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Abstract. Runtime verification of temporal properties over timed se-
quences of observations is crucial in various applications within cyber-
physical systems ranging from autonomous vehicles over smart grids to
medical devices. In this paper, we are addressing the challenge of effec-
tively predicting the failure or success of properties in a continuous real-
time setting. Our approach allows predictions to exploit assumptions on
the system being monitored and supports predictions of non-observable
system behaviour (e.g. internal faults). More concretely, in our approach
properties are expressed in Metric Interval Temporal Logic (MITL), as-
sumptions on the monitored system are specified in terms of Timed Au-
tomata, and observations are to be provided in terms of sequences of
timed constraints. We present an assumption-based runtime verification
algorithm and its implementation on top of the real-time verification
tool UPPAAL. We show experimentally that assumptions can be effec-
tive in anticipating the satisfaction/violation of timed properties and in
handling monitoring properties that predicate over unobservable events.

Keywords: Assumption-based runtime verification · Real-Time · MITL
· Timed Automata.

1 Introduction

The problem of monitoring timed properties has gained significant attention
due to its crucial role in ensuring the correctness and reliability of real-time
systems. The runtime verification of temporal properties over timed sequences
of observations is crucial in various applications ranging from cyber-physical
systems including autonomous vehicles and beyond. While different solutions
for runtime verification of timed temporal properties have been presented [6, 5,
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4, 22, 20], some challenges remain to be addressed, in particular extending these
solutions with prognosis and diagnosis capabilities. More specifically, we are
here interested in effectively predicting in advance the failure of properties and
in handling partially observable systems.

In the discrete-time setting, these challenges have been addressed with As-
sumption-Based Runtime Verification (ABRV) [12–15]. ABRV uses assumptions
about the behavior of the system to predict the future behavior of the system and
to relate observable and non-observable variables. These assumptions can be de-
rived, for example, from models produced during the system design, or from the
data collected from the system in operation. Exploiting assumptions, the moni-
tor can anticipate the detection of property failures. Moreover, the specification
is no more limited to the interface of black box systems as in traditional runtime
verification, but can be extended to constrain also the internal non-observable
parts (such as, for example, internal faults).

In ABRV, the output of the monitor has four possible values:

– ⊤ (Satisfied): given the sequence of observations, the system satisfies the
specified temporal properties under the given assumption.

– ⊥ (Violated): this value indicates that the observed behavior of the system
violates the specified temporal property, under the given assumption.

– × (Out-of-model): the observed behavior violates the assumptions, i.e., there
is no run of the assumption compatible with the observations.

– ? (Unknown): given the current observations and assumption, it is not pos-
sible to determine definitively whether the property is satisfied or violated.

Here, we enhance the monitoring of timed systems with assumptions. We define
and solve the problem of ABRV for timed properties for the following setting:

– The properties to be monitored are specified in Metric Interval Temporal
Logic (MITL), which allows for the expression of temporal properties over
timed words, making it suitable for real-time systems.

– The assumptions about the system are specified in terms of Timed Automata
which relate observable events with non-observable events, locations, and
clocks.

– The observations are specified in terms of sequences of timed constraints
which predicate over the assumption automaton defining the set of its runs
that are compatible with the observations.

Like in the discrete-time case, the assumption allows the monitor to give a ⊤
or ⊥ verdict even if the property contains future operators and non-observable
events. For example, suppose we monitor the MITL property φ = F[0,10]a ∧
G[0,20]¬b (expressing that there is an a in the first ten units of time, but no b in
the first 20 units of time) and we assume that the system satisfies the property
ψ = G[0,1]¬b ∧ G(a → G[0,10]¬b) (expressing that there is no b in the first unit
of time and no a is followed by a b within ten units of time). Then, the monitor
can output a ⊤ verdict even before time 20, for instance at time 10 when b is
false in the interval [0, 10] and a is true at time 10. Further, it can even give the
verdict ⊤ if b is not observable, e.g., when a is true at time 0 and 10.
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One of our main contributions is a rich definition of observations that take
into account both data and time uncertainty. As in [15], the observations are
represented by formulas that can capture the uncertainty on data. For example,
¬a means that a is not seen but b can be true or false. The approach is further
extended to have uncertainty on time, taking into account potential errors in the
timestamps with which the monitor receives data from the system. This is repre-
sented in the observations with time intervals that are associated to observation
formulas. Thus, for example, we can say that a is seen in an interval [6, 7] but we
do not know exactly when. Finally, we concatenate these pairs of formulas and
time intervals to form complex observation patterns. For example, the sequence
o = (a, [0, 0], !)(¬a, [0, 7], ∗)(a, [6, 7], !)(¬a, [6, 16], ∗)(a, [15, 16], !) says that we see
three a’s, one at time 0, another in the interval [6, 7], and a final one in the inter-
val [15, 16] and that we do not know anything about b (intuitively, an observation
with an ! (∗) indicates exactly one occurrence (zero or more occurrences)). If the
system satisfies the assumption ψ from above, we can conclude at time 16 that
the property φ is true despite the uncertainty about time and b.

We propose a zone-based online algorithm that at any time provides a mon-
itoring verdict saying if the property is satisfied or violated given the assump-
tion and a sequence of observations. We implemented the algorithm on top of
UPPAAL and show the feasibility of the approach. Especially, we demonstrate
how the assumptions can be effective in anticipating the satisfaction/violation
of timed properties and in handling properties that predicate over unobservable
events. We also report on the influence of unobservable events on the response-
time, the time it takes to compute a verdict when given a new observation.

2 Preliminaries

The set of natural numbers (excluding zero) is N, we define N0 = N ∪ {0}, the
set of non-negative rational numbers is Q≥0, and the set of non-negative real
numbers is R≥0. The powerset of a set S is denoted by 2S .

Timed Words. A timed word over a finite alphabet Σ is a pair ρ = (σ, τ) where
σ is a nonempty word over Σ and τ is a sequence of non-decreasing non-negative
real numbers of the same length as σ. Timed words may be finite or infinite. In
the latter case, we require lim sup τ = ∞, i.e., time diverges. The set of finite
timed words is denoted by TΣ∗ and the set of infinite timed words by TΣω.
We also represent a timed word as a sequence of pairs (σ1, τ1)(σ2, τ2) . . .. If
ρ = (σ1, τ1)(σ2, τ2) · · · (σn, τn) is a finite timed word, we denote by τ(ρ) the total
time duration of ρ, i.e., τn. We lift this to languages L ⊆ TΣ∗ by defining τ(L) =
supρ∈L τ(ρ), which can be infinite.

If ρ1 = (σ1
1 , τ

1
1 ) . . . (σ

1
n, τ

1
n) is a finite timed word, ρ2 = (σ2

1 , τ
2
1 )(σ

2
2 , τ

2
2 ) . . .

a finite or infinite timed word, and t ∈ R≥0 then the concatenation ρ1 ·t ρ2 is
defined iff t ≥ τ(ρ1). Then, we define ρ1 ·t ρ2 = (σ1, τ1)(σ2, τ2) · · · such that

σi =

{
σ1
i if i ≤ n

σ2
i−n else

and τi =

{
τ1i if i ≤ n

τ2i−n + t else.
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We lift this definition to sets L1 ⊆ TΣ∗ and L2 ⊆ TΣ∗ ∪ TΣω via

L1 ·t L2 = {ρ1 ·t ρ2 | ρ1 ∈ L1 and ρ2 ∈ L2},

provided we have t ≥ τ(L1).

Timed Automata. A timed Büchi automaton (TBA) B = (Q,Q0, Σ,C,∆,F)
consists of a finite alphabet Σ , a finite set Q of locations, a set Q0 ⊆ Q of initial
locations, a finite set C of clocks, a finite set ∆ ⊆ Q × Q × Σ × 2C × G(C) of
transitions with G(C) being the set of clock constraints over C, and a set F ⊆ Q
of accepting locations. A transition (q, q′, a, λ, g) is an edge from q to q′ on input
symbol a, where λ is the set of clocks to reset and g is a clock constraint over
C. A clock constraint is a conjunction of atomic constraints of the form c ∼ n,
where c is a clock, n ∈ N0, and ∼ ∈ {<,≤,=,≥, >}.

A state of B is a pair (q, v) where q is a location in Q and v : C → R≥0 is a val-
uation mapping clocks to their values. For any d ∈ R≥0, v+d is the valuation x 7→
v(x) + d. A run of B from a state (q0, v0) over a timed word (σ1, τ1)(σ2, τ2) · · ·
is a sequence of steps (q0, v0)

(σ1,τ1)−→ (q1, v1)
(σ2,τ2)−→ (q2, v2)

(σ3,τ3)−→ · · · where for all
i ≥ 1 there is a transition (qi−1, qi, σi, λi, gi) such that vi(c) = 0 for all c in λi
and vi(c) = vi−1(c) + (τi − τi−1) otherwise, and gi is satisfied by the valuation
vi−1 + (τi − τi−1). Here, we use τ0 = 0. Given a run r, we denote the set of
locations visited infinitely many times by r as Inf(r). A run r of B is accept-
ing if Inf(r) ∩ F ̸= ∅. The language of B from a starting state (q, v), denoted
L(B, (q, v)), is the set of all timed words with an accepting run in A starting
from (q, v). We define the language of B, written L(B), to be

⋃
q L(B, (q, v0)),

where q ranges over all locations in Q0 and where v0(c) = 0 for all c ∈ C.

Proposition 1 ([2]). For all TBA B, B′ there is a TBA B⊗B′ with L(B⊗B′) =
L(B)∩L(B′). The set of states of B⊗B′ is Q×Q′ ×{0, 1}, where Q and Q′ are
the sets of states of B and B′, respectively.

Logic. We use Metric Temporal Interval Logic (MITL) to formally express prop-
erties to be monitored; these are subsequently translated into equivalent TBA
which we use in our monitoring algorithm. The syntax of MITL formulas over a
finite alphabet Σ is defined as

φ ::= p | ¬φ | φ ∨ φ | XIφ | φ UIφ

where p ∈ Σ and I ranges over non-singular intervals over R≥0 with endpoints
in N0 ∪ {∞}. Note that we often write ∼ n for I = {d ∈ R | d ∼ n} where
∼ ∈ {<,≤,≥, >}, and n ∈ N. We also define the standard syntactic sugar
true = p ∨ ¬p, false = ¬true, φ ∧ ψ = ¬(¬φ ∨ ¬ψ), φ → ψ = ¬φ ∨ ψ,
FIφ = true UIφ, and GIφ = ¬FI¬φ.

The semantics of MITL is defined over infinite timed words. Given such a
timed word ρ = (σ1, τ1)(σ2, τ2) · · · ∈ TΣω, a position i ≥ 1, and an MITL
formula φ, we inductively define the satisfaction relation ρ, i |= φ as follows:
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q0 q1 φ¬φ a

x ≤ 10

a, b

x > 20

b

a

x > 10

b

x ≤ 20 a, b

a
x ≤ 20

a, b

Fig. 1: A TBA for the language of the formula φ = F[0,10]a ∧ G[0,20]¬b and its
negation: If location φ (¬φ) is accepting then it accepts L(φ) (L(¬φ)).

– ρ, i |= p iff p = σi.
– ρ, i |= ¬φ iff ρ, i ̸|= φ.
– ρ, i |= φ ∨ ψ if ρ, i |= φ or ρ, i |= ψ.
– ρ, i |= XIφ iff ρ, (i+ 1) |= φ and τi+1 − τi ∈ I.
– ρ, i |= φ UIψ iff there exists k ≥ i s.t. ρ, k |= ψ, τk − τi ∈ I, and ρ, j |= φ for

all i ≤ j < k.

We write ρ |= φ whenever ρ, 1 |= φ. The language L(φ) of an MITL formula φ
is the set of all infinite timed words that satisfy φ.

Theorem 1 ([3, 9]). For each MITL formula φ there exists a TBA B such that
L(φ) = L(B).

Example 1. Fig. 1 illustrates the above theorem providing a TBA for the for-
mula F[0,10]a ∧G[0,20]¬b and its negation.

3 Monitoring under Assumptions

Monitoring timed properties [6, 20] requires to determine whether every exten-
sion of a finite observation (a finite timed word) satisfies a given property (yield-
ing the verdict ⊤), whether every extension violates the property (yielding the
verdict ⊥), or neither is true (yielding the verdict ?). Monitoring under assump-
tions involves two changes over the classical monitoring framework.

Firstly, the assumption itself: In its most general form, it is a set A ⊆ TΣω

of infinite timed words. Intuitively, A contains the executions we assume to be
possibly generatable by the system we are monitoring. Hence, every execution
that is not in A does not need to be taken into account when determining a
verdict, i.e., the assumption refines verdicts. However, this also means that our
assumption can be invalidated if we observe an execution prefix that is not
consistent with our assumption. This requires a new verdict, denoted by ×. In
this case, the assumption needs to be refined as it does not match our observation.

Secondly, we allow inexact observations: In the classical setting, we observe
a finite timed word (σ1, τ1) · · · (σn, τn) and reason about its possible extensions.
Hence, we implicitly presume that no other events occurred between time 0 and
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q0 q1 q2

a

y := 0
a y := 0bx > 1

b

x > 1 ∧ y > 10

b

x ≤ 1 b

x ≤ 1

b

y ≤ 10

a, b

Fig. 2: A TBA for the language of the formula G[0,1]¬b ∧G(a→ G[0,10]¬b) with
accepting locations q0 and q1.

τn and that the timepoints are exact. In the following, we allow for some imper-
fect information about the observation. In the most general form, an observation
is then a set O ⊆ TΣ∗ of finite timed words. Intuitively, O contains those words
that are consistent with our (imperfect) observation.

Example 2. Consider the property “F[0,10]a∧G[0,20]¬b” of Example 1. Monitoring
this property on a timed word, a conclusive verdict is given in the following cases:

– The property is false at any time in the interval [0, 20] a “b” is observed;
– The property is false after time 10 if “a” was not previously observed;
– The property is true after time 20 if “b” was not previously observed and “a”

was observed in the interval [0, 10].

Consider now the assumption “G[0,1]¬b ∧ G(a → G[0,10]¬b)” which corre-
sponds to the TBA in Fig. 2. Then, if “a” was observed in the interval [0, 10],
as soon as we see another “a” within the interval [10, 20] and no b was observed
before, we can conclude that the property is true. On the other hand, if a “b” is
observed at time 0, then the observation violates the assumption.

Example 3. Let us consider again the property “F[0,10]a∧G[0,20]¬b” but now we
observe “a” with uncertainty on the timestamps and “b” is unobservable. For
example, we observe “a” at time 0, another time in the interval [6, 7] and a final
time in the interval [15, 16], and now is time 30. The words that are consistent
with these observations have the form ρ0(a, 0)ρ1(a, t1)ρ2(a, t2)ρ3 where

– t1 ∈ [6, 7] and t2 ∈ [15, 16],
– ρ0 is a (possibly empty) finite timed word (b, 0) · · · (b, 0),
– ρ1 is a (possibly empty) finite timed word (b, t1,1) · · · (b, t1,n1

) with t1,j ∈
[0, t1] for all 1 ≤ j ≤ n1,

– ρ2 is a (possibly empty) finite timed word (b, t2,1) · · · (b, t2,n2
) with t2,j ∈

[t1, t2] for all 1 ≤ j ≤ n2, and
– ρ3 is a (possibly empty) finite timed word (b, t3,1) · · · (b, t3,n3

) with t3,j ∈
[t2, 30] for all 1 ≤ j ≤ n3.

Without assumptions we cannot have any conclusive verdict, because we do
not know if a “b” occurred before timepoint 20 or not. But with the assumption
from the previous example, we can conclude at time 16 that the property is true:
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– ρ0 must be empty, as there cannot be a b within the first unit of time.
– ρ1 must be empty, as there cannot be a b for ten units of time after the a at

timepoint 0 and t1 ≤ 7 ≤ 10.
– ρ2 must be empty, as there cannot be a b for ten units of time after the a at

timepoint t1 and t2 ≤ 16 ≤ t1 + 10.
– ρ3 cannot contain a b with timestamp t3,j ≤ 20, as this would imply that a
b has occurred less than ten units of time after the a at t2.

Thus, under the assumption, we can make a definitive verdict, which we could
not without the assumption.

In the following, we formalize this intuition. To develop the theory as general
as possible, we allow real timepoints in the observations. Later, when we are con-
cerned with algorithms, we will restrict ourselves to rational inputs. In the same
spirit, we begin with a very abstract definition of monitoring under assumptions.
Later, we will explain how to represent the property, the assumption, and the
observation finitely.

Definition 1. Let B4 = {⊤,⊥,?,×}. Given a property φ ⊆ TΣω of infinite
timed words, an assumption A ⊆ TΣω, a nonempty observation O ⊆ TΣ∗, and a
current time instant t ≥ τ(O), the function V : (2TΣω×2TΣω

) → (2TΣ∗×R≥0) →
B4 evaluates to a verdict with the following definition:

V(φ,A)(O, t) =


× if O ·t TΣω ∩A = ∅,
⊤ if O ·t TΣω ∩A ̸= ∅ and O ·t TΣω ∩A ⊆ φ,

⊥ if O ·t TΣω ∩A ̸= ∅ and O ·t TΣω ∩A ⊆ TΣω \ φ,
? otherwise.

V(φ,A)(O, t) is undefined when t < τ(O).

In the following, we present an algorithm computing V in the setting where

– the property φ and its complement is accepted by a TBA (this covers in
particular the case of φ being given in MITL due to Theorem 1),

– the assumption A is given by a TBA, and
– the observation O is given by a sequence of pairs of time-intervals and propo-

sitional formulas over the locations, the clock constraints, and the alphabet
of the assumption automaton.

We begin by introducing the assumption and observations. The former is
given by a TBA, which we typically denote by A to distinguish it from other
TBA. Thus, let A = (Q,Q0, Σ,C,∆,F) be a TBA, i.e., Q is the set of locations,
Σ is the alphabet, and C is the set of clocks. Recall that G(C) denotes the clock
constraints over C, i.e., conjunctions of atomic constraints of the form c ∼ n,
where c ∈ C is a clock, n ∈ N0, and ∼ ∈ {<,≤,=,≥, >}. Let ϕ be a propositional
formula over the set Σ ∪Q∪G(C) of propositions (which is infinite!), let σ ∈ Σ,
and let (q, v) be a state of A. We define σ, (q, v) |= ϕ as follows:
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– For σ′ ∈ Σ, σ, (q, v) |= σ′ iff σ′ = σ.
– For q′ ∈ Q, σ, (q, v) |= q′ iff q′ = q.
– For g ∈ G(C), σ, (q, v) |= g iff g is satisfied by v.
– The semantics of Boolean connectives is defined as usual.

An A-observation is a finite sequence o = (ϕ1, I1,m1) · · · (ϕn, In,mn) where
the ϕj are propositional formulas over Σ∪Q∪G(C), the Ij are bounded intervals
of R≥0 (which may overlap), and the multiplicities mj are in {!, ∗}. It defines
the language CA(o) ⊆ TΣ∗ of (consistent) finite timed words (σ1, τ1) · · · (σn′ , τn′)
such that there is a prefix

r = (q0, v0)
(σ1,τ1)−→ (q1, v1)

(σ2,τ2)−→ · · ·
(σn′−1,τn′−1)−→ (qn′−1, vn′−1)

(σn′ ,τn′ )−→ (qn′ , vn′)

of a run of A with q0 ∈ Q0, v0(c) = 0 for all c ∈ C, and there is a func-
tion h : {1, 2, . . . , n′} → {1, 2, . . . , n} such that

1. h(1) ≤ h(2) ≤ · · · ≤ h(n′),
2. for every j ∈ {1, 2, . . . , n} with mj =!, there is a unique j′ ∈ {1, 2, . . . , n′}

such that h(j′) = j (i.e., observations with an ! must appear exactly once,
observations with an ∗ may appear zero or more times),

3. τj ∈ Ih(j) for all j ∈ {1, 2, . . . , n′}, and
4. σj , (qj , vj) |= ϕh(j) for all j ∈ {1, 2, . . . , n′}.

Thus, a finite sequence of such formulas and intervals yields a language of finite
timed words, those that are consistent with the formulas and intervals.

Example 4. Let us continue Example 3 and let A be the assumption automaton
shown in Fig. 2. Consider the A-observation

o = (a, [0, 0], !)(¬a, [0, 7], ∗)(a, [6, 7], !)(¬a, [6, 16], ∗)(a, [15, 16], !)(¬a, [0, 30], ∗).

Then, as argued in Example 3, CA(o) is the language

{(a, 0)(a, t1)(a, t2)(b, t3,1) · · · (b, t3,n3
) |

t1 ∈ [6, 7], t2 ∈ [15, 16], and t2 + 10 < t3,1 ≤ · · · ≤ t3,n3
≤ 30}.

For example, given the run prefix (we ignore the clock x as it is never reset
and thus is always equal to the timestamp on the transition leading to a state)

r = (q0, y = 0)
(a,0)−→ (q1, y = 0)

(a,6)−→ (q1, y = 0)
(a,15)−→ (q1, y = 0)

we can define h as follows: h(1) = 1, h(2) = 3, h(3) = 5. For the run prefix

r = (q0, y = 0)
(a,0)−→ (q1, y = 0)

(a,6)−→ (q1, y = 0)
(b,15)−→ (q2, y = 9)

(a,16)−→ (q2, y = 10)

we can define the function h as follows: h(1) = 1, h(2) = 3, h(3) = 4, h(4) = 5.
Finally, the run prefix

r = (q0, y = 0)
(a,0)−→ (q1, y = 0)

(a,6)−→ (q1, y = 0)
(a,15)−→ (q2, y = 9)

(a,16)−→ (q2, y = 10)
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is the prefix of a run of A but it is not compatible with the observation o. In
fact, any h satisfying the conditions 1), 3), and 4) should assign h(3) = 5 and
h(4) = 5 violating condition 2).

Remark 1. We have τ(CA((ϕ1, I1,m1) · · · (ϕn, In,mn))) ≤ sup In by definition.

4 A Zone-Based Monitoring Algorithm

In this section, we present an algorithm computing the monitoring function V. To
this end, we first need to introduce some notation for TBA and zones to represent
subsets of states of TBA, which may be uncountable. Recall that we have defined
the theory of monitoring under assumptions with respect to arbitrary, i.e., real,
timepoints. However, as we are now dealing with algorithms, we have to restrict
ourselves to rational inputs (which are finitely representable). Thus, we say that
an A-observation (ϕ1, I1,m1) · · · (ϕn, In,mn) is rational, if each Ij is an interval
over R≥0 with rational endpoints.

For the monitoring algorithm, we use – as is standard in analysing timed
automata models – symbolic states being pairs (q, Z) of locations and zones.
A zone is a finite conjunction of constraints of the form x ∼ t and x − x′ ∼ t
for clocks x, x′, constants t ∈ Q≥0, and ∼ ∈ {<,≤,=,≥, >}. Given two zones
Z and Z ′ over a set C of clocks, and a set λ ⊆ C of clocks, we define the
following operations on zones (which can be efficiently implemented using the
DBM data-structure [8]):

– Z[λ] = {v | ∃v′ |= Z s.t. v(x) = 0 if x ∈ λ, otherwise v(x) = v′(x)}
– Z↗ = {v | ∃v′ |= Z s.t. v = v′ + d for some d ∈ R≥0}
– Z ∧ Z ′ = {v | v |= Z and v |= Z ′}.

To describe our algorithm, we first define the set of states of a TBA from
where it is possible to reach an accepting location infinitely many times in the
future, i.e., those states from which an accepting run is possible. This is useful,
because if processing a finite timed word leads to such a state, then the timed
word can be extended to an infinite one in the language of the automaton, a
notion that underlies Definition 1. Given a TBA B = (Q,Q0, Σ,C,∆,F), the
set of states with nonempty language is:

Sne
B = {(q, v) | q ∈ Q, v ∈ C → R≥0 s.t. L(B, (q, v)) ̸= ∅}.

Proposition 2 ([20]). Sne
B can be computed using a zone-based algorithm.

We continue by capturing the set of states of a TBA that can be reached by
processing a finite timed word. In the following definition, we write (q0, v0)

ρ−→B
(qn, vn) for a finite timed word ρ = (σ, τ) ∈ TΣ∗ to denote the existence of a
finite sequence of states

(q0, v0)
(σ1,τ1)−→ (q1, v1)

(σ2,τ2)−→ · · · (σn,τn)−→ (qn, vn)
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where for all 1 ≤ i ≤ n there is a transition (qi−1, qi, σi, λi, gi) such that vi(c) = 0
for all c in λi and vi−1(c)+(τi−τi−1) otherwise, and g is satisfied by the valuation
vi−1 + (τi − τi−1), where we use τ0 = 0. Given a TBA B, a finite timed word
ρ ∈ TΣ∗, and a time-point t ∈ R≥0 with t ≥ τ(ρ), the set of possible states a
run over ρ starting from initial states of B can end in after time t has passed is

TB(ρ, t) =
⋃

q0∈Q0

{(q, v + (t− τ(ρ))) | (q0, v0)
ρ−→B (q, v)},

where v0 is the clock valuation mapping every clock to 0. We call TB(ρ, t) the
reach-set of B over (ρ, t). The above definition is adapted from [20] to take into
account the time that has passed since the last observation, i.e., the input t.

Next, we lift this definition to sets L ⊆ TΣ∗ of finite words via

TB(L, t) =
⋃

ρ∈L
TB(ρ, t),

assuming t ≥ τ(L). Otherwise, TB(L, t) = ∅ by convention.
We now show how to compute reach-sets using zones. First, we use the zone

operations introduced above to compute the successor states of an input letter
with a given target location. Fix a TBA (Q,Q0, Σ,C,∆,F). For a symbolic
state (q, Z), a letter σ ∈ Σ and target location q′ ∈ Q, we define

Post((q, Z), σ, q′) = {(q′, Z ′) | (q, q′, σ, λ, g) ∈ ∆,Z ′ = (Z↗ ∧ g)[λ]},

being the set of states one can reach by taking a σ-transition at some point in
the future from (q, Z) with q′ as target-location. Using Post we can compute
the successor states of a time-uncertain letter/target location (σ, q′, I), where
σ ∈ Σ, q′ ∈ Q and I ⊆ R≥0 is a time interval with rational endpoints. For this,
we extend zones with an additional clock time just recording time since system
start. The successors of a symbolic state (q, Z) are

Succ((q, Z), (σ, q′, I)) = {(q′, Z ′) | (q′, Z ′′)∈Post((q, Z), σ, q′), Z ′=Z ′′∧time∈I}

and the successors of a set of symbolic states S are

Succ(S, (σ, q′, I)) =
⋃

(q,Z)∈S
Succ((q, Z), (σ, q′, I)).

Now, our main technical lemma below exploits the above to effectively compute
reach-sets. More precisely, given a rational A-observation o (i.e., the TBA A
represents the assumption), we can compute the reach-set of the set CA(o) in
the product B ⊗A, for any given TBA B, i.e., we compute the words consistent
with the observation o in the TBA A (the assumption), while the reach-set of
that language is computed in B⊗A (this will later be the product of the property
(or its negation) and the assumption).

Lemma 1. Fix TBA A,B. There is a zone-based online algorithm computing

TB⊗A(CA((ϕ1, I1,m1) · · · (ϕn, In,mn)), t)

for every rational observation (ϕ1, I1,m1) · · · (ϕn, In,mn), and every t ∈ Q≥0

with t ≥ sup In.
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Proof. Let oi = (ϕ1, I1,m1) · · · (ϕi, Ii,mi), and let us denote by Si
B⊗A the set

TB⊗A(CA(oi)) of successors of oi in B ⊗ A. We will show inductively in i, that
Si
B⊗A can be obtained effectively using zone operations. For the base case i = 0,

we note that CA(o0) = {ε}, thus TB⊗A(CA(o0)) is the set of initial states of
B ⊗A, which is clearly effectively representable using zones.

For the inductive case, let us assume that Si−1
B⊗A is effectively computable

using zone operations. Now consider consider (ϕi, Ii,mi). Given that Σ, QA and
QB are finite, ϕi is equivalent to a finite disjunction of simple formulas of the
form ψi,j = σi,j ∧ qai,j ∧ gi,j , where σi,j ∈ Σ, qai,j ∈ QA, and gi,j ∈ G(CA). Now
in the case mi = !, the set of successors of ψi,j is simply

Si
B⊗A =

⋃
j

⋃
qb∈QB

⋃
k∈{0,1}

Succ(Si−1
B⊗A, (σi,j , (q

b, qai,j , k), Ii)) ∧ gi,j .

In the case mi = ∗, Si
B⊗A is the least fixed-point X, satisfying the equality

X = Si−1
B⊗A ∪

⋃
j

⋃
qb∈QB

⋃
k∈{0,1}

[
Succ(X, (σi,j , (q

b, qai,j , k), Ii)) ∧ gi,j .
]

Given the upper bounds of the interval Ii, the least fixed-point will be found in a
finite number of iterations of the right-hand-side of the above equation (starting
from the empty set).

The above inductive proof provides in an obvious manner the basis for an
effective online construction of the sets TB⊗A(CA(oi)). ⊓⊔

Now, we are able to present our algorithm to compute V for a property φ
(given by two TBA Bφ and B¬φ such that L(Bφ) = L(φ) and L(B¬φ) = L(¬φ))
and an assumption A (given by a TBA A): Given o = (ϕ1, I1,m1) · · · (ϕn, In,mn)
(a rational observation) and t > sup In, do the following:

1. Compute TA(CA(o), t). If it is nonempty (which is the case iff CA(o) is
nonempty), but has an empty intersection with Sne

A , then return ×. This
checks whether there is some some finite word that is consistent with the
observation and can be extended to satisfy the assumption. If this is not the
case, then the assumption was wrong.

2. Compute TB¬φ⊗A(CA(o), t). If it has an empty intersection with Sne
B¬φ⊗A,

then return ⊤: If there is a finite word consistent with the observation that
can be extended to satisfy the assumption, but no such extension satisfies
the complement of the property, then every such extension must satisfy the
property. Hence, we can return ⊤.

3. Compute TBφ⊗A(CA(o), t). If it has an empty intersection with Sne
Bφ⊗A, then

return ⊥: If there is a finite word consistent with the observation that can be
extended to satisfy the assumption, but no such extension satisfies the prop-
erty, then every such extension must satisfy the complement of the property.
Hence, we can return ⊥.

4. Return ? . Otherwise, there is both a finite word that is consistent with the
observation that can be extended to satisfy the property and a finite word
that is consistent with the observation that can be extended to satisfy the
complement of the property. Consequently, we return ? .
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Theorem 2. The algorithm described above computes V(φ,A).

As argued above, our algorithm can be implemented using zones: both the
reach-sets and the sets of nonempty states can be computed using zones, zones
are closed under intersection, and can be tested effectively for emptiness [7].

Furthermore, our algorithm is online in the following sense: The set of non-
empty states only needs to be computed once for each of the three automata
and the symbolic states capturing

TA(CA((ϕ1, I1,m1) · · · (ϕn, In,mn)(ϕn+1, In+1,mn+1)), t
′)

can be computed from the symbolic states capturing

TA(CA((ϕ1, I1,m1) · · · (ϕn, In,mn)), t),

as evident from the proof of Lemma 1. The same is true for the reach-sets in the
other two automata B¬φ ⊗A and Bφ ⊗A.

Remark 2. Our algorithm requires TBA both for the property and its comple-
ment, but TBA are in general not closed under complementation [2]. For the
important case of MITL properties, such automata always exist, as MITL is
closed under negation and can be translated into equivalent TBA (Theorem 1).

5 Evaluation

We implemented our assumption-based online monitoring algorithm described
in Section 4 by extending the UPPAAL tool component MoniTAal3, thereby
demonstrating how the use of assumptions and unobservable events can enhance
monitoring capabilities. In the following, we report on two proof-of-concept cases.

Task sequence. We first experiment with a system under monitoring that pro-
duces a finite sequence of events a1, . . . , ak. Each ai, with 1 ≤ i < k, is followed
by ai+1 with a time within the interval [li, ui]. The assumption is formalized by
the TBA shown in Fig. 3. The domain is parameterized on k, and the li and
ui. Further, depending on the experiment, not all the ai will be observable. We
consider the bounded response property G(a1 → F[0,B]ak). Suppose that we ob-
serve a timed word (a1, t1) · · · (ak, tk). If for some j in the range 1 < j ≤ k, we
have tj +

∑
j≤i<k ui ≤ B + t1, then the verdict at time tj is ⊤. On the other

hand, if tj +
∑

j≤i<k li > B + t1, then the verdict at time tj is ⊥. As a corner
case, if

∑
1≤i<k ui ≤ B or

∑
1≤i<k li > B, the verdict is respectively ⊤ and ⊥

at time 0, since all words of the assumption respectively satisfy and violate the
property. We run several experiments to show the effect of the assumption and
study the scalability under a sequence of unobservable events.

First we show how unobservable events can affect the response-time, the
time between receiving an event and outputting a verdict. We pick k = 100 and
3 https://github.com/DEIS-Tools/MoniTAal
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q0 q1 q2 · · · qk−1 qk
a1

x := 0

a2

x ∈ [l1, u1]
x := 0

ak

x ∈ [lk−1, uk−1]
x := 0

$

Fig. 3: A TBA representing the assumption for the bounded response example.
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Fig. 4: Response time of
the monitoring implementa-
tion, when monitoring the
task sequence example with
{ai | i ∈ {21, . . . , 40} ∪
{61, . . . , 80}} being unob-
servable.

Table 1: Verdict distribution for monitoring the
task sequence example a thousand times with
k = 10, B = 675, li = 50 and and ui = 100
for all i, with and without assumption. Each
row specifies the number of times each verdict
is given after an observation.

Verdicts
No Assumption With Assumption

Observation ⊤ ⊥ ? ⊤ ⊥ ?

a5 0 0 1000 0 0 1000
a6 0 0 1000 0 1 999
a7 0 0 1000 17 15 967
a8 0 0 1000 81 90 796
a9 0 33 967 165 153 478
a10 0 457 510 246 232 0

li = 50 and ui = 100 for all i. The events {ai | i ∈ {21, . . . , 40} ∪ {61, . . . , 80}}
are unobservable within the interval [0, 10000]. In Fig. 4 we see that for each con-
secutive unobservable event, the response time grows linearly. This is due to the
reach-set growing. Nevertheless, the reach-set shrinks when an observable event
is received. The minimum response time is 4583 nanoseconds (ns), the maxi-
mum is 115926 ns and the average is 24753 ns. For reference, if we monitor 5000
consecutive unobservable events, the maximum response time is 32 milliseconds.

To show the effect of the assumption, we monitor the bounded response
propertyG(a1 → F[0,675]a10) a thousand times, with and without the assumption
where li = 50 and ui = 100 for all i. The observed words are random, but within
the assumption. The results in Table 1 show that verdicts are computed earlier
with the assumption than without. Without the assumption the earliest verdicts
were in 33 cases ⊥ after observing a9, while with the assumption we saw a ⊤ or
⊥ verdict in 522 cases before observing a10.

Thus, when monitoring a live system in an online setting (compared to eval-
uating a log history), a verdict can be reached earlier, because of the restrictions
the assumption inhibits. Furthermore, we demonstrate in this case how unob-
servable events can affect the size of the reach-set, as the number of words that
are consistent with an observation can increase with the number of consecutive
unobservable events. This in turn affects the response-time.
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qn0 qn1 qn2

qf0 qf1 qf2

start

x = 1/x := 0

stop

x ∈ [8, 10]/x := 0

move

x = 1/x := 0

start

x = 1/x := 0

stop

x ∈ [7, 9]/x := 0

move

x = 1/x := 0

fault fault fault

Fig. 5: A TBA representing the assumption for the conveyor belt example.

Conveyor belt example. This example represents a conveyor belt that moves an
item through different stations, where the item is processed according to some
task. The task in the nominal case takes between 8 and 10 times units. However,
if the process is faulty, it finishes earlier and takes between 7 and 9 time units:
it may sometimes complete correctly on time, but it may in other cases stop
too early. The fault can happen at any time and is permanent. Our assumption
automaton is shown in Fig. 5. Our monitoring property is simply G¬fault.

Consider that we observe the events start, stop, and move with precise in-
formation on the time. If the stop signal happens less than 8 time units after
start, we detect a violation of the property. If instead stop happens between 8
and 9 time units, we cannot say if there was a fault or not.

Suppose now that we have uncertainty on the time of the observations like
in the following observation sequence:

(start, [1, 1], !)(fault, [1, 11], ∗)(stop, [8, 10], !)(fault, [8, 11], ∗)(move, [9, 11], !)

(fault, [9, 12], ∗)(start, [10, 12], !)(fault, [11, 22], ∗)(stop, [16, 18], !)

The first stop happens at a time between 8 and 10, thus between 7 and 9 time
units after the first start. This is compatible with both a nominal (with stop
occurring between times 9 and 10) and a faulty execution (with stop occurring
between times 8 and 9): after the first stop, we do not know if there was a fault.

The second start happens in the time interval [10, 12] and has the same
uncertainty: it is consistent with the nominal behavior if start actually occurred
in [11, 12] and with a faulty behavior if start occurred in [10, 11]. The second
stop happens in the time interval [16, 18]. Thus, the difference with the previous
start is between 4 and 8 time units. This seems compatible with a nominal delay
([8, 10]). However, from the reasoning done above, if there were no fault the
second start would have occurred in the interval [11, 12] and the second stop
would have occurred in the interval [19, 22], which is not compatible with the
observation. Thus we can conclude there was a fault.

We monitored the property G¬fault with the assumption from Fig. 5 by
simulating the conveyor belt with an unbounded repeating pattern ρ1 ·τ(ρ1)

ρ2 ·τ(ρ1)+τ(ρ2) · · · with each ρi having the form

(fault, [0, 1], ∗), (start, 1, !), (fault, [1, ti+2], ∗), (stop, [ti, ti+2], !), (move, ti+2, !)
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Table 2: Distribution of verdicts when monitoring 1000 random words of the
conveyor belt assumption. Each column shows the number of times a conclusive
verdict is given after observing the pattern a number of times. The longest run
had 24 repetitions of the pattern before a verdict is given.

Repetitions 1 2 3 4 5 6 7 8 9 10 11
#Verdicts 251 185 125 121 90 47 48 31 24 20 13

Repetitions 12 13 14 15 16 17 18 19 20 24
#Verdicts 13 9 4 5 4 2 2 2 3 1

for some uniformly chosen ti ∈ {7, 8, 9, 10}. The assumption is never violated,
thus the only conclusive verdict reported is ⊥ i.e. the property does not hold.
The pattern essentially randomly selects whether stop is observed after 7, 8, 9
or 10 time units after start. Since 7 is only possible after a fault, there is a 1 in
4 chance, per repetition, of violating the property. The results in Table 2 show
that in 251 out of 1000 cases a definitive verdict is given after observing the
pattern once, and that the longest is 24 repetitions.

With this example, we see how an assumption makes it possible to monitor
properties over unobservable events. Without an assumption, reasoning about
unobservable behaviour would not be possible for such a property.

6 Related Work

Our automata-based monitoring of finite words against specifications over infi-
nite words follows the seminal work of Bauer et al. [6], who presented monitoring
algorithms for LTL and timed LTL. Their algorithm for timed LTL is based on
clock regions [2], while we follow the approach of Grosen et al. [20] and use clock
zones [8], whose performance is an order of magnitude faster. Also, they trans-
lated timed LTL into event-clock automata, which are less expressive than the
timed Büchi automata (TBA) used both by Grosen et al. [20] and here. This
approach has also been applied to monitoring under delayed observations [17].

As our algorithms work with TBA, we also support MITL specifications, as
these can be compiled into TBA. The monitoring problem for MITL has been
investigated before. Baldor et al. showed how to construct a monitor for dense-
time MITL formulas by constructing a tree of timed transducers [4]. Ho et al.
split unbounded and bounded parts of MITL formulas for monitoring, using
traditional LTL monitoring for the unbounded parts and permitting a simpler
construction for the (finite-word) bounded parts [22].

There is also a large body of work on monitoring with finite-word seman-
tics. Roşu et al. focussed on discrete-time finite-word MTL [28], while Basin et
al. proposed algorithms for monitoring real-time finite-word properties [5] and
compared different time models. Donzé et al. [16] focussed on monitoring a quan-
titative semantics for STL, a variant of MTL with predicates over real-valued
signals. André et al. consider monitoring finite logs of parameterized timed and
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hybrid systems [31]. Finally, Ulus et al. described monitoring timed regular ex-
pressions over finite words using unions of two-dimensional zones [29, 30].

The contribution of this paper is focused on extending the monitoring of
timed properties with assumptions, framing the problem as defined in [12–15]
for the discrete-time setting. Assumptions were first used in [23] for extending
the monitoring of LTL with predictive capabilities. In [32], the assumption for
predictive RV is computed applying static analysis to the monitored program.
Pinisetty et al. further extend the predictive RV idea to support RV of timed
properties [25], where the a priori knowledge is also expressed as a timed prop-
erty. As in [15], we adopt a four-valued semantics for timed properties and we
support partial observability. Besides the complexity of moving from discrete to
dense time semantics, the ABRV framework is extended with a rich notion of
observations that take into account uncertainty on the time.

The research of partial observability in Discrete-Event Systems is usually
connected with diagnosability [26] and predictability [18, 19]. These notions have
been extended to timed systems (see, e.g., [10, 11]). Moreover, they are related
to monitorability, an important topic in RV and other related fields [1, 27, 24],
which has been studied taking into account assumptions in [21].

7 Conclusion

In this paper, we extended runtime verification of timed properties with assump-
tions. These are used for anticipating or predicting a property failure or success,
as well as for considering partial observability of the monitored system. A key
contribution is to enable runtime verification to consider an observation sequence
that has uncertainty on both the states/events and on the timing information.
We provided an effective zone-based algorithm to compute the states that can
be reached with such an observation sequence considering a property specified
in MITL and an assumption as a TBA. Thus, such a computation can be used
for online monitoring of timed properties under assumptions. The algorithm was
implemented on top of UPPAAL and experimented with a few examples to show
the feasibility of the approach.

For future work, further investigation is needed to check the scalability of
the approach and to apply and optimize it to real-world case studies.
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