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Abstract Runtime monitoring is commonly used to detect the violation of desired
properties in safety critical cyber-physical systems by observing its executions.
Bauer et al. introduced an influential framework for monitoring Linear Temporal
Logic (LTL) properties based on a three-valued semantics for a finite execution: the
formula is already satisfied by the given execution, it is already violated, or it is still
undetermined, i.e., it can still be satisfied and violated by appropriate extensions
of the given execution. However, a wide range of formulas are not monitorable
under this approach, meaning that there are executions for which satisfaction
and violation will always remain undetermined no matter how it is extended. In
particular, Bauer et al. report that 44% of the formulas they consider in their
experiments fall into this category.
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Recently, a robust semantics for LTL was introduced to capture different degrees
by which a property can be violated. In this paper we introduce a robust semantics
for finite strings and show its potential in monitoring: every formula considered by
Bauer et al. is monitorable under our approach. Furthermore, we discuss which
properties that come naturally in LTL monitoring — such as the realizability of
all truth values — can be transferred to the robust setting. We show that LTL
formulas with robust semantics can be monitored by deterministic automata, and
provide tight bounds on the size of the constructed automaton. Lastly, we report
on a prototype implementation and compare it to the LTL monitor of Bauer et al.
on a sample of examples.

Keywords Runtime Monitoring · Robust Linear Temporal Logic

1 Introduction

Runtime monitoring is nowadays routinely used to assess the satisfaction of proper-
ties of systems during their execution. To this end, a monitor, a finite-state device
that runs in parallel to the system during deployment, evaluates it with respect to
a fixed property. This is especially useful for systems that cannot be verified prior
to deployment and, for this reason, can contain hidden bugs. While it is useful to
catch and document these bugs during an execution of a system, we find that the
current approach to runtime verification based on Linear Temporal Logic (LTL) [14]
is not sufficiently informative, especially in what regards a system’s robustness.
Imagine that we are monitoring a property ϕ and that this property is violated
during an execution. In addition to be alerted to the presence of a bug, there are
several other questions we would like to have answered such as: Although ϕ was
falsified, was there a weaker version of ϕ that was still satisfied or did the system
fail catastrophically? Similarly, if we consider a property of the form ϕ→ ψ, where
ϕ is an environment assumption and ψ is a system guarantee, and the environment
violates ϕ slightly along an execution can we still guarantee that ψ is only slightly
violated?

Answering these questions requires a logical formalism for specifying properties
that provides meaning to terms such as weaker and slightly. Formalizing these
notions within temporal logic, so as to be able to reason about the robustness of a
system, was the main impetus behind the definition of robust Linear-time Temporal
Logic (rLTL) [58]. While reasoning in LTL yields a binary result, rLTL adopts
a five-valued semantics representing different shades of violation. Consider, for
example, the specification a→ b requiring that b is always satisfied provided a
is always satisfied. In LTL, if the premise a is violated in a single position of the
trace, then the specification is satisfied vacuously, eliminating all requirements on
the system regarding b. In this case, rLTL detects a mild violation of the premise
and thus allows for a mild violation of the conclusion.

While recent work covers the synthesis [58] and verification problem [5,6,58]
for rLTL, the runtime verification problem is yet to be addressed, except for a
preliminary version of the results in this paper presented in the 2020 International
Conference on Hybrid Systems: Computation and Control [47]. Since runtime
verification can only rely on finite traces by its nature, interesting theoretical
questions open up for rLTL with finite semantics. On the practical side, the very
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same reasons that make runtime verification for LTL so useful also motivate the
need for developing a finite semantics suitable for rLTL runtime verification. To
this end, we tackle the problem of evaluating a property over infinite traces based
on a finite prefix similarly to Bauer et al. [14]. If the available information is
insufficient to declare a specification violated or satisfied, the monitor reports a ?.
This concept is applied to each degree of violation of the rLTL semantics. Thus, the
rLTL monitor’s verdict consists of four three-valued bits, as the rLTL semantics
is based on four two-valued bits. Each bit represents a degree of violation of the
specification in increasing order of severity.

As an example, consider an autonomous drone that may or may not be in
a stable state1. The specification requires that it remains stable throughout the
entire mission. However, if the take-off is shaky due to bad weather, the drone
is unstable for the first couple of minutes. An LTL monitor thus jumps to the
conclusion that the specification is violated whereas an rLTL monitor only reports
a partial violation. As soon as the drone stabilizes, the LTL monitor does not
indicate any improvement while the rLTL monitor refines its verdict to also report
a partial satisfaction.

Some interesting properties that come naturally with LTL monitoring cannot
be seamlessly lifted to rLTL monitoring. While it is obvious that all three truth
values for finite trace LTL, i.e., satisfied, violated, and unknown, can be realized
for some prefix and formula, the same does not hold for rLTL. Intuitively, the
second and third bit of the rLTL monitor’s four-bit output for the property a
represent whether a eventually holds forever or whether it holds infinitely often,
respectively. Based on a prefix, a monitor cannot distinguish between these two
shades of violation, rendering some monitor outputs unrealizable.

In addition to that, we investigate how the level of informedness of an LTL
monitor relates to the one of an rLTL monitor. The first observation is that a verdict
of an LTL monitor can be refined at most once, from an unknown to either true or
false. With rLTL semantics, however, a monitor can refine its output for a given
formula up to four times. Secondly, an LTL monitor can only deliver meaningful
verdicts for monitorable [13] properties. Intuitively, a property is monitorable if
every prefix can be extended by a finite continuation that gives a definite verdict.
We adapt the definition to robust monitoring and show that neither does LTL
monitorability imply rLTL monitorability, nor vice versa.

Notwithstanding the above, empirical data suggests that rLTL monitoring
indeed provides more information than LTL monitoring: This paper presents an
algorithm synthesizing monitors for rLTL specifications. An implementation thereof
allows us to validate the approach by replicating the experiments of Bauer et al. [13].
As performance metric, we use LTL and rLTL monitorability. While 44% of the
formulas considered by Bauer et al. [13] are not LTL-monitorable, we show all
of them to be rLTL-monitorable. This indicates that rLTL monitoring is an im-
provement over LTL monitoring in terms of monitorability and complements the
theoretical results with a practical validation.

This paper is an extended version of the work presented in the 2020 International
Conference on Hybrid Systems: Computation and Control [47]. The main research
contributions are a finite trace semantics for rLTL coupled with an investigation

1 By this we mean, e.g., that the error in tracking a desired trajectory is below a certain
threshold.
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of its properties when compared to LTL, as well as an algorithm to synthesize
monitors for rLTL specifications. Our construction is doubly-exponential in the
size of the formula, showing that rLTL monitoring is no more costly than LTL
monitoring. In addition to the original work [47], this article features (i) a more
detailed discussion of the properties of our finite trace semantics for rLTL, (ii) a
new running example detailing each step of the monitor construction, (iii) a new
example illustrating the nesting of rLTL operators, (iv) refined complexity bounds
on our monitor construction, and (v) all proofs omitted from the conference paper,
which provide important additional insight into the problem of monitoring rLTL
properties.

Related Work

In runtime verification [22,35,42,49] the specification is often given in LTL [46].
While properties arguing about the past or current state of a system are always
monitorable [34], LTL can also express assumptions on the future that cannot
be validated using only a finite prefix of a word. Thus, adaptations of LTL have
been proposed which include different notions of a next step on finite words [24,
45], lifting LTL to a three- or four-valued domain [13,14], or applying predictive
measures to rule out impossible extensions of words [60].

Non-binary monitoring has also been addressed by adding quantitative measures
such as counting events [9,48]. Most notably, Bartocci et al. [10] evaluate the
“likelihood” that a satisfying or violating continuation will occur. To this end,
for a given prefix, they count how long a continuation needs to be such that
the specification is satisfied/violated; these numbers are then compared against
each other. The resulting verdict is quinary: satisfying/violating, presumably
satisfying/violating, or inconclusive. This approach is similar in nature to our work
as it assesses the degree of satisfaction or violation of a given prefix. However,
the motivation and niche of both approaches differs: Bartocci et al.’s approach
computes — intuitively speaking — the amount of work that is required to satisfy
or violate a specification, which allows for estimating the likelihood of satisfaction.
Our approach, however, focuses on measuring the extent to which a specification
was satisfied or violated.

Apart from that, monitoring tools collecting statistics [1,4,30] become increas-
ingly popular: Snort [55] is a commercial tool for rule-based network monitoring
and computing efficient statistics, Beep Beep 3 [33] is a tool based on a query lan-
guage allowing for powerful aggregation functions and statistical measures. On the
downside, these tools impose the overhead of running a heavy-weight application
on the monitored system. In contrast, we generate monitor automata out of an
rLTL formula. Such an automaton can easily and automatically be implemented on
almost any system with statically determined memory requirements and negligible
performance overhead. Similarly, the Copilot [52] framework based on synchronous
languages [16,19] transforms a specification in a declarative data-flow language
into a C implementation of a monitor with constant space and time requirements.
Lola [2,19] allows for more involved computations, also incorporating parametriza-
tion [27] and real-time capabilities [28] while retaining constant space and time
requirements.
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Another approach is to enrich temporal logics with quantitative measures such
as taking either the edit distance [37], counting the number of possible infinite
models for LTL [31,59], incorporating aggregation expressions into metric first-
order temporal logic [11], or using averaging temporal operators that quantify the
degree of satisfaction of a signal for a specification by integrating the signal w.r.t.
a constant reference signal [3].

Rather than enriching temporal logics with such strong quantitative measures,
we consider a robust version of LTL: rLTL [5,6,7,58]. Robust semantics yields
information about to which degree a trace violates a property. We adapt the
semantics to work with finite traces by allowing for intermediate verdicts. Here,
a certain degree of violation can be classified as “indefinite” and refined when
more information becomes available to the monitor. Similarly, for Signal Temporal
Logic [44,43], Fainekos et al. [25] introduced a notion of spacial robustness based
on interpreting atomic propositions over the real numbers. The sign of the real
number provides information about satisfaction/violation while its absolute value
provides information about robustness, i.e., how much can this value be altered
without changing satisfaction/violation. This approach is complementary to ours
since the notion of robustness in rLTL is related to the temporal evolution of atomic
propositions which are interpreted classically, i.e, over the Booleans. Donze et al. [21]
introduced a notion of robustness closer to rLTL in the sense that it measures
how long we need to wait for the truth value of a formula to change. For this,
Cralley et al. [18] presented a convenient toolbox, achieving high efficiency through
parallel evaluation. While the semantics of rLTL does not allow for quantifying the
exact delay needed to change the truth value of a formula, it allows for distinguishing
between the influence that different temporal evolutions, e.g., delays, persistence,
and recurrence, have on the truth value of an LTL formula. Closer to rLTL is
the work of Radionova et al. [54] (see also [57]) that established an unexpected
connection between LTL and filtering through a quantitative semantics based on
convolution with a kernel. By using different kernels, one can express weaker or
stronger interpretations of the same formula. However, this requires the user to
choose multiple kernels and to use multiple semantics to reason about how the
degradation of assumptions leads to the degradation of guarantees. In contrast, no
such choices are required in rLTL. Finally, it is worth mentioning that extensions
similar to rLTL have been proposed for other temporal logics, such as prompt LTL
and linear dynamic logic [50,51].

Another venue for robust monitoring is machine learning. Cheng [17] presents
an algorithm for generating monitors evaluating the distance between the input
of a neural net and its training data. While neural nets are prone to fragility, the
monitor is provably robust in the sense that minor input deviations invariably lead
to minor changes in the output. Similarly, Finkbeiner et al. [29] generate monitors
for medical cyber-physical systems controlled by machine learned components. Due
to the complexity of the underlying specification language, they opt for the simpler
task of analyzing the robustness of the specification instead. If the specification is
robust, then so will be the generated monitors.
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2 Robust Linear Temporal Logic

Throughout this work, we assume basic familiarity with classical LTL and refer the
reader to a textbook for more details on the logic (see, e.g., [8]). Moreover, let us fix
some finite set P of atomic propositions throughout the paper and define Σ = 2P .
We denote the set of finite and infinite words over Σ by Σ∗ and Σω, respectively.
The empty word is denoted by ε and v and @ denote the non-strict and the strict
prefix relation, respectively. Moreover, we denote the set of Booleans by B = {0, 1}.

The logics LTL and rLTL share the same syntax save for a dot superimposed
on temporal operators. More precisely, the syntax of rLTL is given by the grammar

ϕ := p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ϕ | ϕ | ϕUϕ | ϕRϕ | ϕ | ϕ,

where p ranges over atomic propositions in P and the temporal operators , U,
R, and correspond to “next”, “until”, “release”, “eventually”, and “always”,
respectively.2 The size |ϕ| of a formula ϕ is the number of its distinct subformulas.
Furthermore, we denote the set of all LTL and rLTL formulas over P by ΦLTL and
ΦrLTL, respectively.

The development of rLTL was motivated by the observation that the difference
between “minor” and “major” violations of a formula cannot be adequately described
in a two-valued semantics. If an LTL formula ϕ, for example, demands that the
property p holds at all positions of a word σ ∈ Σω, then σ violates ϕ even if p
does not hold at only a single position, a very minor violation. The semantics of
LTL, however, does not differentiate between the σ above and a σ′ in which the
property p never holds, a major violation of the property ϕ.

In order to alleviate this shortcoming, Tabuada and Neider introduced Robust
Linear-time Temporal Logic (rLTL) [58], whose semantics allows for distinguishing
various “degrees” to which a word violates a formula. More precisely, the semantics
of rLTL are defined over the set B4 = {0000, 0001, 0011, 0111, 1111} of five truth
values, each of which is a monotonically increasing sequence of four bits. We order
the truth values in B4 by 0000 < 0001 < 0011 < 0111 < 1111.

Intuitively, this order reflects increasingly desirable outcomes. If the specification
is p, the least desirable outcome, represented by 0000, is that p never holds on the
entire trace. A slightly more desirable outcome is that p at least holds sometime
but not infinitely often, which results in the value 0001. An even more desirable
outcome would be if p holds infinitely often, while also being violated infinitely
often, represented by 0011. Climbing up the ladder of desirable outcomes, the next
best one requires p to hold infinitely often while being violated only finitely often,
represented by the value 0111. Lastly, the optimal outcome fully satisfies p, so
p holds the entire time, represented by 1111. Thus, the first bit states whether
p is satisfied, the second one stands for p, the third one for p, and the

fourth one for p. If all of them are 0, ¬p holds. The robust release is defined
analogously.

The robust eventually-operator considers future positions in the trace and
returns the truth value with the least degree of violation, which is a maximization

2 Note that we include the operators ∧, →, and R explicitly in the syntax as they cannot be
derived from other operators due to the many-valued nature of rLTL. Following the original
work on rLTL [58], we also include the operators and explicitly (which can be derived
from U and R, respectively).
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with respect to the order defined above. This closely resembles the LTL definition.
The robust until is defined analogously.

Based on this, the boolean conjunction and disjunction are defined as min and
max, respectively, w.r.t. the order defined above, which generalizes the classical
definition thereof. For the implication, consider a specification a→ g, where a
is an assumption on the environment and g is a system guarantee. If the truth
value of g is greater or equal to the one of a, the implication is fully satisfied.
Thus, the rLTL semantics takes the violation of the assumption into account and
lowers the requirements on the guarantees. However, if the guarantee exhibits a
greater violation than the assumptions, the truth value of the implication is the
same as the one of the guarantee. Lastly, the intuition behind the negation is that
every truth value that is not 1111 constitutes a violation of the specification. Thus,
the negation thereof is a full satisfaction (1111). The negation of the truth value
representing a perfect satisfaction (1111) is a full violation (0000).

To introduce the semantics, we need some additional notation: For a word
σ = σ(0)σ(1)σ(2) · · · ∈ Σω and a natural number n, define σ[n,∞) = σ(n)σ(n+
1)σ(n+ 2) · · · , (i.e., as the suffix of σ obtained by removing the first n letters of
σ). To be able to refer to individual bits of an rLTL truth value β ∈ B4, we use
β[i] with i ∈ {1, . . . , 4} as to denote the i-th bit of β.

For the sake of a simpler presentation, we denote the semantics of both LTL
and rLTL not in terms of satisfaction relations but by means of valuation functions.
For LTL, the valuation function V : Σω × ΦLTL → B assigns to each infinite word
σ ∈ Σω and each LTL formula ϕ ∈ ΦLTL the value 1 if σ satisfies ϕ and the value
0 if σ does not satisfy ϕ, and is defined as usual (see, e.g., [8]). The semantics of
rLTL, on the other hand, is more complex and formalized next by an valuation
function Vr : Σ

ω × ΦrLTL → B4 mapping an infinite word σ ∈ Σω and an rLTL
formula ϕ to a truth value in B4.

– Vr(σ, p) =

{
1111 if p ∈ σ(0),
0000 if p /∈ σ(0),

– Vr(σ,¬ϕ) =

{
1111 if Vr(σ, ϕ) 6= 1111,
0000 if Vr(σ, ϕ) = 1111,

– Vr(σ, ϕ1 ∧ ϕ2) = min{Vr(σ, ϕ1), Vr(σ, ϕ2)},
– Vr(σ, ϕ1 ∨ ϕ2) = max{Vr(σ, ϕ1), Vr(σ, ϕ2)},

– Vr(σ, ϕ1→ϕ2) =

{
1111 if Vr(σ, ϕ1) ≤ Vr(σ, ϕ2),
Vr(σ, ϕ2) if Vr(σ, ϕ1) > Vr(σ, ϕ2),

– Vr(σ, ϕ) = Vr(σ[1,∞), ϕ),
– Vr(σ, ϕ) = β with β[i] = maxn≥0 Vr(σ[n,∞), ϕ)[i] for i ∈ {1, . . . , 4},
– Vr(σ, ϕ) = β with

β[1] = min
n≥0

Vr(σ[n,∞), ϕ)[1],

β[2] = max
m≥0

min
n≥m

Vr(σ[n,∞), ϕ)[2],

β[3] = min
m≥0

max
n≥m

Vr(σ[n,∞), ϕ)[3],

β[4] = max
n≥0

Vr(σ[n,∞), ϕ)[4],
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– Vr(σ, ϕ1Uϕ2) = β with

β[i] = max
n≥0

min{Vr(σ[n,∞), ϕ2)[i], min
0≤n′<n

Vr(σ[n
′,∞), ϕ1)[i]},

for i ∈ {1, . . . , 4},
– Vr(σ, ϕ1Rϕ2) = β with

β[1] = min
n≥0

max{Vr(σ[n,∞), ϕ2)[1], max
0≤n′<n

Vr(σ[n
′,∞), ϕ1)[1]},

β[2] = max
m≥0

min
n≥m

max{Vr(σ[n,∞), ϕ2)[2], max
0≤n′<n

Vr(σ[n
′,∞), ϕ1)[2]},

β[3] = min
m≥0

max
n≥m

max{Vr(σ[n,∞), ϕ2)[3], max
0≤n′<n

Vr(σ[n
′,∞), ϕ1)[3]}, and

β[4] = max
n≥0

max{Vr(σ[n,∞), ϕ2)[4], max
0≤n′<n

Vr(σ[n
′,∞), ϕ1)[4]}.

So as to not clutter this section too much, we refer the reader to the original
work by Tabuada and Neider [58] for a thorough introduction and motivation to
the preceding semantics. However, we here want to illustrate the definition above
and briefly argue that it indeed captures the intuition described at the beginning
of this section. To this end, we reconsider the formulas p, a→ g, (q→ p)
in Examples 1, 2, and 3 respectively.

Example 1 Consider the formula p and the following five infinite words over the
set P = {p} of atomic propositions:

σ1 = {p}ω (“p holds always”)
σ2 = ∅{p}ω (“p holds almost always”)
σ3 = (∅{p})ω (“p holds infinitely often”)
σ4 = {p}∅ω (“p holds finitely often”)
σ5 = ∅ω (“p holds never”)

Let us begin the example with the word σ1 = {p}ω. It is not hard to verify that
Vr(σ1, p)[1] = 1 because p always holds in σ1, i.e., minn≥0 Vr(σ[n,∞), p)[1] = 1
for n ≥ 0. Using the same argument, we also have Vr(σ1, p)[2] = Vr(σ1, p)[3] =
Vr(σ1, p)[4] = 1. Thus, Vr(σ1, p) = 1111.

As another example, consider the word σ2 = ∅{p}ω. In this case, we have
Vr(σ1, p)[1] = 0 because Vr(σ[0,∞), p)[1] = 0 (p does not hold in the first
symbol of σ2). However, Vr(σ1, p)[2] = 1 because p holds almost always, i.e.,
maxm≥0 minn≥m Vr(σ[n,∞), p)[2] = 1. Moreover, Vr(σ1, p)[3] = Vr(σ1, a)[4] =
1 and, therefore, Vr(σ2, p) = 0111. Similarly, we obtain Vr(σ3, p) = 0011,
Vr(σ4, p) = 0001, and Vr(σ5, p) = 0000.

In conclusion, this indeed illustrates that the semantics of the robust always is
in accordance with the intuition provided at the beginning of this section.

Example 2 Let us now consider the more complex formula a→ g, where we
interpret a to be an assumption on the environment of a cyber-physical system
and g one of its guarantees. Moreover, let σ be an infinite word over P = {a, g}
such that Vr(σ, a→ g) = 1111. We now distinguish various cases.

First, let us assume that σ is such that Vr(σ, a) = 1111, i.e., a always holds.
By definition of the robust implication and since Vr(σ, a→ g) = 1111, this can
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only be the case if Vr(σ, g) = 1111. Thus, the formula a→ g ensures that if
the environment assumption a always holds, so does the system guarantee g.

Next, assume that σ is such that Vr(σ, a) = 0111, i.e., a does not al-
ways hold but almost always. By definition of the robust implication and since
Vr(σ, a→ g) = 1111, this can only be the case if Vr(σ, g) ≥ 0111. In this case,
the formula a→ g ensures that if the environment assumption a holds almost
always, then the system guarantee g holds almost always or—even better—always.

It is not hard to verify that we obtain similar results for the cases Vr(σ, a) ∈
{0011, 0001, 0000}. In other words, the semantics of rLTL ensures that the violation
of the system guarantee g is always proportional to the violation of the environment
assumption a (given that Vr(σ, a→ g) evaluates to 1111). Again, this illustrates
that the semantics of the implication is in accordance with the intuition provided
at the beginning of this section.

Example 3 As a last example, let us discuss the nesting of temporal operators.
Consider the formula ϕ = (q→ p) where we interpret q as a request and p as a
response.

We have Vr(σ[n,∞), p) = 1111 if σ[n,∞) contains a response, otherwise we
have Vr(σ[n,∞), p) = 0000. Similarly, we have Vr(σ[n,∞), q→ p) = 1111 if
q ∈ σ(n) implies that σ[n,∞) contains a response. On the other hand, if q ∈ σ(n)
and σ[n,∞) does not contain a response then we have Vr(σ[n,∞), q→ p) = 0000.

From these observations, we can deduce Vr(σ, ϕ) = 1111 if every request in σ
is followed by a response, which is equivalent to the LTL formula ϕ1 = (q → p)
that expresses a request-response property. Further, we have Vr(σ, ϕ) = 0111
if and only if σ violates ϕ1 and if from some point onwards, every request in
σ is followed by a response. This is equivalent to the LTL formula ¬ϕ1 ∧ ϕ2

with ϕ2 = ( q)→ ( p), which expresses strong fairness. Similarly, we have
Vr(σ, ϕ) = 0011 if and only if σ violates ϕ2 and if for infinitely many positions,
if there is a request in σ at that position, then it is followed by a response. This
is equivalent to the LTL formula ¬ϕ2 ∧ ϕ3 with ϕ3 = ( q) → ( p), which
expresses weak fairness. Moreover, we have Vr(σ, ϕ) = 0001 if and only if σ
violates ϕ3 and if there is some position such that if there is a request in σ at
that position, then it is followed by a response. This is equivalent to the LTL
formula ¬ϕ3 ∧ ϕ4 with ϕ4 = ( q)→ ( p), which expresses a very weak notion of
fairness. Finally, we have Vr(σ, ϕ) = 0000 if and only if σ violates ϕ4.

For i ∈ {1, 2, 3}, the LTL formula ϕi implies ϕi+1. Thus, if a trace σ vio-
lates ϕi+1, it also violates ϕi. This further illustrates the monotonicity of rLTL.
This monotonicity also allows us to only require that ϕi+1 violates ϕi in the intu-
itive explanations above, instead of having to require violations of all ϕi′ with i′ ≤ i.

It is important to note that rLTL is an extension of LTL. In fact, the LTL
semantics can be recovered from the first bit of the rLTL semantics (after every
implication ϕ→ψ has been replaced with ¬ϕ ∨ ψ).3

3 It turns out that Tabuada and Neider’s original proof [58, Proposition 5] has a minor mistake.
Although the first bit of the rLTL semantics coincides with the original LTL semantics for all
formulas that do not contain implications, the formula ¬a→ a is an example witnessing
this claim is no longer correct in the presence of implications, e.g., for {a}∅ω. However, this
issue can be fixed by replacing every implication ϕ→ψ with ¬ϕ ∨ ψ. This substitution results
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Lemma 1 ([58], Proposition 5) Let ϕ be an LTL formula without implications,
and let ϕ′ be the corresponding rLTL formula (obtained by dotting all temporal
operators). Then, we have Vr(σ, ϕ′)[1] = V (σ, ϕ) for every trace σ.

To reduce the number of cases we have to consider in our inductive proofs (for
instance the one for Lemma 3), we note that the robust eventually and the robust
always operator are syntactic sugar. Formally, we say that two rLTL formulas ϕ1, ϕ2

are equivalent if Vr(σ, ϕ1) = Vr(σ, ϕ2) for every σ ∈ Σω. Now, let > = p ∨ ¬p and
⊥ = p ∧ ¬p for some atomic proposition p. Then, the robust eventually and the
robust always are, as usual, expressible in terms of the robust until and the robust
release, respectively.

Remark 1

1. ϕ and >Uϕ are equivalent.
2. ϕ and ⊥Rϕ are equivalent.

2.1 An Alternative Definition of Robust Semantics for LTL

Before we introduce rLTL monitoring, we need to introduce an alternative definition
of the semantics of rLTL, which is more convenient to prove some of the results
from Section 3. This alternative definition has been introduced in later works on
rLTL [6,5].

Definition 1 Let the function ltl : {1, . . . , 4} × ΦrLTL → ΦLTL be inductively
defined as in Table 1. The rLTL semantics is then given as the valuation function
Vr : Σ

ω × ΦrLTL → B4, where for every σ ∈ Σω, every rLTL formula ϕ, and every
i ∈ {1, . . . , 4}, the i-th bit of Vr(σ, ϕ) is defined as Vr(σ, ϕ)[i] = V

(
σ, ltl(i, ϕ)

)
(i.e.,

via the semantics of the LTL formulas ltl(i, ϕ)).

As a consequence of Lemma 1 (cf. [58], Proposition 5), we know that rLTL is
at least as expressive as LTL. The latter definition of the semantics of rLTL shows
that it is not more expressive than LTL, in the sense that for all rLTL formulas
there exist LTL formulas giving the truth values of each of the four bits. However,
it is more convenient to work with one formula of rLTL than to work with the four
LTL formulas capturing it.

A useful feature of the alternative semantics is the following property: To
determine the truth value of an rLTL formula ϕ on σ, it suffices to determine the
truth values of the LTL formulas ltl(i, ϕ) on σ. For certain formulas, ltl(i, ϕ) is
obtained from ϕ by a very simple rewriting, as shown below.

Remark 2 Let ϕ be an rLTL formula that has no always in the scope of a negation
and only uses negation, conjunction, disjunction, next, eventually, and always.
Then,

– ltl(1, ϕ) is equivalent to the formula obtained from ϕ by replacing every by
, every by , and every by ,

in an equivalent LTL formula for which the first bit of the rLTL semantics indeed coincides
with the LTL semantics.
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Table 1: The function ltl : {1, . . . , 4} × ΦrLTL → ΦLTL.

Operator Symbol Semantics (ϕ,ψ ∈ ΦrLTL)

Atomic
p ∈ P 1 ≤ i ≤ 4: ltl(i, p) = pproposition

Negation ¬ 1 ≤ i ≤ 4: ltl(i,¬ϕ) := ¬ltl(1, ϕ)

Disjunction ∨ 1 ≤ i ≤ 4: ltl(i, ϕ ∨ ψ) := ltl(i, ϕ) ∨ ltl(i, ψ)

Conjunction ∧ 1 ≤ i ≤ 4: ltl(i, ϕ ∧ ψ) := ltl(i, ϕ) ∧ ltl(i, ψ)

Implication → 1 ≤ i ≤ 3: ltl(i, ϕ→ψ) := (ltl(i, ϕ)→ ltl(i, ψ)) ∧ ltl(i+ 1, ϕ→ψ);
ltl(4, ϕ→ψ) := ltl(4, ϕ)→ ltl(4, ψ)

Robust next 1 ≤ i ≤ 4: ltl(i, ϕ) := ltl(i, ϕ)

Robust
1 ≤ i ≤ 4: ltl(i, ϕ) := ltl(i, ϕ)eventually

Robust always ltl(1, ϕ) := ltl(1, ϕ); ltl(2, ϕ) := ltl(2, ϕ);
ltl(3, ϕ) := ltl(3, ϕ); ltl(4, ϕ) := ltl(4, ϕ)

Robust until U 1 ≤ i ≤ 4: ltl(i, ϕUψ) := ltl(i, ϕ)U ltl(i, ψ)

Robust release R

ltl(1, ϕRψ) := ltl(1, ϕ)R ltl(1, ψ);
ltl(2, ϕRψ) := ltl(2, ψ) ∨ ltl(2, ϕ);
ltl(3, ϕRψ) := ltl(3, ψ) ∨ ltl(3, ϕ);
ltl(4, ϕRψ) := ltl(4, ψ) ∨ ltl(4, ϕ)

– ltl(2, ϕ) is equivalent to the formula obtained from ϕ by replacing every by
, every by , and every by ,

– ltl(3, ϕ) is equivalent to the formula obtained from ϕ by replacing every by
, every by , and every by , and

– ltl(4, ϕ) is equivalent to the formula obtained from ϕ by replacing every by
, every by , and every by .

3 Monitoring Robust LTL

In their work on LTL monitoring, Bauer et al. [14] define the problem of runtime
monitoring as “check[ing] LTL properties given finite prefixes of infinite [words]”.
More formally, given some prefix u ∈ Σ∗ and some LTL formula ϕ, it asks whether
all, some, or no infinite extension uσ ∈ Σω of u by some σ ∈ Σω satisfies ϕ. To
reflect these three possible results, the authors use the set B? = {0, ?, 1} to define
a three-valued logic that is syntactically identical to LTL, but equipped with a
semantics in form of an evaluation function Vm : Σ∗ × ΦLTL → B? over finite
prefixes. This semantics is defined such that Vm(u, ϕ) is equal to 0 (is equal to
1) if no (if every) extension uσ of u satisfies ϕ. If neither is the case, i.e., if there
is an extension of u that satisfies ϕ and there is an extension of u that does not
satisfy ϕ, then Vm(u, ϕ) is equal to ?.

We aim to extend the approach of Bauer et al. to rLTL, whose semantics is
based on truth values from the set B4 (containing the sequences of length four
in 0∗1∗). As a motivating example, let us consider the formula ϕ = s for some
atomic proposition s and study which situations can arise when monitoring this
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formula. Note that the truth value of ϕ can be obtained by concatenating the truth
values of the LTL formulas ϕ1 = s, ϕ2 = s, ϕ3 = s, and ϕ4 = s.

First, consider the empty prefix and its two extensions ∅ω and {s}ω. We have
Vr(∅ω, ϕ) = 0000 and Vr({s}ω, ϕ) = 1111. Thus, all four bits can both be equal to
0 and 1. This situation is captured by the sequence ???? which signifies that for
every position i and every bit b ∈ B, there exists an extension of ε that has bit b in
the i-th position of the truth value with respect to ϕ.

Now, consider the prefix {s} for which we have Vr({s}σ, ϕ)[4] = 1 for every
σ ∈ Σω as ϕ4 = s is satisfied on each extension of {s} (s has already occurred).
On the other hand, Vr({s}∅ω, ϕ) = 0001 and Vr({s}{s}ω, ϕ) = 1111, i.e., the first
three bits can both be 0 and 1 by picking an appropriate extension. Hence, the
situation is captured by the sequence ???1, signifying that the last bit is determined
by the prefix, but the first three are not. Using dual arguments, the sequence 0???
is used for the prefix ∅, signifying that the first bit is determined by the prefix
as every extension violates ϕ1 = s. However, the last three bits are not yet
determined by the prefix, hence the trailing ?’s.

Finally, consider the prefix {s}∅. Using the same arguments as for the previous
two prefixes, we obtain Vr({s}∅σ, ϕ)[1] = 0 and Vr({s}∅σ, ϕ)[4] = 1 for every
σ ∈ Σω. Also, as before, we have Vr({s}∅∅ω, ϕ) = 0001 and Vr({s}∅{s}ω, ϕ) = 0111.
Hence, here we obtain the sequence 0??1 signifying that the first and last bit are
determined by the prefix, but the middle two are not.

In general, we use truth values of the form 0∗?∗1∗, which follows from the fact
that the truth values of rLTL are in 0∗1∗. Hence, let B?

4 denote the set of sequences
of length four in 0∗?∗1∗. Based on B?

4, we now formally define the rLTL monitoring
semantics as a bitwise generalization of the LTL definition.

Definition 2 The semantics of the robust monitor Vmr : Σ∗ × ΦrLTL → B?
4 is

defined as Vmr (u, ϕ) = β with

β[i] =


0 if Vr(uσ, ϕ)[i] = 0 for all σ ∈ Σω;
1 if Vr(uσ, ϕ)[i] = 1 for all σ ∈ Σω; and
? otherwise,

for every i ∈ {1, . . . , 4}, every rLTL formula ϕ, and every u ∈ Σ∗.

First, let us remark that our notion of rLTL monitoring indeed refines the
notion of LTL monitoring, which follows immediately from Lemma 1.

Remark 3 Let ϕ be an LTL formula without implications, and let ϕ′ be the
corresponding rLTL formula (obtained by dotting all temporal operators). Then,
we have Vmr (u, ϕ′)[1] = Vm(u, ϕ) for every u ∈ Σ∗.

Using rLTL monitoring semantics, we are able to infer information about the
infinite run of a system after having read only a finite prefix thereof. In fact,
this robust semantics provides far more information about the degree of violation
of the specification than classical LTL monitoring as each bit of the monitoring
output represents a degree of violation of the specification: a ? turning into a 0
or 1 indicates a deterioration or improvement in the system’s state, respectively.
Consider, for instance, an autonomous drone with specification ϕ = s where s
denotes a state of stable flight (recall the motivating example on Page 11). Initially,
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Table 2: Realizable truth values. For every truth value β, the next two columns
show prefixes u and formulas ϕ such that Vmr (u, ϕ) = β, or that β is unrealizable.

Value Prefix Formula Value Prefix Formula

0000 ε a ∧ ¬a 0?11 ∅{a} a ∨ ¬a
000? ε a ∧ ¬ a 0111 ∅{a} aR a

0001 unrealizable ???? ε a

00?? ε a ∧ ¬a ???1 {a} a

00?1 ∅{a} a ∧ ¬a ??11 ε a ∨ ¬ a

0011 unrealizable ?111 ε a ∨ ¬ ¬ ¬a
0??? ∅ a 1111 ε a ∨ ¬a
0??1 ∅{a} a

the monitor would output ???? due to a lack of information. If taking off under
windy conditions, the state s is not reached initially, hence the monitor issues a
warning by producing Vmr (∅n, ϕ) = 0??? for every n > 0. Thus, the safety condition
is violated temporarily, but not irrecoverably. Hence, mitigation measures can be
initiated. Upon success, the monitoring output turns into Vmr (∅n{s}, ϕ) = 0??1 for
every n > 0, signaling that flight was stable for some time.

Before we continue, let us first state that the new semantics is well-defined, i.e.,
that the sequence β[1]β[2]β[3]β[4] in Definition 2 is indeed in B?

4.

Lemma 2 Vmr (u, ϕ) ∈ B?
4 for every rLTL formula ϕ and every u ∈ Σ∗.

Proof Let Vmr (u, ϕ)[i] = 0 and j < i. By definition of Vmr , we have Vr(uσ, ϕ)[i] = 0
for every σ ∈ Σω. Hence, due to the monotonicity of the truth values from B4 used
to define Vr, we obtain Vr(uσ, ϕ)[j] = 0 for every such σ. Hence, Vmr (u, ϕ)[j] = 0.

A dual argument shows that Vmr (u, ϕ)[i] = 1 and j > i implies Vmr (u, ϕ)[j] = 1.
Combining both properties yields Vmr (u, ϕ) ∈ 0∗?∗1∗, i.e., Vmr (u, ϕ) ∈ B?

4. ut

After having shown that every possible output of Vmr is in B?
4, the next obvious

question is whether Vmr is surjective, i.e., whether every truth value β ∈ B?
4

is realized by some prefix u ∈ Σ∗ and some rLTL formula ϕ in the sense that
Vmr (u, ϕ) = β. Recall the motivating example above: The formula s realizes at
least the following four truth values: ???? (on ε), ???1 (on {s}), 0??? (on ∅), and
0??1 (on {s}∅). It is not hard to convince oneself that these are all truth values
realized by s as they represent the following four types of prefixes that can be
distinguished: the prefix is empty (truth value ????), the prefix is in {s}+ (truth
value ???1), the prefix is in ∅+ (truth value 0???), or the prefix contains both an
{s} and an ∅ (truth value 0??1).

For most other truth values, it is straightforward to come up with rLTL formulas
and prefixes that realize them. See Table 2 for an overview and recall Remark 2,
which is applicable to all these formulas.

For others, such as 0011, it is much harder. Intuitively, to realize 0011, one needs
to find an rLTL formula ϕ and a prefix u ∈ Σ∗ such that the formula obtained by
replacing all in ϕ by is not satisfied by any extension of u, but the formula
obtained by replacing all in ϕ by is satisfied by every extension of u.4 Thus,

4 Note that this intuition breaks down in the presence of implications and negation, due to
their non-standard definitions.
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intuitively, the prefix has to differentiate between a property holding almost always
and holding infinitely often. It turns out that no such u and ϕ exist. A similar
argument is true for 0001, leading to the following theorem.

Theorem 1 All truth values except for 0011 and 0001 are realizable.

The unrealizability results for the truth values 0011 and 0001 are based on the
following technical lemma (the reader might want to skip the proof for now and
consult it at a later time).

Lemma 3 Let ϕ be an rLTL formula. Then, the following holds:

1. Vr(u∅ω, ϕ)[2] = Vr(u∅ω, ϕ)[3] for all u ∈ Σ∗.
2. Vr(uω, ϕ)[3] = Vr(u

ω, ϕ)[4] for all non-empty u ∈ Σ∗.
3. If ϕ does not contain the release operator, then Vr(uω, ϕ)[1] = Vr(u

ω, ϕ)[2] for
all non-empty u ∈ Σ∗.

Proof The proofs of all three items proceed by induction over the construction
of ϕ. The induction start and the induction steps for Boolean connectives can
be abstracted into the following closure property, which follows easily from the
original definition of Vr in Section 2:

Let T ⊆ B4 contain 0000 and 1111. If Vr(σ, ϕ1) and Vr(σ, ϕ2) are in T ,
then so are Vr(σ, p) for atomic propositions p, Vr(σ,¬ϕ1), Vr(σ, ϕ1 ∧ ϕ2),
Vr(σ, ϕ1 ∨ ϕ2), and Vr(σ, ϕ1→ϕ2).

Claim 1) The induction start and the induction step for the Boolean operators
follow from the closure property, where we pick T to be the set of truth values
from B4 whose second and third bit coincide. Furthermore, due to Remark 1, we
only have to consider the inductive steps for the next, until, and release operator.
All three cases rely on the following simple fact: A suffix u∅ω[n,∞) for some n is
again of the form u′∅ω, i.e., the induction hypothesis is applicable to suffixes. Also,
if n ≥ |u|, then u∅ω[n,∞) = ∅ω. In particular, u∅ω has only finitely many distinct
suffixes.

So, first consider a formula of the form ϕ = ϕ1. Then, we have, for an
arbitrary u ∈ Σ∗,

Vr(u∅ω, ϕ)[2] =Vr(u∅ω[1,∞), ϕ1)[2]

=Vr(u∅ω[1,∞), ϕ1)[3] = Vr(u∅ω, ϕ)[3],

where the second equality is due to the induction hypothesis being applied to the
suffix u∅ω[1,∞).

Next, consider a formula of the form ϕ = ϕ1Uϕ2. Then, we have, for an
arbitrary u ∈ Σ∗,

Vr(u∅ω, ϕ)[2]
=max
n≥0

min{Vr(u∅ω[n,∞), ϕ2)[2], min
0≤n′<n

Vr(u∅ω[n′,∞), ϕ1)[2]}

=max
n≥0

min{Vr(u∅ω[n,∞), ϕ2)[3], min
0≤n′<n

Vr(u∅ω[n′,∞), ϕ1)[3]}

=Vr(u∅ω, ϕ)[3],
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where the second equality follows from an application of the induction hypothesis
to the suffixes u∅ω[n,∞) and u∅ω[n′,∞).

It remains to consider a formula of the form ϕ = ϕ1Rϕ2. Then, we have, for
an arbitrary u ∈ Σ∗, that Vr(u∅ω, ϕ)[2] is by definition equal to

max
m≥0

min
n≥m

max{Vr(u∅ω[n,∞), ϕ2)[2], max
0≤n′<n

Vr(u∅ω[n′,∞), ϕ1)[2]}

=max
m≥0

min
n≥m

max{Vr(u∅ω[n,∞), ϕ2)[3], max
0≤n′<n

Vr(u∅ω[n′,∞), ϕ1)[3]}

= max
m≥|u|

min
n≥m

max{Vr(u∅ω[n,∞), ϕ2)[3], max
0≤n′<n

Vr(u∅ω[n′,∞), ϕ1)[3]}

= max
m≥|u|

min
n≥m

max{Vr(∅ω, ϕ2)[3], max
0≤n′≤|u|

Vr(u∅ω[n′,∞), ϕ1)[3]}

=max{Vr(∅ω, ϕ2)[3], max
0≤n′≤|u|

Vr(u∅ω[n′,∞), ϕ1)[3]},

The first equality follows from twice applying the induction hypothesis. For the
second one, observe that

min
n≥m

max{Vr(u∅ω[n,∞), ϕ2)[3], max
0≤n′<n

Vr(u∅ω[n′,∞), ϕ1)[3]}

is increasing in m. For the third one, note that for all n ≥ |u|, u∅ω[n,∞) = ∅ω,
which means that we have eliminated every occurrence of m and n. This explains
the last equality. Similarly, Vr(u∅ω, ϕ)[3] is by definition equal to

min
m≥0

max
n≥m

max{Vr(u∅ω[n,∞), ϕ2)[3], max
0≤n′<n

Vr(u∅ω[n′,∞), ϕ1)[3]}

=max{Vr(∅ω, ϕ2)[3], max
0≤n′≤|u|

Vr(u∅ω[n′,∞), ϕ1)[3]},

where the equality again follows from all suffixes u∅ω[n,∞) with n ≥ |u| being
equal to ∅ω. Thus, we have derived the desired equality between Vr(u∅ω, ϕ)[2] and
Vr(u∅ω, ϕ)[3].

Claim 2) The induction start and the induction steps for Boolean operators follow
from the closure property, where we here pick T to be the set of truth values from
B4 whose third and fourth bit coincide. For u = u(0) · · ·u(|u| − 1) and n < |u|,
we define ρ(u, n) = u(n) · · ·u(|u| − 1)u(0) · · ·u(n− 1), i.e., ρ(u, n) is obtained by
“rotating” u n times. The induction steps for the temporal operators are based on
the following simple fact: The suffix uω[n,∞) is equal to (ρ(u, n mod |u|))ω, i.e.,
the induction hypothesis is applicable to the suffixes. In particular, uω has only
finitely many distinct suffixes, which all appear infinitely often in a cyclic order.

Now, the induction steps for the next and until operator are analogous to their
counterparts in Item 1, as the only property we require there is that the induction
hypothesis is applicable to suffixes. Hence, due to Remark 1, it only remains to
consider the inductive step for the release operator.

So consider a formula of the form ϕ = ϕ1Rϕ2. Then, we have, for an arbi-
trary u ∈ Σ∗, that Vr(uω, ϕ)[3] is by definition equal to

min
m≥0

max
n≥m

max{Vr(uω[n,∞), ϕ2)[3], max
0≤n′<n

Vr(u
ω[n′,∞), ϕ1)[3]}

=min
m≥0

max
n≥m

max{Vr(uω[n,∞), ϕ2)[4], max
0≤n′<n

Vr(u
ω[n′,∞), ϕ1)[4]}

= max
0≤n<|u|

max{Vr((ρ(u, n))ω, ϕ2)[4], max
0≤n′<n

Vr((ρ(u, n
′))ω, ϕ1)[4]},
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where the first equality follows from twice applying the induction hypothesis and
the second one is due to all suffixes uω[n,∞) being equal to ρ(u, n mod |u|)ω, and
that there are only finitely many, which all appear infinitely often in a cyclic order
among the (ρ(u, n))ω for 0 ≤ n < |u|.

Similarly, Vr(uω, ϕ)[4] is by definition equal to

max
n≥0

max{Vr(uω[n,∞), ϕ2)[4], max
0≤n′<n

Vr(u
ω[n′,∞), ϕ1)[4]}

= max
0≤n<|u|

max{Vr((ρ(u, n))ω, ϕ2)[4], max
0≤n′<n

Vr((ρ(u, n
′))ω, ϕ1)[4]},

where the equality again follows from all suffixes uω[n,∞) being equal to ρ(u, n mod
|u|)ω, and that there are only finitely many, which appear in a cyclic order: In
particular, after the first |u| suffixes, we have seen all of them. Thus, we have
derived the desired equality between Vr(uω, ϕ)[3] and Vr(uω, ϕ)[4].

Claim 3) The induction start and the induction steps for Boolean operators are
covered by the closure property, where we here pick T to be the set of truth
values from B4 whose first and second bit coincide. The cases of the next and until
operator are again analogous to the first and second item. Hence, we only have
to consider the inductive step for the always operator, as we here only consider
formulas without release.

So, consider a formula of the form ϕ = ϕ1. Here, we again rely on the fact
that the suffix uω[n,∞) is equal to (ρ(u, n mod |u|))ω. By definition, Vr(uω, ϕ)[1]
is equal to

min
n≥0

Vr(u
ω[n,∞), ϕ1)[1] = min

n≥0
Vr(u

ω[n,∞), ϕ1)[2] = min
0≤n<|u|

Vr((ρ(u, n))
ω, ϕ1)[2],

where the first equality is due to the induction hypothesis and the second one due
to the fact that uω has only finitely many suffixes, which are all already realized
by some uω[n,∞) for 0 ≤ n < |u|.

Similarly, Vr(uω, ϕ)[2] is by definition equal to

max
m≥0

min
n≥m

Vr(u
ω[n,∞), ϕ1)[1] = max

m≥0
min
n≥m

Vr(u
ω[n,∞), ϕ1)[2]

= min
0≤n<|u|

Vr((ρ(u, n))
ω, ϕ1)[2],

where the two equalities follow as before: the first by induction hypothesis and the
second one by the fact that uω has only finitely many suffixes, which all appear
infinitely often in a cyclic order and which are all already realized by some uω[n,∞)
for 0 ≤ n < |u|. Thus, we have derived the desired equality between Vr(uω, ϕ)[1]
and Vr(uω, ϕ)[2]. ut

Now, we are able to prove Theorem 1.

Proof We begin by showing that 0011 and 0001 are not realizable.
First, towards a contradiction, assume there is an rLTL formula ϕ and a prefix u

such that Vmr (u, ϕ) = 0011, i.e., for every extension uσ, we have Vr(uσ)[2] = 0 and
Vr(uσ)[3] = 1. However, by picking σ = ∅ω we obtain the desired contradiction to
Lemma 3.1.
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The proof for 0001 is similar. Assume there is an rLTL formula ϕ and a prefix u
such that Vmr (u, ϕ) = 0001. Due to Lemma 4, we can assume that u is non-empty.
Thus, we have Vr(uω, ϕ) = 0001 by definition of Vmr , which contradicts Lemma 3.2.

Finally, applying Lemma 3.3, one can show that no rLTL formula without the
release operator realizes 0111. However, we show below that it is realizable by a
formula with the release operator.

Next, we show that every other truth value β /∈ {0011, 0001} is indeed realizable.
The witnessing pairs of prefixes and formulas are presented in Table 2.

First, consider β = 0111 with prefix u = ∅{a} and formula ϕ = aR a. We have
ltl(1, ϕ) = aR a and ltl(2, ϕ) = a ∨ a. Note that aR a is violated by uσ, for
every σ ∈ Σω. Dually, a ∨ a is satisfied by uσ, for every σ ∈ Σω. Hence,
for arbitrary σ ∈ Σω, we have Vr(uσ, ϕ)[1] = 0 and Vr(uσ, ϕ)[2] = 1. Hence, we
have Vr(uσ, ϕ) = 0111 for every σ, as this is the only truth value that matches this
pattern. Hence, by definition, we obtain Vmr (u, ϕ) = 0111.

The verification for all other truth values is based on Remark 2, which is
applicable to all formulas ϕ in the third column witnessing the realization of
a truth value β 6= 0111. Now, for every such truth value β and corresponding
pair (u, ϕ), one can easily verify the following:

– If β[i] = 0, then no uσ satisfies ltl(i, ϕ).
– If β[i] = 1, then every uσ satisfies ltl(i, ϕ).
– If β[i] =?, then there are σ, σ′ such that uσ satisfies ltl(i, ϕ) and such that uσ′

violates ltl(i, ϕ). In all such cases, σ, σ′ ∈ {∅ω, {a}ω, {a}∅ω, ∅{a}ω, ({a}∅)ω}
suffice.

We leave the details of this slightly tedious, but trivial, verification to the reader. ut

As shown in Table 2, all of the realizable truth values except for 0111 are
realized by formulas using only conjunction, disjunction, negation, eventually, and
always. Further, 0111 can only be realized by a formula with the release operator
while the truth values 0011 and 0001 are indeed not realizable at all.

Note that the two unrealizable truth values 0011 and 0001 both contain a 0
that is directly followed by a 1. The proof of unrealizability formalizes the intuition
that such an “abrupt” transition from definitive violation of a property to definitive
satisfaction of the property cannot be witnessed by any finite prefix. Finally, the
only other truth value of this form, 0111, is only realizable by using a formula with
the release operator.

Going again back to the motivating example s, consider the evolution of the
truth values on the sequence ε, {s}, {s}∅: They are ????, ???1, and 0??1, i.e., 0’s
and 1’s are stable when extending a prefix, only a ? may be replaced by a 0 or a 1.
This property holds in general. To formalize this, say that β′ ∈ B?

4 is more specific
than β ∈ B?

4, written as β � β′, if, for all i, β[i] 6= ? implies β′[i] = β[i].

Lemma 4 Let ϕ be an rLTL formula and u, u′ ∈ Σ∗. If u v u′, then Vmr (u, ϕ) �
Vmr (u′, ϕ).

Proof Let u v u′ and assume we have Vmr (u, ϕ)[i] ∈ {0, 1}. Thus, by definition,
Vr(uσ, ϕ)[i] = Vmr (u, ϕ)[i] for every σ ∈ Σω. Now, as u is a prefix of u′, we can
decompose u′ into u′ = uv for some v ∈ Σ∗ and every extension u′σ′ of u′ is the
extension uvσ′ of u. Hence, we have Vr(u′σ′, ϕ)[i] = Vr(uvσ

′, ϕ)[i] = Vmr (u, ϕ)[i]
for every σ′ ∈ Σω. Thus, Vmr (u′, ϕ)[i] = Vmr (u, ϕ)[i].

As this property holds for every i, we obtain Vmr (u, ϕ) � Vmr (u′, ϕ). ut
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Let us discuss two properties of the semantics: impartiality and anticipa-
tion [20]. Impartiality states that a definitive verdict will never be revoked: If
Vmr (u, ϕ)[i] 6= ?, then for all finite extensions v ∈ Σ∗, the verdict will not change,
so Vmr (uv, ϕ)[i] = Vmr (u, ϕ)[i]. This property follows immediately from Lemma 4.
Anticipation requires that a definitive verdict is decided as soon as possible, i.e.,
if Vmr (u, ϕ)[i] = ?, then u can still be extended to satisfy and to violate ϕ with
the i-th bit. Formally, there have to exist infinite extensions σ0 and σ1 such
that Vr(uσ0, ϕ)[i] = 0 and Vr(uσ1, ϕ)[i] = 1. Anticipation holds by definition of
Vmr (u, ϕ).

Due to Lemma 4, for a fixed formula, the prefixes of every infinite word can
assume at most five different truth values, which are all of increasing specificity. It
turns out that this upper bound is tight. To formalize this claim, we denote the
strict version of � by ≺, i.e., β ≺ β′ if and only if β � β′ and β 6= β′.

Lemma 5 There is an rLTL formula ϕ and prefixes u0 @ u1 @ u2 @ u3 @ u4 such
that Vmr (u0, ϕ) ≺ Vmr (u1, ϕ) ≺ Vmr (u2, ϕ) ≺ Vmr (u3, ϕ) ≺ Vmr (u4, ϕ).

Proof Consider the sequence β0, . . . , β4 with βj = 0j?4−j and note that we have
βj ≺ βj+1 for every j < 4. Furthermore, let uj = ∅j for j ∈ {0, . . . , 4}. We construct
a formula ϕ such that Vmr (uj , ϕ) = βj for every j ∈ {0, . . . , 4}.

To this end, let

– ψβ1
= (a ∧ ¬ a),

– ψβ2
= (a ∧ ¬a) ∧ ¬ ¬ a, and

– ψβ3
= a ∧ ¬ a.

Later, we rely on the following fact about these formulas, which can easily be
shown by applying Remark 2: We have Vmr (u, ψβj

) = βj for every prefix u.
Further, for j ∈ {0, 1, 2, 3}, let ψj be a formula that requires the proposition a

to be violated at the first j − 1 positions, but to hold at the j-th position (recall
that we start counting at zero), i.e., ψj = (

∧
0≤j′<j

j′ ¬a) ∧ j a. Here, we define
the nesting of next operators as usual: 0 ξ = ξ and j+1 ξ = j ξ. By definition,
we have Vr(∅j+1σ, ψj) = 0000 for every σ ∈ Σω (†).

Now, we define

ϕ = ψ0 ∨
3∨
j=1

(
ψβj
∧ ψj

)
and claim that it has the desired properties. To this end, we note that property (†)
implies Vr(∅4σ, ϕ) = 0000 for every σ ∈ Σω (††), as every disjunct of ϕ contains
a conjunct of the form ψj for some j ≤ 3. Also, let us mention that Remark 2 is
applicable to ϕ.

It remains to prove Vmr (uj , ϕ) = βj for every j ∈ {0, . . . , 4}.

– For j = 0, we have u0 = ε and β0 = ????. Hence, it suffices to present
σ0, σ1 ∈ Σω such that Vr(σ0, ϕ) = 0000 and Vr(σ1, ϕ) = 1111.
Due to property (††), we can pick σ0 = ∅ω. To conclude, we pick σ1 = {a}ω, as
we have

Vr(σ1, ϕ) ≥ Vr(σ1, ψ0) = Vr({a}ω, a) = 1111,

where the first inequality follows from ψ0 being a disjunct of ϕ.
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– For j = 1, we have u1 = ∅ and β1 = 0???. To show Vmr (u1, ϕ) = β1, it suffices
to present σ0, σ1 ∈ Σω such that Vr(u1σ0, ϕ) = 0000, Vr(u1σ1, ϕ) = 0111, and
show that Vr(u1σ, ϕ)[1] = 0 for every σ ∈ Σω. First, we again pick σ0 = ∅ω
due to property (††). Now, consider σ1 = {a}ω. Then,

Vr(u1{a}ω, ψβj
∧ ψj) = min{Vr(u1{a}ω, ψβj

), Vr(u1{a}ω, ψj)}
= min{0111, 1111} = 0111,

where Vr(u1{a}ω, ψβj
) = 0111 can easily be verified using Remark 2. To

conclude, using Remark 2, one can easily verify that ltl(1, ϕ) is not satisfied by
u1σ for any σ ∈ Σω.

– The reasoning for j = 2, 3 is along the same lines as the one for j = 1 and is
left to the reader.

– For j = 4, we have u4 = ∅∅∅∅ and β4 = 0000. Hence, our claim follows directly
from property (††), which shows Vr(u4σ, ϕ) = 0000 for every σ ∈ Σω. ut

After determining how many different truth values can be assumed by prefixes
of a single infinite word, an obvious question is how many truth values can be
realized by a fixed formula on different prefixes. It is not hard to combine the
formulas in Table 2 to a formula that realizes all truth values not ruled out by
Theorem 1.5

Lemma 6 There is an rLTL formula ϕ such that for every β ∈ B?
4 \ {0011, 0001}

there is a prefix uβ with Vmr (uβ , ϕ) = β.

Proof For every β ∈ B?
4 \ {0011, 0001} let ϕβ be an rLTL formula and u′β be a

prefix, both over {a}, with Vmr (u′β , ϕβ) = β. Such formulas and prefixes exist as
shown in Table 2.

Now, consider the formula

ϕ =
∨

β∈B?
4\{0011,0001}

aβ ∧ ϕβ

over the propositions {a} ∪ {aβ | β ∈ B?
4 \ {0011, 0001}}.

By construction, we have Vmr (uβ , ϕ) = β for every β, where

uβ = (u′β(0) ∪ {aβ})u′β(1) · · ·u′β(|u′β | − 1),

i.e, we obtain uβ from u′β by adding the proposition aβ to the first letter. Hence,
ϕ has the desired properties. ut

Finally, let us consider the notion of monitorability [53], an important concept in
the theory of runtime monitoring. As a motivation, consider the LTL formula ψ =

s and an arbitrary prefix u ∈ Σ∗. Then, the extension u{s}ω satisfies ψ while
the extension u∅ω does not satisfy ψ, i.e., satisfaction of ψ is independent of any

5 Note that there are formulas in publicly available repositories that assume many truth
values. One example is the formula

(((a∧ d)∨ (¬a∧¬d))∧ (¬b∨ (¬a∧ d)))∨ (((¬a∧ d)∨ (a∧¬d))∧ (b∧ (a∨¬d)))∨ (a∧ b),

which is taken from the LTLStore [38] and assumes ten different truth values.



20 C. Mascle et al.

prefix u. Hence, we have Vm(u, ψ) = ? for every prefix u, i.e., monitoring the
formula ψ does not generate any information.

In general, for a fixed LTL formula ϕ, a prefix u ∈ Σ∗ is called ugly if we have
Vm(uv, ϕ) = ? for every finite v ∈ Σ∗, i.e., every finite extension of u yields an
indefinite verdict.6 Now, ϕ is LTL-monitorable if there is no ugly prefix with respect
to ϕ. A wide range of LTL formulas (e.g., ψ = s as above) are unmonitorable
in that sense. In particular, 44% of the LTL formulas considered in the experiments
of Bauer et al. are not LTL-monitorable.

We next generalize the notion of monitorability to rLTL. In particular, we
answer whether there are unmonitorable rLTL formulas. Then, in Section 5, we
exhibit that all LTL formulas considered by Bauer et al.’s experimental evaluation,
even the unmonitorable ones, are monitorable under rLTL semantics. To conclude
the motivating example, note that the rLTL analogue s of the LTL formula ψ
induces two truth values from B?

4 indicating whether s has been true at least once
(truth value ???1) or not (truth value ????). Even more so, every prefix inducing
the truth value ???? can be extended to one inducing the truth value ???1.

Definition 3 Let ϕ be an rLTL formula. A prefix u ∈ Σ∗ is called ugly if we have
Vm(uv, ϕ) = ???? for every finite v ∈ Σ∗. Further, ϕ is rLTL-monitorable if it has
no ugly prefix.

As we have argued above, the formula s has no ugly prefix, i.e., it is
rLTL-monitorable. Thus, we have found an unmonitorable LTL formula whose
rLTL analogue (the formula obtained by adding dots to all temporal operators)
is monitorable. The converse statement is also true. There is a monitorable LTL
formula whose rLTL analogue is unmonitorable. To this end, consider the LTL
formula

( s ∧ ¬s)→( s ∧ ¬ s),

which is a tautology and therefore monitorable. On the other hand, we claim that
∅{s} is an ugly prefix for the rLTL analogue ϕ obtained by adding dots to the
temporal operators. To this end note that we have both Vr(∅{s}v∅ω, ϕ) = 1111
and Vr(∅{s}v{s}ω, ϕ) = 0000 for every v ∈ Σ∗. Hence, Vmr (∅{s}v, ϕ) = ???? for
every such v, i.e., ∅{s} is indeed ugly and ϕ therefore not rLTL-monitorable.

Thus, there are formulas that are unmonitorable under LTL semantics, but
monitorable under rLTL semantics and there are formulas that are unmonitorable
under rLTL semantics, but monitorable under LTL semantics. Using these formulas
one can also construct a formula that is unmonitorable under both semantics.

To this end, fix LTL formulas ϕ` and ϕr over disjoint sets of propositions and
a fresh proposition p not used in either formula such that

– ϕ` has an ugly prefix u` under LTL semantics, and
– ϕr (with dotted operators) has an ugly prefix ur under rLTL semantics.

We can assume both prefixes to be non-empty, as ugliness is closed under finite
extensions. Let ϕ = (p ∧ ϕ`) ∨ (¬p ∧ ϕr). Then, the prefix obtained from u` by

6 Note that the good/bad prefixes introduced by Kupfermann and Vardi [40] can only be
extended into infinite words satisfying/unsatisfying the formula, respectively, and thus provide
a verdict immediately. On the other hand, no finite extension of an ugly prefix [14] allows to
conclude on the satisfaction of the formula.
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adding the proposition p to the first letter is ugly for ϕ under LTL semantics and
ur is ugly for ϕ (with dotted operators) under rLTL semantics.

As a final example, recall that we have shown that s is rLTL-monitorable
and consider its negation ¬ s. It is not hard to see that Vmr (u, ϕ) = ???? holds
for every prefix u. Hence, ε is an ugly prefix for the formula, i.e., we have found
another unmonitorable rLTL formula. In particular, the example shows that, unlike
for LTL, rLTL-monitorability is not preserved under negation.

After having studied properties of rLTL monitorability, we next show our main
result: The robust monitoring semantics Vmr can be implemented by finite-state
machines.

4 Construction of rLTL Monitors

An rLTL monitor is an implementation of the robust monitoring semantics Vmr in
form of a finite-state machine with output. More precisely, an rLTL monitor for
an rLTL formula ϕ is a finite-state machineMϕ that on reading an input u ∈ Σ∗
outputs Vmr (u, ϕ). In this section, we show how to construct rLTL monitors and
that this construction is asymptotically not more expensive than the construction
of LTL monitors. Let us fix an rLTL formula ϕ for the remainder of this section.

Our rLTL monitor construction is inspired by Bauer et al. [14] and gener-
ates a sequence of finite-state machines (i.e., Büchi automata over infinite words,
(non)deterministic automata over finite words, and Moore machines). Underlying
these machines are transition structures T = (Q, qI ,∆) consisting of a nonempty, fi-
nite set Q of states, an initial state qI ∈ Q, and a transition relation ∆ ⊆ Q×Σ×Q.
An (infinite) run of T on a word σ = a0a1a2 · · · ∈ Σω is a sequence ρ = q0q1 · · ·
of states such that q0 = qI and (qj , aj , qj+1) ∈ ∆ for j ∈ N. Finite runs on fi-
nite words are defined analogously. The transition structure T is deterministic
if (a) (q, a, q′) ∈ ∆ and (q, a, q′′) ∈ ∆ imply q′ = q′′ and (b) for each q ∈ Q and
a ∈ Σ there exists a (q, a, q′) ∈ ∆. We then replace the transition relation ∆ by a
function δ : Q×Σ → Q. Finally, we define the size of a transition structure T as
|T | = |Q| in order to measure its complexity.

Our construction then proceeds in three steps:

1. We bring ϕ into an operational form by constructing Büchi automata Aϕβ for
each truth value β ∈ B4 that can decide the valuation Vr(σ, ϕ) of infinite words
σ ∈ Σω.

2. Based on these Büchi automata, we then construct nondeterministic automata
Bϕβ that can decide whether a finite word u ∈ Σ∗ can still be extended to an
infinite word uσ ∈ Σω with Vr(uσ, ϕ) = β.

3. We determinize the nondeterministic automata obtained in Step 2 and combine
them into a single Moore machine that computes Vmr (u, ϕ).

Let us now describe each of these steps in detail.

Step 1: We first translate the rLTL formula ϕ into several Büchi automata using
a construction by Tabuada and Neider [58], summarized in Theorem 2 below. A
(nondeterministic) Büchi automaton (NBA) is a four-tuple A = (Q, qI ,∆, F ) where
T = (Q, qI ,∆) is a transition structure and F ⊆ Q is a set of accepting states.
A run π of A on σ ∈ Σω is a run of T on σ, and we say that π is accepting if
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s

(a) The NBA A s
1111

true

¬s

s

(b) The NBA A s
0111

¬s

s

¬s
s

¬s
s

(c) The NBA A s
0011

true

s

¬s

(d) The NBA A s
0001

¬s

(e) The NBA A s
0000

Fig. 1: The Büchi automata A s
β constructed in Step 1 of our monitor construction

it contains infinitely many states from F . The automaton A accepts a word σ if
there exists an accepting run of A on σ. The language L(A) is the set of all words
accepted by A, and the size of A is defined as |A| = |T |.

Theorem 2 (Tabuada and Neider [58]) Given a truth value β ∈ B4, one can
construct a Büchi automaton Aϕβ with 2O(|ϕ|) states such that L(Aϕβ ) = {σ ∈ Σ

ω |
Vr(σ, ϕ) = β}. This construction can be performed in 2O(|ϕ|) time.

The Büchi automata Aϕβ for β ∈ B4 serve as building blocks for the next steps.
However, before we proceed, let us illustrate this step with an example.

Example 4 Let us consider the formula ϕ = s, which already served as a running
example in Section 3. Applying Theorem 2 results in the five nondeterministic
Büchi automata Aϕβ , one for each β ∈ B4, shown in Figure 1. We here use the
standard way to represent finite-state machines graphically. States are drawn as
circles and transitions are drawn as arrows. Moreover, the initial state has an
incoming arrow, while accepting states are indicted by double circles. Finally, note
that we use propositional formulas to symbolically define sets of transitions. For
instance, a transition labeled with s in Figure 1a represents all transitions labeled
with a symbol from the set {A ⊆ P | s ∈ A} ⊆ Σ. In particular, true represents all
symbols in Σ.

Step 2: For each Büchi automaton Aϕβ obtained in the previous step, we now
construct a nondeterministic automaton Bϕβ over finite words. This automaton
determines whether a finite word u ∈ Σ∗ can be continued to an infinite word
uσ ∈ L(Aϕβ ) (i.e., Vr(uσ, ϕ) = β) and is used later to construct the rLTL monitor.

A nondeterministic finite automaton (NFA) is a four-tuple A = (Q, qI ,∆, F )
that is syntactically identical to a Büchi automaton. The size of A is defined
analogously to Büchi automata. In contrast to Büchi automata, however, NFAs
only admit finite runs on finite words, i.e., a run of A on u = a0 · · · an−1 ∈ Σ∗ is a
sequence q0 · · · qn such that q0 = qI and (qj , aj , qj+1) ∈ ∆ for every j < n. A run
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s

(a) The NFA B s
1111
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¬s

s

(b) The NFA B s
0111

¬s

s

¬s
s

¬s
s

(c) The NFA B s
0011

true

s

¬s

(d) The NFA B s
0001

¬s

(e) The NFA B s
0000

Fig. 2: The NFAs B s
β constructed in Step 2 of our monitor construction

q0 · · · qn is called accepting if qn ∈ F . Accepted words as well as the language of A
are again defined analogously to the Büchi case. If (Q, qI ,∆) is deterministic, A is
a deterministic finite automaton (DFA). It is well-known that for each NFA A one
can construct a DFA A′ with L(A) = L(A′) and |A′| ∈ O(2|A|).

Given the Büchi automaton Aϕβ = (Qβ , qI,β ,∆β , Fβ), we first compute the set
F ?β = {q ∈ Qβ | L(Aϕβ (q)) 6= ∅}, where A

ϕ
β (q) denotes the Büchi automaton Aϕβ but

with initial state q instead of qI . Intuitively, the set F ?β contains all states q ∈ Qβ
from which there exists an accepting run in Aϕβ and, hence, indicates whether a
finite word u ∈ Σ∗ reaching a state of F ?β can be extended to an infinite word
uσ′ ∈ L(Aϕβ ). The set F ?β can be computed, for instance, using a nested depth-first
search [56] for each state q ∈ Qβ . Since each such search requires time quadratic in
|Aϕβ |, the set F ?β can be computed in time O(|Aϕβ |

3).
Using F ?β , we define the NFA Bϕβ = (Qβ , qI,β ,∆β , F

?
β ). It shares the transition

structure of Aϕβ and uses F ?β as the set of accepting states. Let us illustrate this
construction using our running example.

Example 5 Given the NBAs Aϕβ from Step 1 of our construction, we now compute
the corresponding NFAs Bϕβ , which are depicted in Figure 2. Note that the transition
structure has remained the same as compared to the preceding step (see Figure 1).
By contrast, the accepting states have changed according to the definition of F ?β ,
causing all states to be accepting. Note, however, that this does not mean that the
resulting NFAs accept any finite word. For instance, the NFA B s

1111 in Figure 2a is
a counterexample to this claim.

The next lemma now states that Bϕβ indeed recognizes prefixes of words
in L(Aϕβ ).

Lemma 7 Let β ∈ B4 and u ∈ Σ∗. Then, u ∈ L(Bϕβ ) if and only if there exists an
infinite word σ ∈ Σω with Vr(uσ, ϕ) = β.

Proof We show both directions separately.
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From left to right: Assume u ∈ L(Bϕβ ). Moreover, let q ∈ F ?β be the accepting
state reached by Bϕβ on an accepting run on u (which exists since u ∈ L(Bϕβ )). By
definition of F ?β , this means that L(Aϕβ (q)) 6= ∅, say σ ∈ L(A

ϕ
β (q)). Since A

ϕ
β and

Bϕβ share the same transition structures, the run of Bϕβ on u is also a run of Aϕβ
on u, which both lead to state q. Therefore, uσ ∈ L(Aϕβ ). By Theorem 2, this is
equivalent to Vr(uσ, ϕ) = β.

From right to left: Let u ∈ Σ∗ and σ ∈ Σω such that V (uσ, ϕ) = β. By Theorem 2,
we have uσ ∈ L(Aϕβ ). Consider an accepting run of Aϕβ on uσ, and let q be the
state that Aϕβ reaches after reading the finite prefix u. Since uσ ∈ L(Aϕβ ), this
means that σ ∈ L(Aϕβ (q)). Thus, q ∈ F

?
β because L(Aϕβ (q)) 6= ∅. Moreover, since

the run of Aϕβ on u is also a run of Bϕβ on u, the NFA Bϕβ can also reach state q
after reading u. Therefore, u ∈ L(Bϕβ ) since q ∈ F

?
β . ut

Before we continue to the last step in our construction, let us briefly comment
on the complexity of computing the NFAs Bϕβ . Since B

ϕ
β and Aϕβ share the same

underlying transition structure, we immediately obtain |Bϕβ | ∈ 2O(|ϕ|). Moreover,
the construction of Bϕβ is dominated by the computation of the set F ?β and, hence,
can be done in time 2O(|ϕ|).

Step 3: In the final step, we construct a Moore machine implementing an rLTL
monitor for ϕ. Formally, a Moore machine is a five-tuple M = (Q, qI , δ, Γ, λ)
consisting of a deterministic transition structure (Q, qI , δ), an output alphabet Γ ,
and an output function λ : Q→ Γ . The size ofM as well of runs ofM are defined
as for DFAs. In contrast to a DFA, however, a Moore machine M computes a
function λM : Σ∗ → Γ that is defined by λM(u) = λ(qn) where qn is the last state
reached on the unique finite run q0 · · · qn ofM on its input u ∈ Σ∗.

The first step in the construction of the Moore machine is to determinize the
NFAs Bϕβ , obtaining equivalent DFAs Cϕβ = (Q′β , q

′
I,β , δ

′
β , F

′
β) of at most exponential

size in |Bϕβ |. Subsequently, we combine these DFAs into a single Moore machine
Mϕ implementing the desired rLTL monitor. Intuitively, this Moore machine is
the product of the DFAs Cϕβ for each β ∈ B4 and tracks the run of each individual
DFA on the given input. Formally,Mϕ is defined as follows.

Definition 4 Let B4 = {β1, β2, β3, β4, β5}. We defineMϕ = (Q, qI , Γ, δ, λ) by

– Q = Q′β1
×Q′β2

×Q′β3
×Q′β4

×Q′β5
;

– qI = (q′I,β1
, q′I,β2

, q′I,β3
, q′I,β4

, q′I,β5
);

– δ
(
(q1, q2, q3, q4, q5), a

)
= (q′1, q

′
2, q
′
3, q
′
4, q
′
5) where q′j = δ′βj

(qj , a) for each j ∈
{1, . . . , 5};

– Γ = B?
4; and

– λ
(
(q1, q2, q3, q4, q5)

)
= ξ
({
βj ∈ B4 | qj ∈ F ′βj

, j ∈ {1, . . . , 5}
})

,

where the surjective function ξ : 2B4 → B?
4 translates sets B ⊆ B4 of truth values

to the robust monitoring semantics as follows: ξ(B) = β? ∈ B?
4 with

β?[j] =


0 if β[j] = 0 for each β ∈ B;
1 if β[j] = 1 for each β ∈ B; and
? otherwise.
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Fig. 3: The DFAs C s
β constructed in Step 3 of our monitor construction
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Fig. 4: The final monitorM s

Let us illustrate this last step of our construction by means of our running
example.

Example 6 Given the NFAs B s
β from Step 2 of our construction, we first apply a

standard determinization step. This process results in equivalent DFAs C s
β , which

are shown in Figure 3.
The final, minimized monitorM s, which results from the Cartesian product

of all DFAs, is shown in Figure 4. Note that this monitor has four different verdicts,
shown as labels next to each state. These are four of the verdicts used to prove
results in Table 2 (on Page 13).

The main result of this paper now shows that the Moore machineMϕ imple-
ments Vmr , i.e., we have λMϕ

(u) = Vmr (u, ϕ) for every prefix u.

Theorem 3 For every rLTL formula ϕ, one can construct an rLTL monitor of
size 22

O(|ϕ|)
.

Proof First observe that ξ indeed produces a valid value of B?
4 (i.e., a truth value

of the form 0∗?∗1∗). This follows immediately from the definition of ξ and the fact
that the truth values of rLTL are sequences in 0∗1∗.

Next, we observe that Mϕ reaches state (q1, q2, q3, q4, q5) after reading a
word u ∈ Σ∗ if and only if for each βj ∈ B4 the DFA Cϕβj

reaches state qj af-
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ter reading u. A simple induction over the length of inputs fed to Mϕ proves
this.

Now, let us fix a word u ∈ Σ∗ and assume that (q1, q2, q3, q4, q5) is the state
reached by Mϕ after reading u. This means that each individual DFA Cϕβj

=

(Q′βj
, q′I,βj

, δ′βj
, F ′βj

) reaches state qj after reading u. Let now

B =
{
βj ∈ B4 | qj ∈ F ′βj

, j ∈ {1, . . . , 5}
}

as in the definition of the output function λ of Mϕ. By applying Lemma 7, we
then obtain

βj ∈ B ⇔ qj ∈ F ′βj
⇔ u ∈ L(Cϕβj

)⇔ u ∈ L(Bϕβj
)⇔ ∃σ ∈ Σω : Vr(uσ, ϕ) = βj .

To conclude the proof, it is left to show that ξ(B) = Vmr (u, ϕ). We show this
for each bit individually using a case distinction over the elements of B? = {0, ?, 1}.
So as to clutter this proof not too much, however, we only discuss the case of ?
here, while noting that the remaining two cases can be proven analogously. Thus,
let i ∈ {1, . . . , 4}. Then,

ξ(B)[i] = ?⇔ ∃β, β′ ∈ B : β[i] = 0 and β′[i] = 1

⇔ ∃σ0, σ1 ∈ Σω : Vr(uσ0, ϕ)[i] = 0 and Vr(uσ1, ϕ)[i] = 1

⇔ Vmr (u, ϕ)[i] = ?.

Since λ
(
(q1, q2, q3, q4, q5)

)
= ξ(B), the Moore machine Mϕ indeed outputs

Vmr (u, ϕ) for every word u ∈ Σ∗. Moreover, Mϕ has 22
O(|ϕ|)

states because the
DFAs Cϕβ = (Q′β , q

′
I,β , δ

′
β , F

′
β) are of at most exponential size in |Bϕβ |, which in turn

is at most exponential in |ϕ|. In total, this proves Theorem 3. ut

In a final post-processing step, we minimizeMϕ (e.g., using one of the standard
algorithms for deterministic automata). As a result, we obtain the unique minimal
monitor for the given rLTL formula.

It is left to determine the complexity of our rLTL monitor construction. Since
each DFA Cϕβ is in the worst case exponential in the size of the NFA Bϕβ , we
immediately obtain that Cϕβ is at most of size 22

O(|ϕ|)
. Thus, the Moore machine

Mϕ is at most of size 22
O(|ϕ|)

as well and can be effectively computed in doubly-
exponential time in |ϕ|. Note that this matches the complexity bound of Bauer
et al.’s approach for LTL runtime monitoring [14]. Moreover, this bound is tight
since rLTL subsumes LTL (see Remark 3): Every monitor for an rLTL formula
(without implications) can be turned into a monitor for the corresponding LTL
formula by projecting every output to its first bit. Thus, the doubly-exponential
bound, which is tight for LTL [40,14], is also tight for rLTL. Hence, robust runtime
monitoring asymptotically incurs no extra cost compared to classical LTL runtime
monitoring. However, it provides more useful information as we demonstrate next
in our experimental evaluation.
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5 Experimental Evaluation

Besides incorporating a notion of robustness into classical LTL monitoring, our
rLTL monitoring approach also promises to provide richer information than its
LTL counterpart. In this section, we evaluate empirically whether this promise
is actually fulfilled. More precisely, we answer the following two questions on a
comprehensive suite of benchmarks:

1. How does rLTL monitoring compare to classical LTL monitoring in terms of
monitorability?

2. For formulas that are both LTL-monitorable and rLTL-monitorable, how do
both approaches compare in terms of the size of the resulting monitors and the
time required to construct them?

To answer these research questions, we have implemented a prototype, which
we named rLTL-mon. Our prototype is written in Java and builds on top of two
libraries: Owl [39], a library for LTL and automata over infinite words, as well
as AutomataLib (part of LearnLib [36]), a library for automata over finite words
and Moore machines. For technical reasons (partly due to limitations of the Owl
library and partly to simplify the implementation), rLTL-mon uses a monitor
construction that is slightly different from the one described in Section 4: Instead
of translating an rLTL formula into nondeterministic Büchi automata, rLTL-mon
constructs deterministic parity automata. These parity automata are then directly
converted into DFAs, thus skirting the need for a detour over NFAs and a subsequent
determinization step. Note, however, that this alternative construction produces
the same rLTL monitors than the one described in Section 4. Moreover, it has the
same asymptotic complexity. The sources of our prototype are available online
under the MIT license.7

Benchmarks and Experimental Setup

The starting point of our evaluation was the original benchmark suite of Bauer
et al. [14], which is based on a survey by Dwyer on frequently used software
specification patterns [23]. This benchmark suite consists of 97 LTL formulas and
covers a wide range of patterns, including safety, scoping, precedence, and response
patterns. For our rLTL monitor construction, we interpreted each LTL formula in
the benchmark suite as an rLTL formula (by treating every operator as a robust
operator).

We compared rLTL-mon to Bauer et al.’s implementation of their LTL monitor-
ing approach, which the authors named LTL3 tools. This tool uses LTL2BA [32]
to translate LTL formulas into Büchi automata and AT&T’s fsmlib as a means to
manipulate finite-state machines. Since LTL2BA’s and Owl’s input format for LTL
formulas do not match exactly, we have translated all benchmarks into a suitable
format using a python script.

We conducted all experiments on an Intel Core i5-6600 @ 3.3GHz in a virtual
machine with 4GB of RAM running Ubuntu 18.04 LTS. As no monitor construction
took longer than 600 s, we did not impose any time limit.

7 https://github.com/logic-and-learning/rltl-monitoring

https://github.com/logic-and-learning/rltl-monitoring
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Fig. 5: Comparison of rLTL-mon and LTL3 tools on Bauer et al.’s benchmarks [14]

Results

Our evaluation shows that LTL3 tools and rLTL-mon are both able to generate
monitors for all 97 formulas in Bauer et al.’s benchmark suite.8 Aggregated statistics
of this evaluation are visualized in Figure 5.9

The histogram in Figure 5a shows the aggregate number of LTL and rLTL
monitors with respect to their number of states. As Bauer et al. already noted in
their original work, the resulting LTL monitors are quite small (none had more than
six states), which they attribute to Dwyer et al.’s specific selection of formulas [23].
A similar observation is also true for the rLTL monitors: None had more than eight
states.

To determine which formulas are monitorable and which are not, we used a
different, though equivalent definition, which is easy to check on the monitor itself:
an LTL formula (rLTL formula) is monitorable if and only if the unique minimized
LTL monitor (rLTL monitor) does not contain a sink-state with universal self-loop
that outputs “?” (that outputs “????”). In other words, even if a finite word does
not allow us to infer anything about the satisfaction of the LTL (rLTL) formula by
infinite words extending it, it can always be extended into another finite word that
does. Bauer et al. report that 44.3% of all LTL monitors (43 out of 97) have this
property (in fact, exactly the 43 LTL monitors with a single state), which means
that 44.3% of all formulas in their benchmark suite are not LTL-monitorable.

8 Note that the tools disagreed on one monitor where LTL3 tools constructed a monitor with
1 state whereas rLTL-mon constructed an LTL monitor with 8 states. The respective formula
was removed from the reported results.

9 Detailed results can be found in Tables 3 and 4 in the appendix.
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By contrast, all these formulas are rLTL-monitorable. Moreover, in 78.4% of the
cases (76 out of 97), the rLTL monitor has more distinct outputs than the LTL
monitor, indicating that the rLTL monitor provides more fine-grained information
of the property being monitored; in the remaining 21.6%, both monitors have the
same number of distinct outputs. These results answer our first research question
strongly in favor of rLTL monitoring: rLTL monitoring did in fact provide more
information than its classical LTL counterpart. In particular, only 55.7% of the
benchmarks are LTL-monitorable, whereas 100% are rLTL-monitorable.

Let us now turn to our second research question and compare both moni-
toring approaches on the 54 formulas that are both LTL-monitorable and rLTL-
monitorable. For these formulas, Figure 5b further provides statistical analysis
of the generated monitors in terms of their size (left diagram) as well as the
time required to generate them (right diagram). Each box in the diagrams shows
the lower and upper quartile (left and right border of the box, respectively), the
median (line within the box), and minimum and maximum (left and right whisker,
respectively).

Let us first consider the size of the monitors (left diagram of Figure 5b). The
majority of LTL monitors (52) has between two and four states, while the majority
of rLTL monitors (45) has between two and five states. For 21 benchmarks, the
LTL and rLTL monitors are of equal size, while the rLTL monitor is larger for the
remaining 33 benchmarks. On average, rLTL monitors are about 1.5 times larger
than the corresponding LTL monitors.

Let us now discuss the time taken to construct the monitors. As the diagram on
the right-hand-side of Figure 5b shows, LTL3 tools was considerably faster than
rLTL-mon on a majority of benchmarks (around 0.1 s and 2.6 s per benchmark,
respectively). For all 54 benchmarks, the rLTL monitor construction took longer
than the construction of the corresponding LTL monitor (although there are two
non-LTL-monitorable formulas for which the construction of the rLTL monitor
was faster). However, we attribute this large runtime gap partly to the overhead
caused by repeatedly starting the Java virtual machine, which is not required in
the case of LTL3 tools. Note that this is not a concern in practice as a monitor is
only constructed once before it is deployed.

Finally, our analysis answers our second question: rLTL monitors are only
slightly larger than the corresponding LTL monitors and although they require
considerably more time to construct, the overall construction time was negligible
for almost all benchmarks.

6 Conclusion

We adapted the three-valued LTL monitoring semantics of Bauer et al. to rLTL,
proved that the construction of monitors is asymptotically no more expensive than
the one for LTL, and validated our approach on the benchmark of Bauer et al.: All
formulas are rLTL-monitorable and the rLTL monitor is strictly more informative
than its LTL counterpart for 77% of their formulas.

Recall Theorem 1, which states that the truth values 0011 and 0001 are
not realizable. This points to a drawback regarding the two middle bits: When
considering the formula a, the second bit represents a and the third bit

a. A prefix cannot possibly provide enough information to distinguish these
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two formulas. On the other hand, the truth value ??11 is realizable, which shows
that the middle bits can be relevant. In further work, we will investigate the role
of the middle bits in rLTL monitoring.

Moreover, the informedness of a monitor can be increased further when attribut-
ing a special role to the last position(s) of a prefix. Even though a prefix of the form
∅+{a}+ does not fully satisfy a, neither does it fully violate it. If the system
just now reached a state in which {a} always holds, an infinite continuation of the
execution would satisfy the specification. So rather than reporting an undetermined
result, the monitor could indicate that an infinite repetition of the last position
of the prefix would satisfy the specification. Similarly, for a prefix {a}+∅, the
specification a is undetermined. While an infinite repetition of the last position
({a}+∅ω) does not satisfy the specification, an infinite repetition of the last two
positions ({a}+(∅{a})ω) would. We plan to investigate an extension of rLTL which
takes this observation into account.

Bauer et al. [12] proposed an orthogonal approach with the logic RV-LTL. Here,
the specification can contain the strong (weak) next-operator whose operand is
consider violated (satisfied) at the last position of the trace. A formula that is
undetermined under the strong semantics and satisfied (violated) under the weak
semantics is considered potentially true (potentially false). Incorporating one of
these approaches into rLTL monitoring could refine its output and thus increase
its level of informedness.

Moreover, desired properties for cyber-physical systems often include real-time
components such as “touch the ground at most 15 seconds after receiving a landing
command”. Monitors for logics taking real-time into account [15], such as STL [43,
44], induce high computational overhead at runtime when compared to LTL and
rLTL monitors. Thus, a real-time extension for rLTL retaining its low runtime cost
would greatly increase its viability as specification language.
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[nosearch, noheader]resultslow-generated.csv Id,Property,Line,rltlstates,rltloutputs,rltlmon,rltltime,ltlstates,ltloutputs,ltlmon,Ltltime
1,Constrained Response-chain 2-1,20,3,2,3,2.06,1,1,7,0.07 2,Constrained 3-2 Response Chain,25,3,2,3,1.79,1,1,7,0.03
3,Constrained 3-2 Response Chain,32,4,2,3,24.21,1,1,7,284.53 4,Constrained 2-1 Response
Chain,37,3,2,3,1.94,1,1,7,0.03 5,Existence,42,6,4,3,1.71,3,2,3,0.02 6,2 Bounded Existence,51,8,2,3,3.44,1,1,7,0.02
7,Response,55,2,2,3,2.17,1,1,7,0.02 8,Existence,60,6,4,3,1.59,3,2,3,0.02 9,Existence,64,3,3,3,1.23,3,3,3,0.01
10,Existence,68,2,2,3,1.11,1,1,7,0.02 11,Existence,72,2,2,3,1.12,1,1,7,0.01 12,Existence,76,2,2,3,1.12,1,1,7,0.02
13,Response,80,2,2,3,2.15,1,1,7,0.01 14,Response,84,2,2,3,2.15,1,1,7,0.02 15,Existence,89,5,3,3,1.14,3,2,3,0.01
16,Absence,93,4,3,3,2.34,4,3,3,0.02 17,Absence,98,4,2,3,3.10,4,2,3,0.02 18,Absence,103,5,4,3,5.07,3,2,3,0.02
19,Absence,108,4,2,3,2.08,4,2,3,0.02 20,Response,112,2,2,3,1.64,1,1,7,0.01 21,Response,116,2,2,3,1.61,1,1,7,0.01
22,GlobalResponse,121,2,2,3,6.67,1,1,7,0.04 23,Precedence,132,5,5,3,1.35,3,3,3,0.01 24,Absence,143,4,4,3,1.53,2,2,3,0.03
25,Response,157,2,2,3,1.34,1,1,7,0.02 26,Universal,164,4,4,3,1.67,2,2,3,0.02 27,Absence,169,4,2,3,2.12,4,2,3,0.03
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28,Absence,173,4,2,3,2.10,4,2,3,0.03 29,Absence,177,4,3,3,2.67,4,3,3,0.86 30,Absence,181,3,2,3,1.74,3,2,3,0.01
31,Absence,187,3,2,3,3.20,3,2,3,0.42 32,Universal,191,4,4,3,1.44,2,2,3,0.01 33,Response,199,5,2,3,8.33,5,2,3,0.34
34,Precedence,205,5,5,3,1.50,3,3,3,0.01 35,Absence,212,5,4,3,6.30,3,2,3,0.02 36,Absence,219,5,4,3,6.59,3,2,3,0.02
37,Absence,223,4,3,3,1.44,4,3,3,0.02 38,Absence,229,5,4,3,4.17,3,2,3,0.02 39,Constrained Response-
Chain 3-1,239,3,2,3,35.40,1,1,7,319.74 40,Absence,245,7,4,3,35.57,4,2,3,2.11 41,Absence,249,4,3,3,1.42,4,3,3,0.01
42,Absence,254,5,4,3,4.04,3,2,3,0.02 43,Universal,258,4,4,3,1.38,2,2,3,0.02 44,Response,262,4,3,3,1.81,4,3,3,0.02
45,Response,266,2,2,3,1.45,1,1,7,0.02 46,Response,271,2,2,3,1.59,1,1,7,0.02 47,Response,275,2,2,3,1.46,1,1,7,0.01
48,Response,288,2,2,3,1.79,1,1,7,0.02

[nosearch, noheader]resultshigh-generated.csv Id,Property,Line,rltlstates,rltloutputs,rltlmon,rltltime,ltlstates,ltloutputs,ltlmon,Ltltime
50,Constrained Response,314,6,4,3,1.52,3,2,3,0.02 51,Absence,318,4,4,3,1.26,2,2,3,0.01 52,Response,322,2,2,3,1.35,1,1,7,0.02
53,Response,326,2,2,3,1.35,1,1,7,0.01 54,Unknown,330,8,4,3,2.54,3,2,3,0.02 55,Existence,334,2,2,3,0.95,2,2,3,0.01
56,Unknown,338,2,2,3,1.34,1,1,7,0.02 57,Unknown,342,2,2,3,1.31,1,1,7,0.01 58,Response,346,2,2,3,550.84,1,1,7,2.63
59,Unknown,350,6,3,3,0.88,6,3,3,0.02 60,Unknown,354,3,2,3,0.95,3,2,3,0.02 61,Existence,358,2,2,3,0.85,2,2,3,0.01
62,Existence,362,2,2,3,0.88,1,1,7,0.02 63,Always,366,2,2,3,1.03,1,1,7,0.01 64,Universal,370,2,2,3,0.89,1,1,7,0.01
65,Universal,374,3,2,3,1.31,3,2,3,0.01 66,Universal,378,2,2,3,0.88,1,1,7,0.01 67,Existence,382,2,2,3,0.82,2,2,3,0.02
68,Absence,386,6,4,3,1.45,3,2,3,0.01 69,Response,390,2,2,3,1.16,1,1,7,0.01 70,Existence,394,3,2,3,1.11,3,2,3,0.01
71,GlobalUniversal GlobalAbsence,398,4,2,3,1.29,1,1,7,0.01 72,Response,402,2,2,3,1.39,1,1,7,0.01
73,Universal,410,4,4,3,1.49,2,2,3,0.01 74,Response,418,2,2,3,1.23,1,1,7,0.01 75,Response,422,2,2,3,1.17,1,1,7,0.01
76,Response Chain 1-2,427,2,2,3,2.40,1,1,7,0.01 77,Universal,431,4,4,3,1.11,2,2,3,0.01 78,Absence,436,4,4,3,2.63,2,2,3,0.01
79,Absence,440,4,4,3,1.01,2,2,3,0.01 80,Universal,444,4,4,3,1.12,2,2,3,0.01 81,Universal,448,4,4,3,1.10,2,2,3,0.01
82,Universal,452,4,4,3,1.12,2,2,3,0.01 83,Response,456,2,2,3,1.17,1,1,7,0.01 84,Absence,460,6,4,3,1.50,3,2,3,0.01
85,Universal,464,4,4,3,1.01,2,2,3,0.01 86,Absence,468,4,2,3,1.63,4,2,3,0.02 87,Response,473,2,2,3,1.30,1,1,7,0.01
88,Universal,477,4,4,3,1.11,2,2,3,0.01 89,Response,481,2,2,3,1.17,1,1,7,0.01 90,Response,486,2,2,3,1.27,1,1,7,0.02
91,Response,490,2,2,3,1.17,1,1,7,0.01 92,Existence,494,6,4,3,1.32,3,2,3,0.01 93,Response,498,2,2,3,1.18,1,1,7,0.01
94,Response,502,2,2,3,1.17,1,1,7,0.01 95,Response,506,2,2,3,1.17,1,1,7,0.01 96,Unknown,510,4,4,3,1.25,2,2,3,0.01
97,Universal,514,4,4,3,0.91,2,2,3,0.01

A Experimental Results

The following two tables provide detailed results of our experimental evaluation.
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# States # Outputs Monitorable Time in s

Property rLTL LTL rLTL LTL rLTL LTL rLTL LTL

Constrained Response-chain 2-1 3 1 2 1 3 7 2.06 0.07
Constrained 3-2 Response Chain 3 1 2 1 3 7 1.79 0.03
Constrained 3-2 Response Chain 4 1 2 1 3 7 24.21 284.53
Constrained 2-1 Response Chain 3 1 2 1 3 7 1.94 0.03
Existence 6 3 4 2 3 3 1.71 0.02
2 Bounded Existence 8 1 2 1 3 7 3.44 0.02
Response 2 1 2 1 3 7 2.17 0.02
Existence 6 3 4 2 3 3 1.59 0.02
Existence 3 3 3 3 3 3 1.23 0.01
Existence 2 1 2 1 3 7 1.11 0.02
Existence 2 1 2 1 3 7 1.12 0.01
Existence 2 1 2 1 3 7 1.12 0.02
Response 2 1 2 1 3 7 2.15 0.01
Response 2 1 2 1 3 7 2.15 0.02
Existence 5 3 3 2 3 3 1.14 0.01
Absence 4 4 3 3 3 3 2.34 0.02
Absence 4 4 2 2 3 3 3.10 0.02
Absence 5 3 4 2 3 3 5.07 0.02
Absence 4 4 2 2 3 3 2.08 0.02
Response 2 1 2 1 3 7 1.64 0.01
Response 2 1 2 1 3 7 1.61 0.01
GlobalResponse 2 1 2 1 3 7 6.67 0.04
Precedence 5 3 5 3 3 3 1.35 0.01
Absence 4 2 4 2 3 3 1.53 0.03
Response 2 1 2 1 3 7 1.34 0.02
Universal 4 2 4 2 3 3 1.67 0.02
Absence 4 4 2 2 3 3 2.12 0.03
Absence 4 4 2 2 3 3 2.10 0.03
Absence 4 4 3 3 3 3 2.67 0.86
Absence 3 3 2 2 3 3 1.74 0.01
Absence 3 3 2 2 3 3 3.20 0.42
Universal 4 2 4 2 3 3 1.44 0.01
Response 5 5 2 2 3 3 8.33 0.34
Precedence 5 3 5 3 3 3 1.50 0.01
Absence 5 3 4 2 3 3 6.30 0.02
Absence 5 3 4 2 3 3 6.59 0.02
Absence 4 4 3 3 3 3 1.44 0.02
Absence 5 3 4 2 3 3 4.17 0.02
Constrained Response-Chain 3-1 3 1 2 1 3 7 35.40 319.74
Absence 7 4 4 2 3 3 35.57 2.11
Absence 4 4 3 3 3 3 1.42 0.01
Absence 5 3 4 2 3 3 4.04 0.02
Universal 4 2 4 2 3 3 1.38 0.02
Response 4 4 3 3 3 3 1.81 0.02
Response 2 1 2 1 3 7 1.45 0.02
Response 2 1 2 1 3 7 1.59 0.02
Response 2 1 2 1 3 7 1.46 0.01
Response 2 1 2 1 3 7 1.79 0.02

Table 3: Summary of the result when comparing the monitor construction of rLTL
against LTL; continued in Table 4
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# States # Outputs Monitorable Time in s

Property rLTL LTL rLTL LTL rLTL LTL rLTL LTL

Constrained Response 6 3 4 2 3 3 1.52 0.02
Absence 4 2 4 2 3 3 1.26 0.01
Response 2 1 2 1 3 7 1.35 0.02
Response 2 1 2 1 3 7 1.35 0.01
Unknown 8 3 4 2 3 3 2.54 0.02
Existence 2 2 2 2 3 3 0.95 0.01
Unknown 2 1 2 1 3 7 1.34 0.02
Unknown 2 1 2 1 3 7 1.31 0.01
Response 2 1 2 1 3 7 550.84 2.63
Unknown 6 6 3 3 3 3 0.88 0.02
Unknown 3 3 2 2 3 3 0.95 0.02
Existence 2 2 2 2 3 3 0.85 0.01
Existence 2 1 2 1 3 7 0.88 0.02
Always 2 1 2 1 3 7 1.03 0.01
Universal 2 1 2 1 3 7 0.89 0.01
Universal 3 3 2 2 3 3 1.31 0.01
Universal 2 1 2 1 3 7 0.88 0.01
Existence 2 2 2 2 3 3 0.82 0.02
Absence 6 3 4 2 3 3 1.45 0.01
Response 2 1 2 1 3 7 1.16 0.01
Existence 3 3 2 2 3 3 1.11 0.01
GlobalUniversal GlobalAbsence 4 1 2 1 3 7 1.29 0.01
Response 2 1 2 1 3 7 1.39 0.01
Universal 4 2 4 2 3 3 1.49 0.01
Response 2 1 2 1 3 7 1.23 0.01
Response 2 1 2 1 3 7 1.17 0.01
Response Chain 1-2 2 1 2 1 3 7 2.40 0.01
Universal 4 2 4 2 3 3 1.11 0.01
Absence 4 2 4 2 3 3 2.63 0.01
Absence 4 2 4 2 3 3 1.01 0.01
Universal 4 2 4 2 3 3 1.12 0.01
Universal 4 2 4 2 3 3 1.10 0.01
Universal 4 2 4 2 3 3 1.12 0.01
Response 2 1 2 1 3 7 1.17 0.01
Absence 6 3 4 2 3 3 1.50 0.01
Universal 4 2 4 2 3 3 1.01 0.01
Absence 4 4 2 2 3 3 1.63 0.02
Response 2 1 2 1 3 7 1.30 0.01
Universal 4 2 4 2 3 3 1.11 0.01
Response 2 1 2 1 3 7 1.17 0.01
Response 2 1 2 1 3 7 1.27 0.02
Response 2 1 2 1 3 7 1.17 0.01
Existence 6 3 4 2 3 3 1.32 0.01
Response 2 1 2 1 3 7 1.18 0.01
Response 2 1 2 1 3 7 1.17 0.01
Response 2 1 2 1 3 7 1.17 0.01
Unknown 4 2 4 2 3 3 1.25 0.01
Universal 4 2 4 2 3 3 0.91 0.01

Table 4: Summary of the result when comparing the monitor construction of rLTL
against LTL; continuation of Table 3
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