
Innovations in Systems and Software Engineering (2025) 21:595–617
https://doi.org/10.1007/s11334-024-00552-7

ORIG INAL ART ICLE

Robust computation tree logic

Satya Prakash Nayak1 · Daniel Neider2,3 · Rajarshi Roy1 ·Martin Zimmermann4

Received: 12 January 2023 / Accepted: 19 February 2024 / Published online: 20 March 2024
© The Author(s) 2024

Abstract
It is widely accepted that every system should be robust in that “small” violations of environment assumptions should lead
to “small” violations of system guarantees, but it is less clear how to make this intuition mathematically precise. While
significant efforts have been devoted to providing notions of robustness for linear temporal logic, branching-time logics, such
as computation tree logic (CTL) and CTL*, have received less attention in this regard. To address this shortcoming, we develop
“robust” extensions of CTL and CTL*, which we name robust CTL (rCTL) and robust CTL* (rCTL*). Both extensions are
syntactically similar to their parent logics but employ multi-valued semantics to distinguish between “large” and “small”
violations of the specification. We show that the multi-valued semantics of rCTL make it more expressive than CTL, while
rCTL* is as expressive as CTL*. Moreover, we show that the model checking problem, the satisfiability problem, and the
synthesis problem for rCTL and rCTL* have the same asymptotic complexity as their non-robust counterparts, implying that
robustness can be added to branching-time logics for free.

Keywords Robustness · Computation tree logic · Model checking · Synthesis

1 Introduction

Specifications for reactive systems are typically written as
an implication � ⇒ � where � is an environment assump-
tion and � is a system guarantee. However, the specification
� ⇒ � is even satisfied if the environment assumption � is
violated, no matter how the system behaves. This behavior
is clearly inadequate since the environment assumptions will
inevitably be violated in the real world: the actual environ-
ment where the system will be deployed is often not entirely

B Satya Prakash Nayak
sanayak@mpi-sws.org

B Daniel Neider
daniel.neider@tu-dortmund.de

B Rajarshi Roy
rajarshi@mpi-sws.org

B Martin Zimmermann
mzi@cs.aau.dk

1 Max Planck Institute for Software Systems, Kaiserslautern,
Germany

2 TU Dortmund University, Dortmund, Germany

3 Center for Trustworthy Data Science and Security at UA
Ruhr, Dortmund, Germany

4 Aalborg University, Aalborg, Denmark

known at design time and, thus, cannot be accurately and
entirely formalized by the formula �.

There have been concentrated efforts in the literature to
prevent reactive systems from behaving arbitrarily when the
environment assumption is violated, typically by making
the specifications robust to violations of the environment
assumption. For instance, Bloem et al. [1], Tarraf et al. [2],
Doyen et al. [3], Ehlers et al. [4], andTabuada et al. [5, 6] have
provided differentways of introducing robustness for specifi-
cations in linear temporal logic (LTL). All these approaches
require additional assumptions or quantitative information
from the designer, which is often tedious and hard to obtain.

This drawback has motivated Tabuada and Neider [7] to
introduce a new logic, named robust LTL (rLTL), which pro-
vides robustness without relying on any additional assump-
tions or input from a designer beyond an LTL formula.
Among rLTL’s main features are its ease of use (one simply
“dots” temporal operators in existing LTL formulas) and the
fact that adding robustness does not change the asymptotic
complexity of the model checking, runtime monitoring, and
synthesis problems [7–15]. Inspired by this logic, there have
been several works introducing robust extensions of different
classes of temporal logics [8, 9, 16, 17].1

1 A detailed discussion of these extensions and other related work is
presented in Sect. 6.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-024-00552-7&domain=pdf

596 S. P. Nayak et al.

In this work, we investigate robust branching-time logics.
Such logics, like Computation Tree Logic (CTL) and CTL*,
have received less attention in this regard. A notable excep-
tion is the work of French et al. [18, 19], which introduces
logics called RoCTL andRoCTL*. However, this logic again
uses operators that require amanual quantification of the vio-
lations of the environment assumptions.

To address this shortcoming,we develop robust extensions
of CTL and CTL*, which we call robust CTL (rCTL) and
robust CTL* (rCTL*), which are inspired by the notion of
robustness in rLTL. Similar to rLTL, our new logics employ
multi-valued semantics to track the degree of violations of
a specification and are guided by two objectives. First, the
syntax of rCTL and rCTL* is similar to CTL and CTL*,
respectively. Second, the notion of robustness in these logics
is intrinsic rather than extrinsic, i.e., robustness does not rely
on the designers to provide quantitative information about
the specification, such as the number of violations permitted,
ranks, cost, etc.

As a demonstration of howour notion of robustnessworks,
consider a specification � ⇒ � for a robot deployed in
an office-like environment. The environment assumption
� = ∀ ¬H states that the human workers in the office
never visit the robot’s dock. On the other hand, the robot
guarantee � = ∀ ∃ R states: “for all trajectories,
regardless of the robot’s current position, the robot can return
to its dock in one time step” (note that such a specification
cannot be expressed in LTL). Ideally, we would then want
the following:

• if the office workers satisfy the assumption �, then the
robot should also satisfy the guarantee �;

• if the office workers violate the assumption by visiting
the dock a finite number of times before realizing their
mistake and eventually not visiting it anymore, i.e., if
they only satisfy ∀ ¬H , then the robot should also
satisfy ∀ ∃ R, i.e., the robot eventually should
be able to return to its dock from any point; and

• if the officeworkers violate the assumption by visiting the
dock infinitely often (or eventually always), i.e., if they
satisfy∀ ¬H (or∀ ¬H), then the robot should
satisfy ∀ ∃ R (or ∀ ∃ R, respectively).

We later show that the semantics of rCTL and rCTL* indeed
captures such a notion of robustness.

The first two contributions of the paper are robust vari-
ants of the logics CTL and CTL*, namely rCTL (in Sect. 3)
and rCTL* (in Sect. 5), respectively. Their semantics rely on
many-valued truth values that capture the various degrees of
how a specification can be violated.

After having introduced rCTL and rCTL*, we study their
expressive power and compare them to existing logics such
as LTL, rLTL, CTL, and CTL* (in Sects. 3.3 and 5.3). Our

Table 1 Summary of our results (in bold) and comparison to other
logics

Model Checking Satisfiability Synthesis

CTL PTIME EXPTIME EXPTIME

rCTL PTIME EXPTIME EXPTIME

LTL PSPACE PSPACE 2EXPTIME

rLTL PSPACE PSPACE 2EXPTIME

CTL* PSPACE 2EXPTIME 2EXPTIME

rCTL* PSPACE 2EXPTIME 2EXPTIME

All problems are complete for the respective complexity class

key results are that rCTL is more expressive than CTL, while
rCTL* has the same expressive power as CTL*.

Next, we provide efficient model-checking algorithms for
rCTLand rCTL* to demonstrate that both logics can be effec-
tively used for verification.We establish that the rCTLmodel
checking problem is PTIME-complete (in Sect. 3.4) and that
the rCTL*model checking problem is PSPACE-complete (in
Sect. 5.4). Note that this is the same asymptotic complexity
as CTL and CTL* model checking, respectively. Moreover,
we show that the satisfiability and reactive synthesis prob-
lems for rCTL (in Sects. 3.6 and 3.7) and rCTL* (in Sects. 5.5
and 5.6) match the exact asymptotic complexity of their non-
robust counterparts, i.e., EXPTIME-completeness for rCTL
and 2EXPTIME-completeness for rCTL*. Thus, robustness
can be added to branching-time logics “for free”. Table 1
shows an overview over our complexity results.

This paper is an extension of a conference paper [20].
The new content includes all proofs missing from the confer-
encepaper, an example illustratingour rCTLmodel-checking
procedure, more details about the embedding of rCTL and
rCTL* into the modal μ-calculus, and the investigation of
the rCTL and rCTL* synthesis problems.

2 Notation and review of computation tree
logic

In this section, we review the syntax and semantics of CTL,
which expresses properties of Kripke structures.

Throughout this paper, we fix a finite set P of atomic
propositions. A Kripke structure M = (S, I , R, L) over P
consists of a set of states S, a set of initial states I ⊆ S, a
transition relation R ⊆ S × S such that for all states s there
exists a state s′ satisfying (s, s′) ∈ R, and a labeling function
L : S → 2P . We say that M is finite if it has finitely many
states. In that case, we define the size of M as |S|.

The set post(s) = {s′ ∈ S | (s, s′) ∈ R} contains all
successors of s ∈ S. A path of the Kripke structure M is
an infinite sequence π = s0s1 · · · of states such that si+1 ∈
post(si) for each i ≥ 0. For a state s, let paths(s) denote the

123

Robust computation tree logic 597

set of all paths starting from s. Furthermore, for a path π and
i ≥ 0, let π [i] denote the i-th state of π , and let π [i ..] denote
the suffix of π from index i on.

2.1 Syntax

CTL formulas are classified into state and path formu-
las. Intuitively, state formulas express properties of states,
whereas path formulas express temporal properties of paths.
For ease of notation, we denote state formulas and path for-
mulas by Greek capital letters and Greek lowercase letters,
respectively. CTL state formulas over P are given by the
grammar

�:: = p | � ∨ � | � ∧ � | ¬� | � ⇒ � | ∃ϕ | ∀ϕ,

where p ∈ P and ϕ is a path formula. CTL path formulas
are given by the grammar

ϕ:: = � | � | � | � U � | � W �,

where , , , U , and W denote the operators next,
eventually, always, until, and weak until, respectively. Note
that we include implication, conjunction (alternatively, dis-
junction), and weak until as part of the syntax, instead of
derived operators. We do this to be consistent with the syn-
tax of robust logics, where these operators can no longer be
derived. As we will see later, it is also instructive to include
the operators eventually and always explicitly.

2.2 Semantics

Slightly deviating from the usual approach, we define the
CTL semantics using a mapping VCTL that maps a state/path
and a CTL formula to a truth value inB = {0, 1}. Also, some
of our definitions are non-standard in order to be closer to
the robust semantics introduced later. However, let us stress
that the definition below is equivalent to the usual semantics
of CTL (see, e.g., Baier and Katoen [21]).

Given a state s and state formulas �,�, CTL semantics
is defined as follows:

VCTL(s, p) =
{
0 if p /∈ L(s); and

1 if p ∈ L(s),

VCTL(s,� ∨ �) = max{VCTL(s,�), VCTL(s, �)},
VCTL(s,� ∧ �) = min{VCTL(s,�), VCTL(s, �)},

VCTL(s,¬�) = 1 − VCTL(s,�),

VCTL(s,� ⇒ �) =

⎧⎪⎨
⎪⎩
1 if VCTL(s,�) ≤

VCTL(s, �); and
VCTL(s, �) otherwise,

VCTL(s, ∃ϕ) = max
π∈paths(s) VCTL(π, ϕ),

VCTL(s,∀ϕ) = min
π∈paths(s) VCTL(π, ϕ).

Similarly, for a path π , the CTL semantics of path formulas
is defined as given below:

VCTL(π, �) = VCTL(π [1],�),

VCTL(π, �) = max
i≥0

VCTL(π [i],�),

VCTL(π, �) = min
i≥0

VCTL(π [i],�),

VCTL(π,� U �) = max
j≥0

min{VCTL(π [j], �),

min
0≤i< j

VCTL(π [i],�)},
VCTL(π,� W �) = min

j≥0
max{VCTL(π [j],�),

max
0≤i≤ j

VCTL(π [i], �)}.

3 Robust computation tree logic

In this section, we robustify CTL by generalizing the ideas
underlying robust LTL to CTL, obtaining the logic rCTL.We
describe the syntax and semantics of rCTL and discuss the
relation and differences between rCTL and other temporal
logics.

As discussed in the robot example in the introduction, we
want to capture the notion of robustness in CTL by ensur-
ing that a small violation in environment assumptions leads
to a small violation of system guarantees. To achieve that,
we introduce a robust semantics for CTL. Following argu-
ments given by Tabuada and Neider [7], we first motivate
the semantics of rCTL using an example. Consider the CTL
path formula p, where p is an atomic proposition. The
formula can be satisfied in only one way, namely when p
holds at every step, i.e., state, of the path. In contrast, the
formula can be violated in several ways. Intuitively, p is
violated in the worst manner when p fails to hold at every
step. Then, we would prefer a case where p holds for finitely
many steps. Even better would be the case when p holds
at infinitely many steps. Finally, among all possible ways

p can be violated, we would prefer the situation where
p fails to hold for at most finitely many steps. Our robust
semantics is designed to distinguish between satisfaction and
these four different degrees of violation of p. However,
as convincing as this argument might be, a question per-
sists: in which sense can we regard these five alternatives as
canonical?

We answer this question by interpreting the satisfaction
of p as a counting problem. Recall that the seman-
tics of p for a path π is given by VCTL(π, p) =

123

598 S. P. Nayak et al.

mini≥0 VCTL(π [i], p). Now, observe that the truth value of
the CTL formula p for a path π only depends on the
number of occurrences of 0’s and 1’s in the infinite word
α = VCTL(π [0], p)VCTL(π [1], p) · · · ∈ B

ω but not on their
order. From this perspective, p is violated in the worst
manner when p fails to hold at every step, which corresponds
to the number of occurrences of 1 in α being zero. The next
degree of violation of p in which p holds at finitely many
steps corresponds to having a finite number of 1’s. Similarly,
the next degree of violation corresponds to having an infinite
number of 1’s and an infinite number of 0’s. Among all the
ways in which p is violated, the most preferred way cor-
responds to having finitely many 0’s. Finally, the satisfaction
of p corresponds to having zero 0’s. Note that the posi-
tion where 0’s and 1’s occur is irrelevant for our argument.
Furthermore, note that by successively applying permuta-
tions that swap position i with position i + 1 and leave all
the remaining elements of N unaltered, one can transform
any α ∈ B

ω into words of one of the following five forms:
1ω, 0k1ω, (01)ω, 1k0ω, 0ω. It is not hard to verify that the five
cases of violations of p that we discussed above amount
to the words of the five forms given above. Thus, we con-
clude the need for five truth values to describe five different
ways of counting 0’s and 1’s that correspond to five different
canonical forms of violations of p.

According to our motivating example p, the desired
semantics should have one truth value corresponding to true
and four truth values corresponding to the different shades
of false. For notational convenience, we denote these truth
values by b = (b1, b2, b3, b4)with bi ∈ B. Intuitively, for the
formula p, b1 captures whether p holds at every step, b2
captures whether p fails to hold at most finitely many steps,
b3 captures whether p holds at infinitely many steps, and b4
captures whether p holds at least once. Note that these cases
are monotonic, i.e., bi = 1 implies bi+1 = 1. Hence, we
obtain the set B4 = {0000, 0001, 0011, 0111, 1111} of truth
values. The value 1111 corresponds to true, and the others
correspond to different shades of false as explained above.
The truth values are ordered naturally as 0000 < 0001 <

0011 < 0111 < 1111.
It remains to explain how the semantics of Boolean con-

nectives are defined for these truth values. The notion of a
triangular-norm summarizes all the desirable properties of
a many-valued conjunction (see P. Hájek [22] for details),
and it is natural to model conjunction and disjunction in B4

by min and max, respectively. Moreover, as in intuitionistic
logic, we define the implication, denoted by a → b on the
level of truth values, such that c ≤ a → b if and only if
c ∧ a ≤ b for every c ∈ B4. This leads to

a → b =
{
1111 if a ≤ b; and

b otherwise.

Table 2 Desired negation versus intuitionistic negation in B4

Value Desired negation Intuitionistic negation

1111 0000 0000

0111 1111 0000

0011 1111 0000

0001 1111 0000

0000 1111 1111

However, the negation, denoted by a on the level of truth
values, defined by a → 0000 as in intuitionistic logic, is
not compatible with our interpretation that all elements in
B4 \ {1111} represent different shades of false and, thus,
their negation should be 1111. To make this point clear, we
present in Table 2 the intuitionistic negation in B4 and the
desired negation compatible with the interpretation of the
truth values in B4. What is then the algebraic structure on B4

that supports the desired negation, dual to the intuitionistic
negation? This very same problem was investigated in [23],
and the answer is da Costa algebras. Therefore, following
the ideas introduced by rLTL and use da Costa algebras to
define the negation (see Priest and Graham [23] for details):

a =
{
0000 if a = 1111; and

1111 otherwise.

In other words, “true” (1111) gets mapped to “false” (0000),
while “shades of false” get mapped to “true”.

It should be mentioned that working with a five-valued
semantics has its price. As in intuitionistic logic, a may not
be equal to a as evidenced by taking a = 0111. Although it
is still true that a → a. Interestingly, we can think of double
negation as quantization in the sense that true is mapped to
true and all the shades of false are mapped to 0000 (false).
Hence, double negation quantizes the five different truth val-
ues into two truth values (true and false) in a manner that is
compatible with our interpretation of truth values.

Remark 1 Although there are alternativeways to define nega-
tion that preserves its duality, i.e., a = a, our notion of
negation (as in the original rLTL paper [7]) has been proven
useful in many applications (see, e.g., Anevlavis et al. [12]).

3.1 Syntax

The syntax of rCTL matches that of CTL, save for dotting
temporal operators for visual distinction. Hence, formulas of
rCTL are also classified into state and path formulas.

rCTL state formulas over P are formed according to the
grammar

�:: = p | � ∨ � | � ∧ � | ¬� | � ⇒ � | ∃ϕ | ∀ϕ,

123

Robust computation tree logic 599

where p ∈ P and ϕ is a path formula. rCTL path formulas
are formed according to the grammar

ϕ:: = � | � | � | � U � | � W �.

The size of a formula is defined as the number of its syn-
tactically distinct subformulas. Here, the set of subformulas
of a state formula � is defined as for CTL (see Baier and
Katoen [21] for details) and denoted by Sub(�).

3.2 Semantics

Similar to the semantics of CTL, we define the semantics of
rCTL by a mapping V , called valuation, that maps an rCTL
formula and a state/path to an element of B4. For an atomic
proposition p ∈ P , it is defined classically:

V (s, p) =
{
0000 if p /∈ L(s); and

1111 if p ∈ L(s).

Following the semantics of rLTL, we define the semantics
for Boolean connectives in rCTL using da Costa algebras, as
follows:

V (s,� ∨ �) = max{V (s,�), V (s, �)},
V (s,� ∧ �) = min{V (s,�), V (s, �)},

V (s,¬�) = V (s,�),

V (s,� ⇒ �) = V (s,�) → V (s, �).

For existential path quantification, we want V (s, ∃ϕ) ≥ b
if there exists a path π starting in s such that V (π, ϕ) ≥ b.
Similarly, we want V (s,∀ϕ) ≥ b if for all paths π starting
in s it holds that V (π, ϕ) ≥ b. This leads to

V (s, ∃ϕ) = max
π∈paths(s) V (π, ϕ),

V (s,∀ϕ) = min
π∈paths(s) V (π, ϕ).

For path formulas, we formalize the intuition above in the
semantics of the temporal operators. For 1 ≤ � ≤ 4, let
V� denote the �-th bit of the valuation V . Then, using the
counting interpretation as discussed earlier, we define the
semantics for by V (π, �) = (b1, b2, b3, b4), where

b1 = min
i≥0

V1(π [i], ϕ),

b2 = max
j≥0

min
i≥ j

V2(π [i], ϕ),

b3 = min
j≥0

max
i≥ j

V3(π [i], ϕ),

b4 = max
i≥0

V4(π [i], ϕ).

The semantics of � mimics the classical semantics in
that the truth value of � on π is the maximal truth value
of � that is assumed at any position of π . Analogously, the
semantics for temporal operators and U also mimics the
classical semantics as follows:

V (π, �) = max
i≥0

V (π [i],�),

V (π, �) = V (π [1],�),

V (π,� U �) = max
j≥0

min{V (π [j], �),

min
0≤i< j

V (π [i],�)}.

Finally, using the counting interpretation as above, the
semantics for W is definedbyV (π,� W �) = (b1, b2, b3,
b4), where

b1 = min
j≥0

max{V1(π [j],�), max
0≤i≤ j

V1(π [i], �)},
b2 = max

k≥0
min
j≥k

max{V2(π [j],�), max
0≤i≤ j

V2(π [i], �)},
b3 = min

k≥0
max
j≥k

max{V3(π [j],�), max
0≤i≤ j

V3(π [i], �)},
b4 = max

j≥0
max{V4(π [j],�), max

0≤i≤ j
V4(π [i], �)}.

Example 1 Having defined the rCTL semantics, let us recall
the example of the specification for a robot given in Sect. 1:
∀ ¬H ⇒ ∀ ∃ R, where ∀ ¬H is the environ-
ment assumption that human office workers never visit the
dock of the robot, and ∀ ∃ R is the robot guarantee
that from every state in every path, i.e., from every reach-
able state, there exists a way for the robot to return to its
dock in one time step. The robust version of this formula
is � = ∀ ¬H ⇒ ∀ ∃ R. Let us demonstrate how
this formula captures the robustness property as discussed in
Sect. 1.

Let us assume� evaluates to 1111 in a givenKripke struc-
ture. Then the following hold:

• If the office workers never visit the dock, then in any
path, ¬H holds at every state. Hence, ∀ ¬H evalu-
ates to 1111. Then by the semantics of ⇒, the formula
∀ ∃ R also must evaluate to 1111. That means, in
any path, ∃ R also holds at every state. Therefore,
from any state of a path, the robot can return to its dock
in one time step. Hence, the desired behavior of the sys-
tem is retained when the environment assumption holds
with no violation.

• If the office workers violate the assumption by visiting
the dock finitely many times and eventually not visiting
it anymore, then for any path, ¬H holds eventually at
every state. Hence, ∀ ¬H evaluates to 0111. Then,
by the rCTL semantics, ∀ ∃ R evaluates to 0111

123

600 S. P. Nayak et al.

or higher. Hence, in any path, ∃ R also needs to hold
eventually at every state. That means, from any state in a
path, the robot can return to its dock eventually.

• Similarly, if ¬H holds at infinitely many states (some
state) in every path, then ∃ R needs to hold at infinitely
many states (some state) in every path.

Hence, whenever the formula� evaluates to 1111, its seman-
tics captures the intended robustness property by which a
weakening of the assumption ∀ ¬H leads to a weakening
of the guarantee ∀ ∃ R.

Now, a natural question arises: does the formula still pro-
vide useful information when its value is lower than 1111. It
follows from the semantics of implication that � evaluates
to b < 1111 only when ∀ ¬H evaluates to a higher value
than b, whereas ∀ ∃ R evaluates to b. So, the desired
system guarantee is not satisfied. However, the value of �

still describes which weakened guarantee follows from the
environment assumption. This can be seen as another mea-
sure of robustness: despite ∀ ∃ R not following from
∀ ¬H , the system’s behavior is not arbitrary, a value of b
is still guaranteed.

It is worth mentioning that even though our notion of
robustness is motivated by the robustness in formulas of the
form � ⇒ �, such a notion has also value beyond this class
of specifications. For example, the work of Anevlavis et al.
[12] shows that the relevant reactivity patterns [24] fall under
the fragment of rLTL that does not contain the implication
operator.

3.3 Expressiveness of rCTL

In this section, we compare the expressiveness of rCTL with
three other temporal logics: CTL, LTL, and rLTL. We show
that the five truth values of rCTL make it more expressive
than CTL. More precisely, there are properties that one can
express in rCTL but not in CTL. However, the expressiveness
of rCTL and LTL are incomparable, and the same also holds
for rCTL and rLTL.

We compare the expressiveness of two classes of logics by
comparing the expressiveness of their formulas. For logicsL
and L′, we say L is as expressive as L′ if for every formula
in L′ there is an equivalent formula in L. Moreover, we say
L is more expressive than L′ if L is as expressive as L′
but the converse is not true. Furthermore, we say L and L′
have incomparable expressiveness if neither of L and L′ is
as expressive as the other one.

Now the question is what it means for two formulas to be
equivalent. Intuitively speaking, equivalent means “express
the same thing”. Formally, we define the equivalence of two
formulas using their satisfaction sets. For a given Kripke
structure, and a state formula �, we define the satisfaction

set Sat(�, b) of an rCTL formula� and with value b ∈ B4 to
be the set of states s such that V (s,�) ≥ b. Since the satis-
faction sets of an rCTL (state) formula are always associated
with a truth value in B4, we always associate a truth value
with an rCTL formula when comparing its expressiveness.

For two rCTL state formulas �1,�2 and two truth val-
ues b1, b2 ∈ B4, we say that �1 with truth value b1 is
equivalent to �2 with truth value b2 if for every Kripke
structure it holds that Sat(�1, b1) = Sat(�2, b2). Similarly,
an rCTL formula �1 with truth value b1 is equivalent to a
CTL formula �2 if for every Kripke structure it holds that
Sat(�1, b1) = SatCTL(�2), where SatCTL(·) denotes the sat-
isfaction sets for CTL formulas.

For an LTL (or rLTL) formula ϕ (which is evaluated over
paths), we define its satisfaction set to contain all states s
such that π satisfies ϕ for every path π ∈ paths(s). Hence,
an LTL or rLTL formula is equivalent to an rCTL formula, if
they have the same satisfaction sets for all Kripke structures.

We begin by comparing the semantics of CTL and rCTL.
First, we want to show that the CTL semantics is captured
by the first bit of the rCTL semantics (recall that V1 denotes
the first bit of the rCTL valuation function). Due to the non-
standard semantics of implication in robust logics, this does
only work for CTL formulas without implications. This is of
course not a restriction, as in classical semantics, implication
can be derived from disjunction and negation.

Lemma 1 For any CTL state formula� containing no impli-
cation, let �r be the rCTL state formula obtained by dotting
all temporal operators in �. Then for any state s, it holds
that VCTL(s,�) = V1(s,�r). Consequently, it holds that
SatCTL(�) = Sat(�r , 1111).

Proof Applying the definition of the rCTL semantics, we
have the following:

V1(s, p) =
{
0 if p /∈ L(s); and

1 if p ∈ L(s),

V1(s,¬�) =
{
0 if V1(s,�) = 1; and

1 otherwise,

V1(s,� ∨ �) = max{V1(s,�), V1(s, �)},
V1(s,� ∧ �) = min{V1(s,�), V1(s, �)},

V1(s, ∃ϕ) = max
π∈paths(s) V1(π, ϕ),

V1(s,∀ϕ) = min
π∈paths(s) V1(π, ϕ),

V1(π, �) = V1(π [1],�),

V1(π, �) = max
j≥0

V1(π [j],�)

V1(π, �) = min
j≥0

V1(π [j],�)

V1(π,� U �) = max
j≥0

min{V1(π [j], �),

123

Robust computation tree logic 601

min
0≤i< j

V1(π [i],�)},
V1(π,� W �) = min

j≥0
max{V1(π [j],�),

max
0≤i≤ j

V1(π [i], �)}.

Applying these equalities inductively proves that V1 is indeed
equal to the valuation VCTL.
�

Hence, rCTL is at least as expressive as CTL. However,
the converse is not true, i.e., there exist rCTL formulas that
have no equivalent CTL formula. For example, consider the
rCTL formula � = ∀ p with truth value 0111. For a state
s, we have s ∈ Sat(�, 0111) if and only if for each π ∈
paths(s), there exists j such that p ∈ L(π [i]) for all i ≥ j ,
which is equivalent to each path π ∈ paths(s) satisfying
the LTL formula p. However, the formula p
cannot be expressed in CTL (see Baier and Katoen [21] for
details). Therefore, there is no CTL formula � such that
Sat(�, 0111) = SatCTL(�). In total, we obtain the following
result.

Theorem 2 rCTL is more expressive than CTL.

It is known that the expressiveness of LTL and CTL is
incomparable. For example, the CTL formula ∀ ∀ p
has no equivalentLTL formula, and theLTL formulas (p∧

p) has no equivalent CTL formula (see Baier and Katoen
[21] for details). The same holds for the expressiveness of
LTL and rCTL. We just saw that the first bit of the rCTL
semantics captures the CTL semantics (for a formula with
no implication). Hence, it follows that for the rCTL for-
mula ∀ ∀ p (with value 1111), there is no equivalent
LTL formula. Furthermore, one can see that the five-valued
semantics does not help in expressing ϕ = (p ∧ p).
Intuitively, a Kripke structure satisfies the formula ϕ if all
paths contain a pair of consecutive states where p holds.
Similarly to the proof of inexpressibility of ϕ in CTL, it can
be shown that this property is inexpressible in rCTL as well,
as all path formulas are guarded with an existential or univer-
sal operator. One can express “all paths contain a state such
that p holds at that state and at all (or some) of its succes-
sor” in rCTL, which is not the same as the property we want.
Overall, we obtain the following result.

Theorem 3 rCTL and LTL have incomparable expressive-
ness.

In the paper on rLTL [7], Tabuada and Neider showed
that LTL and rLTL are equally expressive. Hence, a direct
corollary of Theorem 3 is the following.

Corollary 4 rCTL and rLTL have incomparable expressive-
ness.

3.4 rCTLmodel checking

The classical CTLmodel checking problem asks whether the
computation tree (the tree induced by all its executions) of a
given system, satisfies a given CTL specification. However,
in the context of rCTL, this question is more involved due to
rCTL’s many-valued semantics. A natural generalization is
whether the computation tree satisfies a given property with
at least a given value b0 ∈ B4. As usual, wemodel systems by
Kripke structures. So, the rCTL model checking problem is:
for a given finiteKripke structureM = (S, I , R, L), an rCTL
formula� and a truth value b0 ∈ B4, does V (s,�) ≥ b0 hold
for all initial states s ∈ I?

Our rCTL model checking procedure is shown as pseu-
docode in Algorithm 1. It is similar to the standard CTL
model checking algorithm in that it recursively computes the
satisfaction sets Sat(�, b) for each subformula � ∈ Sub(�)

and each truth value b ∈ B4. To check whether the Kripke
structure satisfies�, it is then enough to checkwhether all ini-
tial states belong to Sat(�, b0). Note that Sat(�, 0000) = S
since every state satisfies any rCTL formula � with truth
value 0000.

Algorithm 1 The rCTL model checking algorithm.
Input: Finite Kripke structure M , rCTL formula �, and a truth value
b0 ∈ B4

for all � ∈ Sub(�) in increasing size do
Sat(�, 0000) = S
for all b = 1111 to 0001 do

Compute Sat(�, b) as characterized in Table 3
end for

end for
return I ⊆ Sat(�, b0)

The key idea of Algorithm 1 is to recursively compute the
satisfaction sets using a dynamic programming technique.
More precisely, the satisfaction sets are computed by induc-
tion over the structure of � as characterized in Table 3.
This characterization is explained in the next paragraphs and
proven correct in Lemma 5. Since Sat(�, 0000) = S for any
rCTL formula�, Table 3 only shows the cases for b > 0000.

To simplify the following presentation of the characteri-
zation, we split the discussion into three categories: atomic
propositions, Boolean connectives, and temporal operators.
Atomic Propositions. The valuation for atomic propositions
is defined classically, as in the case of CTL. Hence, the satis-
faction set Sat(p, b) of an atomic proposition p ∈ P with a
value b > 0000 is the set of all states whose label contains p.
Boolean Connectives. The computation of the satisfaction
sets for the Boolean connectives closely follows the seman-
tic definition based on the da Costa algebra. Conjunction
and disjunction are implemented using the usual intersec-
tion and union of sets, respectively. The set Sat(¬�, b) is

123

602 S. P. Nayak et al.

Table 3 Characterization of the
satisfaction sets for rCTL
formulas

Symbol Sat(·, ·) for rCTL formulas �, � and value b ∈ B4 \ {0000}
p ∈ P Sat(p, b) = {s ∈ S | p ∈ L(s)}
∨ Sat(� ∨ �, b) = Sat(�, b) ∪ Sat(�, b)

∧ Sat(� ∧ �, b) = Sat(�, b) ∩ Sat(�, b)

¬ Sat(¬�, b) = S \ Sat(�, 1111)

⇒ Sat(� ⇒ �, 1111) = ⋂
b Sat(�, b) ∪ (S \ Sat(�, b))

Sat(� ⇒ �, b) = Sat(� ⇒ �, 1111) ∪ Sat(�, b) for any b ≤ 0111

Sat(∃ �, b) = {s ∈ S | post(s) ∩ Sat(�, b) �= ∅}
Sat(∀ �, b) = {s ∈ S | post(s) ⊆ Sat(�, b)}
Sat(∃ �, b) = lfp T .F∃(T ,Sat(�, b), S

)
Sat(∀ �, b) = lfp T .F∀(

T ,Sat(�, b), S
)

Sat(∃ �, 1111) = gfp T .F∃(T ,∅,Sat(�, 1111)
)

Sat(∃ �, 0111) = lfp T1.gfp T2.G∃(T1, T2,∅,Sat(�, 0111))

Sat(∃ �, 0011) = gfp T2.lfp T1.G∃(T1, T2,∅,Sat(�, 0011))

Sat(∃ �, 0001) = lfp T .F∃(T ,Sat(�, 0001), S
)

Sat(∀ �, 1111) = gfp T .F∀(
T ,∅,Sat(�, 1111)

)
Sat(∀ �, 0111) = lfp T1.gfp T2.G∀(T1, T2,∅,Sat(�, 0111))

Sat(∀ �, 0011) = gfp T2.lfp T1.G∀(T1, T2,∅,Sat(�, 0011))

Sat(∀ �, 0001) = lfp T .F∀(
T ,Sat(�, 0001), S

)
U Sat(∃(� U �), b) = lfp T .F∃(T ,Sat(�, b),Sat(�, b)

)
Sat(∀(� U �), b) = lfp T .F∀(

T ,Sat(�, b),Sat(�, b)
)

W Sat(∃(� W �), 1111) = gfp T .F∃(T ,Sat(�, 1111),Sat(�, 1111)
)

Sat(∃(� W �), 0111) = lfp T1.gfp T2.G∃(T1, T2,Sat(�, 0111),Sat(�, 0111))

Sat(∃(� W �), 0011) = gfp T2.lfp T1.G∃(T1, T2,Sat(�, 0011),Sat(�, 0011))

Sat(∃(� W �), 0001) = lfp T .F∃(T ,Sat(�, 0001) ∪ Sat(�, 0001), S
)

Sat(∀(� W �), 1111) = gfp T .F∀(
T ,Sat(�, 1111),Sat(�, 1111)

)
Sat(∀(� W �), 0111) = lfp T1.gfp T2.G∀(T1, T2,Sat(�, 0111),Sat(�, 0111))

Sat(∀(� W �), 0011) = gfp T2.lfp T1.G∀(T1, T2,Sat(�, 0011),Sat(�, 0011))

Sat(∀(� W �), 0001) = lfp T .F∀(
T ,Sat(�, 0001) ∪ Sat(�, 0001), S

)

the complement of all states on which � evaluates to 1111
(recall that we assume b > 0000). Finally, the implementa-
tion of the implication is more involved. By definition, the set
Sat(� ⇒ �, 1111) is the set of states s for which V (s,�)

is less than V (s, �); in set notation, this is expressed by the
intersection of the sets Sat(�, b) ∪ (S\Sat(�, b)) for each
b ∈ B4. For any other truth value b ≤ 0111, Sat(� ⇒ �, b)
consists of all states where the implication evaluates to 1111
or � evaluates to at least b.
Temporal Operators.Now let us explain the characterization
of the satisfaction sets for formulas with temporal operators.
As the formulas can start with an existential or a universal
operator, we discuss the satisfaction sets for them individu-
ally.

A state s satisfies the formula ∃ � with a value of at
least b if one of its successors satisfies � with a value of at
least b. Hence, the set Sat(∃ �, b) is the set of states s
such that one of its successors is in Sat(�, b). Dually, the

set Sat(∀ �, b) is the set of states s such that all of its
successors are in Sat(�, b).

As for CTL, we use fixed point equations over sets of
states to compute satisfaction sets for rCTL formulaswith the
remaining temporal operators. So, let us first briefly describe
some notation and useful properties of fixed point equations
over sets of states. A function F that maps a set of states
to another set of states is monotonic if T1 ⊆ T2 implies
F(T1) ⊆ F(T2) for all sets T1, T2 of states. All monotonic
functions have unique least and greatest fixed points [25].
Hence, given a monotonic function F (with variable T), we
write lfp T .F(T) and gfp T .F(T) to denote the least fixed
point and the greatest fixed point of F , respectively. All func-
tions we consider in the following are monotonic.

We begin with formulas of the form ∃ �. By defini-
tion, a state s satisfies ∃ � with a value of at least b if
there exists a path from s containing a state that satisfies �

with a value of at least b. Since we are now dealing with
paths, we can apply the expansion laws of rLTL [7]. In this

123

Robust computation tree logic 603

particular case, we obtain the following statement: a state s
satisfies ∃ � with a value of at least b if and only if s
satisfies � with a value of at least b or one of its immediate
successors satisfies ∃ � with a value of at least b. Hence,
as in CTL, Sat(∃ �, b) is the smallest subset T of S sat-
isfying Sat(�, b) ∪ {s ∈ S | post(s) ∩ T �= ∅} ⊆ T . That
capture this via fixed point operators, we define the function

F∃(T , S1, S2) = S1 ∪ {s ∈ S2 | post(s) ∩ T �= ∅}.

So, F∃(T , S1, S2) contains all states in S1 as well as all states
in S2 that have a successor in T . Note that this definition is
more general than what we need it here, which will be useful
for other temporal operators. But by fixing S1 = Sat(�, b)
and S2 = S, we capture the expansion law of ∃ . Thus,
consider the map

T �→ F∃(T ,Sat(�, b), S)

mapping sets of states to sets of states. We will prove that its
fixed point lfp T .F∃(T ,Sat(�, b), S) is indeed the satisfac-
tion set of ∃ �.

Dually, a state s satisfies the formula ∀ � with a value
of at least b if every path starting from s contains a state sat-
isfying � with value at least b. Using analogous arguments,
one can show that the set Sat(∀ �, b) is the least fixed
point lfp T .F∀(T ,Sat(�, b), S), where F∀ is defined as

F∀(T , S1, S2) = S1 ∪ {s ∈ S2 | post(s) ⊆ T }.

Next, we consider formulas of the form ∃ �. The char-
acterization of the set Sat(∃ �, b) is more complex, and
we discuss each truth value separately. Firstly, a state s sat-
isfies ∃ � with value 1111 if there exists a path from s
on which every state satisfies � with value 1111. By again
applying an expansion law similar to that of CTL, this state-
ment is equivalent to s satisfying � with value 1111 and
one of its successors satisfying ∃ � with value 1111.
Hence, the set Sat(∃ �, 1111) equals the greatest fixed
point gfp T .F∃(T ,∅,Sat(�, 1111)).

Next, a state s satisfies ∃ �with a value of at least 0111
if there exists a path from s on which eventually every state
satisfies � with a value of at least 0111. A set of states with
such a property can be expressed using nested fixed points
as usual (see Arnold and Niwinski [26] for details). We will
prove that the set Sat(∃ �, 0111) is equal to the nested
fixed point

lfp T1.gfp T2.G
∃(T1, T2,∅,Sat(�, 0111)),

where G∃ is defined as

G∃(T1, T2, S1, S2) = S1 ∪

{s ∈ S | post(s) ∩ T1 �= ∅} ∪
{s ∈ S2 | post(s) ∩ T2 �= ∅}.

Intuitively, the inner greatest fixed point in this nested fixed
point represents the property of a path that all states on that
path satisfy � with a value of at least 0111 (similar to the
case of ∃ � and truth value 1111 just discussed). Then,
the outer least fixed point ensures that there exists a path that
has a suffix with that property (similar to the case of ∃ �

discussed above).
Similarly, a state s satisfies ∃ � with a value of at

least 0011 if there exists a path from s on which there exist
infinitely many states satisfying � with a value of at least
0011. Note that the property that a path contains infinitely
many states satisfying � (with a value b) is the dual of the
property that a path contains finitely many states satisfying
� (with a value b). Hence, similar to the last case, it holds
that

Sat(∃ �, 0011) = gfp T2.lfp T1.

G∃(T1, T2,∅,Sat(�, 0011)).

Finally, a state s satisfies ∃ � with a value of at
least 0001 if there exists a path from s containing a state
that satisfies � with a value of at least 0001, which is
equivalent to satisfying ∃ � with a value of at least
0001. Hence, Sat(∃ �, 0001) is the least fixed point
lfp T .F∃(T ,Sat(�, 0001), S), as in the case of ∃ �.

Analogously, one can characterize ∀ � using the fixed
points of the functions F∀ and G∀, where

G∀(T1, T2, S1, S2) = S1 ∪
{s ∈ S | post(s) ⊆ T1} ∪
{s ∈ S2 | post(s) ⊆ T2}.

As the semantics of U mimics the classical semantics,
its characterization is generalized from that of , as for
CTL. Hence, its characterization can be obtained using the
functions F∃ and F∀. We describe the case ∃� U �, and the
case ∀� U � is again similar. A state s satisfies ∃� U �

with avalueof at leastb if there exists a path from s containing
a state that satisfies � with a value of at least b and every
state before that in the path satisfies�with a value of at least
b. By applying the expansion law of rLTL [7], this statement
is equivalent to s satisfying � with a value of at least b or it
satisfying�with a value of at least b and one of its successors
satisfying ∃� U � with a value of at least b. Hence, as in
CTL, Sat(∃� U �, b) is the smallest subset T of S satisfying
Sat(�, b) ∪ {s ∈ Sat(�, b) | post(s) ∩ T �= ∅} ⊆ T . This is
captured by the map

T �→ F∃(T ,Sat(�, b),Sat(�, b)).

123

604 S. P. Nayak et al.

Therefore, the least fixed point

lfp T .F∃(T ,Sat(�, b),Sat(�, b))

of the map is the satisfaction set of ∃� �.
Finally, the semantics of� W � is also defined using the

counting interpretation described in Sect. 3, similarly to the
semantics of �. However, note that the satisfaction sets
for � are characterized only using the satisfaction sets for
�, whereas the satisfaction sets for � W � must be char-
acterized using the satisfaction sets of both formulas � and
�. Hence, the characterization for W can be obtained using
the similar fixed points as for but using the satisfaction
sets of both formulas � and �.

Example 2 Before proving that the characterization inTable 3
is correct, let us illustrate it on a simple Kripke struc-
ture, depicted in Fig. 1. Continuing the example presented
in Sect. 1, the Kripke structure demonstrates the interaction
between two agents, a robot and office workers (note that for
simplicity we consider all workers as one agent). It captures
which agent is present in the dock of the robot (for the sake
of readability, we only consider one other location). Initially,
only the robot is present in its dock, captured by the initial
state s0 of the Kripke structure. The robot can continue wait-
ing in its dock, captured by the self-loop in s0, or it can start
performing its task, and, to do so, leave the dock. This is cap-
tured by the transition from state s0 to s1, where there are no
agents present at the dock. Now, when no agents are present
in the dock, represented by state s1, the office workers can
visit the dock, leading to state s2. The robot can only return
to the dock if it is vacant (encoded by state s1), i.e., there
is no edge from s2 to s0. Thus, office workers can prevent
the robot from returning to its dock, but not continuously, as
there is no self-loop in s2: the office worker leaves the dock
immediately.

For this Kripke structure, we now compute, for each state,
the maximal truth values with which the state satisfies the
subformulas of � = ∀ ¬H ⇒ ∀ ∃ R. If this value
is b for some state s and some subformula �, then we have
s ∈ Sat(�, b′) for all b′ ≤ b and s /∈ Sat(�, b′) for all
b′ > b.

These truth values are indicated below the corresponding
state in Fig. 1.

In Fig. 1, observe that R holds with a value of 1111 in
the state s0 and H holds with a value of 1111 in the state s2
since s0’s label contains R and s2’s label contains H . This
is consistent with our characterization of satisfiable set for
atomic propositions, presented in Table 3: Sat(R, 1111) =
{s0} and Sat(H , 1111) = {s2}. Next, observe that the formula
¬H holds in states s0 and s1 with a value of 1111 since H does
not hold in s0 and s1 with a value of 1111. This can be seen

Fig. 1 A Kripke structure that tracks a possible interaction between a
robot and office workers. Within each state, we mention its identifier.
Above each state, we mention its label. Below each state, we mention
the maximal valuation that holds in the state for each subformula of
� = ∀ ¬H ⇒ ∀ ∃ R

in the our characterization of negation: Sat(¬H , 1111) =
S\Sat(H , 1111) = S\{s2} = {s0, s1}.

The formula ∃ R holds in the states s0 and s1 with
a value of 1111. This is because, both post(s0) and post(s1)
contain a state inwhich R holdswith a value of 1111, namely,
the state s0 for both cases. This is also reflected in our char-
acterization of the next operator: Sat(∃ R, 1111) = {s ∈
S | post(s)∪Sat(R, 1111) �= ∅} = {s ∈ S | post(s)∪{s0} �=
∅} = {s0, s1}. Also, ∃ R holds in the state s2 only with a
value of 0000, as post(s2) does not contain a state where R
holds with a value larger than 0000.

Observe that the formula ∀ ¬H holds in all states
with a value of 0011. This is because every path through
the Kripke structure visits infinitely many states where
¬H holds, as s2 does not have a self-loop. Hence, every
state satisfies ∀ ¬H with at least 0011. This is exactly
captured in our characterization for the always opera-
tor: Sat(∀ ¬H , 0011) = gfp T2.lfp T1.G∀(T1, T2,∅,Sat
(¬H , 0011)) = gfp T2.lfp T1.G∀(T1, T2,∅, {s0, s1}) =
{s0, s1, s2} (the computation of nested fixed points can be
found in Arnold and Niwinski [26]). On the other hand,
from every state there is a path that visits s2 infinitely often,
i.e., H holds infinitely often. Therefore, no state can satisfy
∀ ¬H with 0111. Again, this is captured in our charac-
terization for the always operator: Sat(∀ ¬H , 0111) =
lfp T1.gfp T2.G∀(T1, T2,∅,Sat(¬H , 0111)) = lfp .

T1gfp T2.G∀(T1, T2,∅, {s0, s1}) = ∅. Thus, ∀ ¬H holds
in all states with a maximal value of 0011.

In a fashion similar to ∀ ¬H , the formula ∀ ∃ R
holds with a value of 0011 in all the states. This is also
reflected in our characterization for the always operator.

Now, since the maximal value of ∀ ¬H is equal to
that of ∀ ∃ R in all the states, � = ∀ ¬H ⇒
∀ ∃ R holds in all the states with a value of 1111. Also,
our characterization of implication states Sat(∀ ¬H ⇒

123

Robust computation tree logic 605

∀ ∃ R, 1111) = ⋂
b(Sat(∀ ∃ R, b) ∪ S \ Sat

(∀ ¬H , b)) = {s0, s1, s2}.

Lemma 5 The characterization of the satisfaction sets in
Table 3 is correct.

Proof Let M = (S, I , R, L) be a given Kripke structure and
b ∈ B4\{0000}. Now, we show that every equation in Table 3
using a case-by-case analysis.

• s ∈ Sat(p, b)

⇐⇒ V (s, p) ≥ b > 0000

⇐⇒ V (s, p) = 1111

⇐⇒ p ∈ L(s).
• s ∈ Sat(� ∨ �, b)

⇐⇒ V (� ∨ �) ≥ b

⇐⇒ max{V (s,�), V (s, �)} ≥ b

⇐⇒ V (s,�) ≥ b or V (s, �) ≥ b

⇐⇒ s ∈ Sat(�, b) or s ∈ Sat(�, b)

⇐⇒ s ∈ Sat(�, b) ∪ Sat(�, b).
• s ∈ Sat(� ∧ �, b)

⇐⇒ V (� ∧ �) ≥ b

⇐⇒ min{V (s,�), V (s, �)} ≥ b

⇐⇒ V (s,�) ≥ b and V (s, �) ≥ b

⇐⇒ s ∈ Sat(�, b) and s ∈ Sat(�, b)

⇐⇒ s ∈ Sat(�, b) ∩ Sat(�, b).
• s ∈ Sat(¬�, b)

⇐⇒ V (s,¬�) ≥ b ≥ 0001

⇐⇒ V (s,�) = 1111

⇐⇒ V (s,�) �= 1111

⇐⇒ s ∈ S\Sat(�, 1111).
• s ∈ Sat(� ⇒ �, 1111)

⇐⇒ (
V (s,�) → V (s, �)

) = 1111

⇐⇒ V (s,�) ≤ V (s, �)

⇐⇒ ∀b ∈ B4 : s /∈ Sat(�, b)\Sat(�, b)

⇐⇒ ∀b ∈ B4 : s ∈ (
S\Sat(�, b)

) ∪ Sat(�, b)

⇐⇒ s ∈
⋂
b

Sat(�, b) ∪ (S\Sat(�, b)).

Similarly, for some b ≤ 0111,
s ∈ Sat(� ⇒ �, b)

⇐⇒ (
V (s,�) → V (s, �)

) ≥ b

⇐⇒ V (s,�) ≤ V (s, �) or V (s, �) = b

⇐⇒ s ∈ Sat(� ⇒ �, 1111) ∪ Sat(�, b).

• s ∈ Sat(∃ �, b)

⇐⇒ ∃π ∈ paths(s) : V (π, �) ≥ b

⇐⇒ ∃π ∈ paths(s) : V (π [1],�) ≥ b

⇐⇒ ∃s′ ∈ post(s) : V (s′,�) ≥ b

⇐⇒ post(s) ∩ Sat(�, b) �= ∅
and
s ∈ Sat(∀ �, b)

⇐⇒ ∀π ∈ paths(s) : V (π, �) ≥ b

⇐⇒ ∀π ∈ paths(s) : V (π [1],�) ≥ b

⇐⇒ ∀s′ ∈ post(s) : V (s′,�) ≥ b

⇐⇒ post(s) ⊆ Sat(�, b).

It remains to consider the temporal operators eventually,
always, until, and release. Here, we need to prove that the
fixed-point characterizations presented are correct. For most
cases, the technical core of the arguments are standard char-
acterizations of safety (a state formula holds at every state of
a given path), co-Büchi (a state formula holds almost always
on a given path), Büchi (a state formula holds infinitely often
on a given path), and reachability (a state formula holds in at
least one state of a given path) conditions. We present sev-
eral cases in detail and refer for the other ones to the book
by Arnold and Niwinski [26] for more details.

• s ∈ Sat(∃(� U �), b)

⇐⇒ ∃π ∈ paths(s) : V (π,� U �) ≥ b

⇐⇒ ∃π ∈ paths(s), ∃ j ≥ 0,∀i < j :
V (π [j], �) ≥ b ∧ V (π [i],�) ≥ b

⇐⇒ (
V (s, �) ≥ b

) ∨ (
V (s,�) ≥ b ∧

∃s′ ∈ post(s) : V (s′, ∃(� U �)) ≥ b
)

⇐⇒ s ∈ Sat(�, b) ∪ {s′ ∈ Sat(�, b) |
post(s′) ∩ Sat(∃(� U �, b)) �= ∅}.

Hence, Sat(∃(� U �), b) is a fixed point of the func-
tion T �→ F∃(T ,Sat(�, b),Sat(�, b)). Now, we only
need to show that it is indeed the least fixed point.
Suppose T ′is another fixed point of that function. If
s0 ∈ Sat(∃(� U �), b), then there exists a path π =
s0s1s2 · · · and some j > 0 such that V (s j , �) ≥ b and
V (si ,�) ≥ b for all 0 ≤ i < j . Then:

– s j ∈ Sat(�, b) ⊆ T ′;
– s j−1 ∈ T ′, since s j ∈ post(s j−1) ∩ T ′ and s j−1 ∈

Sat(�, b);
– s j−2 ∈ T ′, since s j−1 ∈ post(s j−2) ∩ T ′ and s j−2 ∈

Sat(�, b);
– Applying this argument repeatedly yields s0 ∈ T ′.

So, Sat(∃(� U �), b) ⊆ T ′. Therefore, Sat(∃(� U �),

b) is the least fixed point of T �→ F∃(T ,Sat(�, b),Sat
(�, b)). Similarly, it canbe shown that Sat(∀(� U �), b)

123

606 S. P. Nayak et al.

is the least fixed point of T �→ F∀(T ,Sat(�, b),Sat
(�, b)).

• In the following, we use true as syntactic sugar for
some tautology, e.g., p ∨ ¬p. Then, � is equivalent
to true U � and we have Sat(true, b) = S.
Hence,
Sat(∃ �, b) = Sat(∃(true U �))

= lfp T .F∃(T ,Sat(�, b),

Sat(true, b)
)

= lfp T .F∃(T ,Sat(�, b), S
)
.

Similarly, we have

Sat(∀ �, b) = lfp T .F∀(T ,Sat(�, b), S
)
,

as claimed.
• s ∈ Sat(∃ �, 1111)

⇐⇒ ∃π ∈ paths(s) : V (π, �) = 1111

⇐⇒ ∃π ∈ paths(s),∀i ≥ 0 : V (π [i],�) = 1111

⇐⇒ s ∈ Sat(�, 1111) ∧(
post(s) ∩ Sat(∃ �, 1111) �= ∅)

⇐⇒ s ∈ Sat(�, 1111) ∩
{s′ | post(s′) ∩ Sat(∃ �, 1111) �= ∅}.

Hence, Sat(∃ �, 1111) is a fixed point of the func-
tion T �→ F∃(T ,∅,Sat(�, 1111)). Now, we only need
to show that it is indeed the greatest fixed point. Now,
suppose T ′ is another fixed point. If s0 ∈ T ′, then

– since s0 ∈ T ′, there exists a state s1 ∈ post(s0) ∩ T ′;
– since s1 ∈ T ′, there exists a state s2 ∈ post(s0) ∩ T ′;

Applying this argument iteratively yields that there exists
a path s0s1 · · · starting from s such that V (si ,�) =
1111 for each i ≥ 0. Hence, s0 ∈ Sat(∃ �, 1111),
which implies T ′ ⊆ Sat(∃ �, 1111). Therefore,
Sat(∃ �, 1111) is the greatest fixed point of T �→
F∃(T ,∅,Sat(�, 1111)).
Similarly, the following holds
s ∈ Sat(∃ �, 0111)

⇐⇒ ∃π ∈ paths(s), V (π, �) ≥ 0111

⇐⇒ ∃π ∈ paths(s), ∃ j ≥ 0,∀i ≥ j :
V2(π [i],�) = 1

⇐⇒ π visits Sat(�, 0111) eventually always.

Moreover, s ∈ Sat(∃ �, 0011)

⇐⇒ ∃π ∈ paths(s), V (π, �) ≥ 0011

⇐⇒ ∃π ∈ paths(s),∀ j ≥ 0, ∃i > j :
V3(π [i],�) = 1

⇐⇒ π visits Sat(�, 0011) infinitely often.
A path visiting a set eventually always or infinitely often
can be written in terms of nested fixed points as claimed

(see Arnold and Niwinski [26] for details).
Finally, s ∈ Sat(∃ �, 0001)

⇐⇒ ∃π ∈ paths(s), V (π, �) ≥ 0001.

⇐⇒ ∃π ∈ paths(s), ∃i ≥ 0 : V4(π [i],�) = 1

⇐⇒ s ∈ Sat(∃ �, 0001).
Hence,

Sat(∃ �, 0001) = lfp T .F∃(T ,Sat(�, 0001), S
)
,

as claimed.
Analogously, one can show the claimed results for
∀ �.

• For the operator W , the claim can be shown using argu-
ments similar to those for .
�

Algorithm 1 computes 5 · |sub(�)| satisfaction sets fol-
lowing the subformula ordering. Using the standard fixed
point iterations [27], the nested fixed points of depth two can
be computed in time O(NK) on a Kripke structure with N
vertices and K transitions [28]. So, we obtain the following.

Theorem 6 Given an rCTL formula� and aKripke structure
with N states and K transitions, the rCTL model checking
problem can be solved in time O(NK |�|).

Note that the CTL model checking algorithm also takes
polynomial time in the size of the formula and the number of
transitions of the Kripke structure [29]. Hence, both model
checking problems are in PTIME. Moreover, a lower bound
of the rCTL model checking problem can be derived from
the PTIME lower bound of CTL model checking [30] and
Lemma 1. In total, we obtain the following result, showing
that the CTL and rCTL model checking problems have the
same asymptotic complexity.

Corollary 7 Themodel checkingproblem for rCTL isPTIME-
complete.

3.5 rCTL and themodal�-calculus

In the previous section, we have seen that one can solve the
rCTLmodel checking problem by computing least and great-
est fixed points. In this section, we show that every rCTL
formula can be translated into an equivalent formula of the
modalμ-calculus [31], i.e., modal logic with least and great-
est fixed points. This is not necessarily surprising, as most
temporal logics can be translated into the modal μ-calculus
[32]. However, the result is very useful to settle the com-
plexity of satisfiability and synthesis, which we achieve by
reductions to satisfiability and synthesis for the modal μ-
calculus.

123

Robust computation tree logic 607

Table 4 Characterization of the satisfaction sets for μ-calculus formu-
las

Symbol Satvμ(·) for μ-calculus formulas �, �

p ∈ P Satvμ(p) = {s ∈ S | p ∈ L(s)}
∨ Satvμ(� ∨ �) = Satvμ(�) ∪ Satvμ(�)

∧ Satvμ(� ∧ �) = Satvμ(�) ∩ Satvμ(�)

¬ Satvμ(¬�) = S \ Satvμ(�)

⇒ Satvμ(� ⇒ �) = Satvμ(¬�) ∪ Satvμ(�)

∃ Satvμ(∃ �) = {s ∈ S | post(s) ∩ Satvμ(�) �= ∅}
∀ Satvμ(∀ �) = {s ∈ S | post(s) ⊆ Satvμ(�)}
y ∈ PV Satvμ(y) = v(y)

μy Satvμ(μy.�) = lfp T .Satv[y→T]
μ (�)

νy Satvμ(νy.�) = gfp T .Satv[y→T]
μ (�)

We begin by reviewing the basic definitions of the modal
μ-calculus. It consists of state formulas only, which are con-
structed from atomic propositions with Boolean connectives,
the temporal operators ∃ and ∀ , as well as the least (μ)
and the greatest (ν) fixed point operator.

Formally, given a set P of atomic propositions and a set
PV of atomic proposition variables,μ-calculus formulas are
given by the grammar

�:: = p | y | � ∨ � | � ∧ � | ¬� | � ⇒ � |
∃ ϕ | ∀ ϕ | μy.� | νy.�,

where p ∈ P and y ∈ PV . As usual, we require that in sub-
formulas of the form μy.� and νy.�, every free occurrence
of y in � is under the scope of an even number of negations.
For further details, we refer the reader to standard literature
on this topic, e.g., Grädel, Thomas, and Wilke [33].

Unlike temporal logics, the semantics of the μ-calculus
is naturally defined using satisfaction sets. Given a Kripke
structure M = (S, I , R, L), the satisfaction sets are defined
with respect to a variable function v : PV → 2S that maps
each atomic proposition variable to a set of states. Moreover,
for a subset T ⊆ S, let v[y → T]denote the variable function
that maps y to T while preserving the value of v for every
other input.

Given a variable function v and a μ-calculus formula �,
let Satvμ(�) denote the set of states satisfying � with respect
to v. These sets are defined recursively using the least and
greatest fixed points, as shown in Table 4. The functions the
fixed point operators are applied to aremonotonic since every
occurrence of a fixed point variable is under an even number
of negations. Hence, the fixed points all exist.

For μ-calculus sentences, i.e., formulas without free vari-
ables, the satisfaction sets Satvμ are independent of v. Hence,
we drop the parameter v from the notation whenever possi-
ble.

We now show that, like other temporal logics, rCTL can
also be translated into the modal μ-calculus. As before, we
say an rCTL formula � with a truth value b ∈ B4 is equiva-
lent to a μ-calculus sentence �′ if for every Kripke structure
it holds that Sat(�, b) = Satμ(�′). Then we have the fol-
lowing result.

Theorem 8 For every rCTL formula and truth value, there is
an equivalent μ-calculus sentence of linear size.

Proof We show that there exists a mapping t that assigns to
every rCTL formula � and truth value b ∈ B4 an equiv-
alent μ-calculus formula t(�, b). We define this mapping
recursively, starting with the atomic rCTL formulas. In the
following proof, we use true as syntactic sugar for an arbi-
trary tautology of the μ-calculus, e.g., p ∨ ¬p.

First of all, for any rCTL formula � with truth value
0000, a trivial equivalentμ-calculus formula is t(�, 0000) =
true. Furthermore, comparing the characterization of the
satisfaction sets of rCTL and the μ-calculus (Tables 3 and
4), one can see that for a Boolean combination of rCTL for-
mulas � and � with any truth value b ∈ B4 \ {0000}, the
following recursive translations indeed results in an equiva-
lent μ-calculus formula:

t(p, b) = p for each p ∈ P,

t(� ∨ �, b) = t(�, b) ∨ t(�, b),

t(� ∧ �, b) = t(�, b) ∧ t(�, b),

t(¬�, b) = ¬t(�, 1111).

Moreover, we have

t(� ⇒ �, 1111) =
∧
b

t(�, b) ∨ ¬t(�, b),

and

t(� ⇒ �, b) = t(� ⇒ �, 1111) ∨ t(�, b)

for any b ≤ 0111.
The rCTL formulas with the next operator are captured by

applying the μ-calculus operators ∃ and ∀ as follows
for b ∈ B4 \ {0000}:

t(∃ �, b) = ∃ t(�, b),

t(∀ �, b) = ∀ t(�, b).

For rCTL formulas with other temporal operators, the
satisfaction sets (in Table 3) are defined using fixed points
of functions F∃, F∀, G∃, and G∀. Hence, we first give μ-
calculus formulas that capture these functions. Note that if
the sets T , S1, S2 are the satisfaction sets of the rCTL for-
mulas �t ,�1,�2 with truth values bt , b1, b2, respectively,

123

608 S. P. Nayak et al.

then it holds that

F∃(T , S1, S2) = S1 ∪ {s ∈ S2 | post(s) ∩ T �= ∅}
= S1 ∪ (S2 ∩ {s ∈ S | post(s) ∩ T �= ∅})
= Sat(�1, b1) ∪(

Sat(�2, b2) ∩ Sat(∃ �t , bt)
)
.

Now, suppose that theμ-calculus formula t(�1, b1) is equiv-
alent to the rCTL formula �1 with truth value b1, and the
μ-calculus formula t(�2, b2) is equivalent to the rCTL for-
mula �2 with truth value b2. Then, we have

F∃(T ,Sat(�1, b1),Sat(�2, b2)
) =

Satv[y→T]
μ

(
t(�1, b1) ∨ (t(�2, b2) ∧ ∃ y)

)
.

Therefore, for μ-calculus formulas �′
1 and �′

2, the function
F∃ can be represented by the following μ-calculus formula
containing y as a free variable:

F∃
μ(y,�′

1,�
′
2) = �′

1 ∨ (�′
2 ∧ ∃ y).

Hence, using Table 3, one can see that an equivalent μ-
calculus formula for the rCTL formula ∃ � with truth
value b ∈ B4\{0000} is the following:

t(∃ �, b) = μy.F∃
μ(y, t(�, b),true).

Similarly, the functions F∀, G∃, and G∀ can be repre-
sented by the following μ-calculus formulas:

F∀
μ(y,�′

1,�
′
2) = �′

1 ∨ (�′
2 ∧ ∀ y),

G∃
μ(y1, y2,�

′
1,�

′
2) = ∃ y1 ∨ �′

1 ∨ (�′
2 ∧ ∃ y2),

G∀
μ(y1, y2,�

′
1,�

′
2) = ∀ y1 ∨ �′

1 ∨ (�′
2 ∧ ∀ y2).

Now, for an rCTL formula with temporal operators , ,
U , and W , we obtain an equivalent μ-calculus formula of
linear size from the characterization of satisfaction sets given
in Table 3 by replacing the functions and the satisfaction sets
of subformulas with corresponding μ-calculus formulas.
�

While it is true that everyCTL formula can be transformed
into an equivalent alternation-free (with alternation depth 1,
as defined in [34])μ-calculus formula, it is important to note
that the constructed μ-calculus formulas for rCTL formu-
las typically have an alternation depth of at most 2. This
limitation arises from the presence of two-depth alternation
for some rCTL operators, such as ∃ with value 0011 as
illustrated in Table 3. Furthermore, as the model checking
problem forμ-calculus formulaswith alternation depth d can
be solved in timeO(nd+1) [34, 35], one can also solve rCTL
model checking in cubic time by reducing it to μ-calculus
model checking.

Let us conclude by mentioning that the converse of The-
orem 8 does not hold: rCTL is strictly less expressive than
the modal μ-calculus. This follows from a stronger result
presented to be presented in Sect. 5.3.

3.6 rCTL satisfiability

This section considers the satisfiability problem for rCTL,
which is: given an rCTL formula� and a truth value b0 ∈ B4,
does there exist a Kripke structure M = (S, I , R, L) such
that I ⊆ Sat(�, b0)?The next theorem settles the complexity
of the rCTL satisfiability problem.

Theorem 9 The satisfiability problem for rCTL is
EXPTIME-complete.

Proof The upper bound is obtained by translating a given
rCTL formula and a given truth value into an equivalent
μ-calculus formula of linear size (see Theorem 8) and
then checking the resulting formula for satisfiability. Since
the satisfiability problem for the μ-calculus (defined as
expected) is EXPTIME-complete [36], rCTL satisfiability
is in EXPTIME as well.

The matching lower bound already holds for CTL sat-
isfiability (again defined as expected) [37], which, due to
Lemma 1, reduces to rCTL satisfiability.
�

Moreover, since every satisfiable formula of the μ-
calculus has a model of exponential size [38], the same is
true for rCTL.

Corollary 10 Every satisfiable rCTL-formula has a model of
exponential size.

There are satisfiable CTL formulas that have only models
of at least exponential size [39].2 Thus, the upper bound in
Corollary 10 is tight.

Also, note that the asymptotic complexity of the rCTL
satisfiability problem and the size of a model matches that of
CTL.

3.7 rCTL synthesis

We now turn to the problem of rCTL synthesis. The syn-
thesis problem asks, given an rCTL specification on the
input–output behavior of a system, whether there is a sys-
tem satisfying the specification, and, if yes, compute one. As
a preparatory step, let us first introduce the required notation.

2 Note that the exponential lower bound is shown with respect to the
length of the formula, i.e., the number of nodes of the syntax tree of the
formula. In contrast, we measure the size of a formula by the number
of distinct subformulas, i.e., the number of distinct subtrees of the syn-
tax tree. Thus, our complexity measure might be smaller, which only
strengthens the lower bound.

123

Robust computation tree logic 609

Let P = I ∪ O be the disjoint union of a set I of input
propositions and a setO of output propositions. A strategy is
a mapping f : (2I)∗ → 2O. Note that finite automata with
input alphabet 2I and output alphabet 2O (with Mealy or
Moore semantics) can be used to implement strategies. We
call such strategies finite-state and measure their size in the
number of states of the automaton.

A strategy f induces an infinite Kripke structure M f =
(S, I , R, L) with S = (2I)+, I = 2I , R = {(w,wa) | w ∈
(2I)+, a ∈ 2I}, and L(wa) = a ∪ f (wa).

We say that f realizes an rCTL formula � with at least
value b0 ∈ B4 if V (s,�) ≥ b0 for all initial states s of M f .
Further, a rCTL formula is realizable with at least value b0 if
there is a strategy that realizes it with at least b0. The rCTL
synthesis problem is: given an rCTL formula � and a truth
value b0 ∈ B4, is � realizable with at least b0? The next
theorem settles its complexity.

Theorem 11 The rCTL synthesis problem is EXPTIME-
complete.

Proof The upper bound is obtained by translating a given
rCTL formula and a given truth value into an equivalent μ-
calculus formula of linear size (see Theorem 8) and then
checking the resulting formula for realizability (which is
defined as expected). Since the synthesis problem for the
μ-calculus is EXPTIME-complete [40], rCTL synthesis is
in EXPTIME as well.

The matching lower bound already holds for CTL synthe-
sis [41], which, due to Lemma 1, reduces to rCTL synthesis.

�
As every realizable formula of the μ-calculus is realized

by a finite-state strategy of exponential size, which can be
computed in exponential time [41], the same is true for rCTL.

Corollary 12 If an rCTL-formula ϕ is realizable with at
least b0, then one can compute, in exponential time, an
exponentially-sized finite-state strategy realizing ϕ with at
least b0.

There are realizable CTL formulas that are only realized
byfinite-state strategies of exponential size: this follows from
the exponential lower bound on the size of model (see the
discussion below Corollary 10) and the fact that satisfiability
can be reduced to synthesis [41]. Hence, the upper bound in
Corollary 12 is tight.

Finally, note that Theorem 11 and Corollary 12 imply that
the rCTL synthesis problem again has the same asymptotic
complexity as the one for CTL.

4 Review of CTL*

In this section, we briefly review the syntax and semantics of
CTL*, which we then robustify to obtain robust CTL*.

4.1 Syntax

Unlike CTL, CTL* allows path quantifiers ∃ and ∀ to be arbi-
trarily nested with temporal operators. The syntax of CTL*
state formulas is the same as in CTL. Moreover, CTL* path
formulas are similar to LTL formulas. Consequently, CTL*
state formulas over P are formed according to the grammar

�:: = p | � ∨ � | � ∧ � | ¬� | � ⇒ � | ∃ϕ | ∀ϕ,

where p ∈ P and ϕ is a path formula. CTL* path formulas
are formed according to the grammar

ϕ:: = � | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | ϕ ⇒ ψ |
ϕ | ϕ | ϕ | ϕ U ψ | ϕ W ψ.

4.2 Semantics

Let M be a Kripke structure, �,� two CTL* state formulas,
and ϕ, ψ two CTL* path formulas. For a state s, the CTL*
semantics VCTL*(s,�) is defined as the CTL semantics (see
Sect. 2.2). For a path π , the semantics is analogous to the
LTL semantics via a valuation function VCTL*:

VCTL*(π,�) = VCTL*(π [0],�),

VCTL*(π, ϕ ∨ ψ) = max{VCTL*(π, ϕ), VCTL*(π,ψ)},
VCTL*(π, ϕ ∧ ψ) = min{VCTL*(π, ϕ), VCTL*(π,ψ)}.

VCTL*(π,¬ϕ) = 1 − VCTL*(π, ϕ).

VCTL*(π, ϕ ⇒ ψ) =

⎧⎪⎨
⎪⎩
1 if VCTL*(π, ϕ) ≤

VCTL*(π,ψ); and
VCTL*(π,ψ) otherwise,

VCTL*(π, ϕ) = VCTL*(π [1..], ϕ).

VCTL*(π, ϕ) = max
i≥0

VCTL*(π [i], ϕ).

VCTL*(π, ϕ) = min
i≥0

VCTL*(π [i], ϕ),

VCTL*(π, ϕ U ψ) = max
j≥0

min{VCTL*(π [j ..], ψ),

min
0≤i< j

VCTL*(π [i ..], ϕ)},
VCTL*(π, ϕ W ψ) = min

j≥0
max{VCTL*(π [j ..], ϕ),

max
0≤i≤ j

VCTL*(π [i ..], ψ)},

5 Robust CTL*

In this section, we present the robust version of CTL*, named
robustCTL*,which combines the features of rCTLand rLTL.
We show that rCTL* is more expressive than both. In addi-

123

610 S. P. Nayak et al.

tion, we present an rCTL* model checking algorithm and
address the rCTL* satisfiability and synthesis problems.

5.1 Syntax

Like CTL*, robust CTL* allows path quantifiers ∃ and ∀
to be arbitrarily nested with temporal operators. The syntax
of rCTL* state formulas is the same as in rCTL and CTL*.
Moreover, rCTL*path formulas are similar to rLTL formulas,
with the only difference being the use of arbitrary rCTL* state
formulas as atoms. Consequently, rCTL* state formulas over
P are formed according to the grammar

�:: = p | � ∨ � | � ∧ � | ¬� | � ⇒ � | ∃ϕ | ∀ϕ,

where p ∈ P and ϕ is a path formula. rCTL* path formulas
are formed according to the grammar

ϕ:: = � | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | ϕ ⇒ ψ |
ϕ | ϕ | ϕ | ϕ U ψ | ϕ W ψ.

Again, the set of subformulas of a state formula � is
denoted by Sub(�) and the size of a formula is defined as
the number of its syntactically different subformulas.

5.2 Semantics

As in CTL*, the semantics for rCTL* state and path formulas
are analogous to the rCTL and rLTL semantics, respectively.
Inwhat follows, letM be aKripke structure,�,� two rCTL*
state formulas, and ϕ, ψ two rCTL* path formulas.

For a state s, the rCTL* semantics V (s,�) is then the
same as the rCTL semantics (see Sect. 3.2).

For a path π , the semantics is analogous to the rLTL
semantics (cf. Tabuada and Neider [7]) via a valuation func-
tion V (note that, for notational convenience, we use the letter
V both the rCTL and the rCTL* valuation function):

V (π,�) = V (π [0],�),

V (π, ϕ ∨ ψ) = max{V (π, ϕ), V (π,ψ)},
V (π, ϕ ∧ ψ) = min{V (π, ϕ), V (π,ψ)}.

V (π,¬ϕ) = V (π, ϕ).

V (π, ϕ ⇒ ψ) = V (π, ϕ) → V (π,ψ).

V (π, ϕ) = V (π [1..], ϕ).

V (π, ϕ) = max
i≥0

V (π [i], ϕ).

V (π, ϕ) = (b1, b2, b3, b4) where

b1 = min
i≥0

V1(π [i], ϕ),

b2 = max
j≥0

min
i≥ j

V2(π [i], ϕ),

b3 = min
j≥0

max
i≥ j

V3(π [i], ϕ),

b4 = max
i≥0

V4(π [i], ϕ)),

V (π, ϕ U ψ) = max
j≥0

min{V (π [j ..], ψ),

min
0≤i< j

V (π [i ..], ϕ)},
V (π, ϕ W ψ) = (b1, b2, b3, b4) where

b1 = min
j≥0

max{V1(π [j ..], ϕ),

max
0≤i≤ j

V1(π [i ..], ψ)},
b2 = max

k≥0
min
j≥k

max{V2(π [j ..], ϕ),

max
0≤i≤ j

V2(π [i ..], ψ)},
b3 = min

k≥0
max
j≥k

max{V3(π [j ..], ϕ),

max
0≤i≤ j

V3(π [i ..], ψ)},
b4 = max

j≥0
max{V4(π [j ..], ϕ),

max
0≤i≤ j

V4(π [i ..], ψ)}.

Before studying the properties of rCTL*, let us illustrate
the difference between rCTL and rCTL* using an example.

Example 3 Continuing our running example from Sect. 1, we
illustrate how the rCTL* formula ∀(¬H ⇒ ∃ R)

is different from the rCTL formula∀ ¬H ⇒ ∀ ∃ R
from Examples 1 and 2. Recall that ¬H states that office
workers are not at the robot’s dock and ∃ R states that
the robot can return to its dock in one time step. Assume
∀(¬H ⇒ ∃ R) evaluates to 1111. Then the for-
mula ¬H ⇒ ∃ R must evaluate to 1111 for each
path. Hence, the following holds:

• If¬H holds at every state in a pathπ , then V (π, ¬H)

evaluates to 1111. Hence, by the rCTL* semantics,
V (π, ∃ R) must also evaluate to 1111. That
means, ∃ R also holds at every state in π . Hence, in
any path, if office workers never visit the dock, then from
every state, the robot can return to its dock in one time
step.

• Similarly, if ¬H holds eventually always for some path
π , then V (π, ¬H) evaluates to 0111. Then, by the
rCTL* semantics, V (π, ∃ R) evaluates to 0111
or higher. Hence, ∃ R also needs to hold eventually
always in π . Therefore, if office workers visit the dock
a few times and never visit it again in a path, then from
any state in that path, the robot can return to its dock
eventually.

123

Robust computation tree logic 611

Fig. 2 The Kripke structure for Example 3. States are labeled with the
formulas that hold at that state with truth value 1111

• Similarly, if ¬H holds at infinitely (finitely) many states
in some path π , then ∃ R needs to hold at infinitely
(finitely) many states in π .

As we can see, the rCTL* formula ∀(¬H ⇒ ∃ R)

captures the robustness property for every path separately,
whereas the rCTL formula ∀ ¬H ⇒ ∀ ∃ R cap-
tures the robustness property jointly for all paths starting
from a state.

To understand the difference, let us consider the Kripke
structure M with initial state s0 as shown in Fig. 2 (where
transitions are depicted by edges). Suppose the set of states
that satisfy (with value 1111) the state formulas ¬H and
∃ R are {s0, s1} and {s0, s2}, respectively (as shown by
the labels in the figure).

There are only two paths starting from s0, i.e., π1 =
s0s1s1 · · · and π2 = s0s2s2 · · · . Since ¬H holds at
every state in the path π1, we have V (π1, ¬H) =
1111. Moreover, since ¬H holds only at the first state
in the path π2, we have V (π2, ¬H) = 0001. Hence,
V (s0,∀ ¬H) = mini∈{1,2} V (πi , ¬H) = 0001. Sim-
ilarly, since ∃ R holds only at the first state of each path,
we have V (π1, ∃ R) = V (π2, ∃ R) = 0001.
Hence, V (s0,∀ ∃ R) = 0001. Therefore, it holds that
V (s,∀ ¬H ⇒ ∀ ∃ R) = 1111 according to the
rCTL semantics.

Now, let us consider the rCTL* formula ∀(¬H ⇒
∃ R). As we have V (π1, ∃ R) = 0001 <

V (π1, ¬H), it holds thatV (π1, ¬H ⇒ ∃ R) =
0001. Similarly, we have V (π2, ¬H ⇒ ∃ R) =
1111. Hence, we have V (s,∀(¬H ⇒ ∃ R)) =
0001 according to the rCTL* semantics.

Recall that the rCTL formula ∀ ¬H ⇒ ∀ ∃ R
evaluates at state s to 1111 �= 0001. This is the case because
both of the paths do not satisfy ¬H ⇒ ∃ R with
value 1111 individually, but collectively, the state s0 satisfies
∀ ¬H ⇒ ∀ ∃ R.

5.3 Expressiveness of rCTL*

The satisfaction sets and the equivalence between two formu-
las in rCTL* are defined as for rCTL.Aswe can see, rCTL* is
an extension of both rCTL and rLTL. Therefore, it subsumes
both rCTL and rLTL (and hence, it also subsumes CTL and

LTL). Furthermore, by Corollary 4, there exist rCTL formu-
las that are not expressible in rLTL and vice versa. In total,
we obtain the following result.

Theorem 13 rCTL* is more expressive than rLTL, rCTL,
CTL, and LTL.

Using the same idea as in Lemma 1, one can recover the
CTL* semantics of a formula with no implication from the
first component of the rCTL* semantics. Conversely, using
the same arguments as for the analogous result for rLTL [7,
Proposition 5], one can translate each rCTL* formula into
four CTL* formulas that captures the four components of
the rCTL* semantics. Hence, we obtain the following result.

Theorem 14 CTL* and rCTL* are equally expressive.

Proof For any CTL* formula � containing no implication,
let �r be the rCTL* formula obtained by dotting all tem-
poral operators in �. Then for any state s, it holds that
VCTL(s,�) = V1(s,�r), which is shown as the analo-
gous result for CTL and rCTL (see the proof of Lemma 1).
Consequently, it holds that SatCTL*(�) = Sat(�r , 1111).
Furthermore, as � ⇒ � is equivalent to � ∨ ¬� in CTL*,
every CTL* formula can be rewritten as a formula contain-
ing no implication. Therefore, for every CTL* formula, there
is an equivalent rCTL* formula with respect to the truth
value 1111.

For the other direction, we define a mapping t that assigns
to every rCTL* state formula � and truth value b an equiv-
alent CTL* formula t(�, b). Furthermore, t maps every
rCTL* path formula ϕ and a truth value b to t(ϕ, b) such
that for every path π ,

VCT L∗(π, t(ϕ, b)) = 1 if and only if V (π, ϕ) ≥ b.

Again, for b = 0000, we can define t(�, b) = true for
every state formula �, where true is an arbitrary tautology
of CTL*, e.g., p ∨ ¬p.

In the following, we assume b > 0000. Then, for state
formulas � and �, the mapping t is defined inductively as
follows:

t(p, b) = p for any p ∈ P,

t(� ∨ �, b) = t(�, b) ∨ t(�, b),

t(� ∧ �, b) = t(�, b) ∧ t(�, b),

t(¬�, b) = ¬t(�, 1111).

Moreover, we define

t(� ⇒ �, 1111) =
∧

b>0000

t(�, b) ∨ ¬t(�, b),

123

612 S. P. Nayak et al.

and

t(� ⇒ �, b) = t(� ⇒ �, 1111) ∨ t(�, b)

for each b ≤ 0111.
For Boolean combinations of path formulas, the mapping

t can be defined analogously as for state formulas. For path
formulas ϕ and ψ with temporal operators, t is defined as
follows:

t(∃ϕ, b) = ∃t(ϕ, b),

t(∀ϕ, b) = ∀t(ϕ, b),

t(ϕ, b) = t(ϕ, b),

t(ϕ, b) = t(ψ, b),

t(ϕ, 1111) = t(ϕ, 1111),

t(ϕ, 0111) = t(ϕ, 0111),

t(ϕ, 0011) = t(ϕ, 0011),

t(ϕ, 0001) = t(ϕ, 0001),

t(ϕ U ψ, b) = t(ϕ, b) U t(ψ, b),

t(ϕ W ψ, 1111) = t(ϕ, 1111) W t(ψ, 1111),

t(ϕ W ψ, 0111) = t(ϕ, 0111) ∨ t(ψ, 0111),

t(ϕ W ψ, 0011) = t(ϕ, 0011) ∨ t(ψ, 0011),

t(ϕ W ψ, 0001) = t(ϕ, 0001) ∨ t(ψ, 0001).

A structural induction shows that the translation t has the
desired property.
�

Although we do not require the result, let us just mention
that Theorem 14 also gives a translation of rCTL* into the
modalμ-calculus: rCTL* can be translated intoCTL*,which
can be translated into the modalμ-calculus [32]. Conversely,
the modal μ-calculus is strictly more expressive than CTL*
(see, e.g., Demri, Goranko, and Lange [42, Chapter 10]).
Hence, it is also strictly more expressive than rCTL* (due to
Theorem 14) and rCTL (which is a fragment of rCTL*).

5.4 rCTL* model checking

The model checking problem for rCTL* is analogous to
that of rCTL: for a given finite Kripke structure M =
(S, I , R, L), an rCTL* formula� and a truth value b0 ∈ B4,
does V (s,�) ≥ b0 hold for all initial states s ∈ I? One way
of solving the rCTL*model checking problem is by applying
the translation from rCTL* into CTL* (see Theorem 14) and
then apply a CTL* model checking algorithm.

Here, we will present an alternative approach via a combi-
nation of rCTL and rLTL model checking. This approach is
analogous to the classical CTL* model checking algorithm,
is a combination of CTL and LTL model checking. In prac-
tice, the choice for one algorithm over the other depends on

whether one wants to apply an CTL* model checker or an
rLTL model checker.

As in rCTL, for the rCTL* model checking, we use the
characterization of the satisfaction sets. Sat(�, b) can be
computed using Table 3 for every state formula � which is
either an atomic proposition or can be expressed as a Boolean
combination (conjunction, negation, etc.) of two subformu-
las. Otherwise, we use an rLTL model checking algorithm
to compute Sat(�, b) for a state formula starting with a path
quantifier.

Let us first go through the basic concepts of rLTL and
its model checking algorithm. As we have described earlier,
rCTL* is an extension of rLTL. Both rCTL* path formu-
las and rLTL formulas are defined using almost the same
syntax, with the only difference being the use of state for-
mulas as atoms in rCTL*. Moreover, the valuation V for
rLTL formulas is defined the same way as it is defined for
rCTL* path formulas. The rLTL model checking problem
is: given a Kripke structure M , an rLTL formula ϕ, and a
truth value b0 ∈ B4, determine whether for all initial states s
and all π ∈ paths(s), it holds that V (π, ϕ) ≥ b0.3 To solve
the rLTL model checking problem, Tabuada and Neider [7]
have provided an algorithm to compute a generalized Büchi
automaton (see Grädel, Thomas and Wilke [33] for a defini-
tion) recognizing all traces over the alphabet 2P satisfying a
given formula with a value b ∈ B for a given set B ⊆ B4, as
formalized below.

Lemma 15 (Tabuada and Neider [7])Given an rLTL formula
ϕ, and a set of truth values B ⊆ B4, one can construct a
generalized Büchi automaton Aϕ,B with O(5|ϕ|) states and
O(|ϕ|) accepting sets that recognizes all paths π such that
V (π, ϕ) ∈ B.

One can now solve the rLTL model checking problem
by first translating M into a Büchi automaton AM accept-
ing exactly the traces labeling the paths of M starting in
an initial state. Then, one determines whether L(AM) ∩
L(Aϕ,{b∈B4|b<b0}) is empty.

Coming back to computing Sat(�, b) for � starting with
a path quantifier, let us consider � = ∀ϕ. Observe that
s ∈ Sat(∀ϕ, b) if and only if V (s,∀ϕ) ≥ b. Further,
V (s,∀ϕ) ≥ b if and only if V (π, ϕ) ≥ b for all π ∈
paths(s). The basic idea is now to replace all maximal proper
state subformulas� ofϕ by fresh atomic propositions a� and
use the rLTL model checking algorithm to compute all the
states from which all paths satisfy the rLTL formula ϕ with
value at least b. However, we need tomake aminor modifica-
tion in the construction of the Büchi automaton of Lemma 15
such that for each a� , it holds that V (s, a�) ≥ b whenever
s ∈ Sat(�, b) and V (s, a�) < b whenever s /∈ Sat(�, b).

3 Actually, the original definition by Tabuada and Neider is slightly
more general [7].

123

Robust computation tree logic 613

This can be done by initializing these atomic propositions
with the required truth value.

Similarly, we compute Sat(∃ϕ, b) by the rLTL model
checking algorithm using the observation that s /∈ Sat(∃ϕ, b)
if and only if V (π, ϕ) < b for all π ∈ paths(s).

Now, one can solve the rCTL* model checking problem
usingAlgorithm1.However, the time complexity of the algo-
rithm is not the same as in rCTL since the computation of Sat
uses the rLTL model checking algorithm, which takes expo-
nential time in the size of the formula and theKripke structure
(Tabuada and Neider [7]). Hence, the time complexity of the
rCTL* model checking algorithm is dominated by the time
complexity of the rLTL model checking algorithm.

Altogether, our algorithm runs in polynomial space (as
rLTL model checking is in PSPACE [7]). A matching lower
bound already holds for CTL* [43].

Theorem 16 The rCTL*model checkingproblem isPSPACE-
complete.

The CTL* model checking problem is also PSPACE-
complete [43]. Hence, both the CTL* and the rCTL* model
checking problem have the same asymptotic complexity.

5.5 rCTL* satisfiability

This section considers the satisfiability problem for rCTL*,
which is: for a given rCTL* formula � and truth value b0 ∈
B4, does there exist a Kripke structure M = (S, I , R, L)

such that I ⊆ Sat(�, b0)?

Theorem 17 The satisfiability problem for rCTL* is
2EXPTIME-complete.

Proof Both the upper and the lower bound follow immedi-
ately from Theorem 14 and the fact that CTL* satisfiability
(which is defined as expected) is 2EXPTIME-complete [36].
The linear translation from rCTL* to CTL* yields the upper
bound while the linear translation from CTL* to rCTL*
yields the lower bound.
�

Furthermore, as every satisfiable CTL* formula has a
model of doubly-exponential size (see, e.g., Demri, Goranko,
and Lange [42, Chapter 15]), the same is true for rCTL*.

Corollary 18 Every satisfiable rCTL* formula has a model
of doubly-exponential size.

There are satisfiableCTL* formulas that have onlymodels
of doubly-exponential size (see, e.g., Demri, Goranko, and
Lange [42, Chapter 15]). Hence, the upper bound in Corol-
lary 18 is tight.

Also, note again that the asymptotic complexity of the
rCTL* satisfiability problem and the size of a model matches
that of CTL*.

5.6 rCTL* synthesis

The notions of a strategy realizing an rCTL formula with at
last value b0 and an rCTL formula being realizable can be
generalized to rCTL*. Then, the rCTL* synthesis problem is
defined analogously to the rCTL synthesis problem: given an
rCTL* formula � and a truth value b0 ∈ B4, is � realizable
with value at last b0?

Theorem 19 The rCTL* synthesis problem is 2EXPTIME-
complete.

Proof The lower bound again follows immediately from
CTL*synthesis (againdefinedas expected) being2EXPTIME-
complete [41] and the fact that the CTL* semantics is a
special case of rCTL* (see Theorem 14).

Here, the upper bound follows from the converse transla-
tion, i.e., given a rCTL* formula� and a truth value b0 ∈ B4,
Theorem 14 allows us to construct (in linear time) a CTL*
formula t(�, b0) that is equivalent to � with respect to b0:
a strategy realizes � with at least b0 if and only if it real-
izes t(�, b0). As CTL* synthesis is in 2EXPTIME [41], we
obtain the desired upper bound.
�

As every realizable CTL* formula is realized by a finite-
state strategy of doubly-exponential size [41], which can be
computed in doubly-exponential time, the same is true for
rCTL*.

Corollary 20 If an rCTL*-formula � is realizable with at
least b0, then one can compute, in doubly-exponential time,
a doubly-exponentially-sized finite-state strategy realizing ϕ

with at least b0.

There are realizable LTL formulas (and therefore CTL*
formulas, asLTL is a fragment ofCTL*) that are only realized
by finite-state strategies with at least doubly-exponentially
many states [44].Hence, the doubly-exponential upper bound
in Corollary 20 is tight.

Perhaps unsurprisingly at this point, the asymptotic com-
plexity of the rCTL* synthesis problem and the tight bound
on the size of a finite-state strategy realizing an rCTL* spec-
ification match those of CTL*.

6 Related works

Numerous efforts have been made to formalize the concept
of robustness in cyber-physical systems within the frame-
work of formal methods. This section offers an extensive yet
not exhaustive overview of various formalizations of robust-
ness. We initiate our discussion with a series of approaches
that necessitate designers to provide additional information
alongside their desired specifications.

123

614 S. P. Nayak et al.

In thework byBloemet al. [1], twoquantitative robustness
concepts are combined into a unified framework for robust
synthesis. The first concept, known as robustness for safety,
examines how frequently assumptions and guarantees are
violated, with a requirement that their ratio remains bounded
by a parameter k ∈ N (referred to as k-robustness). This
counting process relies on error functions supplied by the
designer. The second concept, robustness for liveness, deals
with specifications in the form of∧
i∈I

pi �⇒
∧
j∈J

q j ,

where pi and q j are atomic propositions. It compares the
number of violated assumptions to the number of violated
guarantees. While our semantics can distinguish between
different ways of specification violations, it does not distin-
guish between the violation of one assumption and multiple
assumptions. Consequently, this second approach is not
directly comparable to the one proposed here. Furthermore,
we do not make a distinction between safety and liveness
properties.

In another work by Bloem et al. [45], a distinct framework
for robust synthesis is introduced, which does not encom-
pass the previously mentioned framework. This framework
considers various notions of robustness, such as a system
being robust if it satisfies a guarantee even when a finite
number or even all of its inputs are hidden or misread, or
when the assumptions are violated either finitely or infinitely
often. Many of these notions align with our notion, and our
definition of robustness allows systems to satisfy weaker
guarantees whenever the assumptions are also weakened,
making it more general. However, we cannot directly com-
pare our approach with the notions of robustness in [45]
that involve counting the number of violations since our
semantics distinguishes only between zero, finite, and infinite
violations of a specification.

In the work of Rodionova et al. [46], a connection is estab-
lished between MTL/LTL and Linear Time-Invariant (LTI)
filtering. Specifically, it is demonstrated that LTI filtering
corresponds to MTL if addition and multiplication are inter-
preted as max and min operations, and if true and false are
interpreted as one and zero, respectively. Different filtering
kernels are employed to express weaker or stronger inter-
pretations of the same formula, placing the burden on the
designer to choose kernels and use multiple semantics to
reason about how weakening assumptions affect guarantees.

In contrast to the approaches mentioned above, which
necessitate designers to provide robustness metrics, our
approach simplifies the designer’s task by requiring only the
desired specification without the need for additional met-
rics. This simplification is especially beneficial as it may not
always be clear which quantitative metric leads to the desired
qualitative behavior.

In the realm of software systems, Zhang et al. [47] define
robustness as the largest set of deviating environmental
behaviors under which the system still guarantees a desired
property. Therefore, robustness is defined as the set of all
deviations under which a system continues to satisfy that
property. While this work focuses on computing robust-
ness rather than characterizing it, it is possible that certain
temporal deviations could be expressed in our semantics.
Additional noteworthy works, although not directly com-
parable to the methods described here, include Chaudhuri
et al. [48] and Majumdar et al. [49], which consider con-
tinuity properties of software expressed by the requirement
that a deviation in a program’s input causes a proportional
deviation in its output. However, these notions of robust-
ness only apply to the Turing model of computation and
not to the reactive model of computation employed in this
paper.

Several works have explored the robustness of specifi-
cations when reasoning over real-valued, continuous-time
signals, with prominent examples being Fainekos et al. [50],
Donze et al. [51], Akazaki et al. [52], Abbas et al. [53], and
Mehdipour et al. [54]. In these works, specific choices made
when crafting many-valued semantics are not discussed in
detail. Notably, the notion of “time robustness” in [51] is
somewhat similar to that of our semantics in that it measures
the time needed for the truth value of a formula to change.
However, in this line of work, robustness is derived from the
real-valued nature of signals, whereas our semantics reasons
over the more classical setting of discrete-time and Boolean-
valued signals, with robustness derived from the temporal
evolution of these signals. Consequently, theseworks on real-
valued signals [50–54] and their extensions can be considered
orthogonal and complementary to our approach.

Another relevant approach involving multi-valued exten-
sions of LTL is presented in Almagor et al. [55]. This work
introduces two quantitative extensions of LTL, one with
propositional quality operators denoted as LTL[F], param-
eterized by a set F of functions over [0, 1], and another
with discounting operators termed LTLdisc[D], parameter-
ized by a setD of discounting functions. Both logics employ
amany-valued variant of LTL to reason about quality, and the
satisfaction value of a specification is a number in the inter-
val [0, 1], which describes the quality of satisfaction. While
the use of many-valued semantics in the context of quality
aligns with that of robustness, there are notable differences.
In particular, our notion of robustness or quality is intrinsic
to the logic, while the approach in [55] requires designers
to provide their own interpretation through sets F or D of
functions. Moreover, there are several choices for defining
logical connectives on the interval [0, 1], and the suitability
of Gödel’s conjunction used in [55] for formalizing quality
is not explicitly addressed. In contrast, we meticulously dis-

123

Robust computation tree logic 615

cuss and motivate all the choices made when defining our
semantics with robustness considerations.

Finally, as our work is based on the original works on
rLTL [7], it is worth mentioning that rLTL has spawned
numerous follow-up works, including rLTL model checking
[10–12], rLTL runtimemonitoring [13, 14], and rLTL synthe-
sis [15]. Moreover, several follow-up works have introduced
robust extensions of other classes of temporal logics, e.g.,
Prompt-LTL and Linear Dynamic Logic [8, 9], Probabilis-
tic Temporal Logics [17], and Alternating-Time Temporal
Logic [16].

7 Conclusion

Inspired by robust LTL, we first developed robust exten-
sions of the logics CTL and CTL*, named rCTL and rCTL*,
respectively. Second, we showed that rCTL is more expres-
sive than CTL, while rCTL* is as expressive as CTL*. Third,
we showed that the rCTL and rCTL* model checking prob-
lem are in PTIME and PSPACE-complete, respectively, as
are the CTL and CTL* model checking problem. Simi-
larly, we proved that rCTL satisfiability and synthesis are
EXPTIME-complete (as are the corresponding problems
for CTL) and that rCTL* satisfiability and synthesis are
2EXPTIME-complete (as are the corresponding problems
for CTL*). So, robustness for branching-time logics does
truly come for free.

Tabuada and Neider [7] described quality as the dual of
robustness. To illustrate this point, consider the CTL formula

� ⇒ �. According to the motto “more is better” we
would prefer the system to guarantee the stronger property

� whenever the environment satisfies the stronger
property �. And similarly, � should lead to

� and � should lead to �. Then, a natural
question that arises for further research is whether there is
an extension of CTL (and CTL*) that can be used to reason
about both robustness and quality.

Author Contributions Not applicable.

Funding Open Access funding enabled and organized by Projekt
DEAL. The work was partly funded by the Deutsche Forschungsge-
meinschaft (DFG,GermanResearchFoundation)GrantNo. 434592664,
by Villum Investigator Grant S4OS, and by the Danish National
Research Center DIREC.

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors have no conflict of interest to declare
that are relevant to the content of this article.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bloem R et al (2014) Synthesizing robust systems. Acta Informat-
ica 51(3):193–220. https://doi.org/10.1007/s00236-013-0191-5

2. Tarraf DC, Megretski A, Dahleh MA (2008) A framework for
robust stability of systems over finite alphabets. IEEE Trans
Autom Control 53(5):1133–1146. https://doi.org/10.1109/TAC.
2008.923658

3. Doyen L, Henzinger TA, Legay A, Nickovic D (2010) Robustness
of sequential circuits. In: Gomes L, Khomenko V, Fernandes JM
(eds) 10th international conference on application of concurrency
to system design, ACSD 2010, Braga, Portugal, 21–25 June 2010,
77–84. IEEE Computer Society

4. Ehlers R, Topcu U (2014) Resilience to intermittent assumption
violations in reactive synthesis. In: Fränzle M, Lygeros J (eds)
17th international conference on hybrid systems: computation and
control (part of CPS Week), HSCC’14, Berlin, Germany, April
15–17, 2014, 203–212. ACM

5. Tabuada P, Caliskan SY, Rungger M, Majumdar R (2014) Towards
robustness for cyber-physical systems. IEEE Trans Autom Control
59(12):3151–3163. https://doi.org/10.1109/TAC.2014.2351632

6. Tabuada P, Balkan A, Caliskan SY, Shoukry Y,Majumdar R (2012)
Input–output robustness for discrete systems. In: JerrayaA,Carloni
LP, Maraninchi F, Regehr J (eds) Proceedings of the 12th interna-
tional conference on embedded software, EMSOFT 2012, part of
the eighth embedded systems week, ESWeek 2012, Tampere, Fin-
land, October 7–12, 2012, 217–226. ACM

7. Tabuada P,NeiderD (2016)Robust linear temporal logic. In: Talbot
J, Regnier L (eds) 25th EACSL annual conference on computer
science logic, CSL 2016, August 29–September 1, 2016,Marseille,
France, Vol. 62 of LIPIcs, 10:1–10:21 (Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016)

8. Neider D, Weinert A, Zimmermann M (2019) Robust, expres-
sive, and quantitative linear temporal logics: pick any two for
free. In: Leroux J, Raskin J (eds) Proceedings tenth international
symposium on games, automata, logics, and formal verification,
GandALF 2019, Bordeaux, France, 2–3rd September 2019, Vol
305 of EPTCS, pp 1–16

9. Neider D, Weinert A, Zimmermann M (2022) Robust, expressive,
and quantitative linear temporal logics: pick any two for free.
Inf Comput 285(Part):104810. https://doi.org/10.1016/j.ic.2021.
104810

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00236-013-0191-5
https://doi.org/10.1109/TAC.2008.923658
https://doi.org/10.1109/TAC.2008.923658
https://doi.org/10.1109/TAC.2014.2351632
https://doi.org/10.1016/j.ic.2021.104810
https://doi.org/10.1016/j.ic.2021.104810

616 S. P. Nayak et al.

10. Anevlavis T, Philippe M, Neider D, Tabuada P (2018) Verify-
ing rLTL formulas: now faster than ever before!. In: 57th IEEE
conference on decision and control, CDC 2018, Miami, FL,
USA, December 17–19, 2018, 1556–1561. IEEE. https://doi.org/
10.1109/CDC.2018.8619014

11. Anevlavis T, Neider D, Philippe M, Tabuada P (2019) Evrostos:
the rLTL verifier. In: Ozay N, Prabhakar P (eds) Proceedings of the
22nd ACM international conference on hybrid systems: computa-
tion and control, HSCC 2019,Montreal, QC, Canada, April 16–18,
218–223. ACM. https://doi.org/10.1145/3302504.3311812

12. Anevlavis T, PhilippeM,NeiderD, Tabuada P (2022)Being correct
is not enough: efficient verification using robust linear temporal
logic. ACM Trans Comput Log 23(2):8:1-8:39. https://doi.org/10.
1145/3491216

13. Mascle C et al (2020) From LTL to rLTL monitoring: improved
monitorability through robust semantics. In: Ames AD, Seshia SA,
Deshmukh J (eds) HSCC ’20: 23rd ACM international conference
on hybrid systems: computation and control, Sydney, New South
Wales, Australia, April 21–24, 2020, 7:1–7:12. ACM. https://doi.
org/10.1145/3365365.3382197

14. Mascle C et al (2022) From LTL to rLTL monitoring: improved
monitorability through robust semantics. FormalMethods SystDes
4:5. https://doi.org/10.1007/s10703-022-00398-4

15. Nayak SP, Neider D, Zimmermann M (2022) Robustness-by-
construction synthesis: adapting to the environment at runtime.
In: Margaria T, Steffen B (eds) Leveraging applications of formal
methods, verification and validation. Verification Principles, 149–
173. Springer, Cham

16. Murano A, Neider D, Zimmermann M (2023) Robust alternating-
time temporal logic. In: Gaggl SA, Martinez MV, Ortiz M (eds)
Logics in artificial intelligence—18thEuropean conference, JELIA
2023, Dresden, Germany, September 20–22, 2023, Proceedings,
Vol 14281ofLecture notes in computer science, 796–813. Springer.
https://doi.org/10.1007/978-3-031-43619-2_54

17. Zimmermann M (2023) Robust probabilistic temporal logics.
arXiv:2306.05806 https://doi.org/10.48550/arXiv.2306.05806

18. French T, McCabe-Dansted JC, Reynolds M (2007) A tempo-
ral logic of robustness. In: Konev B, Wolter F (eds) Frontiers of
combining systems, 6th international symposium, FroCoS 2007,
Liverpool, UK, September 10–12, 2007, Proceedings, Vol 4720 of
Lecture notes in computer science, 193–205. Springer

19. Mabe-Dansted J, DixonC, French T, ReynoldsM (2019) Sublogics
of a branching time logic of robustness. Inf Comput 266:126–160.
https://doi.org/10.1016/j.ic.2019.02.003

20. Nayak SP, Neider D, Roy R, Zimmermann M (2022) Robust
computation tree logic. In: Deshmukh JV, Havelund K, Perez
I (eds) NASA formal methods—14th international symposium,
NFM 2022, Pasadena, CA, USA, May 24–27, 2022, Proceed-
ings, Vol. 13260 of Lecture notes in computer science, 538–556.
Springer. https://doi.org/10.1007/978-3-031-06773-0_29

21. Baier C, Katoen J (2008) Principles of model checking. MIT Press,
Cambridge

22. Hájek P (1998) Metamathematics of fuzzy logic Vol 4 of Trends in
Logic Kluwer

23. Priest G (2009) Dualising intuitionictic negation. Principia Int
J Epistemol 13(2):165–184. https://doi.org/10.5007/1808-1711.
2009v13n2p165

24. Dwyer MB, Avrunin GS, Corbett JC (1999) Patterns in property
specifications for finite-state verification. In:BoehmBW,GarlanD,
Kramer J (eds) Proceedings of the 1999 international conference on
software engineering, ICSE’ 99, Los Angeles, CA, USA, May 16–
22, 1999, 411–420. ACM. https://doi.org/10.1145/302405.302672

25. Tarski A (1955) A lattice-theoretical fixpoint theorem and its appli-
cations. Pac J Math 5(2):285–309

26. Arnold A, Niwinski D (2001) Rudiments of μ-calculus. Elsevier,
Hoboken

27. Cousot P, Cousot R (1979) Constructive versions of Tarski’s fixed
point theorems. Pac J Math 82(1):43–57

28. Chatterjee K, Henzinger TA, Piterman N (2008) Algorithms for
Büchi games. arXiv:0805.2620

29. Clarke EM, Emerson EA, Sistla AP (1986) Automatic verification
of finite-state concurrent systems using temporal logic specifica-
tions. ACM Trans Program Lang Syst 8(2):244–263. https://doi.
org/10.1145/5397.5399

30. Schnoebelen P (2002) The complexity of temporal logic model
checking. In: Balbiani P, Suzuki N, Wolter F, Zakharyaschev M
(eds) Advances in modal logic 4, papers from the fourth confer-
ence on “Advances in Modal logic,” held in Toulouse, France, 30
September–2 October 2002, 393–436. King’s College Publications

31. Kozen D (1983) Results on the propositional mu-calculus.
Theor Comput Sci 27:333–354. https://doi.org/10.1016/0304-
3975(82)90125-6

32. Clarke EM, Grumberg O, Kroening D, Peled DA, Veith H (2018)
Model checking, 2nd edn. MIT Press, Cambridge

33. Grädel E, Thomas W, Wilke T (eds) (2002) Automata, logics, and
infinite games: a guide to current research [outcome of a Dagstuhl
seminar, February 2001], Vol 2500 of Lecture notes in computer
science. Springer

34. Bradfield J, Walukiewicz I (2018) The mu-calculus and model
checking. Springer, Cham, pp 871–919. https://doi.org/10.1007/
978-3-319-10575-8_26

35. Emerson EA, Jutla CS (1991) Tree automata, mu-calculus and
determinacy (extended abstract). In: 32nd annual symposium on
foundations of computer science, San Juan, Puerto Rico, 1–4 Octo-
ber 1991, 368–377. IEEE Computer Society. https://doi.org/10.
2307/4210911109/SFCS.1991.185392

36. Emerson EA, Jutla CS (1999) The complexity of tree automata
and logics of programs. SIAM J Comput 29(1):132–158. https://
doi.org/10.1137/S0097539793304741

37. Emerson EA, Halpern JY (1985) Decision procedures and expres-
siveness in the temporal logic of branching time. J Comput Syst
Sci 30(1):1–24. https://doi.org/10.1016/0022-0000(85)90001-7

38. Streett RS, Emerson EA (1989) An automata theoretic deci-
sion procedure for the propositional mu-calculus. Inf Comput
81(3):249–264. https://doi.org/10.1016/0890-5401(89)90031-X

39. LückM (2018) Quirky quantifiers: optimal models and complexity
of computation tree logic. Int J Found Comput Sci 29(1):17–62.
https://doi.org/10.1142/S0129054118500028

40. Kupferman O, Vardi MY (2000) μ-Calculus synthesis. In: Nielsen
M, Rovan B (eds) Mathematical foundations of computer science
2000, 25th international symposium, MFCS 2000, Bratislava, Slo-
vakia, August 28–September 1, 2000, Proceedings, Vol 1893 of
Lecture notes in computer science, 497–507. Springer. https://doi.
org/10.1007/3-540-44612-5_45

41. Kupferman O, Vardi M et al (1997) Synthesis with incomplete
informatio. In: 2nd International conference on temporal logic, 91–
106, Manchester

42. Demri S, Goranko V, Lange M (2016) Temporal logics in com-
puter science: finite-state systems. Cambridge tracts in theoretical
computer science. Cambridge University Press, Cambridge

43. Emerson EA, Lei C (1987)Modalities for model checking: branch-
ing time logic strikes back. Sci Comput Program 8(3):275–306.
https://doi.org/10.1016/0167-6423(87)90036-0

44. Pnueli A, Rosner R (1989) On the synthesis of an asynchronous
reactive module. In: Ausiello G, Dezani-Ciancaglini M, Rocca
SRD (eds) Automata, languages and programming, 16th inter-
national colloquium, ICALP89, Stresa, Italy, July 11–15, 1989,
Proceedings, Vol 372 of Lecture notes in computer science, 652–
671. Springer. https://doi.org/10.1007/BFb0035790

45. Bloem R, Chockler H, Ebrahimi M, Strichman, O (2019) Syn-
thesizing reactive systems using robustness and recovery spec-
ifications. In: Barrett CW, Yang J (eds) 2019 Formal methods

123

https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1145/3491216
https://doi.org/10.1145/3491216
https://doi.org/10.1145/3365365.3382197
https://doi.org/10.1145/3365365.3382197
https://doi.org/10.1007/s10703-022-00398-4
https://doi.org/10.1007/978-3-031-43619-2_54
http://arxiv.org/abs/2306.05806
https://doi.org/10.48550/arXiv.2306.05806
https://doi.org/10.1016/j.ic.2019.02.003
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.5007/1808-1711.2009v13n2p165
https://doi.org/10.5007/1808-1711.2009v13n2p165
https://doi.org/10.1145/302405.302672
http://arxiv.org/abs/0805.2620
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.2307/4210911109/SFCS.1991.185392
https://doi.org/10.2307/4210911109/SFCS.1991.185392
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0890-5401(89)90031-X
https://doi.org/10.1142/S0129054118500028
https://doi.org/10.1007/3-540-44612-5_45
https://doi.org/10.1007/3-540-44612-5_45
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1007/BFb0035790

Robust computation tree logic 617

in computer aided design, FMCAD 2019, San Jose, CA, USA,
October 22–25, 2019, 147–151. IEEE. https://doi.org/10.23919/
FMCAD.2019.8894276

46. Rodionova A, Bartocci E, Nickovic D, Grosu R (2016) Temporal
logic as filtering. In: Abate A, Fainekos G (eds) Proceedings of the
19th international conference on hybrid systems: computation and
control, HSCC 2016, Vienna, Austria, April 12–14, 2016, 11–20.
ACM. https://doi.org/10.1145/2883817.2883839

47. Zhang C, Garlan D, Kang E (2020) A behavioral notion of robust-
ness for software systems. In:DevanbuP,CohenMB,Zimmermann
T (eds) ESEC/FSE ’20: 28th ACM joint European software engi-
neering conference and symposium on the foundations of software
engineering, Virtual Event, USA, November 8–13, 2020, 1–12.
ACM. https://doi.org/10.1145/3368089.3409753

48. Chaudhuri S, Gulwani S, Lublinerman R (2010) Continuity
analysis of programs. In: Hermenegildo MV, Palsberg J (eds)
Proceedings of the 37th ACM SIGPLAN-SIGACT symposium
on principles of programming languages, POPL 2010, Madrid,
Spain, January 17-23, 2010, 57–70. ACM. https://doi.org/10.1145/
1706299.1706308

49. MajumdarR,Saha I (2009)Symbolic robustness analysis. In:Baker
TP (ed) Proceedings of the 30th IEEE real-time systems sympo-
sium, RTSS 2009, Washington, DC, USA, 1–4 December 2009,
355–363. IEEE Computer Society. https://doi.org/10.1109/RTSS.
2009.17

50. Fainekos G, Pappas G (2009) Robustness of temporal logic
specifications for continuous-time signals. Theoret Comput Sci
410(42):4262–4291. https://doi.org/10.1016/j.tcs.2009.06.021

51. DonzéA,MalerO (2010)Robust satisfaction of temporal logic over
real-valued signals. In: Chatterjee K, Henzinger TA (eds) Formal
modeling and analysis of timed systems. Springer, Berlin, pp 92–
106

52. Akazaki T, Hasuo I (2015) Time robustness in MTL and expres-
sivity in hybrid system falsification. In: Kroening D, Pasareanu
CS (eds) Computer aided verification—27th international confer-
ence, CAV 2015, San Francisco, CA, USA, July 18–24, 2015,
Proceedings, Part II, Vol. 9207 of Lecture notes in computer
science, 356–374. Springer. https://doi.org/10.1007/978-3-319-
21668-3_21

53. Abbas H, Pant YV, Mangharam R (2019) Temporal logic robust-
ness for general signal classes. In: Ozay N, Prabhakar P (eds)
Proceedings of the 22nd ACM international conference on hybrid
systems: computation and control, HSCC 2019, Montreal, QC,
Canada, April 16–18, 2019, 45–56. ACM. https://doi.org/10.1145/
3302504.3311817

54. Mehdipour N, Vasile CI, Belta C (2019) Average-based robust-
ness for continuous-time signal temporal logic. In: 58th IEEE
conference on decision and control, CDC 2019, Nice, France,
December 11–13, 2019, 5312–5317. IEEE. https://doi.org/10.
1109/CDC40024.2019.9029989

55. Almagor S, Boker U, Kupferman O (2016) Formally reasoning
about quality. J ACM. https://doi.org/10.1145/2875421

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.23919/FMCAD.2019.8894276
https://doi.org/10.23919/FMCAD.2019.8894276
https://doi.org/10.1145/2883817.2883839
https://doi.org/10.1145/3368089.3409753
https://doi.org/10.1145/1706299.1706308
https://doi.org/10.1145/1706299.1706308
https://doi.org/10.1109/RTSS.2009.17
https://doi.org/10.1109/RTSS.2009.17
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1145/3302504.3311817
https://doi.org/10.1145/3302504.3311817
https://doi.org/10.1109/CDC40024.2019.9029989
https://doi.org/10.1109/CDC40024.2019.9029989
https://doi.org/10.1145/2875421

	Robust computation tree logic
	Abstract
	1 Introduction
	2 Notation and review of computation tree logic
	2.1 Syntax
	2.2 Semantics

	3 Robust computation tree logic
	3.1 Syntax
	3.2 Semantics
	3.3 Expressiveness of rCTL
	3.4 rCTL model checking
	3.5 rCTL and the modal µ-calculus
	3.6 rCTL satisfiability
	3.7 rCTL synthesis

	4 Review of CTL*
	4.1 Syntax
	4.2 Semantics

	5 Robust CTL*
	5.1 Syntax
	5.2 Semantics
	5.3 Expressiveness of rCTL*
	5.4 rCTL* model checking
	5.5 rCTL* satisfiability
	5.6 rCTL* synthesis

	6 Related works
	7 Conclusion
	References

