
TAPAAL HyperLTL: A Tool for Checking
Hyperproperties of Petri Nets

Bruno Maria René Gonzalez1[0009−0006−8122−7160], Peter Gjøl
Jensen2[0000−0002−9320−9991], Stefan Schmid1[0000−0002−7798−1711], Jiří

Srba2[0000−0001−5551−6547], and Martin Zimmermann2[0000−0002−8038−2453]

1 TU Berlin, Berlin, Germany
2 Aalborg University, Aalborg, Denmark

Abstract. Petri nets are a modeling formalism capable of describing
complex distributed systems and there exists a large number of both aca-
demic and industrial tools that enable automatic verification of model
properties. Typical questions include reachability analysis and model
checking against logics like LTL and CTL. However, these logics fall
short when describing properties like non-interference and observational
determinism that require simultaneous reasoning about multiple traces
of the model and can thus only be expressed as hyperproperties. We in-
troduce, to the best of our knowledge, the first HyperLTL model checker
for Petri nets. The tool is fully integrated into the verification framework
TAPAAL and we describe the semantics of the hyperlogic, present the
tool’s architecture and GUI, and evaluate the performance of the Hy-
perLTL verification engine on a benchmark of problems originating from
the computer networking domain.
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1 Introduction

Many important properties of systems inherently relate multiple execution traces
of a system, e.g., security and information-flow properties [1,23,33,39,40,42] as
well as network properties like congestion [10,24]. These are not expressible in
classical specification languages like LTL [35], CTL [12], and CTL∗ [21], as those
are restricted to reasoning about one trace at a time. Clarkson and Schneider
termed properties relating multiple traces hyperproperties and initiated their rig-
orous investigation [14]. Technically speaking, a hyperproperty is a set of sets
of traces, just like a trace property is a set of traces. Their study received con-
siderable attention after the introduction of specification languages for hyper-
properties, which enabled the specification, analysis, and verification of hyper-
properties. The two most important ones are HyperLTL and HyperCTL∗ which
extend LTL and CTL∗ by quantification over traces [13]. These logics are able
to express many important hyperproperties from security like non-interference,
non-inference, observational determinism, etc. [22]. On the other hand, they are
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also able to express properties about paths in graphs, e.g., networks, like the
existence of several disjoint paths between a source and a target node. This
allows us to formalize quantitative aspects like congestion using HyperLTL as
a requirement on the maximal number of flows that can traverse any given edge.

Petri nets [34] are widely used to represent concurrent and distributed sys-
tems due to their expressive power and an intuitive graphical representation.
Despite the versatility of Petri nets, no prior HyperLTL verification tool has
provided user-friendly support for designing and verifying Petri net models. Ex-
isting approaches often rely on textual specifications or lack intuitive interfaces.

To address this challenge, we introduce TAPAAL HyperLTL, a novel Hyper-
LTL model checker integrated into the TAPAAL [17] verification suite, specifi-
cally designed to verify complex temporal properties of distributed systems mod-
eled as Petri nets. Our implementation is the first to bring HyperLTL verification
to Petri nets, offering a robust verification engine coupled with an intuitive user
interface for modeling as well as debugging purposes.

To evaluate our tool, we conduct an extensive case study showing the appli-
cability of HyperLTL for the analysis of congestion in a computer networking
setting. Our results show that our HyperLTL engine outperforms the baseline
approach based on self-composition [2,39] and achieves competitive performance
compared to state-of-the-art tools like MCHyper [22].

Related work. HyperLTL and its branching-time companion HyperCTL∗ have
been introduced and their model-checking problems have been shown decidable
in the seminal work of Clarkson et al. [13]. In general, model checking of Hy-
perLTL is TOWER-complete [36,32] in the number of quantifier alternations.
Hence, almost all tool development has been concerned with the alternation-free
fragment, although recently the first tools tackling (a small number of) alterna-
tions have been presented.

For example, the tool MCHyper models the system using And-Inverter Graphs
(AIGs) and has originally been restricted to alternation-free formulae [22] (like
our tool), where it relies on the ABC [9] backend. More recently, it has been ex-
tended to handle one alternation using a game-based approach [15]. On the other
hand, the tool AutoHyper handles quantifier alternations [5] by implementing
an automata-theoretic model checking algorithm, relying on efficient automata
inclusion checking.

Another approach for handling the inherent complexity of HyperLTL model
checking is to consider incomplete methods like bounded model checking, which
searches for counterexamples of bounded size. Hsu et al. [27,26] implemented
this in their tool HyperQube using a reduction to QBF.

Finally, model checking asynchronous extensions of HyperLTL has been stud-
ied by Baumeister et al. [3] and probabilistic extensions by Dode et al. [18]. Most
recently, the game-based approach mentioned above has been generalized [4,41]
and planning-based [6] algorithms and implementations have been presented.

None of the existing tools mentioned above can handle Petri nets natively.
Thus, our tool offers an alternative modeling language based on Petri nets, which
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naturally support concurrency, while existing tools use NuSMV [11] models (like
HyperQube) or VHDL [37] and VeriLog [38] models (like MCHyper).

2 Modeling Formalism and HyperLTL Logic

We shall now semi-formally introduce the Petri net model as well as the syntax
and semantics of the variant of HyperLTL that is supported by our tool and
tailored to express properties of Petri nets.

2.1 Petri nets

Our tool uses the classical Petri net (PN) model [34] with weighted and inhibitor
arcs. It also supports colored Petri nets, following the PNML syntax used in the
annual Model Checking Contest (MCC) [31]. The colored PNs are unfolded into
classical P/T (place/transition) nets, after which the HyperLTL model checking
is executed.

Figure 1b shows an example of a P/T net where places from the set P =
{v0, . . . , v3, a(t0), a(t′0), . . . , a(t4), a(t′4)} are drawn as circles, transitions from the
set T = {t1, t′1, . . . , t4, t′4, vdeliver1 , vdeliver2 } are drawn as rectangles, and arcs are
the directed edges connecting either places to transitions or transitions to places.
Unless otherwise stated, the default weight of all arcs is 1.

A marking M : P → N0 is a function that represents the placement of to-
kens (denoted as dots) across the places in the net. A transition t is enabled
in a marking M if there are enough tokens in all of the input places to the
transition. An enabled transition t can fire and produce the new marking M ′,
written as M [t⟩M ′, by (i) removing as many tokens from the input places as
is the weight of the corresponding arc, and (ii) producing new tokens to every
output place of the transition, again according to the weights of the output arcs.
For example, firing the transition t1 in Figure 1b removes the tokens from v0
and a(t1) and adds a token to v2. All other tokens are unchanged.

The Petri net in Figure 1b models all possible routing sequences for the
computer network depicted in Figure 1a where a packet (token) starts at the
node v0 and the aim is to reach the node v1 or v2. Moreover, every link in
the network corresponds to some transition t in the Petri net and once this
transition fires, the token in the place a(t) is consumed, representing the fact
that the corresponding link is now occupied.

A trace (run) in a Petri net is an infinite sequence ρ = M0M1M2 · · · of
markings such that for every n ≥ 0 either (i) Mn[tn⟩Mn+1 for some transition
tn ∈ T , or (ii) Mn+1 = Mn in case that Mn is a deadlock, i.e., if Mn does
not enable any transition. As HyperLTL is interpreted over infinite traces, we
introduce the stuttering to prolong possibly deadlocked traces into infinite ones
(as it is e.g., assumed in the MCC [31]). Given a trace ρ = M0M1M2 · · · , we
denote the n’th marking Mn in the trace by ρn.
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(b) A Petri net N modeling the computer network

φ1 ≡ ∃π1. ∃π2. (Fπ1.v
′
1 = 1) ∧ (Fπ2.v

′
1 = 1) ∧GnoCongestion2

φ2 ≡ ∃π1. ∃π2. ∃π3. (Fπ1.v
′
1 = 1) ∧ (Fπ2.v

′
1 = 1) ∧ (Fπ3.v

′
1 = 1) ∧GnoCongestion3

φ3 ≡ ∃π1. ∃π2. (Fπ1.v
′
2 = 1) ∧ (Fπ2.v

′
2 = 1) ∧GnoCongestion2

φ4 ≡ ∃π1. ∃π2. ∃π3. (Fπ1.v
′
2 = 1) ∧ (Fπ2.v

′
2 = 1) ∧ (Fπ3.v

′
2 = 1) ∧GnoCongestion3

where

noCongestion2 ≡
∧

t∈T∖{vdeliver
1 ,vdeliver

2 }(π1.a(t) + π2.a(t) ≥ 1)

noCongestion3 ≡
∧

t∈T∖{vdeliver
1 ,vdeliver

2 }(π1.a(t) + π2.a(t) + π3.a(t) ≥ 2)

(c) Examples of HyperLTL formulae where N |= φ1, N |= φ2, N |= φ3 and N ̸|= φ4

Fig. 1: Example of a Petri net and HyperLTL formulae

2.2 HyperLTL

HyperLTL [13] extends LTL [35] (which is evaluated over single traces) by quan-
tification over multiple traces, and is therefore evaluated over sets of traces. Our
tool supports an alternation-free hyperlogic specifically tailored to Petri nets.

Figure 1c shows example formulae in the logic where the πi are trace vari-
ables ranging over infinite traces of a Petri net. Every formula starts with either
existential or universal quantification over a list of trace variables π1, . . . , πm.
Thus, quantification assigns traces of the Petri net to the trace variables. This
is followed by a formula composed of the standard LTL temporal operators that
is (synchronously) evaluated over the quantified traces:
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– Xφ stating that φ holds at the next position,
– Fφ stating that φ holds at some future position,
– Gφ stating that φ holds at all future positions, and
– ψUφ stating that φ holds at some future position and ψ holds at all inter-

mediate positions.

Finally, we consider two types of atomic propositions:

– for every variable π and every transition t there is a proposition π.ent, and
– we allow linear (in)equalities of the form

∑
ℓ cℓ · πiℓ .pℓ ▷◁ b where the cℓ and

b are integer constants, the πiℓ are trace variables, and the pℓ are places of
the net, and where ▷◁∈ {<,≤,=,≥, >} is a comparison operator.

Now, assuming that the trace ρi is assigned to the variable πi for each i, we
evaluate atomic propositions at position n as follows:

– πi.ent is satisfied if t is enabled in the n’th marking ρni , and
–

∑
ℓ cℓ ·iℓ .pℓ ▷◁ b is satisfied if the inequality obtained by replacing each πiℓ .pℓ

with the number of tokens in the marking ρniℓ , i.e., the value ρniℓ(pℓ), is valid.

For a formal definition of the syntax and semantics of HyperLTL, see, e.g., [13].
Coming back to our example in Figure 1, the formula φ1 (resp. φ3) from

Figure 1c expresses that there are two traces that both eventually (but possibly
at different positions) receive a token in v′1 (resp. v′2) and each transition t is
fired in at most one of the traces (hence there must be a token in a(t) in at least
one of the two traces). In other words, φ1 and φ3 express that there are two
disjoint paths in the graph in Figure 1a, starting at v0 and leading to v1 resp.
v2. Analogously, φ2 and φ4 express similar properties, but requiring the existence
of three disjoint paths. Hence, φ1, φ2, and φ3 are satisfied by the example net N ,
but not φ4.

The reason for introducing the places v′1 and v′2 is that once the token initially
in v0 arrives to one of them, the corresponding trace gets stuck and the last
reached marking is allowed to stutter and hence does not use any of the remaining
link capacities. This is important as the existentially quantified traces may be
of different lengths before reaching the goal place, and such traces must globally
synchronize.

3 Tool Implementation and Graphical User Interface

The verification engine of our tool is implemented in C++ and extends the
existing LTL verification engine that is part of the verifypn command line
tool [28]. The HyperLTL engine supports nets described in PNML [7] and, for
universal formulae φ, constructs in an on-the-fly manner the vector of markings
currently reached in all the considered traces and explores its product with the
Büchi automaton representing the negation of the LTL property obtained by
dropping the quantifiers of φ. On this product Büchi automaton, we perform
a classical search for a reachable accepting loop using the nested DFS search
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Fig. 2: TAPAAL HyperLTL screenshot (simulator mode with a query dialog)

strategy [16]. If such a loop is found, the engine returns the verification answer
together with the set of traces (in an XML format) that form such a loop. In
the case where no counter-example exists, the tool reports that the property
is satisfied together with statistics about the explored state-space. Existential
quantification is handled by negating the formula and swapping the results the
tool reports.

The HyperLTL engine is directly called from the tool TAPAAL [17] that has
been extended with a graphical way to construct HyperLTL queries as well as
a simulator that allows to replay multiple traces returned by the engine. Fig-
ure 2 displays a screenshot of the TAPAAL HyperLTL interface. The GUI is
in simulation mode where the user can select the traces returned by the veri-
fication engine (currently, trace T1 is selected) and simulate the traces in the
GUI. A graphical dialog for creating HyperLTL queries is shown as overlay. The
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Fig. 3: Self-composition with the LTL query (F v11 = 1) ∧ (F v21 = 1)

tool is available at http://www.tapaal.net/downloads, including a complete
reproducibility package [25].

4 Performance Evaluation and Case Study

We evaluate the performance of our HyperLTL model checker on a case study
inspired by routing problems from computer networking [19]. For given source
and destination nodes s and t, and for a given network (directed graph), we
want to find k directed paths from s to t such that these paths do not cause
congestion on any of the links (edges) in the network. In our simplified scenario,
we say that an edge is congested if there are strictly more than ℓ paths from
s to t that use the given edge; hence ℓ indirectly models edge capacities. The
introductory example in Figure 1b shows how this problem can be modeled as
a Petri net. The formulae for k = 2, 3 and ℓ = 1 are depicted in Figure 1c as φ1

and φ3 for the target node v1 and as φ2 and φ4 for the target node v2.
Our benchmark contains 3900 HyperLTL formulae, evaluated on Petri net

models of 260 real-world network topologies from the Topology Zoo dataset [30].
We consider three (k, ℓ) problem variants for (2, 1), (3, 1) and (4, 2), where for
each network topology we generate five HyperLTL queries for randomly selected
pairs of source and target nodes. To balance the number of true and false queries
in the benchmark, the source is selected to be a random high-degree node.
The experiments are executed on an AMD EPYC 7551 processor running at
1996 MHz, with 900 seconds timeout. TAPAAL additionally had a 2GB mem-
ory limit.

http://www.tapaal.net/downloads
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Fig. 4: Ratio plot of TAPAAL HyperLTL vs. Self-composition

First, we compare our HyperLTL implementation (referred to as TAPAAL)
with a self-composition approach [2,39] that creates a copy of the composed
model for each trace and adds a synchronization mechanism to the model in order
to guarantee that we iteratively perform one step in each copy of the model before
we evaluate the predicates and continue with another single step in each copy.
This allows us to reduce the HyperLTL formula into a normal LTL formula where
instead of each trace we now refer to the respective copy of the model. However,
this is at the expense of creating a possibly complicated model that explodes with
the number of traces and additionally implements a synchronization mechanism
in order to keep all copies synchronized.

In our concrete example, the self-composition does not require such a com-
plicated synchronization mechanism as for each quantified trace we can create
a copy of the net that can run completely concurrently (avoding the lock-step
synchronization), while checking for the congestion using the shared places a(t)
that contain as many tokens as is the edge capacity. Figure 3 shows our simpli-
fied self-composition for our running example as well as a classical LTL query
that expresses the same property as the HyperLTL formula φ1 from Figure 1c.
To verify the classical LTL formula on the self-composed system, we benchmark
our tool against the LTL engine of TAPAAL [29], the winner in the 2025 Model
Checking Contest [31] in the LTL category. A ratio plot is depicted in Figure 4
where the x-axis contains all queries solved by at least one of the methods,
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Fig. 5: Ratio plot of TAPAAL HyperLTL with and without LP Check

sorted by the ratio of self-composition running time divided by TAPAAL run-
ning time. We remark that because the plot contains three different problem
instances where the tools solve different number of queries (the numbers of an-
swers in the parenthesis show the total number of solved problems by at least
one of the methods), we use the percentage scale on the x-axis instead of the
absolute count. For two disjoint paths, both methods are comparable, however,
for 3 and 4 paths there is a clear advantage of using our new HyperLTL imple-
mentation. For example, for 4 paths, the self-composition timeouts (depicted by
the straight horizontal line) on more than 50% of all queries that the HyperLTL
implementation managed to solve. This is in particular true for queries with
positive answers, as the on-the-fly method that we implemented in TAPAAL is
more efficient than self-composition, where the net size explodes with number of
trace variables in the HyperLTL formula.

In order to further improve the performance of our tool on negative queries,
we employ an over-approximation method based on state-equations and linear
programming [8] (we refer to this method as TAPAAL+LP). We create the self-
composition net and apply the fast LP check that can in many cases show that
a HyperLTL query is not satisfied, notably without performing any state-space
search. If the LP check is inconclusive, we run our HyperLTL engine to perform
the state-space exploration using nested depth-first search. Figure 5 shows the
ratio plot of TAPAAL vs. TAPAAL+LP. Most of the additionally answered
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Fig. 6: Ratio plot of TAPAAL HyperLTL+LP vs. MCHyper

queries are negative ones that are solved using this LP check. Even though the
LP check is in general often beneficial, the tool allows the user to skip it and
proceed directly to the state-space search if needed.

Finally, we compare our HyperLTL engine with the LP check against MCHy-
per [15] which is a state-of-the-art model checker for HyperLTL properties.
MCHyper operates by encoding the system, described as an AIG circuit, and the
formula into a new compact circuit of linear size w.r.t. to the size of the model and
the formula [22]. While Petri nets can naturally represent nonnegative integers
as a number of tokens in places, in MCHyper these numbers have to be encoded
into Boolean variables. To this end, we translated all 260 network topologies in
our benchmark into AIG circuits, using a unary encoding for the nodes of the
topologies. The transitions of the system are modeled as a simple state machine,
where each transition t additionally requires a latch, representing the token in
the a(t) place, to be enabled. To allow traces of differing lengths, the circuit can-
not leave the target state after entering it (similarly to the Petri net encoding).
The formula is translated into the MCHyper format. For a given problem with
parameters (k, ℓ), we encode the sum by simply enumerating the

(
k
ℓ

)
terms, as

the values are sufficiently small. The comparison of TAPAAL HyperLTL+LP vs.
MCHyper is provided in Figure 6. It shows that our tool is faster on about 60%
of all queries, however, MCHyper solves a significant number of queries where
our tool timeouts. This is caused by the fact that for alternation-free formulae
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(like in our benchmarks), the encoding of MCHyper allows the property to be
verified by a simpler reachability query on the circuit. This enables it to rely
on the specialized verification tool ABC [9], which implements state-of-the-art
SAT-solvers including PDR (property-directed reachability heuristics) [20].

5 Conclusion

We presented the first HyperLTL verification engine for Petri nets, implemented
a GUI that allows the user to visually design Petri net models as well as Hyper-
LTL queries and provides debugging feedback as the traces discovered by our
engine can be simulated in the TAPAAL GUI. We showed that our HyperLTL
engine is more efficient than an alternative self-composition approach and that it
is competitive with the state-of-the-art HyperLTL model checker MCHyper. In
future work, we plan to transfer the techniques that enable MCHyper to quickly
answer positive HyperLTL queries, in particular property-directed search heuris-
tics, into TAPAAL, in order to further improve its performance.

Acknowledgements. Research supported by the German Research Foundation
(DFG), project ReNO (SPP 2378), 2023–2027, and by DIREC—Digital Research
Centre Denmark.
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