
Monitoring Real-Time Systems
under Parametric Delay⋆

Martin Fränzle1[0000−0002−9138−8340], Thomas M.
Grosen2 �[0009−0008−7719−6482], Kim G. Larsen2[0000−0002−5953−3384], and

Martin Zimmermann2[0000−0002−8038−2453]

1 Carl von Ossietzky Universität, Oldenburg, Germany martin.fraenzle@uol.de
2 Aalborg University, Aalborg, Denmark {tmgr,kgl,mzi}@cs.aau.dk

Abstract. Timed Büchi automata provide a very expressive formalism
for expressing requirements of real-time systems. Online monitoring of
embedded real-time systems can then be achieved by symbolic execution
of such automata on the trace observed from the system. This direct
construction however only is faithful if observation of the trace is imme-
diate in the sense that the monitor can assign exact time stamps to the
actions it observes, which is rarely true in practice due to the substantial
and fluctuating parametric delays introduced by the circuitry connect-
ing the observed system to its monitoring device. We present a purely
zone-based online monitoring algorithm, which handles such parametric
delays exactly without recurrence to costly verification procedures for
parametric timed automata. We have implemented our monitoring algo-
rithm on top of the real-time model checking tool UPPAAL, and report
on encouraging initial results.

Keywords: Monitoring · Timing uncertainty · Timed Büchi Automata.

1 Introduction

Online monitoring is an important tool to ensure functional correctness of safety-
critical systems. It analyses the execution traces observed from the system during
its runtime by determining in real-time whether the observed traces satisfy the
system’s specification. Continuous online monitoring consequently is concerned
with unbounded time horizons, unlike offline monitoring where a fixed finite trace
is analysed after the execution has terminated. Hence, specifications for online
monitoring are typically defined over infinite traces, with the most significant
approach being temporal logics. As specifications often include real-time require-
ments, e.g., “every request is answered within 10 milliseconds (ms)”, we focus here
on metric-time temporal logics over timed words. More precisely, we consider
⋆ M. Fränzle has been funded by by the State of Lower Saxony, Zukunftslabor Mobil-

ität, and by Deutsche Forschungsgemeinschaft, grants FR 2715/5-1 and FR 2715/6-1.
T.M. Grosen and K.G. Larsen have been funded by the VILLUM Investigator grant
S4OS, and together with M. Zimmermann they have been supported by DIREC -
Digital Research Centre Denmark.

2 M. Fränzle et al.

Specification

Observation
0

b

27.1

some "a" before 10

no "b" before 20

a

17.3 t

Fig. 1: Monitoring under observation delay: at time t = 27.1 we can conclusively
decide that the MITL property F[0,10]a∧G[0,20]¬b is violated irrespective of the
latency of the observation channel, provided the jitter is less than 0.2.

Metric Interval Temporal Logic (MITL) [2], which offers a good balance between
expressiveness and algorithmic properties. For example, the request-response
specification above is expressed by the MITL formula G≥0(req → F≤10resp).

While the specifications classify infinite traces, the traces observed online and
to be checked against the specification remain finite. Nevertheless, one can still
return verdicts [7]: for example, every infinite extension of a finite trace with
some request that is not answered within 10 ms violates the request-response
specification above. Hence, violation of the specification is already witnessed
by such a finite trace. Dually, consider the specification “system calibration is
completed within 500 ms”, expressed by the formula F≤500cc with the propo-
sition cc representing the completion of calibration. Every infinite extension of
a finite trace on which the calibration is completed within 400 ms satisfies the
specification. Hence, satisfaction of the specification is already witnessed by such
a finite trace. However, there are also traces and specifications for which no ver-
dict can currently be drawn, like in the situation where no calibration has been
observed yet at current time of 350 ms. As usual, we capture these three situ-
ations with the three verdicts ⊤ (satisfaction for every extension), ⊥ (violation
for every extension), and ? (inconclusive).

Online monitoring can be achieved by compiling the MITL specification into
an equivalent timed Büchi automaton and then symbolically executing the au-
tomaton on the observed trace of the system [7,15]. However, this approach is
correct only if the actions of the monitored system can be observed immediately
by the monitor. In practice, there is usually a communication delay between
the system and the monitor. This delay is induced by various types of circuitry
at their interfaces, like technical sensors, conversion between analog and digital
signals, and communication networks forwarding signals to the monitor. We fol-
low the approach described in McGraw-Hill’s Encyclopedia of Networking and
Telecommunications [24] where a communication delay consists of a constant
part (latency) and varying part (jitter).

Consequently, the monitored system and the symbolic execution are no longer
synchronized but deviate by a delay, for which only bounds, yet not exact values
tend to be known. But even then, one can still provide meaningful verdicts, see
Fig. 1: The specification F≤10a ∧ G≤20¬b expresses that an a occurs within 10
ms and no b occurs within 20 ms. The observed trace shows the first a at 17.3 ms
and the first b at 27.1 ms. This observation is only consistent with satisfaction of
the constraint F≤10a if a’s observation delay exceeds 7.3 ms, while satisfaction

Monitoring Real-Time Systems under Parametric Delay 3

of G≤20¬b requires a delay of at most 7.1 ms for b. Thus, if the jitter is strictly
smaller than 0.2 ms, the specification is definitely violated. Note that the verdict
“violated” is true independently of the actual value of the unknown, parametric
communication latency.

On the other hand, if the parametric latency is known to be in the range
[4.5, 8] ms and the jitter is in [0, 0.3] ms, then we cannot give a definitive verdict:
The a may have occurred at 10 ms and then has been observed with 7 ms latency
plus 0.3 ms jitter at 17.3 = 10 + 7 + 0.3 ms, and the b may have occurred at
20.1 ms and then observed with the same latency (yet independent jitter) at
27.1 = 20.1 + 7 + 0 ms. In this case, the property would be satisfied. But the a
may also have occurred at 10.3 ms, violating the property, and still be observed
with the same latency at 17.3 = 10.3 + 7 + 0 ms. From the observations, we can
nevertheless derive bounds on the parametric latency, as the property definitely
is violated irrespective of the actual (unknown) value of the jitter whenever the
actual latency is smaller than 7 ms or larger than 7.1 ms. It however cannot
be guaranteed to be satisfied when the latency is in the range of [7, 7.1] ms, as
satisfaction then depends on the exact value of the jitter, which is not detectable.
Thus, one can determine information beyond the verdicts ⊤, ⊥, and ? in terms
of bounds on the delay that imply definitive verdicts.

Our Contribution. Based on previous work by Grosen et al. [15] on online
monitoring of MITL specifications without delay via timed Büchi automata,
we present a symbolic MITL monitoring algorithm that provides exact verdicts
under unknown delay consisting of parametric (i.e. unknown within bounds) la-
tency and jitter. While an unknown delay is a timing parameter, our construction
avoids the semidecidability [3] of analysis for parameterized timed automata, and
instead uses only classical clock zones [9].

In addition, our approach has the advantage that it is even more informative
than typical monitoring algorithms, which only return a verdict in {⊤,⊥,?}.
Recall the example specification F≤10a ∧ G≤20¬b in the case where the jitter
is constrained to [0,0.3] ms. As argued above, this specification can, given this
bound on the jitter, only be satisfied if 7 ≤ l ≤ 7.1, where l denotes the actual
latency. Our algorithm, for which we also provide a prototype implementation
and experimental evaluation, computes such parametric constraints on the set
of potential latencies under which the specification can be satisfied as well as on
the set of potential latencies under which the specification can be violated.

The implementation is built on top of the real-time model checking tool
Uppaal [19] using the difference-bounded matrix (DBM) data structure allow-
ing for representation of convex polytopes called zones. Most importantly, the
DBM data structure can be used for efficient implementation of various geomet-
rical operations over zones needed for the symbolic analysis of timed automata,
such as testing for emptiness, inclusion, equality, and computing projection and
intersection of zones [9]. Our experiments show encouraging initial results on an
industrial gear controller model from [20].

All proofs omitted due to space restrictions can be found in the full ver-
sion [14].

4 M. Fränzle et al.

Related Work. Our automata-based monitoring of finite traces against specifica-
tions over infinite words using the three verdicts {⊤,⊥,?} follows the seminal
work of Bauer et al. [7], who presented monitoring algorithms for LTL and timed
LTL. Their algorithm for timed LTL is based on clock regions [1], while we follow
the approach of Grosen et al. [15] and use clock zones [9], whose performance is
an order of magnitude faster. Also, they translated timed LTL into event-clock
automata, which are less expressive than the timed Büchi automata (TBA) used
both by Grosen et al. [15] and here. More recently, the same approach has been
used to monitor real-time properties under assumptions [11].

As our algorithms work with TBA, we also support MITL specifications, as
these can be compiled into TBA. The monitoring problem for MITL (without
delay) has been investigated before. Baldor et al. showed how to construct a
monitor for dense-time MITL formulas by constructing a tree of timed trans-
ducers [5]. Ho et al. split unbounded and bounded parts of MITL formulas for
monitoring, using traditional LTL monitoring for the unbounded parts and per-
mitting a simpler construction for the (finite-word) bounded parts [16]. Bulychev
et al. apply a technique of rewriting a given WMTL formula during monitor-
ing as part of performing statistical model checking. None of the above works
makes use of the efficient DBM datastructure or extends to the setting of TBA
that provides the basis of our approach. Here we note, that as a specification
formalism TBA exceeds the expressive power of MITL, which might be useful
in certain applications (e.g. in the presence of counting properties).

There is also a large body of work on monitoring with finite-word seman-
tics. Roşu et al. focussed on discrete-time finite-word MTL [25], while Basin et
al. proposed algorithms for monitoring real-time finite-word properties [6] and
compared the differences between different time models. André et al. consider
monitoring finite logs of parameterized timed and hybrid systems [29]. Finally,
Ulus et al. described monitoring timed regular expressions over finite words using
unions of two-dimensional zones [26,27].

The problem of monitoring trace properties under uncertain observation has
been addressed before [12,23,28,13,17], most notably based on Signal Tempo-
ral Logic (STL), exploiting STL’s quantitative semantics [22] that characterizes
robustness against variation in state variables. These approaches are mostly or-
thogonal to ours, as they tend to address uncertainty in the state observed at a
time instant rather than uncertainty in the time stamps associated to state ob-
servations. It would consequently be interesting to combine the two approaches,
thus permitting both state uncertainty due to inexact measurements and time
uncertainty due to inexact clocks and fluctuating communication latencies. It
should also be noted that robust STL monitoring comes in diverse variants rep-
resenting different error models, starting from monitors that exploit the com-
positional real-valued robustness semantics [12,23]. This semantics however un-
derapproximates the factual robustness of the verdict against state shifts in the
observed trace such that monitoring algorithms based on this compositional se-
mantics are sound and computationally efficient, yet incomplete. Due to the
safe approximation, they may yield inconclusive verdicts in actually determined

Monitoring Real-Time Systems under Parametric Delay 5

situations. Complete and thus optimally informed STL monitoring under uncer-
tainty, which guarantees a verdict whenever the property is determined, has only
recently been investigated. Visconti et al. in [28] developed sound and complete
monitoring wrt. an interval model of state measurement error, where each single
measurement features an independent displacement ranging over a bounded in-
terval. Finkbeiner et al. in [13] address a refined model distinguishing between a
constant, yet unknown up to bounds, offset and a time-varying, interval-bounded
noise, as suggested by the pertinent ISO norm 5725 on measurement accuracy
(there called “trueness” and “precision” of a measurement). We here adopt the
latter, more refined model of measurement error and transfer it into the time
domain, thus implementing sound and complete monitoring for the case when
timestamps are affected by a parametric (unknown, yet constant) observation
latency plus a fluctuating jitter that differs between observations. Closest to our
approach is [18], which addresses a more confined model of observation delay
comprising a fixed known (non-parametric) latency plus a varying jitter. It also
covers clock drift, which is an additional source of (relative) jitter that we have
excluded to simplify the exposition.

2 Preliminaries

The set of natural numbers (excluding zero) is N, we define N0 = N ∪ {0}, the
set of rational numbers is Q, the set of non-negative rational numbers is Q≥0.
the set of real numbers is R, and the set of non-negative real numbers is R≥0.
The powerset of a set S is denoted by 2S .

Timed Words. A timed word over a finite alphabet Σ is a pair ρ = (σ, τ) where
σ is a nonempty word over Σ and τ is a sequence of non-decreasing non-negative
real numbers of the same length as σ. Timed words may be finite or infinite; in
the latter case, we require lim sup τ = ∞, i.e., time diverges. The set of finite
timed words is denoted by TΣ∗ and the set of infinite timed words by TΣω.
We also represent a timed word as a sequence of pairs (σ1, τ1), (σ2, τ2), If
ρ = (σ1, τ1), (σ2, τ2), . . . , (σn, τn) is a finite timed word, we denote by τ(ρ) the
total time duration of ρ, i.e., τn.

If ρ1 = (σ1
1 , τ

1
1), . . . , (σ

1
n, τ

1
n) is a finite timed word, ρ2 = (σ2

1 , τ
2
1), (σ

2
2 , τ

2
2), . . .

is a finite or infinite timed word, and t ∈ Q≥0 then the timed word concatenation
ρ1 ·t ρ2 is defined iff τ(ρ1) ≤ t. Then, ρ1 ·t ρ2 = (σ1, τ1), (σ2, τ2), . . . such that

σi =

{
σ1
i iff i ≤ n

σ2
i−n else

and τi =

{
τ1i iff i ≤ n

τ2i−n + t else.

Timed Automata. A timed Büchi automaton (TBA) A = (Q,Q0, Σ,C,∆,F)
consists of a finite alphabet Σ, a finite set Q of locations, a set Q0 ⊆ Q of initial
locations, a finite set C of clocks, a finite set ∆ ⊆ Q × Q × Σ × 2C × G(C) of
transitions with G(C) being the set of clock constraints over C, and a set F ⊆ Q
of accepting locations. A transition (q, q′, a, λ, g) is an edge from q to q′ on input

6 M. Fränzle et al.

symbol a, where λ is the set of clocks to reset and g is a clock constraint over
C. A clock constraint is a conjunction of atomic constraints of the form x ∼ n,
where x is a clock, n ∈ N0, and ∼ ∈ {<,≤,=,≥, >}. A state of A is a pair (q, v)
where q is a location in Q and v : C → R≥0 is a valuation mapping clocks to
their values. For any d ∈ R≥0, v + d is the valuation x 7→ v(x) + d.

A run of A from a state (q0, v0) over a timed word (σ1, τ1)(σ2, τ2) · · · is

a sequence of steps (q0, v0)
(σ1,τ1)−→ (q1, v1)

(σ2,τ2)−→ (q2, v2)
(σ3,τ3)−→ · · · where for

all i ≥ 1 there is a transition (qi−1, qi, σi, λi, gi) such that vi(x) = 0 for all x
in λi and vi(x) = vi−1(x) + (τi − τi−1) otherwise, and gi is satisfied by the
valuation vi−1 + (τi − τi−1). Here, we use τ0 = 0. Given a run r, we denote
the set of locations visited infinitely many times by r as Inf(r). A run r of A
is accepting if Inf(r) ∩ F ≠ ∅. The language of A from a starting state (q, v),
denoted L(A, (q, v)), is the set of all infinite timed words with an accepting run
in A starting from (q, v). We define the language of A, written L(A), to be⋃

q L(A, (q, v0)), where q ranges over Q0 and where v0(x) = 0 for all x ∈ C.

Logic. We use Metric Interval Temporal Logic (MITL) to express properties to
be monitored; these are subsequently translated into equivalent TBA which we
use in our monitoring algorithm. The syntax of MITL formulas over a finite
alphabet Σ is defined as

φ ::= p | ¬φ | φ ∨ φ | XIφ | φ UIφ

where p ∈ Σ and I ranges over non-singular intervals over R≥0 with endpoints in
N0 ∪ {∞}. We write ∼n for I = {d ∈ R≥0 | d∼n} for ∼ ∈ {<,≤,≥, >} and n ∈ N.
We also define the standard syntactic sugar: true = p∨¬p, φ∧ψ = ¬(¬φ∨¬ψ),
FIφ = true UIφ, and GIφ = ¬FI¬φ.

The satisfaction relation ρ, i |= φ is defined for infinite timed words ρ =
(σ1, τ1), (σ2, τ2), . . ., positions i ≥ 1, and an MITL formulas φ:

– ρ, i |= p iff p = σi.
– ρ, i |= ¬φ iff ρ, i ̸|= φ.
– ρ, i |= φ ∨ ψ if ρ, i |= φ or ρ, i |= ψ.
– ρ, i |= XIφ iff ρ, (i+ 1) |= φ and τi+1 − τi ∈ I.
– ρ, i |= φ UIψ iff there exists k ≥ i s.t. ρ, k |= ψ, τk − τi ∈ I, and ρ, j |= φ for

all i ≤ j < k.

We write ρ |= φ whenever ρ, 1 |= φ. The language L(φ) of an MITL formula φ
is the set of all ρ ∈ TΣω such that ρ |= φ.

Theorem 1 ([2,10]). For each MITL formula φ there exists a TBA A with
L(φ) = L(A).

Fig. 2 illustrates Theorem 1 by providing TBA’s for the formula F[0,10]a ∧
G[0,20]¬b from the introduction and its negation.

Monitoring Real-Time Systems under Parametric Delay 7

q0 q1 φ¬φ a

x ≤ 10

a, b

x > 20

b

a

x > 10

b

x ≤ 20 a, b

a
x ≤ 20

a, b

Fig. 2: An automaton for the language of the property φ = F[0,10]a ∧ G[0,20]¬b
and its negation: If location φ is accepting then it accepts L(φ), if location ¬φ
is accepting then it accepts L(¬φ).

3 Monitoring under Delayed Observation

According to McGraw-Hill’s Encyclopedia of Networking and Telecommunica-
tions [24], a communication delay consists of a constant part (latency) and vary-
ing part (jitter). We describe the delay as a pair (δ, ε) ∈ R2

≥0 where δ is the
constant latency for all signals and ε is the bound on the jitter. Thus, all signals
from the system are delayed within [δ, δ + ε] before they arrive at the monitor.

In the simplest case, our obligation is to monitor violation of an MITL spec-
ification φ by a system while observing the events through a channel Chan fea-
turing a constant, yet unknown (up to a given, but maybe trivial, lower bound
l ∈ R≥0 and upper bound u ∈ R≥0) transportation latency δ ∈ [l, u] and a vary-
ing jitter bounded by ε ∈ R≥0. Fig. 1 shows an example of a property and an
observation that conclusively violates the specification at time 27.1, even if the
channel latency δ ∈ [0,∞[is unknown, as long as the jitter is bounded by 0.2.

Thus, we need to distinguish between observations (the timed word corre-
sponding to the events as they are observed by the monitoring device, subject to
delay) and the possible ground-truths, as they may have been emitted by the the
monitored system. We begin by formalizing the concept of observation, where
the occurrence of observed events is constrained by a set D capturing known
bounds on the delay. Obviously, under latency δ (and arbitrary jitter), the first
observation can only be made after at least δ units of time.

Definition 1. A delay set D is a nonempty subset of R2
≥0 containing pairs of

latencies and jitters. A D-observation, i.e. an observation that can in principle
be made under delay in D, is a finite timed word ρ∗ = (σ∗

1 , τ
∗
1), . . . , (σ

∗
m, τ

∗
m) with

τ∗1 ≥ δ for some (δ, ε) ∈ D.

As the ground-truth occurrence times of events in the system cannot be
determined exactly from their delayed copies that the monitor receives through
the communication channel, we have to consider all ground-truth timed words
that the particular observation is consistent with, as follows.3

3 Note that we simplify our definitions by assuming that jitter does not change the
order of observations. Under the additional assumption that only a (uniformly)
bounded number of events can be generated by the system in each unit of time,

8 M. Fränzle et al.

Definition 2 (Consistency). Let ρ∗ = (σ∗
1 , τ

∗
1), . . . , (σ

∗
m, τ

∗
m) be a {(δ, ε)}-

observation and let ρ = (σ1, τ1), . . . , (σn, τn) be a finite timed word. We say
that ρ is consistent with ρ∗ at observation time t ∈ R≥0 under latency δ and
jitter ε iff

1. τn ≤ t and τ∗m ≤ t,
2. n ≥ m, and σi = σ∗

i and τi + δ − τ∗i ∈ [0, ε] for all i ∈ {1, . . . ,m}, and
3. if n > m then τm+1 ≥ t− (δ + ε).

We denote the set of timed words ρ that are consistent with a {(δ, ε)}-obser-
vation ρ∗ at observation time t under latency δ and jitter ε by GT δ,ε(ρ

∗, t).
Then, we define GTD(ρ

∗, t) =
⋃

(δ,ε)∈D GT δ,ε(ρ
∗, t).

GTD(ρ
∗, t) thus collects the possible ground-truths that are consistent with

the observation ρ∗ when the time elapsed since the system has started is t, and
the delay (δ, ε) is within the set D. Note that GTD(ρ

∗, t) is always nonempty,
if ρ∗ is a D-observation and t ≥ τ(ρ∗) (recall that τ(ρ∗) denotes the last time
point of ρ∗).

Example 1. Fig. 3 shows a {(δ, ε)}-observation and a consistent ground-truth
and illustrates how the delay shifts the timestamps of the events. The length of
ρ is n = 9 and the length of ρ∗ is m = 4. Recall that t is the time of observation.

time 0 δ tt− (δ + ε)τ∗
1 τ∗

2 τ∗
3 τ∗

4τ1 τ2 τ3
τ4

ρ∗
a a b a

ρ

a a b a a a b b b

Fig. 3: A {(δ, ε)}-observation ρ∗ and a consistent ground-truth ρ.

In particular, notice the following:

– No event can occur in the observation ρ∗ with a timestamp smaller than δ,
as it takes at least δ units of time for an event to reach to be send from
the system through the communication channel to the monitor. Obviously,
at the system side (i.e., in the ground-truth ρ) events can happen at any
timestamp, also before δ (e.g., the first a).

it is possible to take “overtaking” of events into account, by looking at all consistent
permutations. However, this would lead to a severe overhead in the implementation.

Monitoring Real-Time Systems under Parametric Delay 9

– The difference τ∗i − τi for i ≤ 4 (i.e., the difference between the observation
time and the time the event was emitted) must be in the interval [δ, δ + ε].

– The time elapsed between the b and the last a in the observation ρ∗ is
larger than the time elapsed between the corresponding events in the ground-
truth ρ. This means the jitter for the a is larger than the jitter for the b.

– The last five events in ρ have not yet been observed in ρ∗. Such events can
only have timestamps in the interval [t− (δ+ ε), t], as all earlier events must
necessarily have been observed. Said differently, there cannot be any events
between timestamp τ4 (corresponding to the last observed event in ρ∗ with
timestamp τ∗4) and timestamp t − (δ + ε), as any such event would have
arrived at the monitor, even under the maximal possible delay of δ + ε.
However, there can be an arbitrary number of events in ρ between times-
tamps t− (δ + ε) and t.

A monitor obviously ought to supply a verdict iff that verdict applies across
all possible ground-truth timed words that the observed word explains. To define
our definition of monitor, we use the set B3 = {⊤,? ,⊥} of verdicts, as usual.

Definition 3 (Monitor verdicts under delay). Given a language L ⊆ TΣω,
a set of possible observation delays D, a D-observation ρ∗ ∈ TΣ∗, and an ob-
servation time t ≥ τ(ρ∗), the function VD : 2TΣω → TΣ∗ ×R≥0 → B3 evaluates
to the verdict

VD(L)(ρ
∗, t) =

⊤ if ρ ·t µ ∈ L for all ρ ∈ GTD(ρ

∗, t) and all µ ∈ TΣω,

⊥ if ρ ·t µ /∈ L for all ρ ∈ GTD(ρ
∗, t) and all µ ∈ TΣω,

? otherwise.

VD(L)(ρ
∗, t) is undefined when t < τ(ρ∗).

Example 2. Consider the property φ = F[0,10]a ∧ G[0,20]¬b and observed word
ρ∗ = (a, 17.3), (b, 27.1) shown in Fig. 1, time point t = 27.1, and set of delays D =
{(δ, ε) | ε = 0.2}. As the jitter is bounded by 0.2, in all ground truths either
a occurred after time point 10, or b occurred before time point 20. Thus, all
extensions of all possible ground truths satisfy ¬φ, i.e., VD(L(φ)))(ρ

∗, t) = ⊥.

Note that for the special case of D = {(0, 0)} we cover classical (i.e., delay-
free) monitoring [15]. Before we turn our attention to computing V we study
some properties of our definition. First, let us note that the ability to make firm
verdicts increases with increased certainty of the observation channel delay.

Lemma 1. Let L ⊆ TΣω, ρ∗ ∈ TΣ∗, let D ⊆ D′ be delay sets, let ρ∗ be a D-
observation, and let t ≥ τ(ρ∗). Then, VD′(L)(ρ∗, t) = ⊤ implies VD(L)(ρ

∗, t) =
⊤ and VD′(L)(ρ∗, t) = ⊥ implies VD(L)(ρ

∗, t) = ⊥.

As a refinement of the verdict function in Definition 3, one may provide
information about the delay parameters (δ, ε) that can explain an observation.

10 M. Fränzle et al.

Given L ⊆ TΣω, a finite timed word ρ∗ ∈ TΣ∗, and t ≥ τ(ρ∗), the set of
delays ∆(L, ρ∗, t) that are consistent with the observation ρ∗ at t is defined as

∆(L, ρ∗, t) = {(δ, ε) | ∃ρ ∈ GT δ,ε(ρ
∗, t)∃µ ∈ TΣω s.t. ρ ·t µ ∈ L}.

We denote by ∆D(L, ρ
∗, t) the set ∆(L, ρ∗, t) ∩ D. Now we can characterize the

conclusive monitoring verdicts via these delay sets.

Lemma 2. Given L ⊆ TΣω, a set D of delays, a D-observation ρ∗ ∈ TΣ∗, and
t ≥ τ(ρ∗), we have

1. ∆D(L, ρ
∗, t) = ∅ iff VD(L)(ρ

∗, t) = ⊥, and
2. ∆D(L, ρ

∗, t) = ∅ iff VD(L)(ρ
∗, t) = ⊤.

But even in the case when both delay-sets are nonempty (i.e., the verdict
is ?), we can still provide useful information in terms of the sets ∆(L, ρ∗, t)
and ∆(L, ρ∗, t) of consistent delays. In particular, the set of consistent delays
is non-increasing during observations. To explain this, we first define a notion
of extensions for finite timed words (w.r.t. current time instants t, t′). Formally,
let ρ = (σ1, τ1), . . . , (σn, τn) and ρ′ = (σ′

1, τ
′
1), . . . , (σ

′
n′ , τ ′n′) be two finite timed

words. Also let t, t′ ∈ R≥0. Then, we define (ρ, t) ⊑ (ρ′, t′), if n ≤ n′, σi = σ′
i

and τi = τ ′i for all i ≤ n, and either n = n′ and t ≤ t′ or n < n′ and t ≤ τ ′n+1. By
extending the observations, we (potentially) reduce the set of consistent delays.

Lemma 3. Let (ρ∗1, t1) ⊑ (ρ∗2, t2) for finite timed words ρ∗1, ρ∗2 and t1 ≥ τ(ρ∗1)
and t2 ≥ τ(ρ∗2). Then, ∆(L, ρ∗1, t1) ⊇ ∆(L, ρ∗2, t2).

Another interesting point is that in some cases, no extension of the observed
word will provide a definitive verdict.

Example 3. Consider the language L(F≤10a), the observation ρ∗ = (a, 15), and
the set D = {(δ, 0) | δ ∈ [0, 10]} of delays. For any given t ≥ τ(ρ∗) the sets
of consistent delays are ∆D(L, ρ

∗, t) = {(δ, 0) | δ ∈ [5, 10]} and ∆D(L, ρ
∗, t) =

{(δ, 0) | δ ∈ [0, 5)}, i.e., both sets of consistent delays are a strict subset of D.
Further, due to Lemma 3, this will be the case, no matter what observations
occur in the future, as the set of consistent delays can only shrink when further
observations are made. So, the verdict is ? , even if additional observations occur.

The following lemma formalizes this: as soon as the set of consistent delays
w.r.t. L (L) is no longer equal to D, then the verdict can never become ⊤ (⊥).

Lemma 4. Let L ⊆ TΣω, D be a set of delays, and ρ∗ = (σ∗
1 , τ

∗
1), . . . , (σ

∗
m, τ

∗
m)

a nonempty D-observation. Then, for all t > τ(ρ∗)

1. ∆D(L, ρ
∗, t) ⊊ D ∩ {(δ, ε) | δ ≤ τ∗1 } implies there is no ρ∗1 ∈ TΣ∗ such that

VD(L)(ρ
∗ ·t ρ∗1, t′) = ⊤ for any t′ ≥ t+ τ(ρ∗1), and

2. ∆D(L, ρ
∗, t) ⊊ D ∩ {(δ, ε) | δ ≤ τ∗1 } implies there is no ρ∗1 ∈ TΣ∗ such that

VD(L)(ρ
∗ ·t ρ∗1, t′) = ⊥ for any t′ ≥ t+ τ(ρ∗1).

Note that ∆D(L, ρ
∗, t) ⊊ D ∩ {(δ, ε) | δ ≤ τ∗1 } and ∆D(L, ρ

∗, t) ⊊ D ∩ {(δ, ε) |
δ ≤ τ∗1 } can both be true simultaneously (as in Example 3). In this situation,
we will under no future observation reach a conclusive verdict.

Monitoring Real-Time Systems under Parametric Delay 11

4 Towards an Algorithm

Typically, monitoring algorithms rely on automata-based techniques. To this
end, first the specification and its complement are translated into suitable au-
tomata. Then one computes the set of states reachable by processing the obser-
vation and then checks whether from one of these states the automaton can still
accept an infinite continuation. If this is the case for both automata, then the
verdict is ? , if it is only the case for the automaton for the specification, then
the verdict is ⊤, and vice versa for the complement automaton and ⊥.

We want to follow the same blueprint, but we need to make adjustments
to handle delay. Intuitively, we need to compute all states that are reachable
by possible ground-truths of a given observation. However, a ground-truth may
contain more events than the observation, as some events may not yet have been
observed due to delay. This complicates the construction of the set of reachable
states, as an unbounded number of events may not yet have been observed.

In the definition of GTD (Definition 2) there is an implicit universal quantifi-
cation over all possible sequences of such events that have not yet been observed
(e.g., the last five events in ρ in Fig. 3). We exploit the fact that the verdicts
are defined with respect to all possible extensions µ of a possible ground-truth
(i.e., also a universal quantification over the µ’s) to “merge” the universal quan-
tification over events that have not yet been observed into the universal quan-
tification of the extension µ. Then, a possible ground-truth has exactly the same
number of events as the observation (i.e., ground-truth and observation have
Equal Length). We begin defining this restricted notion of possible ground-truth
by strengthening Definition 2.

Definition 4 (EL-Consistency). Let ρ∗ = (σ∗
1 , τ

∗
1), . . . , (σ

∗
m, τ

∗
m) be a {(δ, ε)}-

observation and let ρ = (σ1, τ1), . . . , (σn, τn) be a finite timed word. We say that
ρ is EL-consistent with ρ∗ at observation time t ∈ R≥0 under latency δ and
jitter ε iff ρ is consistent with ρ∗ at t under δ and ε and m = n. We denote
the set of timed words ρ that are EL-consistent with an {(δ, ε)}-observation ρ∗

at observation time t under latency δ and jitter ε by GT el
δ,ε(ρ

∗, t) and define
GT el

D(ρ
∗, t) =

⋃
(δ,ε)∈D GT el

δ,ε(ρ
∗, t).

Example 4. Continuing Example 1, an EL-consistent ground-truth of the obser-
vation ρ∗ in Fig. 3 has exactly four events corresponding to the four events in
the observation. Thus, there cannot be any unobserved events between t−(δ+ε)
and t in an EL-consistent ground-truth (e.g., the last five events of ρ in Fig. 3).

Now, we present the revised verdict function using only EL ground-truths.
Note that merging the unobserved events from the possible ground-truth ρ into
the extension µ requires changing the time instant at which we concatenate the
ground-truth and the extension: t − (δ + ε) is the earliest time point at which
an event can occur that may not yet have been observed at time t. Due to jitter
however, there might also be events after t − (δ + ε) that have been observed,
which are in the possible ground-truth ρ: the last such event happened at time
τ(ρ). Hence, we need to concatenate at time point max(τ(ρ), t− (δ + ε)).

12 M. Fränzle et al.

Definition 5 (Monitor verdicts under delay – EL version). Given L ⊆
TΣω, a set D of delays, a D-observation ρ∗ ∈ TΣ∗, and t ≥ τ(ρ∗), the function
Vel
D : 2TΣω → TΣ∗ × R≥0 → B3 evaluates to the verdict

Vel
D(L)(ρ∗, t) =

⊤ if ρ ·max(τ(ρ),t−(δ+ε)) µ ∈ L for all (δ, ε) ∈ D,
all ρ ∈ GT el

δ,ε(ρ
∗, t) and all µ ∈ TΣω,

⊥ if ρ ·max(τ(ρ),t−(δ+ε)) µ /∈ L for all (δ, ε) ∈ D,
all ρ ∈ GT el

δ,ε(ρ
∗, t) and all µ ∈ TΣω,

? otherwise.

Vel
D(L)(ρ∗, t) is undefined when t < τ(ρ∗).

Next, we show that both verdict functions coincide.

Lemma 5. Vel
D(L)(ρ∗, t) = VD(L)(ρ

∗, t) for all L ⊆ TΣω, all sets D of delays,
all D-observations ρ∗, and all t ≥ τ(ρ∗).

Next, we show that we can indeed make the definition of Vel effective using
automata-theoretic constructions. First, we formally capture the set of states
that can be reached by processing the possible EL ground-truths of an observa-
tion. Let A be a TBA. We write (q0, v0)

ρ−→A (qn, vn) for a finite timed word ρ =

(σ, τ) ∈ TΣ∗ to denote the existence of a finite sequence of states (q0, v0)
(σ1,τ1)−→

(q1, v1)
(σ2,τ2)−→ · · · (σn,τn)−→ (qn, vn) of A where for all 1 ≤ i ≤ n there is a transition

(qi−1, qi, σi, λi, gi) of A such that vi(x) = 0 for all x in λi and vi−1(x)+(ti−ti−1)
otherwise, and g is satisfied by the valuation vi−1 + (ti − ti−1), where we use
t0 = 0. Given a TBA A, a set D of delays, a finite observed timed word ρ∗ ∈ TΣ∗,
and t ≥ τ(ρ∗), we define

RD
A(ρ

∗, t) = {(q, v +max(0, (t− (τ(ρ) + δ + ε)))) | (q0, v0)
ρ−→A (q, v) where

(q0, v0) with q0 ∈ Q0, v0(x) = 0 for all x ∈ C, and

ρ ∈ GT el
δ,ε(ρ

∗, t) for some (δ, ε) ∈ D}.

We call this the reach-set of ρ in A at t w.r.t. D.
Next, we define the set of states of a TBA from where it is possible to reach

an accepting location infinitely many times in the future, i.e., those states from
which an accepting run is possible. This is useful, because if processing a finite
timed word leads to such a state, then the timed word can be extended to
an infinite one in the language of the automaton, a notion that underlies the
definitions of the verdict functions. Given a TBA A = (Q,Q0, Σ,C,∆,F), the
set of states with nonempty language is

Sne
A = {(q, v) | q ∈ Q, v ∈ C → R≥0 s.t. L(A, (q, v)) ̸= ∅}.

The set Sne
A can be computed using a zone-based fixpoint algorithm [15]. Using

these definitions, we can give an effective definition of the verdict functions,
which we show to be equivalent to the previous definitions and implementable.

In the following definition, A denotes the set of all TBA.

Monitoring Real-Time Systems under Parametric Delay 13

Definition 6 (Monitoring TBA). Given a TBA A, a complement automa-
ton A (i.e., with L(A) = TΣω \L(A)), a set D of delays, a D-observation ρ∗ ∈
TΣ∗, and t ≥ τ(ρ), MD : A× A → TΣ∗ × R≥0 → B3 computes the verdict

MD(A,A)(ρ∗, t) =

⊤ if RD

A(ρ
∗, t) ∩ Sne

A = ∅,
⊥ if RD

A(ρ
∗, t) ∩ Sne

A = ∅,
? otherwise.

MD(A,A)(ρ∗, t) is undefined if t < τ(ρ).

Next we show that this automata-based definition of monitoring is equal to
the verdict functions defined above.

Theorem 2. MD(A,A)(ρ∗, t) = Vel
D(L(A))(ρ∗, t) for all sets D of delays, all

TBA A (and complement automata A), all D-observations ρ∗, and all t ≥ τ(ρ∗).

Recall that Sne
A can be computed for any given TBA A. Therefore, in the

next section, we show how to calculate RD
A(ρ

∗, t) for a given TBA A, set D of
delays, observation ρ∗, and time point t using a zone-based algorithm. This will
then allow us to compute verdicts effectively.

5 A Zone-Based Online Monitoring Algorithm

In this section, we demonstrate how to compute the reach-set of ρ∗ in A at t w.r.t.
D. So far we have developed the theory with observations, latency, and jitter
being reals. Now, we are concerned with algorithms and thus assume all these
quantities to be rationals. For the monitoring algorithm, we use – as standard in
analysing timed automata models – symbolic states being pairs (q, Z) of locations
and zones. A zone is a finite conjunction of constraints of the form x ∼ t and
x − x′ ∼ t for clocks x, x′, constants t ∈ Q≥0, and ∼ ∈ {<,≤,=,≥, >}. Given
two zones Z and Z ′ over a set C of clocks, and a set of clocks λ ⊆ C, we define
the following operations on zones (which can be efficiently implemented using
the DBM data-structure [9]):

– Z[λ] = {v | ∃v′ |= Z s.t. v(x) = 0 if x ∈ λ, otherwise v(x) = v′(x)}
– Z↗ = {v | ∃v′ |= Z s.t. v = v′ + d for some d ∈ R≥0}
– Z ∧ Z ′ = {v | v |= Z and v |= Z ′}

We can use these functions to compute the successor states after an input.
Given a TBA A = (Q,Q0, Σ,C,∆,F), a symbolic state (q, Z), and a letter
a ∈ Σ, we define

Post((q, Z), a) = {(q′, Z ′) | (q, q′, a, λ, g) ∈ ∆,Z ′ = (Z↗ ∧ g)[λ]},

as the set of states one can reach by taking an a-transition at some point in the
future from (q, Z). Using Post we can compute the successor states of a timed

14 M. Fränzle et al.

input (a, τ) ∈ Σ × Q≥0 by extending the zones with an additional clock time
just recording time since system start. The successors of a symbolic state is

Succ((q, Z), (a, τ)) = {(q′, Z ′) | (q′, Z ′′) ∈ Post((q, Z), a), Z ′ = Z ′′ ∧ time = τ}

and the successors of a set of symbolic states S is

Succ(S, (a, τ)) =
⋃

(q′,Z′)∈S
Succ((q′, Z ′), (a, τ)).

In handling delayed observations, we assume that the delay set D consists of
pairs (δ, ε) where the latency δ is bounded by an interval [l, u] ⊆ R≥0 for given
l, u ∈ Q≥0, and that the jitter is bounded by a given ε ∈ Q≥0.

To represent the latency and thereby be able to reason about and indirectly
store the latency bounds, we add a clock etime representing the “expected” real
time that an event generated just now could be observed by the monitor after
having been delayed according to the latency. This allows us

1. to represent the actual latency as etime− time,
2. to represent the initial knowledge about latencies by initializing etime−time

to the initially known bounds on latency, namely etime − time ∈ [l, u] by
setting time to 0 and constraining etime to [l, u], and

3. to refine our knowledge about the actual latency after having observed an
event (σ∗, τ∗) by then setting etime to a value in [τ∗ − ε, τ∗].

Consequently, we change the initial zones to include the latency bounds l and
u as the differences between the clocks etime and time. This way, etime rep-
resents the expected time an event is observed at the monitor, given l and u,
and time represents the actual time the event happened (at the system). The
aforementioned refinement (see Item 3 above and Fig. 4) then permits to deduce
actual latency ranges consistent with the specification (or its negation) from
observation times of events.

In detail, this refinement of the etime− time relation works as follows. Given
a TBA A extended with the clocks time and etime, and an observation (σ, τ∗) ∈
Σ ×Q≥0, the successors of (q, Z) are

Succd((q, Z), (σ, τ
∗)) = {(q′, Z ′) | (q′, Z ′′) ∈ Post((q, Z), σ),

Z ′ = Z ′′ ∧ etime ≤ τ∗ ∧ etime ≥ τ∗ − ε}

and the successors Succd(S, (σ, τ
∗)) of a set of symbolic states S is equal to

∪(q,Z)∈SSuccd((q, Z), (σ, τ
∗)).

The online monitoring algorithm will essentially apply Succd repeatedly to
update the reach-set, once for each new observation. Note that there is a slight
mismatch, as Succd is computed with the two auxiliary clocks time and etime,
which are not clocks of A.

The initial reach-set is given by the following zone Zd
0 requiring all ordinary

clocks of the TBA A to be zero and with time and etime satisfying etime−time ∈
[l, u]. That is

Monitoring Real-Time Systems under Parametric Delay 15

Zd
0 ≡ etime− time ≤ u ∧ time− etime ≤ −l︸ ︷︷ ︸

etime−time∈[l,u]

∧
∧

x∈C∪{time}
x = 0︸ ︷︷ ︸

x1, . . . , x|C| = 0, time = 0

.

Given a fixed jitter bound ε, we can now compute the reach-set after a
sequence of observations under delay, where the latency is bounded in [l, u].

Theorem 3. Given a TBA A, a delay set D = {(δ, ε) | δ ∈ [l, u]} with l, u, ε ∈
Q≥0, a D-observation ρ∗ = (σ1, τ

∗
1), . . . , (σn, τ

∗
n), and t ∈ Q≥0 with t ≥ τ∗n, let

S0 = {(q0, Zd
0) | q0 ∈ Q0} and Si = Succd(Si−1, (σi, τ

∗
i)) for i ∈ {1, . . . , n}.

Then, the reach-set RD
A(ρ

∗, t) is the projection of

{(q′, Z ′) | (q′, Z ′′) ∈ Sn, Z
′ = Z ′′↗ ∧ etime = t− ε}

to the clocks of A (obtained by removing all constraints on time and etime).

This theorem allows us to implement a monitoring algorithm by computing
the reach-sets and intersecting them with the set of nonempty language states.

The observation of events may lead to refinement of the difference between
time and etime as depicted in Fig. 4.

Lemma 6. Given A, D, ρ∗, t, and Sn as in Theorem 3, we can compute the
set of consistent delays by looking at the bounds on etime− time:
∆D(L(A), ρ∗, t) = {(δ, ε) ∈ D | Sn |= etime− time = δ}.

This information can be used to decorate the ? verdict, so that we can report
a set of bounds on the latency for which we would provide a ⊤ or ⊥ verdict.

Example 5. Let us show an example of our algorithm for monitoring under de-
layed observation. Note that, for the sake of readability, we use sets of clock
constraints instead of conjunction of clock constraints when specifying zones.

Consider the property φ = F[0,10]a ∧ G[0,20]¬b from Fig. 1. The TBA’s ac-
cepting L(φ) and L(¬φ) are shown in Fig. 2. The nonempty language states
for Aφ and A¬φ are Sne

Aφ
= {(q0, {x ≤ 10}), (q1, true), (φ, true)} and Sne

A¬φ
=

{(q0, true), (q1, {x ≤ 20}), (¬φ, true)}. Let us assume the latency is between 0
and 10, and the jitter is bounded by 0.2. Now we compute the reach-sets S0

(initial), S1 (after (a, 17.3)), and S2 (after (b, 27.5)) as

S0 = {(q0, {x = 0, etime ≤ 10, (etime− x) ∈ [0, 10]})},
S1 = {(q1, {x ∈ [7.1, 10], etime ∈ [17.1, 17.3], (etime− x) ∈ [7.1, 10]}),

(¬φ, {x ∈ [10, 17.3], etime ∈ [17.1, 17.3], (etime− x) ≤ 7.3})}, and
S2 = {(φ, {x ∈]20, 20.4], etime ∈ [27.3, 27.5[, (etime− x) ∈ [7.1, 7.5]}),

(¬φ, {x ∈ [17.3, 27.5], etime ∈ [27.3, 27.5], (etime− x) ∈ [0, 10]})}.

Note that we omit the clock time and only look at x and etime since time and
x always have the same constraints.

16 M. Fränzle et al.

etime

time

u

l σ enabled

etime− time ≤ u

time− etime ≤ −l

etime

time

τ

etime ∈ [τ − ε, τ]

τ − ε

Event at sys-time

etime

time

τ − ε

Fig. 4: Illustration of a single zone in the Succd computation (only time-etime
plane depicted). Left: initial zone (in green) is diagonally extrapolated for time
passage and then intersected with the guard of an edge. Middle: observing event
σ at time τ . By restricting etime to [τ − ε, τ], the clock time is restricted to
when the event could have occurred at the system. Right: computing the future
zone we see that the bound on time− etime is now stricter and thus the bounds
for the consistent latencies are refined.

All reach-sets intersect with both sets of nonempty language states; thus,
the verdict is ? . However, we can refine this verdict with knowledge about the
consistent delays that change after each observation. The jitter bound is fixed
at 0.2, but the bounds on the latency can be found in the clock constraints on
the difference between etime and x. For ⊥, the latency range remains [0, 10] in
all reach-sets. For ⊤, the consistent latency range is [0, 10] in S0, [7.1, 10] in S1,
and it is [7.1, 7.5[in S2. This means that if the latency is outside [7.1, 7.5[, then
the verdict is ⊥.

On the other hand, for the observation ρ∗ = (a, 17.3), (b, 27.1) from Exam-
ple 2 (and using the same latency and jitter bounds as above), we compute the
reach-sets S0, S1, and S′

2 where

S′
2 = {(¬φ, {x ∈ [16.9, 27.1], etime ∈ [26.9, 27.1], (etime− x) ∈ [0, 10]})}.

As S′
2 has an empty intersection with Sne

Aφ
, the verdict is ⊥.

6 Prototype Implementation

We implemented the methods described in this paper in the tool MoniTAal4

written in C++. This includes the difference-bounded matrix data structure to
handle clock-zones, parsing property automata modelled in Uppaal, computing
the set of nonempty language states, computing the reach-sets in an online fash-
ion over an observed word based on latency and jitter bounds in [0,∞[, providing
verdicts ⊤,⊥ or ? and latency bounds consistent with ⊤ and ⊥.
4 https://github.com/DEIS-Tools/MoniTAal

https://github.com/DEIS-Tools/MoniTAal

Monitoring Real-Time Systems under Parametric Delay 17

Table 1: Results for simultaneously monitoring six response properties over a
trace generated by the gear controller model from [21].

Observ. τ(ρ) Time (ms) Max. resp. time (µs) # Symbolic States
Delay Delay-free Delay Delay-free Delay Delay-free

1000 63112 76 42 182 143 39 12
2000 124028 223 84 228 188 57 12
3000 184743 418 116 382 86 78 12
4000 244717 691 154 410 81 109 12
5000 306015 1037 198 571 281 135 12
6000 366814 1463 237 680 163 167 12
7000 438799 1973 278 767 175 192 12
8000 501070 2554 314 986 193 215 12
9000 563296 3212 357 1159 175 238 12

10000 624530 3929 384 1099 109 266 12

We demonstrate MoniTAal on a trace generated by simulating the gear
controller model from [21] in Uppaal [8]. The model, along with formal re-
quirements, was created by the company Mecel. For the monitored properties,
we replaced six error locations in the model with response properties on the
form G[0,∞]a→ F[0,b]c expressing that some signal a is followed by a response c
within some bound b. For such a property, it is not possible to give a ⊤ verdict,
since it will always possible to violate it in the future. The six properties are all
satisfied by the model, which means that we will never terminate with a verdict,
no matter how long the trace observed. This allows us to test how arbitrarily
long traces can affect the performance of our algorithm.

We show results with and without delay consisting of a latency in [0, 100], and
a jitter bounded by 5. The results in Table 1 show the number of observations,
length (in time) of the observed word, the overall running time, the maximal
response time (the time it takes to process a single observation and return the
next verdict), and the maximal number of stored symbolic states. The running
time, maximal response time and number of symbolic states over the number
of observations are plotted in Fig. 5. Under delay we see that the state storage
grows linearly with the number of observations, which in turn results in a growing
response time. The reason for this is that the uncertainty of the delay increases
the size of the reach-set. Nevertheless, the maximal response time is in all cases
less than 1.2 ms. In the delay-free case, the memory usage is constant, thus the
response time is also constant, although with tiny fluctuations. The total time in
the delayed case has approximately a quadratic growth. This is not surprising,
since it is the running sum of the response time which seems to grow linearly, but
we do not have enough experiments here to conclude a precise relation between
the state storage and response time. In general, the results show us that the tool
in this case is able to handle multiple properties and long traces in terms of time
horizon as well as number of observations.

18 M. Fränzle et al.

0.5 1

·104

0

2,000

4,000

Observation

Delayed Max. Resp. (µs)
Delayed Time (ms)

Delayed # Symb. States

0.5 1

·104

0

100

200

300

400

Observation

Max. Resp. (µs)
Time (ms)

Symb. States

Fig. 5: Graph plotting the total time, maximal response time and number of
symbolic states over the trace length (number of observations) from Table 1 of
the delayed (left) and delay-free (right) case.

7 Conclusion

We have introduced a zone-based algorithm realizing optimal (in the sense of
being anticipating [7]) online operational monitoring of embedded real-time sys-
tems when the communication between the monitor and the system is subject
to unknown (up to bounds) delay. This situation is rather typical in practice as
observations are mediated by sensors, may involve conversion between analog
and digital, or pass communication networks and consequently are indirect in
general, leading to delays and inexact time-stamping. Our constructions thus fill
a gap in the pre-existing theories for monitoring hard real-time systems, which
tend to assume full and exact temporal observability by immediate coupling or,
equivalently, perfect synchrony between systems and their monitors.

A notable point of our construction is that it applies a reduction to sim-
ple timed automata and is purely zone-based despite the unknown communi-
cation delay being a timing parameter. The construction thus not only avoids
the complexities of property analysis for parameterized timed automata [4], but
also provides an instance of monitoring under uncertainty where the underly-
ing arithmetic constraint systems remain of fixed dimensionality (namely the
number of clocks in the property automata plus two for monitoring) despite
their history dependence. This is in stark contrast to direct constraint encodings
growing linearly over history length as in [13].

In further research, we study the question of monitorability [7]: some proper-
ties will never give definitive verdicts (e.g., “infinitely often a”) and are therefore
not useful for monitoring. We conjecture that our zone-based approach can be
exploited to decide monitorability of real-time properties.

Monitoring Real-Time Systems under Parametric Delay 19

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994). https://doi.org/https://doi.org/10.1016/
0304-3975(94)90010-8

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal
of the ACM 43(1) (01 1996)

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego,
CA, USA. pp. 592–601. ACM (1993). https://doi.org/10.1145/167088.167242

4. André, É., Lime, D., Roux, O.H.: Reachability and liveness in parametric timed
automata. Log. Methods Comput. Sci. 18(1) (2022). https://doi.org/10.46298/
lmcs-18(1:31)2022

5. Baldor, K., Niu, J.: Monitoring dense-time, continuous-semantics, metric temporal
logic. In: Runtime Verification. pp. 245–259. Springer Berlin Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35632-2_24

6. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time
properties. In: RV. pp. 260–275. Springer (2012). https://doi.org/10.1007/
978-3-642-29860-8_20

7. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006: Foundations of Software Technol-
ogy and Theoretical Computer Science. pp. 260–272. Springer, Berlin, Heidelberg
(2006). https://doi.org/10.1007/11944836_25

8. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems, Interna-
tional School on Formal Methods for the Design of Computer, Communication and
Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised
Lectures. LNCS, vol. 3185, pp. 200–236. Springer (2004). https://doi.org/10.
1007/978-3-540-30080-9_7, https://doi.org/10.1007/978-3-540-30080-9_7

9. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Lec-
tures on Concurrency and Petri Nets, Advances in Petri Nets. LNCS, vol. 3098,
pp. 87–124. Springer (2003). https://doi.org/10.1007/978-3-540-27755-2_3

10. Brihaye, T., Geeraerts, G., Ho, H.M., Monmege, B.: MightyL: A compositional
translation from MITL to timed automata. In: Computer Aided Verification. pp.
421–440. Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_21

11. Cimatti, A., Grosen, T.M., Larsen, K.G., Tonetta, S., Zimmermann, M.: Exploit-
ing assumptions for effective monitoring of real-time properties under partial ob-
servability. arXiv 2409.05456 (2024). https://doi.org/10.48550/arXiv.2409.
05456

12. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceed-
ings. LNCS, vol. 8044, pp. 264–279. Springer (2013). https://doi.org/10.1007/
978-3-642-39799-8_19, https://doi.org/10.1007/978-3-642-39799-8_19

13. Finkbeiner, B., Fränzle, M., Kohn, F., Kröger, P.: A truly robust signal tempo-
ral logic: Monitoring safety properties of interacting cyber-physical systems under
uncertain observation. Algorithms 15(4), 126 (2022). https://doi.org/10.3390/
a15040126

https://doi.org/https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1145/167088.167242
https://doi.org/10.46298/lmcs-18(1:31)2022
https://doi.org/10.46298/lmcs-18(1:31)2022
https://doi.org/10.46298/lmcs-18(1:31)2022
https://doi.org/10.46298/lmcs-18(1:31)2022
https://doi.org/10.1007/978-3-642-35632-2_24
https://doi.org/10.1007/978-3-642-35632-2_24
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.48550/arXiv.2409.05456
https://doi.org/10.48550/arXiv.2409.05456
https://doi.org/10.48550/arXiv.2409.05456
https://doi.org/10.48550/arXiv.2409.05456
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.3390/a15040126
https://doi.org/10.3390/a15040126
https://doi.org/10.3390/a15040126
https://doi.org/10.3390/a15040126

20 M. Fränzle et al.

14. Fränzle, M., Grosen, T.M., Larsen, K.G., Zimmermann, M.: Monitoring real-time
systems under parametric delay. arXiv 2404.18282 (2024). https://doi.org/10.
48550/ARXIV.2404.18282

15. Grosen, T.M., Kauffman, S., Larsen, K.G., Zimmermann, M.: Monitoring timed
properties (revisited). In: Bogomolov, S., Parker, D. (eds.) Formal Modeling and
Analysis of Timed Systems - 20th International Conference, FORMATS 2022, War-
saw, Poland, September 13-15, 2022, Proceedings. LNCS, vol. 13465, pp. 43–62.
Springer (2022). https://doi.org/10.1007/978-3-031-15839-1_3

16. Ho, H.M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In:
Runtime Verification. pp. 178–192. Springer (2014). https://doi.org/10.1007/
978-3-319-11164-3_15

17. Kallwies, H., Leucker, M., Sánchez, C.: Symbolic runtime verification for mon-
itoring under uncertainties and assumptions. In: Bouajjani, A., Holík, L., Wu,
Z. (eds.) Automated Technology for Verification and Analysis - 20th Interna-
tional Symposium, ATVA 2022, Virtual Event, October 25-28, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13505, pp. 117–134. Springer (2022).
https://doi.org/10.1007/978-3-031-19992-9_8

18. Köhl, M.A., Hermanns, H.: Model-based diagnosis of real-time systems: Robustness
against varying latency, clock drift, and out-of-order observations. ACM Trans. Em-
bed. Comput. Syst. 22(4), 68:1–68:48 (2023). https://doi.org/10.1145/3597209,
https://doi.org/10.1145/3597209

19. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw.
Tools Technol. Transf. 1(1-2), 134–152 (1997). https://doi.org/10.1007/
S100090050010, https://doi.org/10.1007/s100090050010

20. Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gear controller.
In: Steffen, B. (ed.) Tools and Algorithms for Construction and Analysis of Systems
(TACAS). LNCS, vol. 1384, pp. 281–297. Springer (1998). https://doi.org/10.
1007/BFb0054178

21. Lindahl, M., Pettersson, P., Yi, W.: Formal Design and Analysis of a Gearbox Con-
troller. Springer International Journal of Software Tools for Technology Transfer
(STTT) 3(3), 353–368 (2001)

22. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, Joint International Conferences on For-
mal Modelling and Analysis of Timed Systems, FORMATS 2004 and Formal
Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Greno-
ble, France, September 22-24, 2004, Proceedings. LNCS, vol. 3253, pp. 152–
166. Springer (2004). https://doi.org/10.1007/978-3-540-30206-3_12, https:
//doi.org/10.1007/978-3-540-30206-3_12

23. Ničković, D., Yamaguchi, T.: Rtamt: Online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) Automated Technology for Verification and Anal-
ysis. pp. 564–571. Springer International Publishing, Cham (2020)

24. Sheldon, T.: McGraw-Hill’s Encyclopedia of Networking and Telecommunications.
McGraw-Hill Professional (2001)

25. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications.
In: Havelund, K., Rosu, G. (eds.) Proceedings of the Fourth Workshop on Runtime
Verification, RV@ETAPS 2004, Barcelona, Spain, April 3, 2004. Electronic Notes
in Theoretical Computer Science, vol. 113, pp. 145–162. Elsevier (2004). https:
//doi.org/10.1016/J.ENTCS.2004.01.029

https://doi.org/10.48550/ARXIV.2404.18282
https://doi.org/10.48550/ARXIV.2404.18282
https://doi.org/10.48550/ARXIV.2404.18282
https://doi.org/10.48550/ARXIV.2404.18282
https://doi.org/10.1007/978-3-031-15839-1_3
https://doi.org/10.1007/978-3-031-15839-1_3
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1145/3597209
https://doi.org/10.1145/3597209
https://doi.org/10.1145/3597209
https://doi.org/10.1007/S100090050010
https://doi.org/10.1007/S100090050010
https://doi.org/10.1007/S100090050010
https://doi.org/10.1007/S100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/BFb0054178
https://doi.org/10.1007/BFb0054178
https://doi.org/10.1007/BFb0054178
https://doi.org/10.1007/BFb0054178
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1016/J.ENTCS.2004.01.029
https://doi.org/10.1016/J.ENTCS.2004.01.029
https://doi.org/10.1016/J.ENTCS.2004.01.029
https://doi.org/10.1016/J.ENTCS.2004.01.029

Monitoring Real-Time Systems under Parametric Delay 21

26. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Formal
Modeling and Analysis of Timed Systems. pp. 222–236. Springer (2014). https:
//doi.org/10.1007/978-3-319-10512-3_16

27. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Tools and Algorithms for the Construction and Analysis of Systems.
pp. 736–751. Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_47

28. Visconti, E., Bartocci, E., Loreti, M., Nenzi, L.: Online monitoring of spatio-
temporal properties for imprecise signals. In: Arun-Kumar, S., Méry, D., Saha,
I., Zhang, L. (eds.) MEMOCODE ’21: 19th ACM-IEEE International Conference
on Formal Methods and Models for System Design, Virtual Event, China, Novem-
ber 20 - 22, 2021. pp. 78–88. ACM (2021). https://doi.org/10.1145/3487212.
3487344, https://doi.org/10.1145/3487212.3487344

29. Waga, M., André, É., Hasuo, I.: Model-bounded monitoring of hybrid systems.
ACM Trans. Cyber Phys. Syst. 6(4), 30:1–30:26 (2022). https://doi.org/10.
1145/3529095, https://doi.org/10.1145/3529095

https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1145/3487212.3487344
https://doi.org/10.1145/3487212.3487344
https://doi.org/10.1145/3487212.3487344
https://doi.org/10.1145/3487212.3487344
https://doi.org/10.1145/3487212.3487344
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3529095

22 M. Fränzle et al.

A Proofs Omitted in the Main Part

Throughout the appendix, we often need to “shift” a timed word in the sense
that we add or subtract a d ∈ R≥0 to each time point of ρ. In the latter case,
we need to be careful to ensure that the time points in the shifted word are still
nonnegative. For the sake of readability, let us introduce some notation for these
operations. Given a (finite or infinite) timed word ρ = (σ1, τ1), (σ2, τ2), . . . and
such a d ∈ R≥0,

– let ρ+ d denote the timed word (σ1, τ1 + d), (σ2, τ2 + d), . . ., and
– if d ≤ τ1, let ρ− d denote the timed word (σ1, τ1 − d), (σ2, τ2 − d), This

is well-defined, as we require that τ1 (and therefore each τi) is at least d, so
we never obtain negative time points in ρ− d.

The following properties follow directly from the definition of timed concate-
nation and will be applied in the proofs below.

Remark 1. Let ρ = (σ1, τ1), . . . , (σn, τn) ∈ TΣ∗, let µ = (σ′
1, τ

′
1), (σ

′
2, τ

′
2), . . . ∈

TΣω, and let t ≤ τ(ρ).

1. Let t′ ∈ R≥0 be such that t− t′ ≥ τ(ρ). Then

ρ ·t µ = ρ ·t−t′ (µ+ t′).

2. Let 0 ≤ t′ ≤ t, let n′ ∈ {0, 1, . . . , n} be such that τn′ ≤ t′ ≤ τn′+1 (were we
use τ0 = −∞ to allow n′ = 0 and τn+1 = ∞ to allow n′ = n) and define
ρ1 = (σ1, τ1), . . . , (σn′ , τn′) as well as ρ2 = (σn′+1, τn′+1), . . . , (σn, τn). Then

ρ ·t µ = ρ1 ·t′ ((ρ2 − t′) ·t−t′ µ).

3. Let t′ ≥ 0 be such that τ(ρ) ≤ t − t′, let n′ ≥ 1 be such that τ ′n′ ≤
t′ ≤ τ ′n′+1 (this is well-defined due to time-divergence), and define ρ′ =
(σ′

1, τ
′
1), . . . , (σ

′
n′ , τ ′n′) as well as µ′ = (σ′

n′+1, τ
′
n′+1), (σ

′
n′+2, τ

′
n′+2), Then

ρ ·t−t′ µ = (ρ ·t−t′ ρ
′) ·t (µ′ − t′).

Furthermore, the following properties about consistent words will be useful
in the proofs below.

Lemma 7.

1. Let (ρ∗1, t1) ⊑ (ρ∗2, t2), let ρ2 = (σ1, τ1), . . . , (σn, τn) ∈ GT δ,ε(ρ
∗
2, t2), let n′ ∈

{0, 1, . . . , n} be such that τn′ ≤ t1 ≤ τn′+1 (were we use t0 = −∞ to allow
n′ = 0 and τn+1 = ∞ to allow n′ = n), and define ρ1 = (σ1, τ1), . . . , (σn′ , τn′).
Then ρ1 ∈ GT δ,ε(ρ

∗
1, t1).

2. Let ρ ∈ GT el
δ,ε(ρ

∗, t), and let ρ′ be a finite timed word with τ(ρ′) ≤ t −
max(τ(ρ), t− (δ + ε)). Then, ρ ·max(τ(ρ),t−(δ+ε)) ρ

′ ∈ GT δ,ε(ρ
∗, t).

3. Let ρ∗ be a finite timed word, say with m letters. Let ρ ∈ GT δ,ε(ρ
∗, t) and

let ρ′ be the prefix of ρ with m letters. Then, ρ′ ∈ GT el
δ,ε(ρ

∗, t).

Monitoring Real-Time Systems under Parametric Delay 23

Proof. 1.) We need to show that ρ1 is consistent with ρ∗1 at t1 under δ and ε.
The first requirement of the definition of consistency follows from τ(ρ∗1) ≤ t1
and the choice of n′ (which implies τ(ρ1) ≤ t1). The second requirement follows
from the fact that ρ2 is consistent with ρ∗2 at t2 under δ and ε and the fact
that ρ1 is a prefix of ρ2 and ρ∗1 is a prefix of ρ∗2. Finally, consider the third
requirement and assume it is violated, i.e., let ρ∗1 have m letters and assume ρ1
has at least m+ 1 letters such that the time point τm+1 of the (m+ 1)-st letter
of ρ1 satisfies τm+1 + δ + ε < t1. Then, as ρ2 is consistent with ρ∗2 at t2 under
δ and ε, we obtain a contradiction. Either ρ∗2 has also m letters. In this case,
τm+1 + δ + ε < t1 ≤ t2 implies that the third requirement of the definition of
consistency is violated for ρ2 and ρ∗2. Otherwise, ρ∗2 has at least m + 1 letters.
In this case τm+1 + δ + ε < t1 ≤ t2 implies that the second requirement of the
definition of consistency is violated for i = m+ 1.

2.) We have to show that ρ ·max(τ(ρ),t−(δ+ε))ρ
′ is consistent with ρ∗ at t under

δ and ε. This follows directly from the fact that all events in ρ′ have time points
(in ρ ·max(τ(ρ),t−(δ+ε)) ρ

′) in the interval [t− (δ + ε), t] and are therefore covered
by the third requirement of the definition of consistency.

3.) We need to show that ρ′ is EL-consistent with ρ∗ at t under δ and ε. By
definition, ρ′ has the same length as ρ∗ and the first two requirements of the
definition of consistency are satisfied, as ρ is consistent with ρ∗ at t under δ and
ε and ρ′ is a prefix of ρ. Hence, it is EL-consistent, as the third requirement only
refers to ground-truth that have more letters than the observation. ⊓⊔

Now we are ready to present the proofs omitted in the main part.

Proof of Lemma 1

Recall that we need to show VD′(L)(ρ∗, t) = ⊤ implies VD(L)(ρ
∗, t) = ⊤ and

that VD′(L)(ρ∗, t) = ⊥ implies VD(L)(ρ
∗, t) = ⊥ for D ⊆ D′.

Proof. Note that D ⊆ D′ implies GTD(ρ
∗, t) ⊆ GTD′(ρ∗, t). Thus, the universal

quantification over possible ground-truths ρ in the first two cases of the defini-
tion of VD(L)(ρ

∗, t) ranges over a subset of the possible ground-truths that are
considered for VD′(L)(ρ∗, t). Hence, the result follows. ⊓⊔

Proof of Lemma 2

Recall that we need to show

1. ∆D(L, ρ
∗, t) = ∅ iff VD(L)(ρ

∗, t) = ⊥, and
2. ∆D(L, ρ

∗, t) = ∅ iff VD(L)(ρ
∗, t) = ⊤.

Proof. We have

∆D(L, ρ
∗, t) = ∅

⇔ ρ ·t µ ∈ L for all (δ, ε) ∈ D, all ρ ∈ GT δ,ε(ρ
∗, t), and all µ ∈ TΣω

⇔ ρ ·t µ ∈ L for all ρ ∈ GTD(ρ
∗, t) and all µ ∈ TΣω

⇔ VD(L)(ρ
∗, t) = ⊥.

24 M. Fränzle et al.

The second claim is obtained by a dual argument (swapping ⊥ with ⊤ and
L with L). ⊓⊔

Proof of Lemma 3

Recall that we need to show ∆(L, ρ∗1, t1) ⊇ ∆(L, ρ∗2, t2) for all (ρ∗1, t1) ⊑ (ρ∗2, t2).

Proof. Let (δ, ε) ∈ ∆(L, ρ∗2, t2), i.e., there exists ρ2 ∈ GT δ,ε(ρ
∗
2, t2) and a µ2 ∈

TΣω such that ρ2 ·t2 µ2 ∈ L.
Let ρ2 = (σ1, τ1), . . . , (σn, τn) and let n′ be maximal with τn′ ≤ t1. Then,

Lemma 7.1 yields

ρ1 = (σ1, τ1), . . . , (σn′ , τn′) ∈ GT δ,ε(ρ
∗
1, t1)

and an application of Remark 1.2 yields

ρ1 ·t1
([

((σn′+1, τn′+1), . . . , (σn, τn))− t1
]
·t2−t1 µ

)
= ρ2 ·t2 µ2 ∈ L.

This implies (δ, ε) ∈ ∆(L, ρ∗1, t1). ⊓⊔

Proof of Lemma 4

Recall that we need to show

1. ∆D(L, ρ
∗, t) ⊊ D ∩ {(δ, ε) | δ ≤ τ∗1 } implies there is no ρ∗1 ∈ TΣ∗ such that

VD(L)(ρ
∗ ·t ρ∗1, t′) = ⊤ for any t′ ≥ t+ τ(ρ∗1), and

2. ∆D(L, ρ
∗, t) ⊊ D ∩ {(δ, ε) | δ ≤ τ∗1 } implies there is no ρ∗1 ∈ TΣ∗ such that

VD(L)(ρ
∗ ·t ρ∗1, t′) = ⊥ for any t′ ≥ t+ τ(ρ∗1).

for all t ≥ τ(ρ∗).

Proof. Let ∆D(L, ρ
∗, t) ⊊ D ∩ {(δ, ε) | δ ≤ τ∗1 }, i.e., there is a (δ, ε) ∈ D with

δ ≤ τ∗1 and (δ, ε) /∈ ∆D(L, ρ
∗, t). Thus, by definition, for all ρ ∈ GT δ,ε(ρ

∗, t) and
all µ ∈ TΣω we have ρ ·t µ ∈ L (†).

Now, let ρ∗1 ∈ TΣ∗ and assume, towards a contradiction, we have VD(L)(ρ
∗ ·t

ρ∗1, t
′) = ⊤ for t′ ≥ t+ τ(ρ∗1), i.e., for all ρ′ ∈ GTD(ρ

∗ ·t ρ∗1, t′) and all µ ∈ TΣω

we have ρ′ ·t′ µ ∈ L (††). As GT δ,ε(ρ
∗ ·t ρ∗1, t′) is nonempty, let us fix one such

ρ′ ∈ GT δ,ε(ρ
∗ ·t ρ∗1, t′). Also, let us fix a µ ∈ TΣω.

Note that we have (ρ∗, t) ⊑ (ρ∗ ·t ρ∗1, t′). So, let ρ′ = (σ1, τ1), . . . , (σn, τn) and
let n′ be maximal with τn′ ≤ t. Then, Lemma 7.1 yields

ρ′1 = (σ1, τ1), . . . , (σn′ , τn′) ∈ GT δ,ε(ρ
∗, t)

and application of Remark 1.2 yields

ρ′ ·t′ µ = ρ′1 ·t
([

((σn′+1, τn′+1), . . . , (σn, τn))− t
]
·t′−t µ

)
︸ ︷︷ ︸

=µ′

.

This yields the desired contradiction, as ρ′ ·t′ µ is in L (see ††) while ρ′1 ·t µ′ is
not in L (see †).

The second claim is proven by a dual argument (swapping L with L and ⊤
with ⊥). ⊓⊔

Monitoring Real-Time Systems under Parametric Delay 25

Proof of Lemma 5

Recall that we need to show Vel
D(L)(ρ∗, t) = VD(L)(ρ

∗, t).

Proof. Let VD(L)(ρ
∗, t) = ⊤. We show Vel

D(L)(ρ∗, t) = ⊤ by proving that we
have ρ′ ·max(τ(ρ′),t−(δ+ε)) µ

′ ∈ L for all ρ′ ∈ GT el
δ,ε(ρ

∗, t) for some (δ, ε) ∈ D and
all µ′ = (σ1, τ1), (σ2, τ2), . . . ∈ TΣω.

First, consider the case where τ(ρ′) < t−(δ+ε). Let n be maximal with τn ≤
δ + ε (this is well-defined due to time-divergence), let ρ′1 = (σ1, τ1), . . . , (σn, τn)
and µ′

2 = ((σn+1, τn+1), (σn+2, τn+2), . . .)− (δ + ε). Note that µ′
2 is well-defined

as τn+1 is, by the choice of n, greater than δ + ε. Then, Lemma 7.2 yields
ρ′ ·t−(δ+ε) ρ

′
1 is in GT δ,ε(ρ

∗, t) and Remark 1.3 yields

ρ′ ·max(τ(ρ′),t−(δ+ε)) µ
′ = ρ′ ·t−(δ+ε) µ

′ = (ρ′ ·t−(δ+ε) ρ
′
1) ·t µ′

2.

Therefore, ρ′ ·max(τ(ρ′),t−(δ+ε)) µ
′ is the concatenation of the possible ground-

truth (ρ′ ·t−(δ+ε) ρ
′
1) of ρ∗ and the suffix µ′

2. As we have ρ ·t µ ∈ L for all
ρ ∈ GTD(ρ

∗, t) and all µ ∈ TΣω (due to VD(L)(ρ
∗, t) = ⊤), we conclude

ρ′ ·max(τ(ρ′),t−(δ+ε)) µ
′ ∈ L as required.

Now, consider the case where τ(ρ′) ≥ t − (δ + ε). Note that we have t −
τ(ρ′) ≥ 0 due to ρ′ ∈ GT el

δ,ε(ρ
∗, t). Hence, let n be maximal with τn ≤ t− τ(ρ′)

(again, this is well-defined due to time-divergence), let ρ′1 = (σ1, τ1) · · · (σn, τn)
and µ′

2 = ((σn+1, τn+1)(σn+2, τn+2) · · ·) − (t − τ(ρ′)). Then, Lemma 7.2 yields
ρ′ ·τ(ρ′) ρ

′
1 is in GT δ,ε(ρ

∗, t) and Remark 1.3 yields

ρ′ ·max(τ(ρ′),t−(δ+ε)) µ
′ = ρ′ ·τ(ρ′) µ

′ = (ρ′ ·τ(ρ′) ρ
′
1) ·t µ′

2.

As ρ′ ·max(τ(ρ′),t−(δ+ε)) µ
′ is the concatenation of a possible ground-truth of ρ∗

and an arbitrary suffix, it is again, as required, in L.
Using a dual argument (i.e., swapping ⊤ with ⊥ and L with L), we can show

that VD(L)(ρ
∗, t) = ⊥ implies Vel

D(L)(ρ∗, t) = ⊥.
Now, we show that Vel

D(L)(ρ∗, t) = ⊤ implies VD(L)(ρ
∗, t) = ⊤. A dual

argument again shows that Vel
D(L)(ρ∗, t) = ⊥ implies VD(L)(ρ

∗, t) = ⊥. This
will then complete our proof, as both functions only have three elements in their
codomain and we have shown that two of them have the same preimage w.r.t.
both functions.

So, let Vel
D(L)(ρ∗, t) = ⊤. We show VD(L)(ρ

∗, t) = ⊤ by showing ρ ·t µ ∈ L
for all ρ = (σ1, τ1), . . . , (σn, τn) ∈ GTD(ρ

∗, t) and all µ = (σ′
1, τ

′
1), (σ

′
2, τ

′
2), . . . ∈

TΣω. By definition, there is a (δ, ε) ∈ D such that ρ ∈ GT δ,ε(ρ
∗, t).

Let ρ∗ have m letters. If m = n, then we also have ρ ∈ GT el
D(ρ

∗, t). We
consider two cases: If τ(ρ) < t−(δ+ε), then an application of Remark 1.1 yields

ρ ·t µ = ρ ·t−(δ+ε) (µ+ (δ + ε)) = ρ ·max(τ(ρ),t−(δ+ε)) (µ+ (δ + ε)),

and if τ(ρ) ≥ t− (δ + ε), then an application of Remark 1.1 yields

ρ ·t µ = ρ ·τ(ρ) (µ+ (t− τ(ρ))) = ρ ·max(τ(ρ),t−(δ+ε)) (µ+ (t− τ(ρ))),

26 M. Fränzle et al.

where t−τ(ρ) is nonnegative by definition of consistency. Hence, in both cases, ρ·t
µ is the concatenation of a possible EL ground-truth of ρ∗ and an arbitrary suffix.
Due to Vel

D(L)(ρ∗, t) = ⊤, all concatenations ρ ·max(τ(ρ),t−(δ+ε)) µ for (δ, ε) ∈ D,
ρ ∈ GT el

δ,ε(ρ
∗, t), and µ ∈ TΣω are in L, which yields ρ ·t µ ∈ L.

It remains to consider the case where n > m, which we again split into
two subcases. But first let us define ρ1 = (σ1, τ1) · · · (σm, τm) as well as ρ2 =
(σm+1, τm+1) · · · (σn, τn). Lemma 7.3 yields ρ1 ∈ GT el

D(ρ
∗, t).

First, consider the subcase where τ(ρ1) < t− (δ+ ε). By definition of consis-
tency, n > m implies τm+1 + δ + ε ≥ t, and thus τm+1 ≥ t− (δ + ε) (†). Hence,
an application of Remark 1.2 yields

ρ ·t µ = ρ1 ·t−(δ+ε) [(ρ2 − (t− (δ + ε))) ·δ+ε µ]

= ρ1 ·max(τ(ρ1),t−(δ+ε)) [(ρ2 − (t− (δ + ε))) ·δ+ε µ]

Note that the first time point of ρ2, τm+1, is at least (t − (δ + ε)) as required,
as τm+1 ≥ t− (δ + ε) (see †). Hence, ρ ·t µ is the concatenation of a possible EL
ground-truth of ρ∗ and an arbitrary suffix and therefore in L.

Finally, consider the subcase where τ(ρ1) ≥ t− (δ+ ε). Then, an application
of Remark 1.2 yields

ρ ·t µ = ρ1 ·τ(ρ1) [(ρ2 − τ(ρ1)) ·t−τ(ρ1) µ]

= ρ1 ·max(τ(ρ1),t−(δ+ε)) [(ρ2 − τ(ρ1)) ·t−τ(ρ1) µ].

Again, this is well-defined as we have τm+1 ≥ τ(ρ1) (as τm+1 is the next time
instant after τm = τ(ρ1) in ρ) and as t ≥ τ(ρ1) by the definition of consistency.
Hence, ρ ·t µ is again the concatenation of a possible EL ground-truth of ρ∗ and
an arbitrary suffix and therefore in L. ⊓⊔

Proof of Theorem 2

Recall that we need to show MD(A,A)(ρ∗, t) = Vel
D(L(A))(ρ∗, t).

Proof. We will show that RD
A′(ρ∗, t) ∩ Sne

A′ is nonempty iff there exists a ρ ∈
GT el

δ,ε(ρ
∗, t) and a µ ∈ TΣω with ρ ·max(τ(ρ),(t−(δ+ε)))µ ∈ L(A′) for any TBA A′.

Then we obtain

– MD(A,A)(ρ∗, t) = ⊤ iff Vel
D(L(A))(ρ∗, t) = ⊤ by instantiating the equiva-

lence for A′ = A, and
– MD(A,A)(ρ∗, t) = ⊥ iff Vel

D(L(A))(ρ∗, t) = ⊥ by instantiating the equiva-
lence for A′ = A.

This completes the proof, as both functions only have three elements in their
codomain and we have shown that two of them have the same preimage w.r.t.
both functions.

So, let RD
A′(ρ∗, t)∩ Sne

A′ ̸= ∅. Then, by definition, there is a state (q, v′) of A′

such that

Monitoring Real-Time Systems under Parametric Delay 27

– (q0, v0)
ρ−→A′ (q, v) for some initial state (q0, v0) of A′, some ρ ∈ GT el

δ,ε(ρ
∗, t)

for some (δ, ε) ∈ D, and v′ = v +max(0, (t− (τ(ρ) + δ + ε))), and
– there is an accepting infinite run of A′ starting in (q, v′) that processes some
µ ∈ TΣω.

These two runs can be combined into an accepting run of A′ that starts in (q0, v0)
and processes

ρ ·τ(ρ)+max(0,(t−(τ(ρ)+δ+ε))) µ = ρ ·max(τ(ρ),(t−(δ+ε))) µ,

which implies that it is in L(A′) as required.
Conversely, let there be a ρ ∈ GT el

δ,ε(ρ
∗, t) and a µ ∈ TΣω with

µ ·max(τ(ρ),(t−(δ+ε))) µ ∈ L(A′).

Then, there exists an accepting run of A′ starting in some initial state (q0, v0)
that processes ρ ·max(τ(ρ),(t−(δ+ε))) µ. This run can be split into

– (q0, v0)
ρ−→A′ (q, v) for some state (q, v) of A′ and

– an accepting infinite run of A′ starting in (q, v′) that processes µ, where

v′ = v +max(0, (t− (τ(ρ) + δ + ε))).

Hence, (q, v′) ∈ RD
A′(ρ∗, t) ∩ Sne

A′ , which is therefore, as required, nonempty. ⊓⊔

Proof of Theorem 3

Let ρ∗ = (σ∗
1 , τ

∗
1), . . . , (σ

∗
n, τ

∗
n) be an observed timed word. We want to show that

RD
A(ρ

∗, t) = {(q′, Z ′) | (q′, Z ′′) ∈ Sn, Z
′ = Z ′′↗ ∧ etime = t− ε} (1)

where RD
A(ρ

∗, t) is defined by

RD
A(ρ

∗, t) = {(q, v +max(0, (t− (τ(ρ) + δ + ε)))) | (q0, v0)
ρ−→A (q, v) where

(q0, v0) with q0 ∈ Q0, v0(x) = 0 for all c ∈ C, and

ρ ∈ GT el
δ,ε(ρ

∗, t) for some (δ, ε) ∈ D}.

in the setting where D = {(δ, ε) | δ ∈ [l, u]} for given l, u, ε ∈ Q≥0. Also, recall
that we have defined S0 = {(q0, Zd

0) | q0 ∈ Q0} and Si = Succd(Si−1, (σi, τ
∗
i))

for i ∈ {1, . . . , n}.

Proof. Given the form of D we can rewrite the definition of the reach-set to

RD
A(ρ

∗, t) = {(q, v +max(0, (t− (τ(ρ) + δ + ε)))) | (q0, v0)
ρ−→A (q, v) where

(q0, v0) with q0 ∈ Q0, v0(x) = 0 for all c ∈ C, and

ρ ∈ GT el
δ,ε(ρ

∗, t) for some δ ∈ [l, u]}.

28 M. Fränzle et al.

Now, extending the transition relation ρ−→A to clock valuations over the extended
set of clocks C ∪ {time, etime}, we may further reformulate the reach-set as
follows:

RD
A(ρ

∗, t) = {(qn, v∗ +max(0, (t− (v∗n(etime) + ε)))) | (q0, v∗0)
ρ−→A (qn, v

∗
n) where

(q0, v
∗
0) with q0 ∈ Q0, v∗0(x) = 0 for all c ∈ C, and

v∗0(etime)− v∗0(time) ∈ [l, u] and
v∗i (etime) ≤ τ∗i ∧ v∗i (etime) ≥ τ∗i − ε ∧ σi = σ∗

i for i ∈ {0, . . . , n}}.

A key observation for the correctness of the above reformulation, is that the
extended clocks etime and time are not modified by the TBA A. That is
v∗i (etime)− v∗i (time) = v∗0(etime)− v∗0(time) ∈ [l, u] for all i = {0, . . . , n}.

Now let RD,j
A (ρ∗, t) for j ∈ {0, . . . , n} be defined as follows:

RD,j
A (ρ∗, t) = {(qj , v∗j) | (q0, v∗0)

ρ−→A (qj , v
∗
j) where

(q0, v
∗
0) with q0 ∈ Q0, v∗0(x) = 0 for all c ∈ C, and

v∗0(etime)− v∗0(time) ∈ [l, u] and
v∗i (etime) ≤ τ∗i ∧ v∗i (etime) ≥ τ∗i − ε ∧ σi = σ∗

i for i ∈ {0, . . . , j}}.

Then clearly RD,0
A (ρ∗, t) = {(q0, Zd

0) | q0 ∈ Q0} = S0 and RD,j
A (ρ∗, t) =

Succd(RD,j−1
A (ρ∗, t), (σi, τi)) for j ∈ {1, . . . , n}, using standard arguments for

the correctness of symbolic exploration of timed automata, e.g. [9]. Finally,
as (t − (v∗n(etime) + ε))) = ((t − ε) − v∗n(etime)) it follows that RD

A(ρ
∗, t) =

RD,n
A (ρ∗, t)↗ ∧ etime = t− ε. ⊓⊔

Monitoring Real-Time Systems under Parametric Delay 29

B More Details on the Implementation

MoniTAal requires, as input, two automata accepting the complement language
of the other, a series of observations, and optionally bounds on latency and
jitter. MoniTAal can be run as a binary where the automata are parsed from
a UPPAAL xml file while the observations are parsed as as text from a file or
standard input. MoniTAal can also be used as a C++ library.

In Listing 1.1 we give a short demonstration going through Example 5 using
MoniTAal. In the output we see that the consistent latency for the ⊤ verdict
(POSITIVE) verdict tightens to [71, 100] and then [71, 75[while the final verdict
is ? (INCONCLUSIVE). Note that we multiply all values (in observations and au-
tomata) by 10 in order to use integer, rather than rational, time points.

1 $./MoniTAal -bin -p positive delay.xml -n negative delay.xml -v --latencyl 0
--latencyu 10 --jitter 2

2 Input: @[173, 173] a
3
4 Verdict: INCONCLUSIVE
5 Positive:
6 Consistent latencies: {[71 ,100]}
7 Jitter bound: 2
8 Negative:
9 Consistent latencies: {[0 ,100]}

10 Jitter bound: 2
11
12 Input: @[271, 271] b
13
14 Verdict: INCONCLUSIVE
15 Positive:
16 Consistent latencies: {[71 ,75)}
17 Jitter bound: 2
18 Negative:
19 Consistent latencies: {[0 ,100]}
20 Jitter bound: 2

Listing 1.1: Demonstration of MoniTAal over Example 5.

	Monitoring Real-Time Systemsunder Parametric Delay

