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Abstract
We investigate determinacy of delay games with Borel winning conditions, infinite-duration two-
player games in which one player may delay her moves to obtain a lookahead on her oppo-
nent’s moves.

First, we prove determinacy of such games with respect to a fixed evolution of the lookahead.
However, strategies in such games may depend on information about the evolution. Thus, we in-
troduce different notions of universal strategies for both players, which are evolution-independent,
and determine the exact amount of information a universal strategy needs about the history of a
play and the evolution of the lookahead to be winning. In particular, we show that delay games
with Borel winning conditions are determined with respect to universal strategies. Finally, we
consider decidability problems, e.g., “Does a player have a universal winning strategy for delay
games with a given winning condition?”, for ω-regular and ω-context-free winning conditions.
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1 Introduction

Determinacy is the most fundamental property of a game: a game is determined, if one of the
players has a winning strategy. One can even argue that a determinacy result paved the way
for game theory: in 1913, Zermelo proved what is today known as Zermelo’s theorem [18]:
every two-player zero-sum game of perfect information and finite duration is determined.

In this work, we are concerned with the infinite-duration variant of such games, so-
called Gale-Stewart games. Such a game is played between Player I and Player O in
rounds i ∈ N: in round i, Player I picks a letter α(i) ∈ ΣI and then Player O picks
a letter β(i) ∈ ΣO. Player O wins, if the outcome

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · is in the winning

condition L ⊆ (ΣI × ΣO)ω. Accordingly, a strategy for Player I is a function τ : Σ∗O → ΣI

mapping the previous moves of Player O to the next letter from ΣI to be picked. The
definition for Player O is dual. Note that a strategy cannot access the previous moves
determined by itself. This is not a restriction, as they can always be reconstructed.

Let ρ(τ, σ) denote the outcome of the play where Player I employs the strategy τ

and Player O the strategy σ. Then, determinacy can be characterized as follows: the
negation ∀σ∃τ. ρ(τ, σ) /∈ L of ∃σ∀τ. ρ(τ, σ) ∈ L is equivalent to ∃τ∀σ. ρ(τ, σ) /∈ L, i.e., the
order of the quantifiers can be swapped.
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Gale-Stewart games are an important tool in set theory and a long line of research
into determinacy results for such games culminated in Martin’s seminal Borel determinacy
theorem [11]: every Gale-Stewart game with a Borel winning condition is determined. On
the other hand, using the axiom of choice, one can construct non-determined games. Even
more so, determinacy of games with ω-context-free conditions, which are not necessarily
Borel, is equivalent to a large cardinal assumption that is not provable in ZFC [5].

Gale-Stewart games also have important applications in theoretical computer science as
they subsume games studied in automata theory, e.g., parity games and LTL realizability
games, and constitute the foundation of game-based synthesis, the solution to Church’s
problem [1]. Showing the winning condition of a game to be Borel and then applying Martin’s
theorem is typically the simplest proof of determinacy for a novel winning condition. However,
one can typically obtain stronger results, e.g., positional determinacy for parity games [3, 14].
The quantifier swap induced by this determinacy result underlies (implicitly or explicitly) all
complementation proofs for parity tree automata, the crucial step in proving decidability of
monadic second-order logic over infinite trees.

Delay Games. Oftentimes, the strict alternation of moves in a Gale-Stewart game is too
restrictive to model applications in computer science, e.g., in the presence of asynchronous
components, buffers, or communication between components. Delay games, a relaxation of
Gale-Stewart games, model such situations by allowing Player O to delay her moves in order
to obtain a lookahead on her opponent’s moves. This gives her an advantage and allows her
to win games she would lose without lookahead.

Furthermore, delay games have deep connections to uniformization problems for relations
w.r.t. continuous functions [15, 16]. Consider a winning condition L ⊆ (ΣI×ΣO)ω: a winning
strategy σ for Player O in a game with winning condition L induces a mapping λσ : ΣωI → ΣωO
such that {

(
α

λσ(α)
)
| α ∈ Σω

I } ⊆ L: we say that λσ uniformizes L. If σ is winning for the
Gale-Stewart game with winning condition L, then λσ is causal: the n-th letter of λσ(α)
only depends on the first n letters of α. Furthermore, if σ is winning in the delay game with
winning condition L then λσ is continuous in the Cantor topology. The latter result can even
be refined: if σ only delays moves a bounded number of times during each play, then λσ is
Lipschitz-continuous. Thus, uniformization problems w.r.t. (Lipschitz-)continuous functions
are reducible to solving delay games.

To capture and to analyze the precise amount of lookahead that is necessary to win,
delay games are defined w.r.t. so-called delay functions, which represent the evolution of
the lookahead. Thus, formally Player O does not decide to skip a move, but the delay
function determines how many moves she skips: given a delay function f : N → N+, the
delay game Γf (L) is played in rounds, where in round i Player I has to pick f(i) letters and
afterwards Player O has to pick a single letter. Thus, if f(i) > 1, then Player O’s lookahead
increases by f(i)− 1 letters. Typically, one is interested in the existence of a delay function f
that allows Player O to win Γf (L). One could imagine an alternative formalization where
Player O may explicitly skip moves at her own choice. We will encounter this variant in
Section 5, where it is shown to be equivalent to the one using delay functions.

Delay games where introduced by Hosch and Landweber who proved decidability of the
existence of winning strategies with bounded lookahead for games with ω-regular winning
conditions [8]. Later, Holtmann, Kaiser, and Thomas [7] proved that for such winning
conditions, Player O has a winning strategy with bounded lookahead if and only if she has
one with arbitrary lookahead, i.e., bounded lookahead always suffices for ω-regular winning
conditions. Furthermore, they gave a doubly-exponential upper bound on the necessary
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lookahead and a solution algorithm with doubly-exponential running time. These results were
recently improved [10] by showing a tight exponential bound on the necessary lookahead and
ExpTime-completeness of solving delay games with ω-regular winning conditions. Finally,
delay games with deterministic ω-context-free winning conditions are undecidable [6], while
games with max-regular winning conditions w.r.t. bounded lookahead are decidable [19]. All
these results can be expressed in terms of uniformization as well.

For all types of winning conditions mentioned above, delay games w.r.t. a fixed delay
function are determined [6, 7, 10, 19]: these results are all ad-hoc as they rely on the existence
of a deterministic automaton recognizing the winning condition and on determinacy of parity
games on countable arenas: one can model the delay game as such a parity game where each
vertex contains the whole history of the play as well as the state the automaton reaches
when processing this history.

What are Strategies in Delay Games? The most important aspect of a game are its
(winning) strategies, e.g., in controller synthesis it is a winning strategy for the player
representing the system that is turned into a controller.

In a delay game, the notion of strategy is more complex than in a Gale-Stewart game
due to the existence of the delay function: a strategy for Player I is of the form τ : Σ∗O → Σ∗I
with |τ(β(0) · · ·β(i − 1))| = f(i), as he has to determine f(i) letters in round i. Thus, a
strategy for Player I syntactically depends on f and both players’ strategies may depend
semantically on f . On the one hand, this means that a winning strategy for a game w.r.t. a
delay function f might not be applicable for an f ′ 6= f . On the other hand, dependence on a
particular delay function enables the reconstruction of the own previous moves.

However, the classical definition of strategies for delay games introduced above is not
useful when it comes to applications in synthesis: the lack of robustness with regard to
changes in the delay function is a serious problem. Furthermore, determinacy for delay games
w.r.t. fixed delay functions is a rather unsatisfactory statement: for every f , either Player I
has a winning strategy for Γf (L) or Player O has one. If ρ(f, τ, σ) denotes the outcome
resulting from Player I employing τ and Player O employing σ in a game w.r.t. f , then the
negation of ∃σ∀τ. ρ(f, τ, σ) ∈ L is equivalent to ∃τ∀σ. ρ(f, τ, σ) /∈ L. However, the function f
is quantified outside of the negation.

Pushing the negation over the quantification of f yields a much stronger statement, e.g.,
either there is an f such that Player O wins Γf (L) or Player I has a strategy that wins Γf (L)
w.r.t. every f . Note that such a strategy has to be universally applicable and winning for
every Γf (L) and may therefore neither syntactically nor semantically depend on a fix delay
function. Thus, a determinacy result w.r.t. such universal strategies means that the negation
of ∃f∃σ∀τ. ρ(f, τ, σ) ∈ L is equivalent to ∃τ∀f∀σ. ρ(f, τ, σ) /∈ L, which is arguably a more
natural notion.

Our Contribution. We study determinacy results for delay games with and without respect
to fixed delay functions and with Borel winning conditions.

Firstly, for games with fixed delay functions, we show determinacy w.r.t. classical strategies
that may depend on the function under consideration. This result generalizes all previous
determinacy results obtained via reductions to countable parity games using deterministic
automata recognizing the winning condition [6, 7, 10, 19].

Secondly, we introduce universal strategies for delay games: for Player I, we consider
four variants that differ in the amount of information about a play’s history they can access:
the previous moves made by the strategy (which are not necessarily reconstructible) and
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the evolution of the lookahead in the previous rounds. We compare the strength of these
strategies in terms of games they are able to win and show that they form a hierarchy whose
first three levels are strict and that strategies in the fourth level are sufficient to win every
game that is winable. It is open whether the inclusion between the last two levels is strict or
not. For Player O, we only consider two notions of universal strategies, as the second one is
already sufficient to win every winable game. Furthermore, we show that the hierarchy for
Player O is strict, too.

Thirdly, we consider decision problems of the form “Does a player have a universal
strategy for games with some given winning condition L?” for ω-regular and ω-context-free
winning conditions. We prove decidability (and tight complexity results) for both players in
the ω-regular case and for Player O in the deterministic ω-context-free case. The other case
and both cases for non-deterministic ω-context-free winning conditions are undecidable.

This work is meant as a starting point into the investigation of more general notions of
strategies in delay games that are independent of the exact evolution of the lookahead and
into determinacy results w.r.t. these notions of strategies. We raise many open problems that
are left open here. Most importantly, the exact amount of information about a play’s history
that is necessary to implement a universal strategy for Player I is open. Also, most of the
decision problems remain open for the weaker notions of universal strategies we introduce.
Finally, we expect there to be other natural notions of universal strategies for delay games,
which might not have to be winning for every delay function (a very strong requirement),
but for all f for which the given player wins the delay game Γf (L) using classical strategies.

2 Preliminaries

The set of non-negative integers is denoted by N and we define N+ = N \ {0}. An alphabet Σ
is a non-empty finite set, Σ∗ (Σn, Σω) denotes the set of finite words (words of length n,
infinite words) over Σ. The empty word is denoted by ε and the length of a finite word w
by |w|. For w ∈ Σ∗ ∪ Σω and n ∈ N we write w(n) for the n-th letter of w.

Delay Games. A delay function is a mapping f : N → N+. Given an ω-language L ⊆
(ΣI × ΣO)ω and a delay function f , the game Γf (L) is played by two players1, the input player
“Player I” and the output player “Player O” in rounds i ∈ N as follows: in round i, Player I
picks a word ui ∈ Σf(i)

I , then Player O picks one letter vi ∈ ΣO. We refer to the sequence
(u0, v0)(u1, v1)(u2, v2) · · · as a play of Γf (L), which yields two infinite words α = u0u1u2 · · ·
and β = v0v1v2 · · · . Player O wins the play if the outcome

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · is in L,

otherwise Player I wins.
Given a delay function f , a strategy for Player I is a mapping τ : Σ∗O → Σ∗I where

|τ(w)| = f(|w|), and a strategy for Player O is a mapping σ : Σ∗I → ΣO. Consider a
play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L). It is consistent with τ , if ui = τ(v0 · · · vi−1) for
every i ∈ N. It is consistent with σ, if vi = σ(u0 · · ·ui) for every i ∈ N.

I Remark. As usual, a strategy has only access to the opponents’s moves, but not its own
ones. However, this is not a restriction, since they can be reconstructed.

Fix a strategy τ for Player I: in round i, the input to τ is the concatenation v0 · · · vi−1 of
Player O’s moves in the previous rounds. The moves u0, . . . , ui−1 by Player I in the previous
rounds are given by uj = τ(v0 · · · vj−1) for every j < i.

1 For pronomial convenience [13], we assume Player I to be male and Player O to be female.
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Now, fix a strategy σ for Player O: in round i, the input to σ is the concatenation u0 · · ·ui
of Player I’s moves in the previous rounds, where each uj for j ≤ i satisfies |uj | = f(j). Thus,
the moves v0, . . . , vi−1 by Player O in the previous rounds are given by vj = σ(u0 · · ·uj).
Note this construction depends on knowledge about the delay function f , as we decompose
the input to σ to obtain the prefix of length

∑j
j′=0 f(j′).

A strategy τ for Player p ∈ {I,O} is winning, if every play that is consistent with τ is
winning for Player p. We say that a player wins Γf (L), if she has a winning strategy and a
delay game is determined, if one of the players wins it.

I Example 1. Consider L0 over {a, b, c} × {b, c} with
(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · ∈ L0 if α(n) = a

for every n ∈ N or if β(0) = α(n), where n is the smallest position with α(n) 6= a. Intuitively,
Player O wins, if the letter she picks in the first round is equal to the first letter other than
a that Player I picks. Also, Player O wins, if there is no such letter.

We claim that Player I wins Γf (L0) for every delay function f : he picks af(0) in the first
round and assume Player O picks b afterwards (the case where she picks c is dual). Then,
Player I picks a word starting with c in the second round. The resulting play is winning for
Player I no matter how it is continued. Thus, Player I has a winning strategy in Γf (L0).

Finally, we also consider delay-free games. Formally, these can be seen as delay games
w.r.t. the delay function f with f(i) = 1 for every i, i.e., both players pick a single letter in
each round. As f is irrelevant, we denote such a game with winning condition L by Γ(L).

The Borel Hierarchy. Fix an alphabet Σ. The Borel hierarchy of ω-languages over Σ
consists of levels Σα and Πα for every countable ordinal α > 0, which are defined inductively
by

Σ1 = {L ⊆ Σω | L = K · Σω for some K ⊆ Σ∗},
Πα = {Σω \ L | L ∈ Σα} for every α, and
Σα = {

⋃
i∈N Li | Li ∈ Παi with αi < α for every i} for every α > 1.

The following basic properties will be useful later on.
I Remark. Let α be a countable ordinal.

Σα ∪Πα ⊆ Σα+1 ∩Πα+1.
Σα and Πα are closed under finite unions and finite intersections.

A language L is Borel, if it is in one of the levels constituting the Borel hierarchy.

I Theorem 2 (Borel Determinacy Theorem [11]). Let L be Borel. Then, Γ(L) is determined.

3 Borel Determinacy of Delay Games w.r.t. Fixed Delay Functions

Fix alphabets ΣI and ΣO and a fresh skip symbol . /∈ ΣO, and define Σ.
O = ΣO ∪ {.}. To

simplify our notation, let h be the morphism that removes the skip symbol, i.e., the one
defined by h(.) = ε and h(a) = a for every a ∈ ΣO. Also, given two infinite words α and β
we write

(
α
β

)
for the word

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · . Analogously, we write

(
x
y

)
for finite words x

and y, provided they are of equal length.
Given a delay function f and an infinite word β ∈ ΣωO we define shiftf (β) ∈ (Σ.O)ω by

shiftf (β) = .f(0)−1β(0).f(1)−1β(1).f(2)−1β(2) · · · .

We lift this definition to languages L ⊆ (ΣI × ΣO)ω via shiftf (L) = {
(

α
shiftf (β)

)
|
(
α
β

)
∈ L}.

Intuitively, shiftf (L) encodes the delay function f explicitly by postponing Player O’s moves
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using skip symbols. Thus, the delay game Γf (L) and the delay-free game Γ(shiftf (L)) are
essentially equivalent: a winning strategy for Player p ∈ {I,O} in Γf (L) can directly be
translated into a winning strategy for her in Γ(shiftf (L)) and vice versa.

The main result of this section states that delay games with Borel winning conditions
and w.r.t. fixed delay functions are determined.

I Theorem 3. Let L be Borel and let f be a delay function. Then, Γf (L) is determined.

Proof. We show that shiftf (L) is Borel. Then, our claim follows from the Borel determinacy
theorem, as Γ(shiftf (L)) and Γf (L) are essentially the same game.

We will prove the following statement, which is not the tightest result provable, but which
suffices for our purposes: if L ⊆ (ΣI × ΣO)ω is in Σα (in Πα), then shiftf (L) is in Σα+2 (in
Πα+2). To this end, the language Uf = shiftf ((ΣI × ΣO)ω) will be useful. Note that Uf
contains exactly those plays during which the non-skip symbols are played at the positions
consistent with f . It is straightforward to show that Uf is in Π2.

First, assume we have L ∈ Σ1, i.e., L = K · (ΣI ×ΣO)ω for some K ⊆ (ΣI ×ΣO)∗. Then,
we have shiftf (L) = K ′ · (ΣI × Σ.O)ω ∩ Uf where K ′ is equal to⋃

(α(0)
β(0))···(α(k)

β(k))∈K

{(
x

y

)
| y = .f(0)−1β(0) · · · .f(k)−1β(k) and x ∈ α(0) · · ·α(k) · Σ|y|−(k+1)

I

}
,

i.e., shiftf (L) is in Π2 ⊆ Σ3.
Now, let L be in Πα, i.e., L = (ΣI ×ΣO)ω \L′ for some L′ ∈ Σα. Applying the induction

hypothesis yields that shiftf (L′) is in Σα+2. We have

shiftf (L) = ((ΣI × Σ.O)ω \ shiftf (L′)) ∩ Uf ,

i.e., shiftf (L) ∈ Πα+2.
Finally, assume we have L ∈ Σα for some α > 1, i.e., L =

⋃
i∈N Li with Li ∈ Παi for

some αi < α. An application of the induction hypothesis shows that every shiftf (Li) is in
Παi+2. Thus, shiftf (L) =

⋃
i∈N shiftf (Li) is in Σα+2 as αi + 2 < α+ 2 for every i. J

Furthermore, from the equivalence of Γ(shiftf (L)) and Γf (L), which holds for arbitrary
L, we obtain a result that is applicable to non-Borel winning conditions as well.

I Corollary 4. If Γ(shiftf (L)) is determined, then so is Γf (L).

4 Omnipotent Strategies in Delay Games

In this section, we discuss different notions of strategies for delay games. The one introduced
in Section 2 is the classical one that was used in previous works [6, 7, 10, 19]. However, such
strategies depend on a fixed delay function f , i.e., they are not useful for a game w.r.t. a
delay function f ′ 6= f . This is a syntactic dependence in the case of Player I, as he has to
determine f(i) letters in round i. But even Player O’s strategies may depend implicitly on
knowledge about the delay function under consideration, as we will see below.

In this section, we consider several stronger notions of universal strategies, i.e., strategies
that are independent of the delay function under consideration. Informally, for Player I such
a strategy returns an infinite word w ∈ ΣωI and the first f(i) letters of w are used in round i
of a delay game w.r.t. f . For Player O, a universal strategy still returns a single letter, but it
may no longer depend on information about the delay function under consideration. We say
that a universal strategy is omnipotent for a winning condition L, if the strategy is winning
for every delay game Γf (L), independently of the choice of f .
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I Example 5. Again, consider the winning condition L0 from Example 1 and the strat-
egy τ : Σ∗O → Σω

I given by τ(ε) = aω, τ(bx) = cω, and τ(cx) = bω for x ∈ Σ∗O. Intuitively,
in round 0, Player I can pick as many a’s as f requires and then always picks c (or b), if
Player O has picked b (or c) in round 0. This strategy is winning for him w.r.t. every f and
therefore omnipotent for L0.

4.1 Omnipotent Strategies for Player I
We consider the following variants of universal strategies for Player I, which differ in the
amount of information about the play’s history they base their decision on. In Example 5,
the strategy τ only has access to Player O’s moves, which is sufficient to be winning. More
powerful notions have (directly or indirectly) access to Player I’s moves or to information
about the delay function under consideration. Note that Player I cannot reconstruct his moves,
if he only has access to Player O’s moves, but not the delay function under consideration,
which explains the need to access his own moves.

1. An output-tracking (o.t.) strategy is a map τ : Σ∗O → ΣωI . Let (u0, v0)(u1, v1)(u2, v2) · · ·
be a play of Γf (L) for some f : it is consistent with τ , if ui is the prefix of length f(i) of
τ(v0 · · · vi−1). An o.t. strategy bases its decisions only on the moves vj of Player O for
j ≤ i and can deduce the number of rounds already played, but has no way to reconstruct
Player I’s previous moves. In fact, it cannot even reconstruct the number of letters picked
by Player I thus far.

2. A lookahead-counting (l.c.) strategy is a mapping τ : Σ∗O × N→ Σω
I . This time, we say

that a play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L) for some f is consistent with τ , if ui is
the prefix of length f(i) of τ(v0 · · · vi−1,

∑i−1
j=0 f(j)). A l.c. strategy has access to the

opponent’s moves and the number of letters picked by Player I thus far. However, this
still does not suffice for Player I to reconstruct the actual letters already picked.

3. An input-output-tracking (i.o.t.) strategy is a mapping τ : Σ∗O × Σ∗I → ΣωI . We define a
play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L) for some f to be consistent with τ , if ui is the
prefix of τ(u0 · · ·ui−1, v0 · · · vi−1) of length f(i). An i.o.t. strategy has access to both
players’ moves thus far, but cannot reconstruct when the moves of Player O were made.

4. A history-tracking (h.t.) strategy is a mapping τ : Σ∗O × (N+)∗ → Σω
I . Again, consider

a play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L) for some f : it is consistent with τ , if ui is the
prefix of length f(i) of τ(v0 · · · vi−1, f(0) · · · f(i− 1)). A h.t. strategy has access to the
opponent’s moves and to the values of the delay function for all previous rounds, which
allows him to reconstruct his moves. Thus, giving him additionally access to his previous
moves does not increase the strength of such a strategy.

As usual, we say that a strategy (of any type) is winning for Player I in Γf (L) if the
outcome of every play that is consistent with the strategy is in the complement of L. A
strategy is omnipotent for L, if it is winning for Player I in Γf (L) for every f .

The definitions above are given in order of increasing expressiveness, e.g., every (om-
nipotent) o.t. strategy can be turned into an (omnipotent) l.c. strategy inducing the same
plays. The first two constructions are straightforward, and for the last one, Player I has to
reconstruct his moves u0, . . . , ui−1 using the information about the values f(0), . . . , f(i− 1)
and knowledge of his own i.o.t. strategy.

Our first result shows that the first three types of strategies form a strict hierarchy
in terms of the games that can be won with them. The last case will be discussed in
Section 7: it is open whether omnipotent h.t. strategies are strictly stronger than omnipotent
i.o.t. strategies.
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I Theorem 6. There are winning conditions L1 and L2 such that
1. Player I has an omnipotent l.c. strategy for L1, but no omnipotent o.t. strategy, and
2. Player I has an omnipotent i.o.t. strategy for L2, but no omnipotent l.c. strategy.

Proof. 1.) Let L1 = {
(
α
β

)
| α 6= (ab)ω}. Intuitively, Player I wins a game with winning

condition L1 if he is able to produce the word (ab)ω, the moves of Player O are irrelevant.
Indeed, one can easily build a l.c. strategy τ by defining τ(x, n) = (ab)ω for even n and
τ(x, n) = (ba)ω for odd n. Every outcome of a play that is consistent with τ has (ab)ω in its
first component and is therefore winning for Player I. Hence, τ is omnipotent for L1.

However, we claim that Player I has no omnipotent o.t. strategy τ for L1. If τ(ε) 6= (ab)ω,
then τ is losing for some f such that f(0) is larger than the first position where τ(ε) and
(ab)ω differ. Thus, we can assume τ(ε) = (ab)ω. Now, fix some letter c ∈ ΣO and consider the
first letter of τ(c): if it is a (the other case is dual), then τ is losing for every f with odd f(0),
as the first component of the resulting outcome contains two a’s in a row, if Player O picks c
in the first round.

2.) Fix ΣI = {a, b, c} and ΣO = {b, c}, and define

L2 = (ΣI × ΣO)ω \
{(

α

β

)
| α ∈ an0 β(0) an1 β(1) · ΣωI with n1 > n0

}
,

i.e., in order to win, Player I has to copy the first two letters picked by Player O and ensure to
produce more a’s between these two positions than before the first one. It is straightforward
to show that the following i.o.t. strategy for Player I is omnipotent for L2:

τ(x, y) =


aω if x = ε,
x(0) aω if |x| = 1,
an−k+1 x(1) aω if |x| > 1 and y = anx(0)ak,
aω otherwise.

Intuitively, Player I picks a’s until Player O has picked her first letter, which is immediately
copied by Player I. Then, he picks a’s until he has access to the second letter picked by
Player O and then continues picking a’s until the second a-block is longer than the first one.
Then, he copies Player O’s second letter and only picks a’s afterwards. Note that it is crucial
for Player I to have access to his own previous moves to guarantee that the second a-block
is longer than the first one and that he does not necessarily pick x(1) in the second round.

Next, we show that Player I has no omnipotent l.c. strategy for L2. Towards a contradic-
tion, assume there is one, call it τ . We claim that τ(x, n) begins with aa, ax(0), or x(0)a
for every input (x, n) with 2|x| ≤ n. This is straightforward for x = ε and n = 0 (the cases
(ε, n) with n > 0 are irrelevant), since τ(ε, 0) has to be equal to aω. If not, Player O would
have a counterstrategy against τ w.r.t. some large enough f by picking c in round 0, if the
first non-a letter in τ(ε, 0) is b and vice versa.

It remains to consider an input (x, n) satisfying 0 < 2|x| ≤ n. Consider a delay function f
satisfying f(0) = n− |x|+ 1, f(i) = 1 for i in the range 1 ≤ i ≤ n, and f(n+ 1) = 2. Now,
use τ in Γf (L2) against Player O picking the letters of x in the first |x| rounds: Player I
picks af(0) in the first round, and α(1), . . . , α(|x| − 1) during the next |x| − 1 rounds, while
Player O picks x(0), . . . , x(|x| − 1). Note that we have |af(0)α(1) · · ·α(|x| − 1)| = n; the next
letters picked by Player I are therefore the first two of τ(x, n).

We consider two cases: if α(j) = a for every j, then the next two letters picked by τ
may contain only a’s, or one a and the first letter of x, but not any other combination.
Especially, the second letter of x may not yet be picked, since the resulting a-block would
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be of length zero, which would results in a losing play. On the other hand, if there is a j
such that α(j) = x(0) then, all other α(j′) have to be equal to a, since the second a-block
would again be too short otherwise. Thus, the first a-block has at least length n− |x|+ 1,
which implies that the second a-block has at most length |x| − 2 after round n. As we have
n− |x|+ 1 ≥ |x|+ 2, we conclude that the next two letters picked by τ have to be both an a.

To conclude, apply τ in Γf ′(L2) for the delay function f ′ with f ′(i) = 2 for every i against
Player O picking b and c in the first two rounds. As shown above, τ will pick aa, ab, or ba in
every round. Thus, the resulting outcome is losing for Player I, as he never picks a c. J

Note that the winning condition L1 is ω-regular and even recognizable by a deterministic
ω-automaton with reachability acceptance condition, and therefore in Σ1. Furthermore,
the winning condition L2 is not ω-regular, but recognizable by a deterministic ω-pushdown
automaton with safety acceptance, and in Π1.

4.2 Omnipotent Strategies for Player O

Now, we consider universal strategies for Player O. The standard definition given in Section 6
is syntactically independent of a fixed delay function. However, the reconstruction of
Player O’s moves made in previous rounds depends on knowledge about f . This can be
exploited to show that strategies for Player O that have access to the number of rounds
played already are more powerful than strategies which do not. Formally, we consider two
types of omnipotent strategies for Player O corresponding to the first two notions for Player I.
The other two notions introduced for Player I are not necessary for Player O.

1. An input-tracking (i.t.) strategy is a map σ : Σ∗I → ΣO. Let (u0, v0)(u1, v1)(u2, v2) · · · be
a play of Γf (L) for some f : it is consistent with σ, if vi = σ(u0 · · ·ui). Such a strategy
cannot reconstruct Player O’s previous moves and cannot even determine how many
rounds were played already.

2. A round-counting (r.c.) strategy is a mapping σ : Σ∗I × N→ ΣO. This, time, we say that
a play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L) for some f is consistent with the strategy σ, if
vi = σ(u0 · · ·ui, i). A r.c. strategy has access to the opponent’s moves and the number of
rounds played thus far.

Note the asymmetry between the counting strategies for Player I and Player O: Player I
counts the number of letters he has picked thus far and therefore, as he has direct access to
Player O’s moves, the size of the lookahead. Player O counts the number of rounds, i.e., the
number of letters she has picked thus far. Again, this allows her to determine the size of the
lookahead, as she has access to Player I’s moves. Omnipotency for Player O’s strategies is
defined as before. Also, as for Player I, every i.t. strategy can be turned into an r.c. strategy.
Finally, r.c. strategies are more powerful than omnipotent i.t. ones.

I Theorem 7. There is a winning condition L3 such that Player O has an omnipotent
r.c. strategy for L3, but no omnipotent i.t. strategy.

The proof is a variation of the analogue for Player I: the winning condition requires
Player O to produce (ab)ω, which she can do, if she has access to the number of rounds
already played, but she cannot do it without this information. Again, the distinguishing
winning condition is very simple: it is ω-regular and even recognizable by a deterministic
ω-automaton with safety acceptance condition, and therefore in Π1.

CLS 2015



528 What are Strategies in Delay Games?

5 Borel Determinacy of Delay Games with Omnipotent Strategies

Now, we turn our attention to delay games without fixed delay functions and show that
there is either a winning strategy for Player O for some f , or Player I wins for every f with
the same omnipotent strategy. Then, we show the dual result for Player O.

We still use the notation introduced at the beginning of Section 3 and start by defining
skip(L) =

⋃
f shiftf (L), where there union ranges over all delay functions f . Note that

Player O loses a play in a game with winning condition skip(L) if she picks . all but finitely
often. Also, we have skip(L) = {

(
α
β

)
∈ (ΣI × Σ.O)ω |

(
α

h(β)
)
∈ L}.

The tight connection between delay games Γf (L) for arbitrary f and the delay-free
game Γ(skip(L)) appears implicitly in the work by Holtmann et al. [7] and is made explicit
below. We exploit these connections to prove determinacy of delay games with Borel winning
conditions.

I Theorem 8. Let L be Borel. Either, Player O wins Γf (L) for some f or Player I has an
omnipotent h.t. strategy for L.

Proof. First, we show that skip(L) is Borel and then apply the connection between the
games Γf (L) for arbitrary f and Γ(skip(L)).

Proving skip(L) to be Borel is analogous to the proof for shiftf (L), we just replace the
intersections with Uf by intersections with U = skip((ΣI × ΣO)ω) (which is also in Π2) and
the definition of K ′ in the induction start is changed to

K ′ =
⋃

(α(0)
β(0))···(α(k)

β(k))∈K

{(
x

y

)
| y ∈ .∗β(0) · · · .∗β(k) and x ∈ α(0) · · ·α(k) · Σ|y|−(k+1)

I

}
.

Thus, Γ(skip(L)) is determined.
Next, we show that Player O wins Γf (L) for some f , if she wins Γ(skip(L)). Let σ′ be a

winning strategy for Player O in Γ(skip(L)). We construct a delay function f and a winning
strategy σ for Player O in Γf (L) by simulating a play in Γf (L) by a play in Γ(skip(L)).

We begin by defining f . For i ∈ N let `i be the maximal number such that Player O
picks at most i non-skip symbols during the first `i rounds in every play of Γ(skip(L)) that
is consistent with σ′. We claim that every `i is well-defined. Assume `i for some fixed i

is not. Then, the play prefixes under consideration for defining `i form an infinite, but
finitely branching tree. Hence, König’s Lemma implies the existence of an infinite play that
is consistent with σ′ during which Player O all but finitely often picks .. This play is losing
for her, thus contradicting σ′ being a winning strategy.

By construction, if Player I has picked `i+1 letters in Γ(skip(L)), then σ′ has determined
at least i+ 1 non-skip letters. Now, let f(0) = `0 + 1 and f(i+ 1) = (`i+1 + 1)−

∑i
j=0 f(j).

It remains to define σ: assume Player I has picked u0, . . . , ui in rounds i = 0, 1, . . . , i with
|uj | = f(j). Consider the play prefix in Γ(skip(L)) during which Player I picks u0 · · ·ui and
Player O plays according to σ′. We define σ(u0 · · ·ui) to be the i-th non-skip letter (starting
with the 0-th letter) picked by Player O on this play prefix. This is well-defined by the
definition of f .

Let
(
α
β

)
an outcome that is consistent with σ. A straightforward induction shows that

there is a play in Γ(skip(L)) that is consistent with σ′ and has an outcome
(
α
β′

)
such that

β = h(β′). Hence, σ′ being a winning strategy implies
(
α
β′

)
∈ skip(L) and therefore

(
α
β

)
∈ L.

Thus, σ is a winning strategy for Player O in Γf (L).
To conclude, we show that Player I has an omnipotent h.t. strategy τ for L, if he wins

Γ(skip(L)). To this end, let τ ′ : (Σ.O)∗ → ΣI be a winning strategy for Player I in Γ(skip(L)).



F. Klein and M. Zimmermann 529

We define an h.t. strategy τ : Σ∗O × (N+)∗ → ΣωO. Let x ∈ Σ∗O and n0 · · ·ni−1 ∈ (N+)∗. Note
that τ will only be applied to inputs (x, n0 · · · , ni−1) where |x| = i. Thus, we restrict our
attention to those inputs. Let

x′ = .n0−1 x(0) .n1−1 x(1) · · · .ni−1−1 x(i− 1) ∈ (Σ.O)∗

and define

τ(x, n0 · · ·ni−1) = τ ′(x′) τ ′(x′.) τ ′(x′..) τ ′(x′...) · · · ,

i.e., the answers according to τ ′ to Player O picking . ad infinitum after picking x′.
A straightforward induction shows that for every outcome

(
α
β

)
that is consistent with τ

in Γf (L) for some f , there is an outcome
(
α
β′

)
that is consistent with τ ′ such that h(β′) = β.

As τ ′ is winning for Player I in Γ(skip(L)) we have
(
α
β′

)
/∈ skip(L) and thus

(
α
β

)
/∈ L. Hence,

τ is winning for Γf (L) for every f and therefore omnipotent for L. J

The second part of the proof above (the equivalence of the delay games and the delay-free
game) works for arbitrary winning conditions. Hence, we obtain the following corollary.

I Corollary 9. If Γ(skip(L)) is determined, then either Player O wins Γf (L) for some f or
Player I has an omnipotent h.t. strategy for L.

It is open whether these results hold for i.o.t. strategies as well. This is related to the
strictness of the strategy hierarchy mentioned earlier: is there a winning condition L such
that Player I has an omnipotent h.t. strategy for L, but no omnipotent i.o.t. strategy? We
discuss this question in Section 7.

To conclude this section, let us consider the case where Player O wins Γf (L) for every
delay function f . Here, we apply a monotonicity argument: the larger the lookahead is, the
more information Player O has at her disposal, which makes winning easier for her. Thus,
if she wins w.r.t. every delay function, then she wins in particular without lookahead. A
winning strategy for the delay-free game can be turned into a winning strategy w.r.t. every
larger delay function. Thus, the omnipotent strategy for Player O mimics the behavior of a
winning strategy for the delay-free game and ignores the additional information given by the
lookahead.

Formally, we order delay functions by the amount of lookahead available for Player O at
every round: we define f v f ′, if and only if

∑i
j=0 f(j) ≤

∑i
j=0 f

′(j) for every i ∈ N, i.e.,
in every round, the lookahead granted by f ′ is at least as large as the one granted by f . A
winning strategy for Player O w.r.t. f can easily be turned into one for f ′ by ignoring the
additional information. Thus, we obtain the following monotonicity property.

I Remark. If f v f ′ and Player O wins Γf (L), then also Γf ′(L).

Note that winning refers to winning strategies that may depend on f respectively f ′.
Nevertheless, we can use monotonicity to obtain omnipotent strategies by considering the
v-minimal delay function. More formally, if Player O wins Γf (L) for every f , then she
wins in particular the delay-free game Γ(L), i.e., the game w.r.t. the v-minimal delay-
function i 7→ 1. It is easy to see that a winning strategy σ′ for Player O in Γ(L) can be turned
into an omnipotent r.c. strategy σ for L: defining σ(x, i) = σ′(x(0) · · ·x(i− 1)) simulates the
strategy σ′ by ignoring the additional information gained due to the lookahead.

I Theorem 10. Either, Player I wins Γf (L) for some f or Player O has an omnipotent
r.c. strategy for L.
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As shown in Theorem 7, such a strategy has to have access to the number of rounds
already played, the theorem does not hold for i.t. strategies. Note however, that this results
holds for arbitrary winning conditions L.

A similar construction works if Player O does not have an omnipotent strategy for L,
but wins Γf (L) for some f . Then, she can simulate a winning strategy for Γf (L) in Γf ′(L)
for every f ′ w f .

6 Decidability

In this section, we consider decision problems regarding omnipotent strategies, i.e., we are
interested in determining whether a given player has an omnipotent strategy for a given
winning condition L.

We begin with ω-regular conditions represented by deterministic parity automata.

I Theorem 11. The following problems are ExpTime-complete respectively in NP∩co-NP:
1. Given a deterministic parity automaton A, does Player I have an omnipotent h.t. strategy

for L(A)?
2. Given a deterministic parity automaton A, does Player O have an omnipotent r.c. strategy

for L(A)?

Proof. 1.) Due to Theorem 8, Player I has an omnipotent h.t. strategy for L(A) if and only
if there is no f such that Player O wins Γf (L(A)). Determining whether there is an f such
that Player O wins Γf (L(A)) is ExpTime-complete [10]. Hence, determinacy of ω-regular
delay games w.r.t. fixed delay functions and closure of ExpTime under complements yields
the desired result.

2.) Due to Theorem 10, Player O has an omnipotent r.c. strategy for L(A) if and only if
she wins Γ(L(A)). This game can be encoded as a parity game in an arena of size 2|A| that
has the same colors as A. The winner of this game is solvable in NP ∩ co-NP (and even
UP ∩ co-UP [9]), which yields the desired result. J

An omnipotent r.c. strategy for Player O can be implemented by a finite automaton
with output of size O(|A|), e.g., if the input (x, n) ∈ Σ∗I × N with |x| ≥ n is encoded as
x(0) · · ·x(n− 1)#x(n) · · ·x(|x| − 1), where # is a fresh symbol. The states of the automaton
are the vertices of the parity game constructed in the proof above and the output function is
given by a positional winning strategy for this game.

Now, we turn our attention to ω-context-free winning conditions. Such languages are
recognized by ω-pushdown automata, classical pushdown-automata running on infinite words.
We refer to [2] for detailed definitions. First, we consider deterministic automata.

I Theorem 12. The following problems are undecidable respectively ExpTime-complete:
1. Given a deterministic ω-pushdown automaton A, does Player I have an omnipotent

h.t. strategy for L(A)?
2. Given a deterministic ω-pushdown automaton A, does Player O have an omnipotent

r.c. strategy for L(A)?

Proof. Recall that delay games with winning conditions that are recognized by deterministic
ω-pushdown automata and w.r.t. fixed delay functions are determined [6].

1.) As in the ω-regular case, Player I has an omnipotent h.t. strategy for L(A) if and
only if there is no f such that Player O wins Γf (L(A)). Determining whether there is an f
such that Player O wins Γf (L(A)) is undecidable [6]. Hence, determinacy w.r.t. fixed delay
functions implies undecidability of the problem.
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2.) Again, as in the ω-regular case, the problem can be reduced to solving the delay-free
game Γ(L(A)), which is ExpTime-complete [17]. J

As before, an omnipotent r.c. strategy for Player O can be represented finitely by
constructing a pushdown-automaton with output that implements a winning strategy for the
delay-free game Γ(L(A)), which can be constructed effectively [17].

To conclude, we consider non-deterministic ω-pushdown automata.

I Theorem 13. The following problems are undecidable:
1. Given a non-deterministic ω-pushdown automaton A, does Player I have an omnipotent

l.c. (i.o.t., h.t.) strategy for L(A)?
2. Given a non-deterministic ω-pushdown automaton A, does Player O have an omnipotent

r.c. strategy for L(A)?

Proof. Recall that the (non-)universality problem for non-deterministic ω-pushdown au-
tomata is undecidable (see, e.g., [4]). Given such an automaton A, we define the winning
condition IA = {

(
α
α

)
| α ∈ L(A)}, i.e., in order to win, Player I has to produce an α /∈ L(A).

1). We prove undecidability for the case of l.c. strategies by a reduction from the
non-universality problem. The other cases are proven similarly.

We claim that L(A) is non-universal if and only if Player I has an omnipotent l.c. strategy
for IA. Let L(A) be non-universal, i.e., we can fix some α /∈ L(A). Then, there is a
l.c. strategy for Player I that produces α, independently of the moves of Player O. Hence,
this strategy is omnipotent for IA. Now, if IA is universal then Player O wins Γ(IA) by just
copying Player I’s moves. Hence, Player I has no omnipotent strategy for IA.

2.) We claim that L(A) is universal if and only if Player O has an omnipotent r.c. strategy
for IA. Above, we have shown that IA being universal implies that Player O wins Γf (IA) for
every f . Hence, due to Theorem 10, Player O has an omnipotent r.c. strategy for IA. On the
other hand, as seen above, if IA is non-universal, then Player I has an omnipotent strategy
for IA, which implies that IA has none. J

It is open whether the problems asking for weaker types of omnipotent strategies are
decidable. We discuss these problems in the next section.

7 Characterizing the Existence of Omnipotent Strategies

In this section, we give a characterization of omnipotent strategies for delay games in terms of
uniform strategies for delay-free games. We focus on the case of i.o.t. strategies for Player I,
but the other cases are analogous.

Fix some strategy τ : (Σ.O)∗ → ΣI and define the equivalence relation ≈τ over (Σ.O)∗ via
x0 ≈ x1 if and only if |x0| = |x1|, h(x0) = h(x1), and τ(x′0) = τ(x′1) for all proper prefixes
x′0 @ x0 and x′1 @ x1 with |x′0| = |x′1|. Thus, x0 and x1 are equivalent, if Player O has picked
the same sequence of non-skip symbols in x0 and in x1, has picked the same number of skip
symbols (but possibly at different positions), and τ picked the same moves answering to
Player O picking x0 and x1, respectively, during the previous rounds.

Now, we say that a strategy τ for Player I in Γf (skip(L)) is i.o.-uniform if τ(x) = τ(x′)
for all x ≈τ x′. The following lemma is a straightforward extension of Theorem 8.

I Lemma 14. Player I has an omnipotent i.o.t. strategy if and only if Player I has an
i.o.-uniform winning strategy for Γ(skip(L)).

We conjecture that Player I always has such a uniform strategy.
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I Conjecture 15. If Player I wins Γ(skip(L)), then she has an i.o.-uniform winning strategy
for Γ(skip(L)).

Note that we do not impose any requirements on L. If the conjecture is true, then
Theorem 8 is also true for i.o.t. strategies.

The existence of an omnipotent o.t., l.c., or i.t. strategy for a winning condition L can be
characterized analogously using appropriate equivalence relations that capture the limited
access to information about the history of a play that such a strategy has.

Furthermore, the existence of such uniform strategies can be expressed in the framework
introduced by Maubert and Pinchinat [12]: they investigate infinite games under uniformity
constraints on strategies expressed in an extension of LTL with a modality to equate finite
play prefixes that are in some given equivalence relation. The logic is able to express the
uniformity constraint formulated above, but our problems are not in the decidable fragment
presented in this work, as the equivalence relations that characterize universal strategies are
not rational (recognizable by an asynchronous transducer) and turning an ω-regular L into
skip(L) does not preserve ω-regularity.

8 Conclusion

We presented determinacy results for delay games with Borel winning conditions, both with
and without respect to fixed delay functions: in the latter case, we showed the existence
of omnipotent strategies, i.e., strategies that are winning w.r.t. every delay function. In
particular, we analyzed the exact amount of information such a strategy needs about the
history of the play and the delay function under consideration. For games w.r.t. a fixed
delay function, on which winning strategies may depend, access to the opponent’s moves
is sufficient. However, for omnipotent strategies the situation is more intricate: Player O
needs access to the opponent’s moves and the number of rounds played thus far, just having
access to the opponent’s moves is not sufficient. For Player I, we showed that access to
both player’s moves is necessary and having the full information about the play’s history is
trivially sufficient. However, it is open whether that much information is necessary: does
access to both player’s previous moves, but not to the delay function under consideration,
suffice to implement an omnipotent strategy? To answer this question, we currently work on
resolving Conjecture 15.

Also, we determined the precise computational complexity of decision problems of the fol-
lowing form for ω-regular and ω-context-free winning conditions: given a winning condition L,
does Player p ∈ {I,O} have an omnipotent strategy for L?

Another interesting question concerns the decision problems left open in Section 6: can
one decide if Player I has an omnipotent o.t. (l.c., i.o.t.) strategy for a given ω-regular
winning condition? The analogous question for Player O and input-tracking strategies is
also open. Furthermore, we left open the finite representability of omnipotent strategies for
Player I for ω-regular winning conditions. We expect the techniques we developed to give an
exponential-time algorithm for solving ω-regular delay games [10] to yield such strategies,
but this is beyond the scope of this paper.

Another interesting open problem is to develop a theory of finite-state and positional
winning strategies for delay games, both for the case with a fixed delay function and the
universal case, and to prove positional respectively finite-state determinacy results.

Acknowledgments. The work presented here was initiated by a discussion with Dietmar
Berwanger at the Dagstuhl Seminar “Non-Zero-Sum-Games and Control” in 2015.
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