′′ 𝑆 ⧵𝑆′′ 𝑆′ ⧵𝑆′′
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𝐁�̈�𝐜𝐡𝐢(𝑺′) ∪ 𝐑𝐞𝐚𝐜𝐡(𝑺′′)

𝑆′ ⧵𝑆′′ 𝑆′ ⧵𝑆′′

𝑆′ ⧵𝑆′′

𝑆′ ⧵𝑆′′

𝑆′′ 𝑆′′

𝑆

Fig. 1. The unambiguous Büchi automata for the path properties used in the rPCTL model-checking algorithm. Transitions are labelled by sets of states that represent 
all states in them (recall that 𝑆 is the set of all states while 𝑆′ and 𝑆 ′′ are subsets of 𝑆). 𝑆 ′ denotes the complement of 𝑆′ w.r.t. 𝑆 .
• Safe(𝑆′) = {𝜋 ∈Π() ∣ 𝜋(𝑛) ∈ 𝑆′ for all 𝑛 ∈ ℕ},

• CoBüchi(𝑆′) = {𝜋 ∈ Π() ∣ 𝜋(𝑛) ∈ 𝑆′ for all but finitely many 𝑛 ∈
ℕ},

• Büchi(𝑆′) = {𝜋 ∈Π() ∣ 𝜋(𝑛) ∈ 𝑆′ for infinitely many 𝑛 ∈ ℕ},

• Reach(𝑆′) = {𝜋 ∈Π() ∣ 𝜋(𝑛) ∈ 𝑆′ for some 𝑛 ∈ ℕ}.

All these sets are accepted by some unambiguous Büchi automaton with 
at most three states (see Fig. 1). As the satisfiability sets Sat(𝜓 ′, 𝑡) are 
already computed by induction assumption, we only need to compute 
𝜇𝑠(𝐿) for these languages and compare it to the given threshold 𝜆. This 
can be achieved in polynomial time as argued above.

Now, let us consider the eventually operator. By definition, we have 
𝑠 ∈ Sat(∼𝜆( 𝜓 ′), 𝑡) iff 𝜇𝑠(Reach(Sat(𝜓 ′, 𝑡))) ∼ 𝜆, which we have just 
seen how to check in polynomial time. For the until operator, we have 
𝑠 ∈ Sat(∼𝜆(𝜓 ′ U𝜓 ′′), 𝑡) iff 𝜇𝑠(Until(Sat(𝜓 ′, 𝑡), Sat(𝜓 ′′, 𝑡))) ∼ 𝜆, where

Until(𝑆′, 𝑆′′) = {𝜋 ∈Π() ∣ there is an 𝑛 ∈ℕ s.t. 𝜋(𝑛) ∈ 𝑆′′

and 𝜋(𝑛′) ∈ 𝑆′ for all 𝑛′ < 𝑛}.

There is an unambiguous Büchi automaton with two states accepting 
this language (see Fig. 1). Thus, 𝜇𝑠(Until(Sat(𝜓 ′, 𝑡), Sat(𝜓 ′′, 𝑡))) ∼ 𝜆 can 
again be checked in polynomial time.

Finally, we consider the release operator. By definition, we have 𝑠 ∈
Sat(∼𝜆(𝜓 ′ R𝜓 ′′), 𝑡) iff

• 𝑡 = 1111 and 𝜇𝑠([Until(Sat(𝜓 ′′, 1111), Sat(𝜓 ′, 1111) ∩ Sat(𝜓 ′′,

1111))] ∪ Safe(Sat(𝜓 ′′, 1111))) ∼ 𝜆,

• 𝑡 = 0111 and 𝜇𝑠(CoBüchi(Sat(𝜓 ′′, 0111) ∪ Reach(Sat(𝜓 ′, 0111)))) ∼
𝜆,

• 𝑡 = 0011 and 𝜇𝑠(Büchi(Sat(𝜓 ′′, 0011) ∪ Reach(Sat(𝜓 ′, 0011))) ∼ 𝜆, 
and

• 𝑡 = 0001 and 𝜇𝑠(Reach(Sat(𝜓 ′′, 0001) ∪ Reach(Sat(𝜓 ′, 0001))) ∼ 𝜆. 
Note that Reach(𝑆′) ∪ Reach(𝑆′′) = Reach(𝑆′ ∪ 𝑆′′) for all sets 𝑆′

and 𝑆′′, i.e., we can rely on the results for Reach shown above.

Again, all these languages are accepted by unambiguous Büchi automata 
(see Fig. 1) with at most four states, which implies that we can again 
decide 𝜇𝑠(𝐿) ∼ 𝜆 in polynomial time for these languages 𝐿.

Altogether, our algorithm inductively computes 5|cl(𝜑)| many sat-

isfaction sets, each one in polynomial time (in ||), and then checks 
whether 𝑠𝐼 ∈ Sat(𝜑, 𝑡∗). Thus, the algorithm has polynomial running 
4

time.
Again, this result is in line with previous work on robustifying tem-

poral logics: The robustification comes for free (here in terms of compu-

tational complexity of the model-checking problem) and the algorithms 
for the classical semantics can be adapted to handle the robust semantics 
as well.

4. Robust PCTL∗

In this section, we robustify PCTL* [9]. In line with the general ap-

proach, rPCTL* and PCTL* share the same syntax (but for the dots), i.e., 
the formulas of rPCTL are either state formulas or path formulas. State 
formulas are given by the grammar

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧𝜑 ∣ 𝜑 ∨𝜑 ∣ 𝜑→ 𝜑 ∣ ∼𝜆(Φ)

where 𝑝 ranges over 𝐴𝑃 , ∼ ∈ {<, ≤, =, ≥, >}, 𝜆 ∈ [0, 1] is a rational prob-

ability threshold, and Φ ranges over path formulas. Path formulas are 
given by

Φ ∶∶= 𝜑 ∣ ¬Φ ∣ Φ ∧Φ ∣ Φ ∨Φ ∣ Φ→Φ ∣ Φ ∣ Φ ∣ Φ ∣ ΦUΦ ∣ ΦRΦ

where 𝜑 ranges over state formulas. Formula size is defined as for rPCTL.

Also, rPCTL* is evaluated over discrete-time Markov chains, just as 
PCTL*. Let DTMC  = (𝑆, 𝑠𝐼 , 𝛿, 𝓁) be a DTMC. The semantics of rPCTL* 
is again defined via an evaluation function 𝑉, this time mapping a 
vertex 𝑠 of  and a state formula, or a path of  and a path formula 
to a truth value in 𝔹4.

As rPCTL* is designed to extend rPCTL, the definition of the rPCTL* 
semantics is (in some parts) very similar to that of rPCTL. This is in 
particular true for the Boolean connectives (both for state and path 
formulas), which is exactly the same as for rPCTL. However, to easily 
accommodate the arbitrary nesting of temporal operators in rPCTL*, we 
use an alternative definition of the semantics for path formulas, which 
mimics the original semantics for rLTL [2]. This follows the precedent of 
robust CTL* [6], where the semantics of path formulas is derived from 
the semantics of rLTL as well.

The rPCTL* evaluation function is defined inductively via

• 𝑉(𝑠, 𝑝) =

{
1111 if 𝑝 ∈ 𝓁(𝑠),
0000 if 𝑝 ∉ 𝓁(𝑠),

• 𝑉(𝑠, ¬𝜑) =

{
1111 if 𝑉(𝑠,𝜑) ≺ 1111,
0000 if 𝑉(𝑠,𝜑) = 1111,

• 𝑉(𝑠, 𝜑0 ∧𝜑1) =min(𝑉(𝑠, 𝜑0), 𝑉(𝑠, 𝜑1)),

• 𝑉(𝑠, 𝜑0 ∨𝜑1) =max(𝑉(𝑠, 𝜑0), 𝑉(𝑠, 𝜑1)),
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• 𝑉(𝑠, 𝜑0 → 𝜑1) =

{
1111 if 𝑉(𝑠,𝜑0) ⪯ 𝑉(𝑠,𝜑1),
𝑉(𝑠,𝜑1) if 𝑉(𝑠,𝜑0) ≻ 𝑉(𝑠,𝜑1),

• 𝑉(𝑠, ∼𝜆(Φ)) = max{𝑡 ∈ 𝔹4 ∣ 𝜇𝑠({𝜋 ∈ Π(, 𝑠) ∣ 𝑉(𝜋, Φ) ⪰ 𝑡}) ∼
𝜆} with the convention max∅ = 0000,

• 𝑉(𝜋, 𝜑) = 𝑉(𝜋(0), 𝜑),

• 𝑉(𝜋, ¬Φ) =

{
1111 if 𝑉(𝜋,Φ) ≺ 1111,
0000 if 𝑉(𝜋,Φ) = 1111,

• 𝑉(𝜋, Φ0 ∧Φ1) =min(𝑉(𝜋, Φ0), 𝑉(𝜋, Φ1)),
• 𝑉(𝜋, Φ0 ∨Φ1) =max(𝑉(𝜋, Φ0), 𝑉(𝜋, Φ1)),

• 𝑉(𝜋, Φ0 →Φ1) =

{
1111 if 𝑉(𝜋,Φ0) ⪯ 𝑉(𝜋,Φ1),
𝑉(𝑠,Φ1) if 𝑉(𝜋,Φ0) ≻ 𝑉(𝜋,Φ1),

• 𝑉(𝜋, Φ) = 𝑉(𝜋[1, ∞), Φ),
• 𝑉(𝜋, Φ) = 𝑏1𝑏2𝑏3𝑏4 with 𝑏𝑘 = max𝑛≥0(𝑉(𝜋[𝑛, ∞), Φ))[𝑘] for 

all 𝑘 ∈ {1, 2, 3, 4},

• 𝑉(𝜋, Φ) = 𝑏1𝑏2𝑏3𝑏4 with

– 𝑏1 = min𝑛≥0(𝑉(𝜋[𝑛, ∞), Φ))[1],
– 𝑏2 = max𝑚≥0(min𝑛≥𝑚 𝑉(𝜋[𝑛, ∞), Φ))[2],
– 𝑏3 = min𝑚≥0(max𝑛≥𝑚 𝑉(𝜋[𝑛, ∞), Φ))[3], and

– 𝑏4 = max𝑛≥0(𝑉(𝜋[𝑛, ∞), Φ))[4],
• 𝑉(𝜋, Φ UΨ) = 𝑏1𝑏2𝑏3𝑏4 with

𝑏𝑘 = max𝑛≥0 min{(𝑉(𝜋[𝑛, ∞), Ψ))[𝑘], min{(𝑉(𝜋[𝑛′, ∞), Φ))[𝑘] ∣
0 ≤ 𝑛′ < 𝑛}} for all 𝑘 ∈ {1, 2, 3, 4}, and

• 𝑉(𝜋, Φ RΨ) = 𝑏1𝑏2𝑏3𝑏4 with

– 𝑏1 = min𝑛′≥0 max{(𝑉(𝜋[𝑛′, ∞), Ψ))[1], max𝑛′′<𝑛′ (𝑉(𝜋[𝑛′′, ∞),
Φ))[1]},

– 𝑏2 = max𝑛≥0 min𝑛′≥𝑛max{(𝑉(𝜋[𝑛′, ∞), Ψ))[2], 
max𝑛′′<𝑛′ (𝑉(𝜋[𝑛′′, ∞), Φ))[2]},

– 𝑏3 = min𝑛≥0 max𝑛′≥𝑛max{(𝑉(𝜋[𝑛′, ∞), Ψ))[3], 
max𝑛′′<𝑛′ (𝑉(𝜋[𝑛′′, ∞), Φ))[3]}, and

– 𝑏4 = max𝑛′≥0 max{(𝑉(𝜋[𝑛′, ∞), Ψ))[4], max𝑛′′<𝑛′ (𝑉(𝜋[𝑛′′, ∞),
Φ))[4]}.

Note that while the definition of the semantics of the temporal op-

erators differs from the one for rPCTL (to easily accomodate arbitrary 
nesting of temporal operators which is not possible in rPCTL), rPCTL is 
a fragment of rPCTL*.

Example 2. Consider the formula ≥.9( 𝑎 → 𝑔), a variant of the 
assume-guarantee property of Example 1. It evaluates to the largest truth 
value 𝑡 such that 𝑎 → 𝑔 evaluates to 𝑡 with probability ≥ .9. Now, 
on a single path, 𝑎 → 𝑔 evaluates to

• 1111 if 𝑔 evaluates to a larger or equal truth value than 𝑎 and

• to 𝑡 ≺ 1111 if 𝑎 evaluates to 𝑡 and 𝑔 evaluates to a truth value 
larger than 𝑡.

4.1. Expressiveness

As usual for temporal logics that allow arbitrary nesting of temporal 
operators (e.g., LTL, CTL*, and ATL*) rPCTL* has the same expressive-

ness as its non-robust version: the first bit of the five-valued semantics of 
rPCTL* again captures the semantics of non-robust PCTL* (as per design 
goals), thereby yielding the first embedding, while arbitrary nesting of 
temporal operators allows to mimic the five-valued semantics of rPCTL* 
explicitly in non-robust PCTL*, there yielding the second embedding.

Theorem 2. rPCTL* is as expressive as PCTL*. Both translations can be 
computed in polynomial time.

Proof. The translation from PCTL* to rPCTL* is a generalization of the 
analogous result for PCTL and rPCTL (see Lemma 1): Let 𝜑 be a PCTL* 
state formula without implications, and let  be a DTMC with initial 
state 𝑠𝐼 . Then, , 𝑠𝐼 ⊧ 𝜑 iff 𝑉(𝑠𝐼 , �̇�) = 1111, where �̇� is the rPCTL* 
state formula obtained from 𝜑 by dotting all temporal operators. This is 
5

again proven by induction over the construction of 𝜑.
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For the other direction, we inductively translate an rPCTL* state for-

mula 𝜑 and a truth value 𝑡 ∈ 𝔹4 into a PCTL* state formula 𝜑𝑡 such that 
𝑉(𝑠, 𝜑) ⪰ 𝑡 iff , 𝑠 ⊧ 𝜑𝑡 for all DTMCs  and all states 𝑠 of . This 
is in line with previous work on LTL [2], CTL* [6], and ATL* [7].

As we have 𝑉(𝑠, 𝜑) ⪰ 0000 for all state formulas 𝜑, we define 𝜑0000
to be some tautology (say 𝑝 ∨ ¬𝑝) and only consider 𝑡 ≻ 0000 in the 
following. We start with atomic propositions and define 𝑝𝑡 = 𝑝. The 
translation for Boolean connectives is the same for state and path for-

mulas. So, to avoid duplication, 𝜒 ranges in the following over state and 
path formulas.

• (¬𝜒)𝑡 = ¬𝜒𝑡,
• (𝜒1 ∨ 𝜒2)𝑡 = (𝜒1)𝑡 ∨ (𝜒2)𝑡 and (𝜒1 ∧ 𝜒2)𝑡 = (𝜒1)𝑡 ∧ (𝜒2)𝑡,
• (𝜒1 → 𝜒2)1111 =

⋀
𝑡⪰0000(𝜒2)𝑡 ∨ ¬(𝜒1)𝑡, and

• (𝜒1 → 𝜒2)𝑡 = (𝜒1 → 𝜒2)1111 ∨ (𝜒2)𝑡 for 𝑡 ≺ 1111.

Next, we define (∼𝜆(Φ))𝑡 = ∼𝜆(Φ𝑡) and consider the temporal opera-

tors:

• ( Φ)𝑡 = Φ𝑡 and ( Φ)𝑡 = Φ𝑡,
• ( Φ)1111 = Φ1111, ( Φ)0111 = Φ0111, ( Φ)0011 = Φ0011, 

and ( Φ)0001 = Φ0001,

• (Φ UΨ)𝑡 =Φ𝑡UΨ𝑡,
• (Φ RΨ)1111 = Φ1111 RΨ1111, (Φ RΨ)0111 = Ψ0111 ∨ Φ1111, 

and (Φ RΨ)0011 = Ψ0011∨ Φ1111, and (Φ RΨ)0001 = Ψ0001∨
Φ1111.

An induction over the construction of 𝜑 shows that 𝜑𝑡 has the desired 
properties.

4.2. Model-checking

The model-checking problem for rPCTL* is defined as for rPCTL: 
Given a DTMC  with initial state 𝑠𝐼 , an rPCTL* state formula 𝜑, and 
a truth value 𝑡∗ ∈ 𝔹4, is 𝑉(𝑠, 𝜑) ⪰ 𝑡∗? It is PSpace-complete, as is the 
PCTL* model-checking problem [9,15], i.e., robustness comes again for 
free. This result follows directly from the fact that rPCTL* can be (in 
polynomial time) translated into PCTL* and follows previous results on 
robust CTL* [6] and robust ATL* [7].

Theorem 3. rPCTL* model-checking is PSpace-complete.

Proof. The result follows immediately from Theorem 2 and the PSpace-

completeness of PCTL* model-checking.

5. Related work

There is a plethora of work on the verification of probabilistic sys-

tems and on robustifying verification. Due to space restrictions, we focus 
here on the intersection of these two areas, which is our concern in this 
work.

A major challenge in the modelling of probabilistic systems is the fact 
that determining exact transition probabilities is often impossible. In-

stead one resorts to statistical analyses of the system, which comes with 
uncertainties.2 However, verification results are often highly sensitive 
to changes in the transition probabilities, i.e., modelling and verifica-

tion are not robust to those changes. Hence, a large body of work is 
concerned with capturing uncertainty in probabilistic systems and their 
subsequent verification.

Various types of uncertain transition functions for Markov chains 
have been introduced, e.g., interval bounded DTMCs [16] where only 

2 In fact, even the work introducing PCTL* considered models with unknown 

transition probabilities [9].
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upper and lower bounds on the transition probabilities are specified, 
and convex MDPs, Markov decision processes with convex uncertain-

ties [17], and robust MDPs with rectangular ambiguity sets [18,19]. 
However, there are uncertainties beyond the transition probabilities, 
e.g., in the form of partial observability and adversarial behaviour. A 
recent position paper by Badings et al. [20] gives a thorough overview 
of the state-of-the-art in decision making under uncertainty, presenting 
a survey of uncertainty models that enable more robust modelling and 
verification. Finally, other approaches to handling uncertainty include 
simulation [21,22] and approximation [23].

6. Conclusion

We have shown how to robustify PCTL and PCTL*, obtaining the log-

ics rPCTL and rPCTL*. The model-checking problems for these robust 
logics are as hard as the model-checking problems for the non-robust 
variants, i.e., robustness can be added for free. This is in line with pre-

vious work on robust variants of LTL [1] and its extensions [5], as well 
as CTL and CTL* [6], and ATL and ATL* [7].

Probably the most interesting problem left for future work concerns 
the expressiveness of rPCTL and PCTL. Note that in the non-probabilistic 
setting, it is known that rCTL is strictly more expressive than CTL [6, Sec-

tion 3.3]. However, as discussed in Subsection 3.1, it is unclear whether 
this separation can be lifted to the probabilistic setting.
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