
Model Checking for
Time Division Multiple Access

Systems
– PhD. Thesis –

Marco Muñiz

13th November 2014

Model Checking for
Time Division Multiple Access

Systems

zur Erlangung des Doktorgrads
der technischen Fakultät

der Albert-Ludwigs-Universität Freiburg im Breisgau
von

Marco Antonio Muñiz Rodríguez

13. November 2014

A mi familia.

Abstract

Software systems are present in everyday life. A large class of systems consist of com-
ponents that communicate with each other using the Time Division Multiple Access
(TDMA) paradigm. The presence of an error or an unexpected behavior in such a sys-
tem can lead to severe consequences such as; the dead of people, catastrophic economical
losses, etc. Therefore, the correct functioning of these systems is critical. Guaranteeing
the correctness of a critical system is an active research area. A promising approach to
ensure the correctness of critical systems is that of model checking using timed automata.
Timed automata have been successfully used to model and verify many real world applic-
ations. However, in some cases the size of the state space induced by a timed automaton
hinders the model checking task.
In this work, we contribute to the model checking of TDMA based systems. We present

a number of techniques for reducing the state space induced by a timed automaton while
preserving most or all of its properties. We formalize the underlying principles of TDMA
based systems with the semantic based notions of disjoint activity, sequentialisability,
and concatenation. We observe that the application of the corresponding techniques
to TDMA systems, yield a transition system which is bisimilar to the one obtained by
parallel composition. We achieve a quadratic speed up in the verification times in the
number of components. We investigate the applicability of timed model checking to
industrial systems. Towards this end, we provide syntactic patterns and operators for
modeling TDMA based systems using timed automata. By applying these patterns,
we obtain a transition system which is weakly bisimilar to the one obtained by parallel
composition. We observe an improvement in the verification times from exponential
to linear in the number of components. Finally, we address another aspect of real
timed systems, i.e. clock differences of zero time duration introduced by the interleaving
semantics of timed automata and clock resets. We call these clocks quasi-equal clocks.
These clocks can be simplified, yielding a much smaller system. Before a simplification
can take place, the presence of quasi-equal clocks need to be detected. Therefore, we
provide an efficient abstraction method for detecting quasi-equal and equal clocks.
As a proof of concept, we have implemented our methods in our tool sAsEt and

executed a number of experiments. Our experiments show the practical potential of
the techniques presented in this thesis. In addition, the aforementioned methods have
been used to model and detect design errors in a real world TDMA based system. We
successfully verified an improved design of the real world TDMA system by using our
methods.

iii

Acknowledgements

I would like to thank my family whose support and encouragement made it possible for
me to come to Germany and pursue my dreams of becoming a scientist.
I thank Andreas Podelski for accepting me as his student and for his support in the last

eight years. I had the fortune of studying and working at his team under his supervision.
Andreas refined taste for elegance and simplicity have been a source of inspiration and
improvement.
I thank Bernd Westphal for his teachings, supervision and guidance during my mas-

ters and doctoral studies. I have enjoyed our many disscusions on new research topics
and search for suitable solutions. I thank Bernd for encouraging me in broading my
perception and in taking initiative.
I thank Jochen Hoenicke for the many disscusions, explanations and questions he

answered during my masters and doctoral studies.
I thank Viktor Kuncak for hosting me as an intern at EPFL. His passion for science

made the internship at his group an impresive and motivating experience. In addition,
I thank Viktor for providing the Jahob verification system on top of which we have
implemented our model checker sAsEt.
I thank Thomas Wies for introducing me to the area of theorem proving, for super-

vising me during my master studies and for supervising me during my internship at
EPFL.
Finally, for all the nice experiences and pleasant atmosphrere, I thank all members

of the Software Engineering group at the University of Freiburg, including: Andreas
Dereani, Alexander Malkis, Alexander Nutz, Amalinda Post, Berit Brauer, Christian
Herrera, Christian Schilling, Corina Mitrohin, Daniel Dietsch, Evren Ermis, Jeremi Dzi-
enian, Jürgen Christ, Marius Greitschus, Marlis Jost, Martin Mehlman, Martin Schäf,
Martin Wehrle, Martin Preen, Matthias Heizmann, Mohammed Nassim Seghir, Rebecca
Albrecht, Sergio Alejandro Feo-Arenis, Sergiy Bogomolov and Stefan Maus. In par-
ticular, I thank Christian Herrera and Jeremi for helping me with the development of
our tool and execution of experiments. I thank Sergio and Sergiy for comments on a
preliminary version of this thesis.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Model Checking . 2
1.2 Time Division Multiple Access (TDMA) 4
1.3 Case Study: Fire Alarm System . 6
1.4 Summary of Contributions . 9
1.5 Outline . 10

2 Preliminaries 13
2.1 Timed Automata . 13
2.2 Timed Computation Tree Logic (TCTL) 23

3 Semantic Optimizations for TDMA Systems 27
3.1 Periodic Cyclic Timed Automata . 28
3.2 Timed Disjoint Activity . 37
3.3 Concatenation of Periodic Cyclic Timed Automata 41
3.4 Complexity . 46
3.5 Related Work . 49

4 Syntactic Optimizations for TDMA Systems 51
4.1 Sequential Timed Automata . 53
4.2 Overclocks . 57
4.3 Sequential Composition for Sequential Timed Automata 58
4.4 Related Work . 68

5 Clock Optimizations for Timed Systems 71
5.1 Quasi-equal Clocks . 73
5.2 Zero Time Behavior Abstraction . 75
5.3 Complexity . 83
5.4 Algorithm . 86
5.5 Related Work . 88

vii

Contents

6 Proof of Concept 91
6.1 A Tool for Analyzing Timed Automata . 92
6.2 Detecting Quasi-equal Clocks . 98
6.3 Real World Fire Alarm System . 101
6.4 Future Work . 103

7 Conclusion 105
7.1 Future Work . 106

8 Zusammenfassung 109

viii

List of Figures

1.1 Model checking process . 3
1.2 TDMA structure . 5
1.3 Fire alarm system . 6
1.4 Modeling with timed automata, sensors 7
1.5 Model-ling with timed automata, central unit 8

2.1 Timed automata example . 14
2.2 Parallel product of two timed automata 16
2.3 The zone for a clock constraint . 19

3.1 Start and Final Configurations . 29
3.2 Period points of time of a sensor . 31
3.3 Parallel product on sensor 1 and sensor 2 32
3.4 Activity of sensor 1 . 37
3.5 Two sensors with disjoint activity . 39
3.6 Concatenation operator on sensor 1 and sensor 2 42
3.7 A reduced number of edges . 48

4.1 A syntactical pattern for sequential timed automata. 53
4.2 Two sensors as sequential timed automata 55
4.3 Sequential composition of sensors one and two 59
4.4 Weak bisimulation relation . 62

5.1 Timed automaton with quasi-equal clocks 73
5.2 The relax operator . 76
5.3 Abstract zone graph . 79
5.4 Abstraction is sound but not complete . 81
5.5 Abstraction with exponential savings . 84
5.6 Quasi-equal zones . 85

6.1 Architecture of the sAsEt system. 93
6.2 Subset of the high order logic implemented in Jahob. 94
6.3 Strongest post condition . 94
6.4 Data types for timed automata in sAsEt. 96
6.5 A session in sAsEt . 97
6.6 Verification times for detecting quasi-equal clocks 100

ix

List of Figures

6.7 Verification times of FAS-CB-SW for property (AG less300) over number
of sensors compared to the corresponding fired alarm system obtained by
sequential composition. 103

x

List of Tables

2.1 Syntax of a subset of the Timed Computation Tree Logic. 23
2.2 Semantics of Timed Computation Tree Logic 26

6.1 Benchmarks for detecting quasi-equal clocks 99
6.2 Results for detection of quasi-equal clocks in the simplified fire alarm system101
6.3 Verification times. Sequential composition operator. 102

xi

Chapter 1

Introduction

Information systems are present in everyday life. These systems perform control tasks
in trains, airplanes, cellphones, etc. In many cases the correct functioning of a system is
critical. As an example, consider a system controlling a pacemaker. Unexpected behavior
of this system could cost the life of a human being. Errors in information systems can
not only cost human lives but also can lead to catastrophic economical losses. In the
early nineties, an error in the Pentium II processor caused a loss of over four hundred
million dollars to Intel. Unfortunately, in the last decades there have been numerous
spectacular software and hardware failures. A large number of safety critical systems,
implement the Time Division Multiple Access (TDMA [116]) paradigm. Systems based
on a TDMA paradigm may control satellite communications, steering and breaking of
modern vehicles, security systems, etc. Since the importance and use of information
systems is increasing, ensuring their correct functioning is a prime concern.
Ensuring correctness of a system is desirable. However, this is not an easy task.

There are several approaches to remove errors from systems. We briefly discuss four
major approaches for improving the correct functioning of systems. These approaches
are: testing [102, 133], simulation [93, 35], deductive verification [73, 104], and model
checking [45, 115]. First, we consider testing. In testing, a finite number of scenarios
is executed in a concrete system. If an error occurs, then the concrete system can be
modified. Second, we consider simulation. In simulation, a finite number of possible
scenarios is simulated in an abstract system or model. If an error occurs, then the model
can be refined. Third, we consider deductive verification. In deductive verification,
specifications of the expected behavior of the system are provided. The system and its
specifications are then decomposed in logical entailments which are proven for validity
using a theorem prover. Finally, we consider model checking. In model checking, the
specifications are checked algorithmically to hold in a model corresponding to a concrete
system. If an error is detected, then the model can be refined. While in testing and
simulation only a finite number of possible scenarios are explored, deductive verification
and model checking are exhaustive, i.e. they explore all possible scenarios. An important
difference between deductive verification and model checking is that model checking is
fully automatic. That is, the verification process does not require the aid of an expert.
This difference and recent advances make model checking an attractive and applicable
approach to ensure the correctness of critical systems.
In order to formally verify a system using model checking. Two components are

1

Chapter 1 Introduction

required. First, a formal model describing the behavior of the system. Second, a number
of specifications in a formal language. A prominent theory for modeling real time systems
is the theory of timed automata [5]. Timed automata have been successfully used to
model and verify many real world applications.
An important characteristic of systems based on the Time Division Multiple Access

paradigm is that they are real time systems. Therefore, the use of timed automata as
models for TDMA systems is a natural choice. In industrial applications TDMA based
systems involve a large number of components. Modeling such industrial applications
using timed automata will thus involve a large number of automata. Reasoning about
such systems in general requieres a composition of the components. A common problem
in model checking of such models, is the so called state explosion problem [129], i.e. the
state space grows exponentially in the number of components. Thus, using standard
model checking techniques on industrial TDMA based systems often does not scale.
In this work, we contribute to the model checking of Time Division Multiple Access

based systems. In general, we present a number of techniques for avoiding the state
explosion problem. By using these techniques we have been able to detect errors, correct
errors and successfully verify a real world TDMA based system [58].
We now continue with an outline for the rest of this chapter. In Section 1.1, we present

an overview of model checking. In Section 1.2, we briefly present the TDMA paradigm.
In Section 1.3, we give an example on how to model a TDMA based system using timed
automata. In Section 1.4, we present our technical contributions. In Section 1.5, we
provide an outline for the rest of this thesis.

1.1 Model Checking
Model checking [45, 115] is an automated technique that, given a finite-state model of
a system and a formal property, algorithmically checks whether the property holds for
that model. There are several components and steps in the model checking process.
Figure 1.1 describes the process. We briefly discuss the main elements of the model
checking process.

System

In the model checking process, a concrete system is provided. This system can be a
communication protocol, a hardware specification, software program, etc. The system
is usually specified in programming languages like C, Java, or hardware description
languages such as Verilog [126] or VHDL [103].

Abstract Model

The system needs to be represented in terms of the description language of the model
checker. The system represented in the description language is the abstract model of the
system. The abstract model describes the system behavior in a mathematically precise

2

1.1 Model Checking

System

Abstract Model

Requirements

Property
Specification

Model Checker

Satisfied
Violated +

Counter-Example

Figure 1.1: Model checking process

and unambiguous manner. In this work, we use timed automata as a description lan-
guage. The abstract model can be automatically obtained from the system description,
provided the existence of a procedure for transforming the system into a formal descrip-
tion. If such an automatic procedure does not exist, a modeler can perform this step
manually.

Requirements

Requirements describe properties of the system. Requirements specify what the system
should or should not do. As an example, consider an elevator. A requirement could
specify that the doors can only be opened if and only if the elevator is stopped.

Formal Specification

In order to formally verify a system, requirements should be described in a property
language. In model checking, properties are generally specified using temporal logic [113,
41]. In this work, we use Timed Computation Tree Logic(TCTL) [2] as specification
language.

3

Chapter 1 Introduction

Model Checker

The model checker has as input the transition system induced by the abstract model and
a property specification. The model checker then systematically explores the transition
system checking for validity of the property. There are three possible outcomes:

1. The property is satisfied. In this case the model checking process has been suc-
cessful and the transition system satisfies the property.

2. The property is violated. In this case the model does not satisfy the specification
and the model checker provides a counter example. With help of the counter
example the system can be refined excluding the detected error. A new iteration
is needed to verify the refined model.

3. The model checker goes out of memory. This is because the size of the transition
system is too big to be represented in a physical computer. A solution is to reduce
the size of the model and try again. In this thesis we focus on techniques for
avoiding this case.

Model checking is a “push-button” technology. This means that the model checking
process does not need interaction from the user. In addition, the user does not need to
be an expert. Finally, the use of model checking can effectively increase the reliability
of a system.

1.2 Time Division Multiple Access (TDMA)
Time Division Multiple Access (TDMA [116]) is a channel access method (CAM) used
to facilitate channel sharing without interference. TDMA allows multiple nodes to share
and use the same transmission channel by dividing signals into different time slots. Users
transmit in rapid succession, and each one uses its own time slot. Thus, multiple stations
may share the same frequency channel but only use part of its capacity.

Frames and Slots

Figure 1.2 describes the structure of the TDMA paradigm. The information is trans-
mitted in so called frames. The size of a frame is given by a fixed number of time units.
We also refer to frames as cycles. Every frame is divided into time slots. The number of
time slots is constant in every frame. The size of a time slot is obtained by dividing the
size of a frame by the number of slots it has. Real world applications use physical clocks.
Since a TDMA based system consist of several independent components. The system
will involve several clocks. Because the precision of physical clocks is limited, clocks will
progress at is own pace. Clocks may thus not be synchronized an may cause problems
in the TDMA cycle. This phenomena is known as clock drift. The TDMA paradigm
addresses this issue by assigning time guards to the time slots. By choosing right time
guards and using accurate clocks, perfect clocks can be assumed [88]. Perfect clocks are

4

1.2 Time Division Multiple Access (TDMA)

Frames

1 2 3 4 5 6 7 8 9 10 Time slots

01001001001110

Time guards

Figure 1.2: TDMA structure, The data to be transmitted will be split into Frames. Every
frame is split into time slots. The Information is transmitted in the corresponding time
slot.

important for our work since they allow us to abstract from the problems induced by
clock drift.

TDMA Based Protocols

A great number of protocols are based on the TDMA paradigm. TDMA is used in the
digital 2G cellular systems such as Global System for Mobile Communications (GSM),
IS-136, Personal Digital Cellular (PDC), and in the Digital Enhanced Cordless Telecom-
munications (DECT) standard for portable phones. It is also used extensively in satellite
systems, combat-net radio systems, and Passive Optical Network (PON) for upstream
traffic from premises to the operator.
The TDMA paradigm is not only used in wireless systems, but also in LAN networks.

The ITU-T G.hn standard, which provides high-speed local area networking over ex-
isting home wiring (power lines, phone lines and coaxial cables) is based on a TDMA
scheme. In G.hn, a "master" device allocates "Contention-Free Transmission Opportun-
ities" (CFTXOP) to other "slave" devices in the network. Only one device can use a
CFTXOP at a time, thus avoiding collisions. The FlexRay protocol, which is also a
wired network protocol used for safety-critical communication in modern cars, uses the
TDMA method for data transmission control.
Another important protocol for safety critical applications is the Timed Triggered

Protocol (TTP). Timed Triggered Protocol is often used in mission critical data com-
munications applications, such as aircraft engine management and other aerospace ap-

5

Chapter 1 Introduction

Central

S1 · · · Si · · · S125

· · · · · · time
1 12 ti ti + 12 1488 1500

Figure 1.3: The fire alarm system consisting of a central unit and a 125 sensors. The
150 seconds cycle is divided in 125 slots. Every sensor is assigned to a slot. Sensors can
only communicate with the central unit. The sensors and the central unit are connected
in a wireless network.

plications where deterministic operation is a requirement. In these applications, the
TTP networks are often operated as separate networks with separate communication
controller interface devices and separate, but coordinated, configurations.

1.3 Case Study: Fire Alarm System

In the following, we present a fire alarm system which is based on the TDMA paradigm.
This system is a simplification of a real world system [58]. We have successfully verified
the corresponding real world fire alarm system using, among other techniques, the tech-
niques presented in this thesis. We will use the simplified fire alarm system to illustrate
several techniques presented in this thesis.
The fire alarm system consists of a central unit and 125 sensors. The communication

protocol of the fire alarm system is based on the TDMA paradigm. That is, there
exists a cycle of 150 seconds. The cycle is divided into 125 slots. For modeling we use
deciseconds, i.e. the cycle has a length of 1500 units. Therefore, every slot has a duration
of 12 time units. Every sensor is assigned to a slot. Sensors can not communicate with
each other. They only communicate with the central unit. The components of the fire
alarm system are connected in a wireless network. Figure 1.3 illustrates the simplified
fire alarm system that we consider.
The fire alarm system has several modes. We consider the surveillance mode. In this

mode, the central unit monitors the correct functioning of the sensors. At every slot, the
central unit awaits for an alive message of the corresponding sensor. If the alive message
is received, it replies with an acknowledgment. If the alive message is not received, it
shows an error.

6

1.3 Case Study: Fire Alarm System

`0

x1 ≤ 1

`1

x1 ≤ 6

`2

x1 ≤ 12

`3

x1 ≤ 1500

x1 ≥ 1

alive!

x1 ≥ 12 ack?

x1 ≥ 1500

x1 := 0
`0

x2 ≤ 13

`1

x2 ≤ 18

`2

x2 ≤ 24

`3

x2 ≤ 1500

x2 ≥ 13

alive!

x2 ≥ 24 ack?

x2 ≥ 1500

x2 := 0

Figure 1.4: Modeling the system with timed automata, sensors.

Remark 1.1. The fire alarm system we have presented is a simplified one. We have veri-
fied the corresponding real world fire alarm system. This system has up to ten repeaters
and implements complex fault tolerance mechanisms. For the sake of simplicity in this
thesis, we abstract from many features of the real system. The techniques presented
in this thesis have been successfully applied to the real world fire alarm system. If the
reader is interested in the modeling and formalization of requirements for the real fire
alarm system, this can be found in [58]. ♦

The Model

We use timed automata to model the fire alarm system. Figure 1.4 shows timed automata
corresponding to sensor 1 and sensor 2. Figure 1.5 shows the model for the central unit.
All sensors function in a similar way. Therefore, their structure is quite similar. The
only differences are the time constrains imposed by the time slot they are assigned to.
We briefly discuss the models corresponding to the sensors and the central unit. As a
time unit for the model we use deciseconds. Therefore, the TDMA cycle consists of 1500
time units.

Sensors The automaton at the left of Figure 1.4 describes the behavior of sensor 1.
Sensor 1 is assigned to slot 1. Slot 1 ranges from time unit 1 to time unit 12. The model
for sensor 1 has four locations `0, `1, `2, `3 and one clock x1. The behavior of sensor 1 is
as follows: At location `0 sensor 1 awaits the start of its slot. This is modeled by the
location invariant `0 ≤ 1. At point of time 1, the sensor enters its time slot and moves to
location `1. At location `1 the sensor can send his alive message non-deterministically at
any point in time in the interval from 1 to 6. This is modeled by the location invariant
x1 ≤ 6. After sending its alive message, the sensor moves to location `2. At this location,
the sensor awaits an acknowledgment from the central unit. If an acknowledgment is
received or the end of the time slot is reached, the sensor moves to `3. At this location,
the sensor waits until the end of the TDMA cycle, i.e. 1500 time units. At the end of the

7

Chapter 1 Introduction

error

x ≤ 1500

x ≤ 6 x < 12 x ≤ 12

alive? ack!x ≥ 6

x ≤ 18 x < 24 x ≤ 24

alive? ack!x ≥ 18

x ≤ 30 x < 36 x ≤ 36

alive? ack!x ≥ 30

.

.

.
.
.
.

.

.

.

x ≤ 1494 x < 1500 x ≤ 1500

alive? ack!x ≥ 1494

x ≥ 1500

x := 0

Figure 1.5: Model-ling the system with timed automata, central unit

cycle, the sensor resets its clock x1 and moves to location `1. All sensors are modeled in
an analogous way.

Central unit The automaton at Figure 1.5 describes the behavior of the central unit.
The automaton has 125 layers, each layer corresponds to the communication of the
central unit with a sensor. Every layer functions in a similar way. We explain the first
layer. In the first layer, the central unit waits until point of time 6 for an alive message
from sensor 1. This is expressed by the location invariant x ≤ 6. If the alive message has
not been received until the point of time 6, the central unit moves to the error location.
If the alive message has been received, the central unit moves to the next location and
replies with an acknowledgment. At the end of the first slot, the model moves to the
next location at layer two and communicates with sensor number 2. At the end of the
TDMA cycle, the central unit resets its clock and returns to layer one to communicate
with the first sensor.

8

1.4 Summary of Contributions

The Properties

There are several properties relevant to the real fire alarm system. The system is a
reactive system. Therefore, the corresponding model should satisfy the deadlock free-
dom property. Because of European standards, another property might be, that if a
sensor is not working, this should be detected and displayed in less than 300 seconds.
Wireless systems face interference problems. Hence, retransmissions of alive messages
are important. A property may require, that under certain environmental circumstances
alive messages are always received by the central. For the simplified fire alarm system,
we may require the location error of the central unit to be unreachable.

The Verification Process

In the model for the fire alarm system presented above, the models describing the sensors
correspond to an obvious design. By this we mean that, since sensors are independent
components, it is a natural way to model every sensor with one clock.
In the fire alarm system, most of the properties that we need to verify are invariant

properties . Invariant properties require the complete state space to be checked. In order
to analyze the behavior of the fire alarm system, the components need to be composed.
Using standard operators, such as the parallel composition on the 125 sensors, will
render the verification intractable. This is because, the size of the resulting system
grows exponentially in the number of sensors.
A closer look at the principles of TDMA systems reveals important properties that we

exploit to avoid the state explosion problem. As an example, in the fire alarm system, we
observe that sensors operate in different time slots. This leads to the notion of disjoint
activity. In Chapter 3, we identify and formalize several underlying ideas of TDMA
based systems. In Chapter 4, we contribute to the verification of TDMA based systems
by providing syntactic patterns and operators. By using the techniques presented in
Chapter 4, the fire alarm system presented can be verified in linear time on the number
of sensors. Another important observation is that the clocks of the sensors are almost
equal. In the fire alarm system, at point of time which are multiples of 1500, it can be
the case that clock x1 = 1500 and clock x2 = 0. These clocks are not equal, but quasi-
equal. This clocks can be simplified. In Chapter 5, we present an abstraction method
for efficiently detecting quasi-equal clocks.

1.4 Summary of Contributions

In summary, this dissertation makes the following contributions:

• We provide a formalization of important properties of TDMA based systems. We
introduce concepts such as periodic cyclic timed automata, disjoint activity, sequen-
tialiasability and concatenation. We show that the concatenation of sequentialis-
able timed automata yields a bisimilar system with respect to the one obtained

9

Chapter 1 Introduction

using parallel composition. However, with a reduced number of edges. We show
that application of these methods lead to quadratic speed ups.

• We introduce a new syntactic class of timed automata. We call this class sequential
timed automata. This class of automata enables the syntactical check of properties
relevant to disjoint activity and sequentialiasability. Sequential timed automata are
well suited to model the components of TDMA based systems. Next, we introduce
the notion of overclocks and sequential composition on sequential timed automata.
We show the relation between a system produced by using the parallel composition
operator and a system produced using the sequential composition operator. This
relation is a weak bisimulation, thus preserving most properties. Applying the
sequential operator reduces the time complexity, for the model checking task, from
exponential to linear in the number of components.

• We detect another important component of real timed systems i.e. clock differences
of zero time duration. The clock differences are introduced by the interleaving
semantics of timed automata and clock resets. We call these clocks quasi-equal
clocks. Quasi-equal clocks can be replaced by a representative clock, yielding a
much smaller system. In order to perform a reduction on the number of clocks,
the quasi-equal clocks have to be efficiently detected. Therefore, we introduce
the notions of zero time configurations, zero time behavior , and a relax operator
on zones. By using these notions, we construct an abstract zone graph. In this
graph, quasi-equal and equal clocks can be efficiently detected. We provide upper
bounds for the size of the abstract zone graph, and formalize its relation to the
corresponding concrete zone graph. Finally, we provide an algorithm for computing
the abstract zone graph.

• We present our tool sAsEt. A flexible tool for analyzing timed systems. sAsEt
is based on the Jahob system. sAsEt encodes regions and zones as Isabelle/HOL
formulae. This allows our tool to use several theorem provers as constraint solvers.

The techniques above have been applied to verify a real world fire alarm system. A
detailed description of the verification process of this system can be found in [58]. Notions
given above corresponding to concatenation and sequentialisation of timed automata
have been presented in [100]. Notions given above corresponding to quasi-equal clocks
have been presented in [76, 101]. In addition, we have been able to successfully extend
our work on quasi-equal clocks in timed automata to quasi-dependent variables in hybrid
systems. These work has been presented in [30]. We have used our tool sAsEt to
compute the results presented in [30, 101].

1.5 Outline

In Chapter 2, we give the preliminaries of this thesis. We briefly introduce timed auto-
mata and Timed Computation Tree Logic (TCTL). In Chapter 3, we study and formalize

10

1.5 Outline

by means of timed automata important underlying principles of TDMA based systems.
Chapter 4 presents syntactic patterns and operators. These patterns are well suited for
the modeling and verification of TDMA based systems. The use of these patterns render
the verification complexity from exponential to linear in the number of components.
Chapter 5 presents the notion of quasi-equal clocks and an abstraction method for effi-
ciently detecting such clocks. In Chapter 6, we present our tool sAsEt and benchmarks
obtained by using the techniques presented in this thesis. In Chapter 7, we present our
conclusions and future work. Finally, Chapter 8 present a summary of this thesis in the
German language.

11

Chapter 2

Preliminaries

Contents
2.1 Timed Automata . 13

2.1.1 Semantics . 16

2.1.2 Finite Abstractions . 21

2.2 Timed Computation Tree Logic (TCTL) 23

2.2.1 Syntax . 23

2.2.2 Semantics . 24

This chapter presents important notions and notation that we will use in the rest of
this thesis. Section 2.1 presents key principles of the theory of timed automata. A finite
abstraction method for timed automata is presented. Section 2.2 presents the syntax
and semantics of a fragment of Timed Computation Tree Logic.

2.1 Timed Automata
The formal basis for our work are timed automata [5], our presentation follows [27, 105].
Timed automata are useful for modeling the behavior of real time critical systems. They
allow to describe relevant timed properties about the behavior of a system.
Timed automata are finite automata equipped with a finite set of real-valued variables.

These variables are called clocks. Clocks indicate the time elapsing at a certain location.
Clocks can be inspected or be reset to zero. The modeled system may require that a
location is visited for a limited number of time units. For this, clock constraints are
needed. The formal definition of clock constraints follows.

Definition 2.1 (Clock Constraints). Let X be a set of clocks. The set Φ(X) of simple
clock constraints over X is defined by the following grammar

ϕ ::= x ∼ c | x− y ∼ C | ϕ1 ∧ ϕ2

13

Chapter 2 Preliminaries

`0

x ≤ 60

`1

x ≤ 60

A1 :

x ≥ 50

x ≥ 60

x := 0

`0

y ≤ 60

`1

y ≤ 60

A2 :

y ≥ 40

y ≥ 60

y := 0

Figure 2.1: Example of two timed automata.

where x, y ∈ X, C ∈ Q+
0 , and ∼∈ {<,≤,≥, >}. Constraints of the form x − y ∼ c are

called difference constraints. ♦

Intuitively, a timed automaton is a directed graph with variables (clocks). The clocks
are used to model the system behavior. The locations in a timed automaton have a clock
constraint. Such a clock constraint is called location invariant. A location invariant
indicates the time the automaton can spend at the given location. The edges in a timed
automaton have guards and clock resets. Guards are clock constraints which indicate
at which points of time the edge is “enable” or it can be taken. Clock resets assign the
value of zero to a number of clocks. The formal definition of timed automaton follows.

Definition 2.2 (Timed Automaton). A Timed automaton A is a tuple

(L,Σ,X, I, E, `0),

where

• L is a finite set of locations, with typical element `.

• Σ is a finite set of actions comprising the internal action τ .

• X is a finite set of clocks.

• I : L → Φ(X) is a mapping that assigns to each location a clock constraint, its
invariant.

• E ⊆ L×Σ×Φ(X)×P(X)×L is the set of edges. An edge e = (`, α, ϕ, Y, `′) ∈ E
from ` to `′ involves an action α ∈ Σ, a guard ϕ ∈ Φ(X), and a reset set Y ⊆ X.

• `0 ∈ L is the initial location. ♦

Example 2.3. Figure 2.1 depicts two timed automata. Timed automaton A1 and timed
automaton A2. In timed automaton A1 the set of locations L consists of locations `0

14

2.1 Timed Automata

and `1. The set of actions Σ consist of the internal action τ . The set of clocks X is
a singleton consisting of clock x. The invariant function assigns to every location, the
constraint that the clock has to be less or equal than 60. The edge going from `0 to `1
has a guard stating, that it can only be taken if the value of the clock x is greater or
equal than 50. The edge from location `1 to `0 has a reset setting the value of the clock
x to zero. The initial location is `0. ♦
Complex systems consist of several components where the components operate con-

currently. One way to analyze the interaction among these components is by composing
all them using a parallel product operator. Intuitively, the parallel product of two timed
automata will produce a timed automaton which syntactically considers all possible
scenarios. Note, that the parallel product applied on two timed automata, computes the
Cartesian product on the set of locations. The formal definition of the parallel product
operator follows.

Definition 2.4 (Parallel Product). The parallel product of two timed automata

Ai = (Li,Σi,Xi, Ii, Ei, `0,i) with i = 1, 2,

and disjoint sets of clocks X1 and X2 yields the timed automaton

A1‖A2
def= (L1 × L2,Σ1 ∪ Σ2,X1 ∪ X2, I, E, (`0,1, `0,2))

where :

• I(`1, `2) := I1(`1) ∧ I2(`2), for each `1 ∈ L1, `2 ∈ L2,

• and E consists of handshake and asynchronous edges where:

– There is a handshake transition ((`1, `2), τ, ϕ1∧ϕ2, Y1∪Y2, (`′1, `′2)) ∈ E if there
are complementary actions α and ᾱ in Σ1∪Σ2 such that (`1, α, ϕ1, Y1, `

′
1) ∈ E1

and (`2, ᾱ, ϕ2, Y2, `
′
2) ∈ E2.

– There is an asynchronous transition ((`1, `2), α, ϕ1, Y1, (`′1, `2)) ∈ E, for each
edge (`1, α, ϕ1, Y1, `

′
1) ∈ E1 and each location `2 ∈ L2, and analogously for

each transition in E2. ♦

Example 2.5. Figure 2.2 shows the timed automaton resulting from applying the paral-
lel product operator to timed automata A1 and A2 from Figure 2.1. The initial location
is a pair consisting of the corresponding initial locations. The location invariants are
conjunctions of the corresponding location invariants in A1 and A2 respectively. Note
that all possible location and edge combinations are present in the resulting timed auto-
maton. ♦

15

Chapter 2 Preliminaries

`0, `0x ≤ 60 ∧ y ≤ 60

`1, `0

x ≤ 60 ∧ y ≤ 60

`0, `1

x ≤ 60 ∧ y ≤ 60

`1, `1 x ≤ 60 ∧ y ≤ 60

x ≥ 50 y ≥ 40

y ≥ 40 x ≥ 50

y ≥ 60 y := 0

x ≥ 60 x := 0

x ≥ 60 x := 0

y ≥ 60 y := 0

Figure 2.2: Timed automaton resulting from the parallel product of timed automaton
A1 and timed automaton A2 from Figure 2.1

2.1.1 Semantics

From previous examples we observe, that the current state of a timed automaton is given
by the current location and its current clock values. The clock values are formalized
using valuations. Therefore, the states or configurations of a timed automaton are
pairs consisting of locations and valuations. The edges in a timed automaton induce
a transition relation between configurations. Therefore, the underlying semantics of a
timed automaton is given by an infinite system. These systems are know as infinite
transition systems. In the following we formalize these notions. For the rest of this
section, let us fix a timed automaton A = (L,Σ,X, I, E, `0).

Definition 2.6 (Valuation). A valuation ν of clocks in X is a mapping

ν : X→ R+
0 ,

assigning to each clock x ∈ X the current time. ♦

In order to evaluate if a guard is satisfied or if the location invariant is still satisfied
by a valuation, we need to define a satisfaction relation between valuations and clock
constraints.

Definition 2.7 (Satisfaction Relation). The satisfaction relation “|=” between valu-

16

2.1 Timed Automata

ations and clock constraints is defined inductively

ν |= x ∼ c iff ν(x) ∼ c,
ν |= x− y ∼ c iff ν(x)− ν(y) ∼ c,
ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2.

If valuation ν satisfies the clock constraint ϕ we write

ν |= ϕ.

♦

The operational semantics of a timed automaton are given by a labeled transition
system. By being at a location, a timed automaton can proceed in two ways. It can
take an edge or it can let time progress while staying in that location. In the former, the
system performs discrete transition, and the transition is labeled by an action. In the
latter, the systems performs a delay transition and the transition is labeled by a positive
real number indicating the elapsed time.

Definition 2.8 (Operational Semantics). The operational semantics of the timed auto-
maton A is the labeled transition system

T S(A) = (Conf (A),R ∪ Σ, { λ−→ | λ ∈ R ∪ Σ}, C0),

where:

• Conf (A) = {(〈`, ν〉, t) ∈ L× (X→ R)×R | ν |= I(`)} is the set of configurations
consisting of time-stamped pairs of a location ` ∈ L and a valuation of the clocks
ν : X→ R which satisfies the clock constraint I(`).

• R ∪ Σ is the set containing all labels that may appear at transitions.

• λ−→ ⊆ Conf (A)× Conf (A) is the transition relation where:

– There is a delay transition from configuration 〈`, ν〉, t to 〈`, ν + t′〉, t + t′.
Formally

〈`, ν〉, t t
′
−→〈`, ν + t′〉, t+ t′

if and only if ν+t′′ |= I(`) for all t′′ ∈ [0, t′], where ν+t′ denotes the valuation
obtained from ν by time shift t′.

17

Chapter 2 Preliminaries

– There is an action transition between 〈`, ν〉, t and 〈`′, ν ′〉, t. Formally

〈`, ν〉, t α−→ 〈`′, ν ′〉, t

if and only if there exists an edge (`, α, ϕ, Y, `′) ∈ E with ν |= ϕ, ν ′ = ν[Y :=
0], and ν ′ |= I(`′), where ν[Y := 0] denotes the valuation obtained from ν by
resetting exactly the clocks in Y .

• C0 = {(〈`0, ν0〉, 0)}∩Conf (A) is the set of initial configurations is where ν0(x) = 0
for all clocks x ∈ X.

♦

A timed automaton, starting at its initial configuration, by taking edges can move
from one location to another one. If the clock constraints are satisfied. This process
induces a computation. Every computation describe a possible behavior of the system.

Definition 2.9 (Computation). An infinite or maximally finite sequence

π = c0
λ0−→ c1

λ1−→ c2
λ2−→ c3 . . .

is called a computation of A if and only if c0 ∈ C0 and (ci, ci+1) ∈ λ−→ for all i ∈ N0. We
write π ∈ T S(A) if and only if π is a computation of A. ♦

Note that, in contrast to [105], we do not distinguish transition sequences and (time-
stamped) computation paths. Here, the configurations of the labeled transition system
are already time-stamped.

Definition 2.10 (Additional notation). Given a computation π ∈ T S(A) we write:

• πj to denote the j-th configuration cj = 〈`j , νj〉, tj in π.

• λπj to denote the label of j-th transition in π, or simply λj if π is clear from the
context.

• `(πi), ν(πi), and t(πi), to denote the location `, valuation ν, and time-stamp t of
a configuration 〈`, ν〉, t = πi.

♦

In the operational semantics, configurations are pairs consisting of a location and
a valuation. Another equivalent description of the behavior of the system is know as
symbolic semantics [18] . Symbolic semantics are useful for verification and presentation
purposes. This is because they represent the behavior of the system in a more compact
way. In the symbolic semantics configurations are pairs consisting of locations and clock
constraints. The maximal set of valuations satisfying a clock constraint is known as a
zone.

18

2.1 Timed Automata

1

5

x

1
5

y

4

z

Z

Figure 2.3: The zone for clock constraint Z := x = y ∧ x ≥ 1 ∧ y ≤ 5 ∧ y − z ≤ 1

Definition 2.11 (Zone). A zone is the maximal set of clock valuations satisfying a clock
constraint. Formally, let Z ∈ Φ(X) be a clock constraint then the induced zone [Z] is

[Z] = {ν | ν |= Z}

In the following we shall use Z to stand for [Z] as a shorthand. Then, Φ(X) denotes the
set of zones for A. ♦

Example 2.12. Consider the clock constraint Z := x− y ≤ 0∧ x− y ≥ 0∧ x ≥ 1∧ y ≤
5∧y−z ≤ 1. The zone [Z] is the set of valuations satisfying the constraint Z. Figure 2.3
depicts the zone [Z]. ♦

At a given configuration, a timed automaton can perform a discrete transition or a
delay transition. Since in the symbolic semantics configurations are pairs of locations
and zones, a number of operations on zones are required to compute the successors of a
configuration. For our purposes we only need to consider the effect of resets and time
passage. Later, we introduce a normalization operator to ensure the finiteness of the
system [61, 18].

Definition 2.13 (Operations on Zones). We define a delay operator and a reset operator
on zones. Let Z ∈ Φ(X) and Y ⊆ X, then

• A delay on zone Z is
Z↑ = {ν + d | ν ∈ Z, d ∈ R+}

• A reset on zone Z for the clocks in Y is

Z[Y := 0] = {ν[Y := 0] | ν ∈ Z}

19

Chapter 2 Preliminaries

where ν[Y := 0] denotes the valuation obtained from ν by resetting exactly the
clocks in Y .

♦

The delay operator applied to a zone extends it by adding all positive real numbers,
i.e. it adds all the possible delay successors. Given a set of clocks, the reset operator
applied to a zone, sets all the clocks in the reset set to zero.
The symbolic semantics are a more compact representation than the concrete se-

mantics. In some fortunate cases, the symbolic semantics may yield a finite system.
However, in general the symbolic semantics may yield an infinite system. The symbolic
semantics for a timed automaton are given by a transition system whose configurations
are pairs consisting of locations and zones. This transition system is known as zone
graph.

Definition 2.14 (Zone Graph). The symbolic semantics for timed automaton A is
defined by the zone graph

ZG(A) = (SConf (A),→ZG, c0)

where:

• SConf (A) = L×Φ(X) is the set of configurations consisting of pairs of a location
` ∈ L and a zone Z ∈ Φ(X).

• c0 = 〈`0, {ν0}〉 is the initial configuration where ν0(x) = 0 for all clocks x ∈ X.

• →ZG⊆ SConf (A)× SConf (A) is the transition relation where:

– There is a delay transition from configuration 〈`, Z〉 to configuration 〈`, Z↑ ∧
I(`)〉. Formally,

〈`, Z〉 →ZG 〈`, Z↑ ∧ I(`)〉

– There is an action transition from configuration 〈`, Z〉 to configuration 〈`′, (Z∧
ϕ)[Y := 0] ∧ I(`′)〉. Formally,

〈`, Z〉 →ZG 〈`′, (Z ∧ ϕ)[Y := 0] ∧ I(`′)〉

if and only if there exists an edge (`, α, ϕ, Y, `′) ∈ E.

♦

20

2.1 Timed Automata

2.1.2 Finite Abstractions

Even though the symbolic semantics are a more compact representation than the con-
crete semantics. The symbolic semantics may yield an infinite system, which is not an
adequate model for automated verification. In the following, we present an abstraction
method for ensuring the resulting system to be finite. The foundation for the decidab-
ility results in timed automata is based in the notion of region equivalence over clock
valuations [2, 5]. The equivalence relation is then used to construct a so called region
automata. The region automaton is a finite system, which is bisimilar to the infinite
transition system induced by the operational semantics. The region automaton is an
important theoretical result. However, since the number of regions grows extremely
fast, the construction of the region automaton is impractical. A more efficient rep-
resentation of the state-space for timed automata is based on the notion of zones and
zone-graphs [61, 75, 138].

Definition 2.15 (Equivalence Relation on Valuations). For timed automaton A, let G
be a finite set of difference constraints and k : X→ Q+

0 be a function mapping each clock
x to the maximal constant k(x) appearing in the guards or invariants in A containing
x. For a real d let {d} denote the fractional part of d and bdc denote its integer part.
Two valuations ν, ν ′ are equivalent, denoted ν .∼k,G ν ′ iff

1. for all x, either bν(x)c = bν ′(x)c or both ν(x) > k(x) and ν ′(x) > k(x),

2. for all x, if ν(x) ≤ k(x) then {ν(x)} = 0 iff {ν ′(x)} = 0 and

3. for all x, y if ν(x) ≤ k(x) and ν(y) ≤ k(y) then {ν(x)} ≤ {ν(y)} iff {ν(x)} ≤
{ν ′(x)} ≤ {ν ′(y)}

4. for all ϕ ∈ G, ν ∈ ϕ iff ν ′ ∈ ϕ.

♦

Note that the equivalence relation is index by k and G. Intuitively, if two valuations are
bigger than the maximal constant k. The timed automaton can not distinguish between
these valuations and they are considered as equivalent. The set of constraints G is used
to ensure the soundness [32] of the abstract system constructed using the equivalence
relation given above. By using the equivalence relation on valuations, a normalization
operator on zones can be defined.

Definition 2.16 (Normalization Operator). Given a timed automaton A, let G be a
finite set of difference constraints and k : X → Q+

0 be a function mapping each clock x
to the maximal constant k(x) appearing in the guards or invariants in A containing x

21

Chapter 2 Preliminaries

and Z ∈ Φ(X) be a zone. Then the semantics of the normalization operator on zones is
defined as follows:

normk,G(Z) def= {ν | ν .∼k,G ν ′, ν ′ ∈ Z}

♦

Note that the equivalence relation is indexed by both a clock ceiling and a finite set of
difference constraints, and so is the normalization operation. By using the normalization
operator normk,G a finite transition system can be computed. For the rest of this thesis.
We will refer to this transition system as finite zone graph. The finite zone graph uses
the normalization operator normk,G to give a finite characterization of the transition
relation →ZG of the corresponding zone graph. The finite zone graph that we present
is a maximal bound abstraction method. This is because the finite system preserves all
the relevant information for values which are less than the maximal constant appearing
in the automaton. In some cases, considering the maximal constant is not necessary and
a coarser abstraction can take place [16]. There are several abstraction methods which
consider different aspects. The abstraction we present is the most widely used and is
implemented in tools such as Uppaal [91] and Kronos [140].

Definition 2.17 (Finite Zone Graph). The finite zone graph for timed automaton A is
defined by the zone graph

ZGk,G(A) = (SConf (A),→k,G , c0)

where:

• SConf (A) ⊆ L×Φ(X) is the set of configurations consisting of pairs of a location
` ∈ L and a zone Z ∈ Φ(X).

• c0 = 〈`0, normk,G({ν0})〉 is the initial configuration where ν0(x) = 0 for all clocks
x ∈ X.

• →k,G⊆ SConf (A) × SConf (A) is the transition relation defined by the following
rule:

〈`, Z〉 →ZG 〈`′, Z ′〉
〈`, Z〉 →k,G 〈`′, normk,G(Z ′)〉 if Z = normk,G(Z)

♦

Configurations in the finite zone graph are pairs consisting of locations and zones.
The abstract transition relation is constructed by applying the normalization operator
normk,G to the configurations in the concrete transition relation →ZG. The correctness
of the abstraction is expressed in the following theorem. Soundness expresses that if a
configuration is reached in the abstract system. Then, there is a corresponding reachable
concrete configuration. Completeness expresses that if a configuration is reached in the
concrete system. Then, there is a corresponding reachable abstract configuration.

22

2.2 Timed Computation Tree Logic (TCTL)

BF ::= Ai.` | ϕ,
CF ::= BF | ¬CF | CF1 ∧ CF2,

EPF ::= ∃♦CF | ∃�CF,
APF ::= ∀♦CF | ∀�CF | CF1 −→ CF2,

PF ::= EPF | APF.

Table 2.1: Syntax of a subset of the Timed Computation Tree Logic.

Theorem 2.18. Given timed automaton A with initial configuration 〈`0, ν0〉, t0, maximal
constant k and whose guards contain only a finite set of difference constraints denoted
G.

1. (Soundness) 〈`0, {ν0}〉(→k,G)∗〈`i, Zi〉 implies 〈`0, {ν0}〉, t0(λ−→)∗〈`i, νi〉, ti for all νi ∈
Zi such that νi(x) ≤ k(x) for all x ∈ X.

2. (Completeness) `0{ν0}, t0(λ−→)∗〈`i, νi〉, ti with νi(x) ≤ k(x) for all x ∈ X implies
〈`0, {ν0}〉(→k,G)∗〈`i, Zi〉 for some Zi such that νi ∈ Zi.

3. (Finiteness) The transition relation →k,G is finite.

For soundness, the existence of a simulation relation can be shown. Completeness
follows immediately from the fact that the normk,G operator applied to a zone produces an
equal or bigger zone. The transition relation→k,G is finite because the set {normk,G(Z) |
Z ∈ Φ(X)} is finite.

2.2 Timed Computation Tree Logic (TCTL)

Timed Computation Tree Logic(TCTL for short) is a real-time variant of Computation
Tree Logic(CTL) conceived to express properties of timed automata. TCTL enables to
express properties such as; a given stated has to reached within j time units. Timed
CTL is sufficiently expressive to allow the formulation of an important set of real-time
system properties. In the following, we present the logic of Uppaal which is a subset of
the Timed Computation Tree Logic. Our presentation follows [10, 105].

2.2.1 Syntax

Informally, this logic allows us to express that the following properties ϕ on configura-
tions should hold along the computation path of a given transition system.

23

Chapter 2 Preliminaries

• ∃♦ϕ expresses that there exists a computation path along which eventually ϕ holds.

• ∃�ϕ expresses that there exists a computation path along which ϕ always holds.

• ∀♦ϕ express that along all computation paths ϕ eventually holds.

• ∀�ϕ expresses that along all computation paths ϕ always holds.

• ϕ1 −→ ϕ2 expresses that each occurrence of ϕ1 eventually leads to an occurrence
of ϕ2.

For the rest of this section let us fix an automaton N = A1‖ . . . ‖An with transition
system T S(N) set of clocks X and initial configuration C0. The formal definition of
TCTL is given by the grammar in Table 2.1. Basic Formulae BF, these formulae are of
the form Ai.` or ϕ. The formula Ai.` asserts that the current location of the i-th time
automaton has to be `. The formula ϕ is a constraint over X. Configuration Formulae
CF, these formulae express constraints on the valuations of a configuration. Configur-
ation formulae can be a basic formula BF, a negation of a configuration formula or a
conjunction of configuration formulas. Path Formulae PF, by starting at a configuration,
these formulae establishes constraints on the future behavior of the system. Path formu-
lae are divided into existential and universal path formulae. Existential Path Formulae
EPF and Universal Path Formulae APF enable to express properties of the future be-
havior of the system on a quantified manner. The intuition of quantified path formulas
e.g. ∃♦CF has been given above.

Example 2.19. Consider the timed automaton in Figure 2.2. The property. For all
the possible computations, clocks x and y are always equal or one of the clocks is equal
to zero. Can be expressed by the following ∀� x = y ∨ x = 0 ∨ y = 0. Note that
our grammar do not consider disjunctions. However, disjunctions can be represented
using conjunctions and negations [10]. The formula given above can be expressed as
∀� ¬(x 6= y ∧ x 6= 0 ∧ y 6= 0). ♦

2.2.2 Semantics

The semantics of TCTL formulae is defined for configurations of the form 〈`, ν〉, t. Con-
figuration formulae can be evaluated using the valuations. Path formulae are evaluated
over all divergent time paths. The following notation will come useful in defining the
semantics of TCTL.

Definition 2.20 (Additional Notation). Let π ∈ T S(N) i.e. π is a computation path
of N starting at some 〈

−→
`0 , ν0〉, t0 ∈ C0 of the form:

π = 〈
−→
`0 , ν0〉, t0

λ0−→ 〈
−→
`1 , ν1〉, t1

λ1−→ 〈
−→
`2 , ν2〉, t2

λ2−→ 〈
−→
`3 , ν3〉, t3 . . .

24

2.2 Timed Computation Tree Logic (TCTL)

and let t ∈ R+
0 . We denote by π(t) the set of configurations in π at time t, Formally:

π(t) def= {〈
−→
` , ν〉 | ∃i ∈ N0 • (ti ≤ t ≤ ti+1 ∧

−→
` =

−→
`i ∧ ν = νi + t− ti)}

Finally, let 〈
−→
` , ν〉 ∈ Conf (N) denote a configuration 〈

−→
` , ν〉, t′ ∈ Conf (N) for some

t′ ∈ R+
0 . ♦

We now introduce a binary satisfaction relation |= between time stamped configura-
tions 〈

−→
`0 , ν0〉, t0 and formulas F of the Uppaal logic described in Table 2.1. Written

as
〈
−→
`0 , ν0〉, t0 |= F.

The formal definition of the satisfaction relation is given in Table 2.2. The definition is
an inductive definition. Given a configuration. If the formula is a configuration formula,
then the formula can be directly evaluated in the given configuration. If the formula is a
basic formula, then the interpretations of conjunctions and negations are as usual using
the given configuration. For path formulas. In the case of existential path formulae, the
formula holds if and only if there exist some path starting at 〈

−→
`0 , ν0〉, t0 which models

the corresponding configuration formula. In the case of universal path formulae, the
formula holds if and only if all paths starting at 〈

−→
`0 , ν0〉, t0 model the corresponding

configuration formula.
The satisfaction relation is defined on configurations. We now lift the satisfaction

relation |= to transition systems as follows:

T S(N) |= EPF iff 〈
−→
`0 , ν0〉, t0 |= EPF for some 〈

−→
`0 , ν0〉, t0 ∈ C0,

T S(N) |= APF iff 〈
−→
`0 , ν0〉, t0 |= APF for all 〈

−→
`0 , ν0〉, t0 ∈ C0.

Note that by definition of transition system, C0 can have only one element or none.
Therefore, if C0 is empty an EPF formula is never satisfied whereas any APF formula is
trivially satisfied.

25

Chapter 2 Preliminaries

〈
−→
`0 , ν0〉, t0 |= Ai.` iff `0,i = `, i.e. the ith component of

−→
`0 is `,

〈
−→
`0 , ν0〉, t0 |= ϕ iff ν0 |= ϕ,

〈
−→
`0 , ν0〉, t0 |= ¬CF iff 〈

−→
`0 , ν0〉, t0 6|= CF,

〈
−→
`0 , ν0〉, t0 |= CF1 ∧ CF2 iff 〈

−→
`0 , ν0〉, t0 |= CF1 and 〈

−→
`0 , ν0〉, t0 |= CF2,

〈
−→
`0 , ν0〉, t0 |= ∃♦CF iff ∃π ∈ T S(N), t ∈ R+

0 , 〈
−→
` , ν〉 ∈ Conf (N)•

t0 ≤ t ∧ 〈
−→
` , ν〉 ∈ π(t) ∧ 〈

−→
` , ν〉, t |= CF,

〈
−→
`0 , ν0〉, t0 |= ∀�CF iff ∀π ∈ T S(N), t ∈ R+

0 , 〈
−→
` , ν〉 ∈ Conf (N)•

t0 ≤ t ∧ 〈
−→
` , ν〉 ∈ π(t) =⇒ 〈

−→
` , ν〉, t |= CF,

〈
−→
`0 , ν0〉, t0 |= ∃�CF iff ∃π ∈ T S(N) • ∀t ∈ R+

0 , 〈
−→
` , ν〉 ∈ Conf (N)•

t0 ≤ t ∧ 〈
−→
` , ν〉 ∈ π(t) =⇒ 〈

−→
` , ν〉, t |= CF,

〈
−→
`0 , ν0〉, t0 |= ∀�CF iff ∀π ∈ T S(N) • ∃t ∈ R+

0 , 〈
−→
` , ν〉 ∈ Conf (N)•

t0 ≤ t ∧ 〈
−→
` , ν〉 ∈ π(t) ∧ 〈

−→
` , ν〉, t |= CF,

〈
−→
`0 , ν0〉, t0 |= CF1 −→ CF2 iff ∀π ∈ T S(N) • ∀t ∈ R+

0 , 〈
−→
` , ν〉 ∈ Conf (N)•

t0 ≤ t ∧ 〈
−→
` , ν〉 ∈ π(t) ∧ 〈

−→
` , ν〉, t |= CF1

implies 〈
−→
` , ν〉, t |= ∀♦CF2.

Table 2.2: Semantics of Timed Computation Tree Logic

26

Chapter 3

Semantic Optimizations for TDMA Systems

Contents
3.1 Periodic Cyclic Timed Automata 28

3.2 Timed Disjoint Activity . 37

3.2.1 Activity . 37

3.2.2 Sequentialisable . 38

3.3 Concatenation of Periodic Cyclic Timed Automata 41

3.4 Complexity . 46

3.5 Related Work . 49

In this chapter we study key principles of TDMA based systems and then use the
theory of timed automata to formalize these principles. Later we exploit these principles
for reducing the time complexity of the verification task.
In TDMA based systems the information is transmitted in frames or cycles. Cycles

have a fix length. Once a cycle ends, a new cycle starts. This behavior of the system
leads to our definition of periodic cyclic timed automata. As TDMA systems are based
on cycles. This class of automata has the property that a given location has to be
infinitely often visited. This property is similar to the acceptance condition of timed
Büchi automata [5]. The most important difference is that a given configuration has
to be visited at regular points of time. These points of time are multiples of a natural
number and a fix number, which we call the period.
The structure of TDMA based systems ensures the absence of collisions in a shared

medium. This fact suggest an independence among the TDMA components. This obser-
vation leads to our definition of disjoint activity. Under activity of a timed automaton,
we refer to the points in time where the automaton can perform discrete transitions.
If the activity of two timed automata do not overlap, we say that the automata have
disjoint activity.
The components of the TDMA system, share their information in their corresponding

time slots in consecutive succession. This observation and the notion of disjoint activity,

27

Chapter 3 Semantic Optimizations for TDMA Systems

lead to the definition of sequentialisation. If two timed automata are sequentialisable,
then their activity is mostly disjoint and one automaton executes a number of actions
before the other one in every TDMA cycle. The independence of actions and the suc-
cession of actions from different automata, propose the use of a more specific operator
than the parallel composition operator. We therefore present a concatenation operator
on periodic cyclic timed automata with disjoint activity.
For sequentialisable periodic cyclic timed automata. We study the relationship between

the systems composed by using the concatenation operator and systems composed us-
ing the parallel composition operator. Our results shows that the resulting systems are
bisimilar. In addition, we show that the use of the concatenation operator lead to quad-
ratic speed ups on the verification time complexity. The reduction on the verification
time complexity, is due to a reduced number of edges on the system obtained using the
concatenation operator.

Contributions

The key technical contributions that are described in this chapter are summarized as
follows:

• We introduce the class of periodic cyclic timed automata. We then show that this
class of automata is closed under application of the parallel composition operator.

• For the theory of timed automata. We introduce the notions of activity, disjoint
activity and sequentialisability.

• We introduce a concatenation operator on sequentialisable periodic cyclic timed
automata. We show that the class of periodic cyclic timed automata is closed
under the application of the concatenation operator.

• For sequentialisable periodic cyclic timed automata. We show that the resulting
system obtained using the concatenation operator is bisimilar to the corresponding
one obtained using the parallel product operator. We then introduce the notion of
enable edges and show that using the concatenation operator on sequentialisable
timed automata yield quadratic speed ups.

3.1 Periodic Cyclic Timed Automata
Timed automata models of, e.g. TDMA-based protocols can be cyclic and periodic in
the following sense. Intuitively, a timed automaton is cyclic if the initial location is
visited infinitely often on all computations, the corresponding configurations are called
start configuration. A timed automaton is periodic with period pt if configurations
containing the initial location are reached only at integer multiples of the period and are
reached from a unique final location. In the following, we formally define periodic cyclic
timed automata in terms of the new notions of start, restart, and final configurations
(cf. Figure 3.1).

28

3.1 Periodic Cyclic Timed Automata

c1
c2 c3 . . . cn

t0 α2 α3 αn t1

∈ Fin(A) ∈ Start(A)

︸ ︷︷ ︸
∈ Rst(A)

Figure 3.1: Start configurations are in the initial location and have an action predecessor
and a delay successor, final configurations a delay predecessor and an action successor.
Configurations on an action-only path between a final and a start configuration are called
restart configurations.

Definition 3.1 (Start, Restart and Final Configurations). Let A = (L,Σ,X, I, E, `0)
be a timed automaton. The set Start(A) of start configurations A consists of those
configurations of T S(A) that are at location `0 and occur in a computation π ∈ T S(A)
as source of a delay transition and as destination of an action transition, i.e.

Start(A) def= {c = 〈`0, ν〉, t ∈ Conf (A) | ∃π ∈ T S(A),m ∈ N0 •

πm = c ∧ λm ∈ R ∧ (λm−1 ∈ Σ ∨m = 0)}.

The set Rst(A) of restart configurations consists of those configuration of T S(A) that
occur in a computation π ∈ T S(A) as action-predecessor of a start configuration, i.e.

Rst(A) def= {c ∈ Conf (A) | ∃π ∈ T S(A),m, i ∈ N0 •m ≤ i ∧ πm = c

∧ πi ∈ Start(A) ∧ πm
λm−−→ . . .

λi−1−−−→ πi ∧ ∀m ≤ j ≤ i • λj ∈ Σ}.

The set Fin(A) of final configurations consists of the maximal restart configurations
of T S(A), that is, restart configurations which are the destination of a delay transition,
i.e.

Fin(A) def= {c ∈ Rst(A) | ∃π ∈ T S(A),m ∈ N0 •

πm = c ∧ (λm−1 ∈ R ∨m = 0)}.

The set Lrst of restart locations consists of those locations that occur in a restart
configuration, i.e.

Lrst
def= {` ∈ L | ∃ν : X→ R, t ∈ R • 〈`, ν〉, t ∈ Rst(A)}.

♦

29

Chapter 3 Semantic Optimizations for TDMA Systems

Figure 3.1, depicts a fragment of a computation path. In the computation path the
configuration c1 is a final configuration, because it is the result of a delay transition and
the successor is due to an action transition. The configuration cn is a start configuration,
because it is at the initial location, the source of an action transition and its successor is
due to a delay transition. The set of restart configurations is the set consisting of all the
configurations reaching cn via action transitions. The set of restart locations, consist of
all the locations in the configurations of the set of restart configurations. We illustrate
the set of restart locations with an example.

Example 3.2. First, consider the timed automaton A1 from Figure 3.2. The timed
automaton corresponds to a sensor of the fire alarm system presented in Section 1.2.
At point of time 1500 there is a transition from configuration 〈`3, ν(x1) = 1500〉, 1500
leading to the configuration 〈`0, ν(x1) = 0〉, 1500. The configuration 〈`0, ν(x1) = 0〉, 1500
is a start configuration, because it is at location `0, its possible successors are delay
successors, and it is reached via an action transition. The configuration 〈`3, ν(x1) =
1500〉, 1500 is a final configuration, because it has no delay predecessors and reaches
a start configuration via action transitions. If we analyze the automaton carefully, we
realize that the set of restart locations consist of locations `0 and `3.
Now, consider Figure 3.3. Corresponding to the parallel product of the sensors 1 and

2 from the fire alarm system presented in Section 1.2. Consider a computation

. . .
λi−→
∗
〈(`3, `3), ν(x) = ν(y) = 1500〉, 1500

λi+1−−−→
∗
〈(`0, `3), ν(x) = 0, ν(y) = 1500〉, 1500

λi+2−−−→
∗
〈(`0, `0), ν(x) = 0, ν(y) = 0〉, 1500

λi+3−−−→
∗
. . .

Then, configuration 〈`3, `3, ν(x) = ν(y) = 1500〉, 1500 is a final configuration. Con-
figuration 〈`0, `0, ν(x) = 0, ν(y) = 0〉, 1500 is a start configuration and configuration
〈`0, `3, ν(x) = 0, ν(y) = 1500〉, 1500 is in the set of restart configurations. The set of
restart locations consist of the locations in the configurations of the above mentioned
configurations and the location (`0, `3). ♦

By using the definitions of restart, start and final configurations we are ready to define
the class of periodic cyclic timed automata. Intuitively, a timed automaton is a periodic
cyclic timed automaton. If all its computations visit a start configuration infinitely
often. An additional constraint is that the start configurations can be only visited at
determined points of time. These points of time are multiples of the period and the
natural numbers. Another constraint, is that the automaton has only one final location.
i.e. all the final configurations are at location `fin. Figure 3.2 exhibit a periodic cyclic

30

3.1 Periodic Cyclic Timed Automata

0 · pt 1 · pt 2 · pt 3 · pt 4 · pt 5 · pt
time

`0

x1 ≤ 1

`1

x1 ≤ 6

`2

x1 ≤ 12

`3

x1 ≤ 1500

x1 ≥ 1

alive!

x1 ≥ 12 ack?

x1 ≥ 1500

x1 := 0

Figure 3.2: Period points of time of a sensor. Bottom, timed automaton corresponding
to sensor 1 of the fire alarm system presented in Section 1.2. Top, period points of sensor
1, the points of time correspond to the integer multiples of the TDMA cycle, with period
pt = 1500.

timed automaton. The automaton corresponds to a sensor of the fire alarm system
described in Section 1.2. The time axis depicts the points of time at which a start
configuration is visited. Note that the final location of the automaton is `3. The formal
definition of periodic cyclic timed automata follows.

Definition 3.3 (Periodic Cyclic). A timed automaton A = (L,Σ,X, I, E, `0) is called
periodic cyclic with period pt ∈ R if and only if each computation comprises infinitely
many start configurations which occur at a regular period of time and if there is a unique
final location `fin, i.e.

pecy(A, pt) def⇐⇒ ∀π ∈ T S(A), p ∈ N0 ∃c = (〈`, ν〉, t) ∈ Start(A), i ∈ N0•

πi = c ∧ t = pt · p ∧

∀π ∈ T S(A), c = (〈`, ν〉, t) ∈ Start(A), i ∈ N0 •

πi = c⇒ ∃p ∈ N0 • t = pt · p ∧

∃`fin ∈ L ∀(〈`, ν〉, t) ∈ Fin(A) • ` = `fin.

♦

Now we will show that the class of periodic cyclic timed automata is closed under the
application of the parallel product operator. This is important, because it ensures that
the properties of periodic cyclic timed automata are preserved after applying the parallel

31

Chapter 3 Semantic Optimizations for TDMA Systems

`0, `0

x1 ≤ 1∧
x2 ≤ 13

`1, `0

x1 ≤ 6∧
x2 ≤ 13

`2, `0

x1 ≤ 12∧
x2 ≤ 13

`3, `0

x1 ≤ 1500
∧x2 ≤ 13

x1 ≥ 1

alive!

x1 ≥ 12

ack?

`3, `1

x1 ≤ 1500∧
x2 ≤ 18

`3, `2

x1 ≤ 1500∧
x2 ≤ 24

`3, `3
x1 ≤ 1500∧
x2 ≤ 1500

x2 ≥ 13

alive!

x2 ≥ 24 ack?

`0, `3

x1 ≤ 0∧
x2 ≤ 1500

x1 ≥ 1500

x1 := 0

x2 ≥ 1500

x2 := 0

x2 ≥ 1500

x2 := 0

x1 ≥ 1500

x1 := 0

Figure 3.3: Reachable fragment of the timed automaton obtained by applying the paral-
lel composition operator on sensor 1 and sensor 2 form the fire alarm system presented
in Section 1.2.

product operator. In the following, we define a projection on computations. Given an
automaton which is the result of the application of the parallel product operator on two
timed automata. The projection function applied on a computation of the given timed
automaton will project it onto a computation of one of its components. This definition
will come useful for the proofs in this chapter.

Definition 3.4 (Projection). In the following, we assume that in computations of
A1‖A2, each transition is implicitly associated with the information which edges have
been considered to justify the transition. That is, we assume that for each λj, j ∈ N,
occurring in a computation π ∈ T S(A1‖A2) there is a pair which (ε1(λj), ε2(λj)) ∈
2E1 × 2E2 gives the involved edges. For asynchronous edges, the component correspond-
ing to the timed automaton which does not take a transition, is the empty set ∅. If λj
is a delay transition, then ε1(λj) = ε2(λj) = ∅.
Let

π = 〈(`1,0, `2,0), ν0〉, t0
λ0,1−−→ . . .

λ0,n0−−−→ 〈(`1,0,n0 , `2,0,n0), ν0,n0〉, t0,n0

λ0−→ 〈(`1,1, `2,1), ν1〉, t1
λ1,1−−→ . . .

λ1,n1−−−→ 〈(`1,1,n1 , `2,1,n1), ν1,n1〉, t1,n1

λ1−→ . . .

32

3.1 Periodic Cyclic Timed Automata

be a computation of the parallel composition of A1 and A2 which is renumbered such
that λj,1, . . . , λj,nj , j ∈ N0, are maximal sequences of actions of A2, i.e. ε1(λj,i) = ∅ and
ε2(λj,i) 6= ∅ for all j ∈ N0 and 1 ≤ i ≤ nj.
Then the projection of π onto A1, denoted by Γ1(π), is defined as

Γ1(π) def= 〈(`1,0), ν0|X1〉, t0
λ̃0−→ 〈(`1,1), ν1|X1〉, t1

λ̃1−→ . . .

where νi|X1 denotes the standard function restriction of valuation νi to the range X1,
i ∈ N0, and where λ̃i denotes action α if ε1(λi) = {(`, α, ϕ, Y, `′)}, and just λi otherwise.
The projection of π onto A2, denoted by Γ2(π), is defined analogously. ♦

For a timed automaton which is the result of applying the parallel product on two
timed automata. Using the projection defined above. A computation of the timed
automaton will be projected to a computation on one of its components. Given a com-
putation, the following lemma states that the computation obtained by projecting it
onto a component is indeed a computation of the component.

Lemma 3.5. Let A1 and A2 be timed automata. Then the projection of a computation
of A1‖A2 onto Ai is a computation of Ai, i = 1, 2, i.e.

∀π ∈ T S(A1‖A2), i ∈ {1, 2} • Γi(π) ∈ T S(Ai).

Proof. We consider the case for A1 the proof for A2 can be done analogously. We
proceed by induction on the index i of the computation π. We show that for every i,
there exist a j s.t. Γ1(π)j is reachable in T S(A1) and if ε1(λi) 6= ∅ or λi ∈ R then
πi = 〈(`1,i, `2,i), νi〉, ti and Γ1(π)j = 〈(`1,i), νi|X1〉, ti.
Base case: i = j = 0, then (Γ1(π))0 = 〈`0, ν0〉, t0 = c0.
Induction step: by IH (Γ1(π))j is reachable, we consider two cases:

• ε1(λi) 6= ∅ or λi ∈ R i.e. a transition involving A1 with πi = 〈(`1,i, `2,i), νi〉, ti and
(Γ1(π))j = 〈(`1,i), νi|X1〉, ti. With

〈(`1,i, `2,i), νi〉, ti
λi−→ 〈(`1,i+1, `2,i+1), νi+1〉, ti+1

We have two cases:

– λi ∈ R. There is a time transition and νi+1 |= I1(`1,i+1) ∧ I2(`2,i+1). By
def. of rewriting and Γ we have Γ1(π)j

λi−→ Γ1(π)j+1 with Γ1(π)j+1 =
〈`1,i+1b, νi+1|X1〉, ti+1. Then νi+1|X1 = νj , `1,i+1 = `1,j and νj |= I(`1,j).
Therefore, Γ1(π)j+1 is reachable.

33

Chapter 3 Semantic Optimizations for TDMA Systems

– ε1(λi) 6= ∅. There is an local transition or a synchronization transition in A1.
By definition of the projection we have ε1(λi) = {e = (`1,i, λi, ϕ, Y, `1,i+1)},
s.t. νi |= ϕ, νi+1 = ν[Y := 0] and νi+1 |= I1(`1,i+1) ∧ I2(`2,i+1). By IH
Γ1(π)j = 〈(`1,i), νi|X1〉, ti for some j and by def of Γ it follows, Γ1(π)j+1 =
〈`1,i+1, νi+1|X1〉, ti+1. By edge e and the fact that νi+1|X1 |= I(`1,i+1). Γ1(π)j+1

is reachable from Γ1(π)j .

• λi ∈ Σ2. Then the computation fragment starting at πi where λi is being renamed
accordingly to the definition is of the form:

πi
λi,0−−→ πi+1

λi,1−−→ πi+2
λi,2−−→ . . .

λi,k−−→ πi+k
λi+1−−−→ πi+k+1

for some k ∈ N and k > 0. and for all k′ ∈ N such that 0 < k′ ≤ k, λk′ ∈ Σ2.
Therefore, πi+k = 〈`i+k, νi|X1∪νi+k|X2〉, ti with `i+k = (`1,i, `2,i,k) and ε1(λi+k) 6= ∅
or λi+k ∈ R. In particular, we are in the above case involving an action transition
of A1 or a time delay. This have been shown above.

Therefore, Γ1(π) ∈ T S(A1) and Γ2(π) ∈ T S(A2).

Let us illustrate with an example the application of the projection function Γ to a
computation.

Example 3.6. Consider Figure 3.3. The automaton is the parallel product of sensors
1 and 2 from the fire alarm system presented in Section 1.2. We refer to sensor 1 and 2
by A1 and A2 respectively. Consider a computation π ∈ T S(A1‖A2) such that,

π = . . .
0−→
∗
〈(`3, `3), ν(x) = ν(y) = 1500〉, 1500

0−→
∗
〈(`0, `3), ν(x) = 0, ν(y) = 1500〉, 1500

0−→
∗
〈(`0, `0), ν(x) = 0, ν(y) = 0〉, 1500

λi−→
∗
. . .

Then, the projection of π onto sensor 1 is

Γ1(π) = . . .
0−→
∗
〈`3, ν(x) = 1500〉, 1500

0−→
∗
〈`0, ν(x) = 0〉, 1500

λj−→
∗
. . .

Because of Lemma 3.5, the resulting projection is a computation of sensor 1, i.e. Γ1(π) ∈
T S(A1). ♦

34

3.1 Periodic Cyclic Timed Automata

The following theorem states that the class of periodic cyclic timed automata is closed
under application of the parallel composition operator. This theorem will come useful
in the next section for showing properties of sequentialisable timed automata.

Theorem 3.7. Let A1 and A2 be periodic cyclic timed automata with period pt ∈ R.
Then A1‖A2 is periodic cyclic with period pt.

Proof. By definition of periodic cyclic we have

pecy(A1, pt) ∧ pecy(A2, pt)⇒
∀π ∈ T S(A1||A2), p ∈ N0 ∃c = (〈(`1, `2), ν〉, t) ∈ Start(A1||A2), i ∈ N0•
πi = c ∧ pt · p = t∧
∀π ∈ T S(A1||A2), c = (〈(`1, `2), ν〉, t) ∈ Start(A1||A2) , i ∈ N0•
πi = c⇒ ∃p • t = pt · p ∧
∃`fin ∈ L ∀(〈`, ν〉, t) ∈ Fin(A1||A2) • ` = `fin

We split our proof in three and show first :

pecy(A1, pt) ∧ pecy(A2, pt)⇒
∀π ∈ T S(A1||A2), p ∈ N0 ∃c = (〈(`1, `2), ν〉, t) ∈ Start(A1||A2), i ∈ N0•
πi = c ∧ pt · p = t

We negate formula and show that it is unsatisfiable.

pecy(A1, pt) ∧ pecy(A2, pt)∧
∃π ∈ T S(A1||A2), p ∈ N0 ∀c = (〈(`1, `2), ν〉, t) ∈ Start(A1||A2), i ∈ N0•
πi = c⇒ pt · p 6= t

The formula states that there exist a computation π for which at period p there
is no start configuration. That is all the start configurations in π do not occur at
period p. Assume, that such a sequence π and period p exists. We show, that this
yields a contradiction. By Lemma 3.5, Γ1(π) ∈ T S(A1) and Γ2(π) ∈ T S(A2). Since
pecy(A1, pt) and pecy(A2, pt). Computation Γ1(π) has at point time pt · p a transition
〈`1, ν1〉, pt · p

α−→ 〈`ini1 , ν ′1〉, pt · p for some edge (`1, α, ϕ, Y, `ini1) ∈ E1 with ν1 |= ϕ,
ν ′1 = ν1[Y := 0] and ν ′1 |= I1(`′1). Analogously for A2. By the semantics of local
transitions in networks we have that there is a local transition corresponding to A1

〈(`1, `2, ν1 ∪ ν2〉, pt · p
α−→ 〈((`ini1 , `2), ν ′1 ∪ ν2〉, pt · p and a local transition corresponding

to A2 〈(`1, `2, ν1 ∪ ν2〉, pt · p
α−→ 〈((`′1, `ini2), ν1 ∪ ν ′2〉, pt · p in particular A1, A2 remain at

`ini1 , `ini2 respectively at time point pt · p. Therefore, we have

. . .
α−→ 〈(`1, `2, ν〉, pt · p α−→ 〈((`ini1 , `2), ν ′〉, pt · p α−→ 〈((`ini1 , `ini2), ν ′′〉, pt · p

35

Chapter 3 Semantic Optimizations for TDMA Systems

or
. . .

α−→ 〈(`1, `2, ν〉, pt · p
α−→ 〈((`1, `ini2), ν ′′′〉, pt · p α−→ 〈((`ini1 , `ini2), ν ′′〉, pt · p

therefore there exist a i ∈ N0 such that πi = 〈((`ini1 , `ini2), ν ′1 ∪ ν2〉, pt · p and πi ∈
Start(A1||A2) this yields a contradiction. Therefore, π 6∈ T S(A1||A2).
We now show,

pecy(A1, pt) ∧ pecy(A2, pt)⇒
∀π ∈ T S(A1||A2), c = (〈(`1, `2), ν〉, t) ∈ Start(A1||A2) , i ∈ N0•
πi = c⇒ ∃p • t = pt · p

We negate the formula and show that it is unsatisfiable,

pecy(A1, pt) ∧ pecy(A2, pt)⇒
∃π ∈ T S(A1||A2), c = (〈(`1, `2), ν〉, t) ∈ Start(A1||A2) , i ∈ N0•
πi = c ∧ ∀p • t 6= pt · p

The formula states that there is a computation in which there is a start configuration
which has a time stamp which is not a multiple of pt for all p ∈ N0. By definition of
Start(A1||A2) we have πi = 〈`, ν〉, t with ` = (`01 , `02). By Lemma 3.5 Γ1(π) ∈ T S(A1)
and there exist j ∈ N s.t. (Γ1(π))j = 〈`01 , ν|X1〉, t. Therefore, (Γ1(π))j ∈ Start(A1). By
assumption, A1 is periodic cyclic with period pt. Thus, (Γ1(π))j with time stamp t is
such that t = pt · p′ for some p′ ∈ N, which is a contradiction.
Finally, we show:

pecy(A1, pt) ∧ pecy(A2, pt)⇒ ∃`fin ∈ L ∀(〈`, ν〉, t) ∈ Fin(A1||A2) • ` = `fin

We show that the negation is unsatisfiable

pecy(A1, pt) ∧ pecy(A2, pt)∧
∀(`fin1 , `fin2) ∈ L ∃(〈(`1, `2), ν〉, t) ∈ Fin(A1||A2) • (`1, `2) 6= (`fin1 , `fin2)

Since pecy(A1) and pecy(A2) they have a unique final location, let `′fin1
and `′fin2

denote
their final location respectively. By definition of final configuration there exists a com-
putation π ∈ T S(A1||A2) such that πi = 〈(`1, `2, ν〉, t), with `1 6= `′fin1

or `2 6= `′fin2
, and

a configuration πk = (〈(`01 , `02), ν ′〉, t) such that

. . .
t′′−→ πi

λi−→ . . .
λi+1−−−→ . . .

λk−1−−−→ πk

With πk ∈ Start(A1||A2) and λj ∈ Σ for i ≤ j < k. By Lemma 3.5 Γ1(π) ∈ T S(A1)
and Γ1(π)i′ = 〈`1, ν|X1〉, t, Γ1(π)k′ = 〈`0, ν ′|X1〉, t and λ

Γ1(π)
j′ ∈ Σ1 for i′ ≤ j′ < k′. Then

Γ1(π)i′ ∈ Fin(A1). Since pecy(A1), `1 = `′fin, which is a contradiction.

36

3.2 Timed Disjoint Activity

0 1500 3000 4500 6000 7500
time

`0

x1 ≤ 1

`1

x1 ≤ 6

`2

x1 ≤ 12

`3

x1 ≤ 1500

x1 ≥ 1

alive!

x1 ≥ 12 ack?

x1 ≥ 1500

x1 := 0

Figure 3.4: Activity of sensor 1, the activity points are at points of time where the TDMA
cycle starts, and in the corresponding time slot of the sensor.

3.2 Timed Disjoint Activity
The TDMA paradigm is a technique for sharing a common media. Towards this goal
information is transmitted in frames or cycles. Cycles are split into time slots. Then the
components which will make use of the share media are assign to a time slot. The goal
of the TDMA paradigm is to avoid collisions in the shared communication media. This
fact suggest a certain independence among the components of the TDMA system. In
this section, we capture and exploit the independence of actions induced by the TDMA
paradigm. We formalize the independence of actions with the notions of activity and
sequentialisation.

3.2.1 Activity
Transition systems induced by timed automata can perform action and delay transitions.
While both types of transitions lead to changes on the system. Only action transitions
may change the control location of the system, send messages, receive messages, and
perform resets. Therefore, we characterize the activity of a timed automaton by the
points of time at which the timed automaton performs an action transition.

Definition 3.8 (Activity). The set of activity points Active(A) ⊆ R of a timed auto-
maton A = (L,Σ,X, I, E, `0) consists of those points in time at which action transitions
take place in some computation, i.e.

Active(A) def= {t ∈ R | ∃π ∈ T S(A), j ∈ N • λj ∈ Σ ∧ t(πj) = t}.

♦

37

Chapter 3 Semantic Optimizations for TDMA Systems

Example 3.9. Figure 3.4 depicts the action points of time, corresponding to the sensor
1 from the fire alarm system presented in Section 1.2. Note that the activity points of
time, form intervals (denoted by dotted lines), which correspond to the slot assigned to
the sensor. ♦

3.2.2 Sequentialisable
The structure of TDMA based systems implies an execution ordering on its components.
In general, one component communicates during his time slot. Once the time slot has
elapsed. Then, the component in the next time slot communicates. We use the notions
of activity and period to formalize the disjoint activity of the TDMA components in
every cycle. For two periodic cyclic timed automata. The definition bellow among other
conditions asserts that at every cycle, the activity of one component is strictly before
the other one. If all the conditions are satisfied, we say that two timed automata are
sequentialisable.

Definition 3.10 (Sequentialisable). Two timed automata A1 and A2 are called sequen-
tialisable if and only if

1. A1 and A2 have disjoint sets of clocks,

2. A1 and A2 are periodic cyclic with period pt ∈ R, and

3. for each p ∈ N0, within the p-th period, A1 is active strictly before A2, i.e.

sup(Activep(A1)) < inf (Activep(A2))

where Activep(Ai)
def= Active(Ai) ∩]pt · p, pt · (p+ 1)[, i = 1, 2.

♦

Note 3.11. Note that at the points of time that are multiples of the period, both
automata can be active. In addition, within the p-th period, p ∈ N0, the activity points
of two sequentialisable timed automata A1 and A2 are disjoint, i.e.

Active(A1) ∩ Active(A2) ∩]pt · p, pt · (p+ 1)[= ∅.

♦

Example 3.12. Consider the periodic cyclic timed automata in Figure 3.5 The time
axis shows the active points of sensor 1 and sensor 2. Their activity is disjoint except
at points of time which are multiples of the period. Further, note that the activity of
sensor 1 precedes the activity of sensor 2 in every cycle. Therefore, sensor 1 and sensor
2 are sequentialisable. ♦

38

3.2 Timed Disjoint Activity

0 1500 3000 4500 6000 7500
time

`0

x1 ≤ 1

`1

x1 ≤ 6

`2

x1 ≤ 12

`3

x1 ≤ 1500

x1 ≥ 1

alive!

x1 ≥ 12 ack?

x1 ≥ 1500

x1 := 0
`0

x2 ≤ 13

`1

x2 ≤ 18

`2

x2 ≤ 24

`3

x2 ≤ 1500

x2 ≥ 13

alive!

x2 ≥ 24 ack?

x2 ≥ 1500

x2 := 0

Figure 3.5: Activity of sensor 1 and sensor 2 from the fire alarm system presented in
Section 1.2. The activity points are disjoint except at the points of time which are
multiples of the period of the TDMA cycle. Since the automata satisfy the conditions
from Definition 3.10, the automata are sequentialisable.

For timed automata A1 and A2. If A1 and A2 are sequentialisable, then on each
period. First, A1 is active and reaches its final location while A2 is at its initial location.
Next, A2 is active and reaches its final location while A1 is at its final location. Finally,
at the end of the period both A1 and A2 are active at locations corresponding to their
reset configurations. The following lemma formalizes this observations.

Lemma 3.13. Let A1 and A2 be sequentialisable timed automata with period pt.

1. For all points of time different than the integer multiples of pt and within the
activity of A1, A2 is in its initial location `02, i.e.

∀p ∈ N0, t ∈ R • t ∈ [inf (Activep(A1)), sup(Activep(A1))]

=⇒ ∀π ∈ T S(A1‖A2) ∃〈(`1, `2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •

πj = 〈(`1, `2), ν〉, t ∧ `2 = `02 .

2. For all points of time different than the integer multiples of pt and within the
activity of A2, A1 is in its final location `fin1, i.e.

∀p ∈ N0, t ∈ R • t ∈ [inf (Activep(A2)), sup(Activep(A2))]

=⇒ ∀π ∈ T S(A1‖A2) ∃〈(`1, `2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •

πj = 〈(`1, `2), ν〉, t ∧ `1 = `fin1 .

39

Chapter 3 Semantic Optimizations for TDMA Systems

3. In each computation, both, A1 and A2, are simultaneously at a restart location at
integer multiples of pt, i.e.

∀p ∈ N0, t ∈ R • t = pt · p

=⇒ ∀π ∈ T S(A1‖A2) ∃〈(`1, `2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •

πj = 〈(`1, `2), ν〉, t ∧ `1 ∈ Lrst ∧ `2 ∈ Lrst.

Proof. The lemma follows from the fact that (A1||A2) is periodic cyclic with period pt
and the sequentialisable assumptions, Formally:

• (1) By Theorem 3.7 it follows pecy(A1||A2). Therefore, at time point pt ·p, (A1||A2)
reaches a start configuration, and from there on, there are only delay transitions
at time point pt · p. Let (c = 〈(`01 , `02), ν〉, pt · p ∈ Start(A1||A2)) be such a
configuration. By the sequentialisable assumption we have that sup(Activep(A1)) <
inf (Activep(A2)) which ensures that there are not local transitions in A2 until
time point sup(Activep(A1)). Therefore, `2 = `02 forall reachable configurations
〈(`1, `2), ν〉, t ∈ Conf (A1||A2) with t ∈ [inf (Activep(A1)), sup(Activep(A1))].

• (2) By Theorem 3.7 it follows pecy(A1||A2). Therefore, at time point pt · (p+ 1),
A1||A2 reaches a start configuration. Let πk be such a configuration. Then there
exist a final configuration πi = (〈(`′1, `′2), ν ′〉, pt · (p + 1)). which reaches πk via
action transitions. and by definition λi−1 ∈ R. Then there exist i′ such that
Γ1(π)i′ = 〈`′1, ν ′|X1〉, pt·(p+1) and `′1 = `fin1 . By the sequentialisable assumption we
have sup(Activep(A1)) < inf (Activep(A2)). Therefore, there is no local transitions
in A1 for any t ∈ [inf (Activep(A2)), sup(Activep(A2))]. Thus, `1 = `fin.

• (3) Let βi(〈(`1, `2), ν〉, t) = 〈(`i), ν|Xi〉, t be a i-th configuration projection. By
Theorem 3.7 it follows that pecy(A1||A2). Consider case when p = 0. There are
only delay transitions at time point 0. Thus, we are at c0 and `01 ∈ Lrst1 and
`02 ∈ Lrst2 . Consider case when p 6= 0. There exists i, j, k ∈ N such that πi ∈
Fin(A1||A2), πk ∈ Start(A1||A2), and if i ≤ j < k then λj ∈ Σ. Then there exist
i′, j′, k′ ∈ N such that β1(πi) = Γ1(π)i′ , β1(πk) = Γ1(π)k′ with Γ1(π)i′ ∈ Fin(A1),
Γ1(π)k′ ∈ Start(A1) and if i′ ≤ j′ < k′ then λ

Γ1(π)
k′ ∈ Σ1. Then by definition of

Lrst1 it follows that `1 ∈ Lrst1 .

40

3.3 Concatenation of Periodic Cyclic Timed Automata

3.3 Concatenation of Periodic Cyclic Timed Automata

For sequentialisable automata A1 and A2 with period pt Lemma 3.13 suggests that for
time points different than pt · p for some p, it is not necessary to compute the product
of the locations on A1 and A2. The following concatenation operator exploits this fact
and computes the product of locations only if both A1 and A2 are active. i.e. at time
points pt · p.

Definition 3.14 (Concatenation).
Let A1 = (L1,Σ1,X1, I1, E1, `01) and A2 = (L2,Σ2,X2, I2, E2, `02) be sequentialisable
timed automata with period pt ∈ R. Let `fini

denote the final location and let Lrsti denote
the set of restart locations of automaton Ai, i ∈ {1, 2}.
The concatenation of A1 and A2 yields the timed automaton

A1 · A2
def= (L,Σ1 ∪ Σ2,X1 ∪ X2, I, E, `0)

where

• L = (L1 × {`02}) ∪ ({`fin1} × L2) ∪ (Lrst1 × Lrst2)

• I(`1, `2) = I1(`1) ∧ I2(`2), `1 ∈ L1, `2 ∈ L2,

• E = {((`1, `2), α, ϕ1, Y1, (`′1, `2)) | (`1, α, ϕ1, Y1, `
′
1) ∈ E1 ∧ `2 ∈ Lrst2}

∪ {((`1, `2), α, ϕ2, Y2, (`1, `′2)) | (`2, α, ϕ2, Y2, `
′
2) ∈ E2 ∧ `1 ∈ Lrst1}, and

• `0 = (`01 , `02).

♦

By having a closer look into the concatenation operator, we observe that the definition
of the invariant function and the initial location is similar to the one of the parallel
product. However, the resulting sets of locations and edges are different. In the parallel
composition operator the set of locations corresponds to the Cartesian product on the
sets of locations of every component. Since A1 and A2 are sequentialisable Lemma 3.13
suggest that there are pairs of locations which are not reachable. By reachable we mean
that these locations will not be part of a configuration in a computation. Therefore,
the set of locations resulting from the application of the concatenation operator discards
by construction all unreachable locations. The set of edges is the union of two sets.
The first set corresponds to all the edges from A1 while the other automaton is idle.
The second set corresponds to the edges in A2 while the other automaton is idle. As a
result, the automaton resulting from the application of the concatenation operator has
a reduced number of edges and locations.

41

Chapter 3 Semantic Optimizations for TDMA Systems

`0, `0

x1 ≤ 1∧
x2 ≤ 13

`1, `0

x1 ≤ 6∧
x2 ≤ 13

`2, `0

x1 ≤ 12∧
x2 ≤ 13

`3, `0

x1 ≤ 1500
∧x2 ≤ 13

x1 ≥ 1

alive!

x1 ≥ 12

ack?

`3, `1

x1 ≤ 1500∧
x2 ≤ 18

`3, `2

x1 ≤ 1500∧
x2 ≤ 24

`3, `3
x1 ≤ 1500∧
x2 ≤ 1500

x2 ≥ 13

alive!

x2 ≥ 24 ack?

`0, `3

x1 ≤ 0∧
x2 ≤ 1500

x1 ≥ 1500

x1 := 0

x2 ≥ 1500

x2 := 0

x2 ≥ 1500

x2 := 0

x1 ≥ 1500

x1 := 0

Figure 3.6: Concatenation operator applied on sensor 1 and sensor 2 from the fire alarm
system presented in Section 1.2. Note that the sensors have disjoint activity and are
sequentialisable. In addition, note that the resulting automaton corresponds to the
reachable part obtained by computing the parallel product of the two sensors.

Example 3.15. Consider sensor 1 and sensor 2 from Figure 3.5 from the fire alarm
system presented in Section 1.2. Let A1 and A2 denote sensor 1 and sensor 2 respectively.
Then, by the Definition 3.1 of start, final, and restart configurations we have that Lrst1 =
{`0, `3}, Lrst2 = {`0, `3}, `fin1 = `3, and `fin2 = `3. In addition, note that A1 and
A2 satisfy the sequentialisable conditions stated in Definition 3.10. Now, applying the
concatenation operator on A1 and A2 we obtain the automaton in Figure 3.6. ♦

Consider the automaton in Figure 3.3 corresponding to the reachable automaton ob-
tained by application of the parallel product operator on sensor 1 and sensor 2 from the
fire alarm system presented in Section 1.2. Now consider the automaton in Figure 3.6
corresponding to the concatenation of sensor 1 and sensor 2. We observe that both auto-
mata are identical. In the following, we formalize the relation between the automata
obtained by application parallel composition and concatenation.

Definition 3.16 (Bisimulation). Let A1 and A2 be timed automata and

T Si(Ai) = (Conf (Ai),R ∪ Σi, {
λi

−→| λi ∈ R ∪ Σi}, C0i)

the corresponding labeled transition systems. A relation R ⊆ Conf (A1) × Conf (A2) is
called bisimulation of A1 and A2 if and only if it satisfies the following conditions.

42

3.3 Concatenation of Periodic Cyclic Timed Automata

1. ∀c1 ∈ C01 ∃c2 ∈ C02 • (c1, c2) ∈ R and ∀c2 ∈ C02 ∃c1 ∈ C01) • (c1, c2) ∈ R

2. for all (c1 = (〈`1, ν1〉, t1), c2 = (〈`2, ν2〉, t2)) ∈ R,

a) ν1 = ν2, t1 = t2,

b) ∀c1
λ1
−→ c′1 ∃c2

λ2
−→ c2 • (c′1, c′2) ∈ R

c) ∀c2
λ2
−→ c′2 ∃c1

λ1
−→ c′1 • (c′1, c′2) ∈ R.

A1 is called bisimilar to A2 iff there exists a bisimulation of A1 and A2. ♦

For sequentialisable timed automata A1 and A2, the implications of Lemma 3.13, and
the definition of the concatenation operator, imply that the transition system T S(A1·A2)
corresponds to the reachable part of T S(A1‖A2). The following theorem states that for
sequentialisable timed automata. The transition system induced by the automaton cor-
responding to the application of the concatenation operator is bisimilar to the transition
system induced by the automaton corresponding to the application of the parallel com-
position operator.

Theorem 3.17. Let A1 and A2 be sequentialisable timed automata.
Then T S(A1 · A2) is bisimilar to T S(A1‖A2).

Proof. Construct R as

R = {(c, c) ∈ Conf (A1 · A2)× Conf (A1||A2) | c ∈ Conf (A1 · A2)}

Condition (1). Let c = 〈`01 , `02 , 0〉, 0. We have c01 = c02 = {c}. Therefore, (c, c) ∈ R.
Condition (2). Let (c1, c2) ∈ R, by construction of R we know that c1 = c2. Therefore,
condition (2.a) is satisfied. For condition (2.b) there is a transition in A1 · A2. There
is either a delay transition or an action transition in T S(A1 · A2). We distinguish two
cases:

• Delay transitions: then there is a transition

c1 = 〈(`1, `2), ν1〉, t1
t′−→ 〈(`1, `2), ν1 + t′〉, t1 + t′ = c′1

such that ν1 + t′′ |= I1(`1) ∧ I2(`2) for all t′′ ∈ [0, t′]. Now let c′2 = 〈(`1, `2), ν1 +
t′〉, t1 + t′. Then c2

t′−→ c′2 since ν1 + t′′ |= I1(`1) ∧ I2(`2) for all t′′ ∈ [0, t′] and
(c′1, c′2) ∈ R since c′2 = c′1.

• Action transitions: first consider there is a transition in A1

c1 = 〈(`1, `2), ν1〉, t1
α−→ 〈(`′1, `2), ν ′1〉, t1 = c′1

43

Chapter 3 Semantic Optimizations for TDMA Systems

then there is an edge e = (`1, α, ϕ, Y, `′1) ∈ E1 such that ν1 |= ϕ, ν ′1 |= v1[Y := 0]
and ν ′1 |= I1(`1). Now let c2

α−→ c′2 by the action transition induced by e with
c′2 = 〈(`′1, `2), ν ′1〉, t1. Clearly (c′1, c′2) ∈ R since c′1 = c′2. The case for the second
component A2 can be shown analogously.

Condition (2.c). There is a transition in A1||A2. There is either a delay transition or an
action transition in A1||A2. Delay transitions are treated as above for condition (2.b).
Thus, we consider now only action transitions. We distinguish three cases. when A1 is
active, i.e. the points in Active(A1), when A2 is active and when both A1 and A2 are
active. i.e. at time point pt.

• Time points in Active(A1). Let t ∈ Active(A1). There are action transitions in
T S(A1||A2) corresponding to some edge in E1. Thus we have

c2 = 〈(`1, `2), ν2〉, t
α−→ 〈(`′1, `2), ν ′2〉, t = c′2

then by definition of || and the fact that t ∈ Active(A1) we know that there exist
an edge (`1, α, ϕ1, Y1, `

′
1) ∈ E1 such that ν2 |= ϕ, ν ′2 = ν2[Y := 0] and ν ′2 |=

I1(`′1) ∧ I2(`2). By Lemma 3.13 we know that `2 = `02 and by definition of ·
we know that there exist an edge e = ((`1, `2), α, ϕ1, Y1, (`′1, `2)) in A1 · A2 such
that (`1, α, ϕ1, Y1, `

′
1) ∈ E1 and `2 ∈ Lrst2 . Now complete c1 = c2

α−→ c′1 with
c′1 = 〈(`′1, `2), ν ′1〉, t′1 with ν ′1 = ν ′2 = ν2[Y := 0]. It follows that ν ′1 |= I1(`′1)∧ I2(`2).
Therefore, c′1 ∈ Conf (A1 · A2) and (c′1, c′2) ∈ R.

• Time points in Active(A2). There are action transitions in T S(A1||A2) corres-
ponding to some edge in E2. Thus we have

c2 = 〈(`1, `2), ν2〉, t
α−→ 〈(`1, `′2), ν ′2〉, t = c′2

then by definition of the parallel composition operator || and the fact that t ∈
Active(A2) we know that there exist an edge (`2, α, ϕ2, Y2, `

′
2) ∈ E2 such that

ν2 |= ϕ, ν ′2 = ν2[Y2 := 0] and ν ′2 |= I1(`1) ∧ I2(`′2). By Lemma 3.13 we know
that `1 = `fin1 , `1 ∈ Lfin1 , and by definition of the concatenation operator ·.
We know that there exist an edge e = ((`1, `2), α, ϕ2, Y2, (`1, `′2)) in A1 · A2 such
that (`2, α, ϕ2, Y2, `

′
2) ∈ E2 and `1 ∈ Lfin1 . Now complete c1 = c2

α−→ c′1 with
c′1 = 〈(`1, `′2), ν ′1〉, t′1 with ν ′1 = ν ′2 = ν2[Y2 := 0]. It follows that ν ′1 |= I1(`1)∧I2(`′2).
Therefore, c′1 ∈ Conf (A1 · A2) and (c′1, c′2) ∈ R.

44

3.3 Concatenation of Periodic Cyclic Timed Automata

• Time point pt·p for some p ∈ N. Then, both A1 and A2 are active. Therefore, local
transition and synchronization transitions can occur in A1 and A2. Without loss
of generality, consider there is a local transition in A1. There are action transitions
in T S(A1||A2) corresponding to some edge in E1. Thus we have

c2 = 〈(`1, `2), ν2〉, t
α−→ 〈(`′1, `2), ν ′2〉, t = c′2

then by definition of the parallel composition operator ‖ and the fact that t ∈
Active(A1). We know that there exist an edge (`1, α, ϕ1, Y1, `

′
1) ∈ E1 such that

ν2 |= ϕ, ν ′2 = ν2[Y := 0] and ν ′2 |= I1(`′1) ∧ I2(`2). By Lemma 3.13 we know that
`2 ∈ Lrst2 , and by definition of the concatenation operator · we know that there
exist an edge e = ((`1, `2), α, ϕ1, Y1, (`′1, `2)) in A1 ·A2 such that (`1, α, ϕ1, Y1, `

′
1) ∈

E1 and `2 ∈ Lrst2 . Now complete c1 = c2
α−→ c′1 with c′1 = 〈(`1, `′2), ν ′1〉, t′1 with ν ′1 =

ν ′2 = ν2[Y2 := 0]. It follows that ν ′1 |= I1(`1)∧I2(`′2). Therefore, c′1 ∈ Conf (A1 ·A2)
and (c′1, c′2) ∈ R. This concludes our proof.

The class of periodic cyclic timed automata is closed under the application of the
parallel composition operator. In the following theorem we show that the class of periodic
cyclic timed automata is closed under the application of the concatenation operator. This
property is important since it allows to concatenate automata in a compositional manner.
The theorem follows from the fact that for two sequentialisable timed automata, the
transition systems obtained by application of the parallel composition and concatenation
operators are bisimilar.

Theorem 3.18. Let A1 and A2 be sequentialisable timed automata with period pt. Then
A1 · A2 is periodic cyclic with period pt.

Proof. For sequentialisable timed automata A1 and A2 with period pt. By Theorem 3.7
we know that T S(A1‖A2) is periodic cyclic with period pt. By Theorem 3.17 T S(A1‖A2)
and T S(A1 · A2) are bisimilar. Therefore, the start configurations of T S(A1‖A2) are in
T S(A1 · A2).

For sequentialisable timed automata, the transition systems obtained by application
of parallel composition and concatenation are bisimilar. Therefore, the behavior of the
system is maintained and properties are preserved. This is expressed in the the following
corollary.

45

Chapter 3 Semantic Optimizations for TDMA Systems

Corollary 3.19 (Reachability Properties). Reachability properties are preserved under
bisimulation, i.e. given bisimilar timed automata A1 and A2 and a state assertion ϕ,
i.e. an expression over clock constraints and locations, we have

(∃π ∈ T S(A1) ∀j ∈ N0 • πj |= ϕ) ⇐⇒ (∃π ∈ T S(A2) ∀j ∈ N0 • πj |= ϕ)

(∀π ∈ T S(A1) ∀j ∈ N0 • πj |= ϕ) ⇐⇒ (∀π ∈ T S(A2) ∀j ∈ N0 • πj |= ϕ).

3.4 Complexity

In this section we show that for sequentialisable timed automata, the use of the con-
catenation operator leads to quadratic speed ups compared to the use of the parallel
composition operator. The main idea behind this gain, is that for sequentialisable timed
automata, at a given point of time, only one automaton is active. Therefore, applying
the concatenation operator will produce an automaton with a reduced number of edges
and locations. In particular, unreachable edges are not present. By unreachable edges
we refer to edges which do not occur in any computation. These unreachable edges have
a cost in verification, since guards have to be evaluated to see if an edge can be taken.
In the following, for a configuration we define the notion of outgoing and enabled

edges. Outgoing edges are the edges starting at a given configuration. These edges do
not necessarily form part of a computation. On the contrary, enabled edges are edges
with satisfiable guards and the effects on the valuations satisfy the destination invariants.
Therefore, enabled edges induce transitions in some computation paths.

Definition 3.20 (Enabled Edges). Let A = (L,Σ,X, I, E, `0) be a timed automaton and
c ∈ Conf (A) a configuration.
We use out(c) to denote the set of outgoing edges in c, i.e. the edges e = (`, α, ϕ, Y, `′) ∈

E where ` = `(c).
Edge e is called enabled if and only if its guard is satisfied and the effect of resets

satisfies the clock constraint of the destination of e, i.e. if ν(c) |= ϕ and ν(c)[Y := 0] |=
I(`′). We use enab(c) to denote the set of edges enabled in c.

In the following we describe some facts and notation about enabled edges in an auto-
maton resulting from the parallel composition of a number of timed automata.

Note 3.21. Let A1, . . . ,An be timed automata with pairwise disjoint edge sets and let
c = 〈(`1, . . . , `n), ν〉, t ∈ Conf (A1‖ . . . ‖An) be a configuration.

1. Enabled edges are in particular outgoing, i.e. enab(c) ⊆ out(c).

46

3.4 Complexity

2. The set of outgoing edges in the parallel composition is determined by the com-
ponents, i.e.

out(c) =
⋃

1≤i≤n
out(〈`i, ν|Xi〉, t), enab(c) =

⋃
1≤i≤n

enab(〈`i, ν|Xi〉, t),

thus (with disjoint edge sets)

|out(c)| = Σ1≤i≤n|out(〈`i, ν|Xi〉, t)|, |enab(c)| = Σ1≤i≤n|enab(〈`i, ν|Xi〉, t)|.

For a timed automaton obtained by parallel composition of sequentialisable timed
automata. The number of outgoing edges is much larger than the number of enabled
edges. This is because the parallel composition operator do not exploit the sequen-
tialisable assumptions. Most of this unnecessary edges will be removed by using the
concatenation operator. Since, outgoing edges are evaluated, a reduction on the num-
ber of outgoing edges yields a reduction on time complexity. This reduction goes from
quadratic to linear time as the following lemma shows.

Lemma 3.22. Let A1, . . . ,An be sequentialisable timed automata with period pt with
disjoint edge sets and with exactly one outgoing edge per location.

1. Let c ∈ Conf (A1‖ . . . ‖An) be a configuration of the parallel composition of A1, . . . ,An
where the time-stamp is not an integer multiple of the period pt, i.e. where @p ∈
N0 • t(n) = p · pt.

Then |out(c)| = n and |enab(c)| = 1.

2. Let c ∈ Conf (A1 · . . . · An) be a configuration of the concatenation of A1, . . . ,An
where the time-stamp is not an integer multiple the period pt.

Then |out(c)| = |enab(c)| = 1.

Given a number of sequentialisable timed automata with period pt. Lemma 3.22 states
a comparison between the system obtained by parallel composition and by concatenation
operator at points of time which are not multiples of the period.
We observe that for the system obtained by parallel composition, the number of out-

going edges is n where n is the number of components. Further, the number of enabled
edges is 1. This means that at this point of time the model checker needs to perform
additional n− 1 checks on the guards and invariants of these edges.
In addition, we observe that for the system obtained using the concatenation operator.

The number of outgoing edges is the same as the number of enabled edges. Therefore,
at this point only required computations are executed.
The following example, shows that in the case of the fire alarm system presented in

Section 1.2, quadratic speed ups are achieved by using the concatenation operator.

47

Chapter 3 Semantic Optimizations for TDMA Systems

`0

x1 ≤ 1

`1

x1 ≤ 6

`2

x1 ≤ 12

`3

x1 ≤ 1500

x1 ≥ 1

alive!

x1 ≥ 12 ack?

x1 ≥ 1500

x1 := 0
`0

x2 ≤ 13

`1

x2 ≤ 18

`2

x2 ≤ 24

`3

x2 ≤ 1500

x2 ≥ 13

alive!

x2 ≥ 24 ack?

x2 ≥ 1500

x2 := 0

· · ·

· · ·
0 12 24 1488 1500

〈`0, `0, . . . , `0, z0〉

〈`1, `0, . . . , `0, z1〉 〈`0, `1, . . . , `0, z′〉

〈`0, `0, . . . , `0, z0〉

〈`1, `0, . . . , `0, z1〉 . . .

〈`2, `0, . . . , `0, z2〉 . . .

〈`3, `0, . . . , `0, z3〉 . . .

Figure 3.7: A reduced number of edges. Top, a number of sensors which are sequential-
isable. Bottom left, checking the enabledness of an edge which belongs to sensor two,
where sensor one is at his corresponding time slot. Bottom right, after the TDMA cycle
there where a number of unneeded enableness checks. The unnecessary enableness check
are denoted by dotted lines.

Example 3.23. (A reduced number of edges) Consider Figure 3.7, the figure shows a
time axis and a number N of sensors A1, . . .AN from the fire alarm system presented
in Section 1.2. Every sensor is assigned to its corresponding time slot. The sensors are
periodic cyclic and sequentialisable.

Now consider the transition system T S(A1‖ . . . ‖AN). Figure 3.7 bottom-left, shows a
possible computation from the the model checker at configuration 〈`0, `0, . . . , `0, z0〉, t for
some t ∈]0, 12[. Since there is an edge from sensor 2 from location `0 to location `1, the
model checker evaluates this edge. This is unnecessary, because sensor 1 is at its time
slot. The doted line indicates the unnecessary evaluation of this edge. At the bottom-
right of Figure 3.7 there is a possible computation tree from the the model checker. Note
the number of unnecessary edge evaluations, denoted by dotted lines.

For every sensor, the model checker evaluates the other (N−1) sensors. Thus at every
point of time, the model checker performs N × (N − 1) comparisons. These unreachable
edges are not present in A1 ·. . .·AN . Therefore, at every point of time, the model checker

48

3.5 Related Work

performs N comparisons, i.e. we achieve a quadratic speed up. ♦

3.5 Related Work
Since the cost of model checking for a network of timed automata increases exponen-
tially in the number of components [129], much research has been directed towards tech-
niques that demonstrate a potentially exponential speedup in interesting applications
(see, e.g. [16, 54, 72]).
Partial order reduction methods for timed systems have been subject to several pub-

lications [25, 52, 98, 72]. This approach is complementary to ours. By using our method,
interleavings are possible at the points of time which are multiples of the TDMA period.
If a great number of components are involved, interleavings may cause a state space
explosion which might hinder the verification task. Partial order reduction might come
useful in handling the interleavings for sequentialisable timed automata, in particular at
points of time which are multiples of the period.
On [119] the result: the union of all zones reached by different interleavings of the same

set of transitions is convex, is presented. This result is then applied in the reachability
analysis by merging zones. As a result the state explosion induced by the interleaving
semantics can be avoided. Note that this result is complementary to ours. Because, at
points of time which are multiples of the period. We allow full interleavings. At these
points of time this technique could came useful.
Another important technique for reducing the state space, is the technique of active

clock reduction of [54] and its generalization in [16]. These techniques may seem relevant
in this context. These techniques are however complementary. That is, after a successful
clock optimization following [54]. Our technique will still improve the verification time
for sequentialisable timed automata, because unnecessary edges have not been removed.
In fact, when we present our experimental evaluation our experiments compare to an
optimized model which has only one clock and unnecessary edges, we obtain quadratic
speed ups. The non optimized model will have over 100 clocks.
In [63, 86, 106] Communication-Closed Layers and timed automata are studied. The

approach presented in [106] and ours are complementary. The main differences are that
the approach in [106] is action based, whereas our approach is time based. In addition,
we consider cyclic timed automata, whereas in [106], automata can not perform actions
after reaching their corresponding final location.

49

Chapter 4

Syntactic Optimizations for TDMA Systems

Contents
4.1 Sequential Timed Automata . 53

4.2 Overclocks . 57

4.3 Sequential Composition for Sequential Timed Automata . . . 58

4.3.1 Case Study: Steer-By-Wire Architecture Using TTP/C 68

4.4 Related Work . 68

In the previous chapter, we have introduced the class of periodic cyclic timed auto-
mata. This class has the property that start configuration is visited infinitely often
within regular periods of time. We then introduce the notion of sequentialisability. If
two automata are sequentialisable, then the concatenation operator could be applied.
Applying the concatenation operator leads to quadratic speed ups.
The results of the previous chapter are interesting from a theoretical point of view.

However, in practice they are difficult to implement. As an example, consider an timed
automaton is given. How could we detect if the automaton is periodic cyclic? or if we
are given two timed automata. How can we detect if they sequentialisable?. Answering
these question may be as hard as performing the model checking task. In this chapter,
we address these questions and propose a solution. Our solution consist in providing a
number of syntactic patterns and operators which exploit particular properties of TDMA
based systems.
We present the syntactic class of timed automata which we call sequential timed auto-

mata. By construction, this class ensures the corresponding automaton to be periodic
cyclic. Sequential timed automata syntactically describe relevant properties of periodic
cyclic timed automata. They describe; the start and final points of their activity, their
initial and final locations, and their period. As a result, the sequentialisable conditions,
can be checked syntactically in the given automata.
Next, we present the concept of overclocks. For TDMA based systems with several

components, it is natural to consider that every component has his own independent
clock. However, we note that from an observer point of view. The components are

51

Chapter 4 Syntactic Optimizations for TDMA Systems

behaving synchronously with respect to one master clock. This observation lead us to
the definition of overclocks. Since, the clocks of the TDMA components have a similar
behavior, we show how to simplify these clocks by replacing them by an overclock. Our
work on overclocks raised a successful simplification of equivalence classes on clocks.
This special clocks are called quasi-equal clocks, and have been subject of several pub-
lications [76, 101, 77].
Finally, we introduce a sequential composition operator on sequential timed auto-

mata. For sequentialisable timed automata, the sequential composition operator further
improves the concatenation operator presented in the previous chapter. For sequential-
isable timed automata, at points of time which are multiples of its period, all automata
are allowed to be active. At these points of time, the interleaving semantics of timed
automata induce an exponential number of states. The use of sequential timed automata
and the sequential composition operator will hinder the state explosion, by performing
a clock simplyfication. In addition, the sequential composition operator will remove
unnecessary edges, which further improves the verification times.
For TDMA based systems the use of, sequential timed automata, overclocks, and

the corresponding sequential composition operator. Improve the verification times from
exponential to linear on the number of components. This is the case for the fire alarm
system that we presented in Chapter 1, Section 1.2 and published in [58, 100].

Contributions

The key technical contributions that are described in this chapter are summarized as
follows:

• We introduce a class of timed automata. We call this class sequential timed auto-
mata. We show that this class is a subset of the class of of periodic cyclic timed
automata. In particular, this class of automata, syntactically describes relevant
behavioral properties. e.g. start and final points of activity.

• We introduce the notion of overclocks. We indentify a class of clocks which have
the property that they are almost equal except at some points of time and certain
locations. These clocks can be replaced by an overclock, which drastically reduces
the state space while preserving most of the behavior.

• We introduce a syntactic sequential composition operator on sequentialisable se-
quential timed automata. This operator, further increases the efficiency of the
concatenation operator presented in the previous chapter. This operator performs
a clock simplification by means of overclocks and removes unnecessary edges. The
use of the sequential composition operator avoids the state explosion induced by
the interleaving semantics of timed automata.

• For sequentialisable sequential timed automata. We show that, the relation between
a system composed using the parallel composition operator and a system composed
using the sequential composition operator, is a weak-bisimulation relation. Fur-
ther, we show that the verification costs drop from exponential to linear.

52

4.1 Sequential Timed Automata

`0

`2 `3

`4

`i

`fin

x̂ ≤ sta x̂ ≤ pt

x̂ ≤ c2 x̂ ≤ c3

x̂ ≤ c4

x̂ ≤ fin

x̂ ≥ sta

x̂ ≥ c21

x̂ ≥ c22

x̂ ≥ ci

x̂ ≥ cj

x̂ ≥ pt

x̂ := 0

Figure 4.1: A syntactical pattern for sequential timed automata.

4.1 Sequential Timed Automata
As the decision, whether a given pair of timed automata are sequentialisable, is in
general at least as difficult as the model checking task and our goal is to increase the
applicability of model checking for verifying TDMA based systems. The properties
of periodic cyclic timed automata and the sequentialisable assumptions, have to be
effectively and automatically recognizable by a verification tool.
Toward this goal, we provide a syntactical class of timed automata. We call this

class sequential timed automata. The class is given by a syntactical pattern such that
instances of the pattern are periodic cyclic timed automata. See Definition 3.3. The
signature of sequential timed automaton syntactically specify important properties of
periodic cyclic timed automata. It specifies, the start and final points of activity, the
start and final configurations, and the period of the automata. Further, sequential timed
automata impose two additional constraints. There is a final edge, this edge is taken
at the end of the TDMA cycle. There is a master clock, this clock is in keeping track
of the TDMA cycle. The following definition formalizes the notion of sequential timed
automata.

Definition 4.1 (Sequential Timed Automaton). A sequential timed automaton (STA)
is a tuple

A = (L,Σ,X, I, E, `0, `fin, sta, fin, pt, efin, x̂)

where A0
def= (L,Σ,X, I, E, `0) is a timed automaton, `fin is a final location, sta, fin ∈ Q+

0

are start and final time, pt ∈ Q+
0 is a period, efin ∈ E is an edge of the form (`fin,∅, x̂ ≥

pt, Y ∪ {x̂}, `0) x̂ ∈ X is a master clock, which satisfies the following syntactical con-
straints:

• the start time is positive and strictly smaller than the final time, which is strictly

53

Chapter 4 Syntactic Optimizations for TDMA Systems

smaller than the period, i.e.

0 < sta ∧ sta < fin ∧ fin < pt, (saActive)

• the initial location is left if x̂ reaches the start time, i.e.

I(`0) = x̂ ≤ sta, (saStart)

∀(`, α, ϕ, Y, `′) ∈ E • ` = `0 =⇒ ϕ = x̂ ≥ sta, (saStartTime)

• locations connected by an edge to the final location are only assumed until x̂ reaches
the final time, i.e.

∀(`, α, ϕ, Y, `′) ∈ E • `′ = `fin ⇒ I(`) = x̂ ≤ fin, (saFinalTime)

• the final location is only assumed until x̂ reaches the period, i.e.

I(`fin) = x̂ ≤ pt, (saPeriod)

• the master clock is reset exactly on edge efin, i.e.

∀(`, α, ϕ, Y, `′) ∈ E • x̂ ∈ Y ⇒ (`, α, ϕ, Y, `′) = efin, (saOneReset)

• `fin and `0 are connected exactly by edge efin, i.e.

∀(`, α, ϕ, Y, `′) ∈ E • ` = `fin ∧ `′ = `0 =⇒ (`, α, ϕ, Y, `′) = efin, (saOneFin)

and the following semantical constraint:

• whenever the initial location is assumed, the final location is finally reached, i.e.

∀π ∈ T S(A0), j ∈ N0, 〈`, ν〉, t ∈ Conf (A0) • πj = 〈`, ν〉, t ∧ ` = `0

=⇒ ∃k ∈ N0, 〈`′, ν ′〉, t′ ∈ Conf (A0) •

k ≥ j ∧ πk = 〈`′, ν ′〉, t′ ∧ `′ = `fin

(saCyclic)

♦

Given a sequential timed automaton A. Note that the syntactical constraints can
be proven by syntactically inspecting the given sequential timed automaton. These
checks can be performed in O(|A|). For the semantical check of saCyclic. Let A′ be the
automaton obtained by replacing synchronization transitions inA by internal transitions.
Then, saCyclic can be checked for A′ in a model checker.
Figure 4.1 depicts a purely syntactically restricted template which ensures the in-

stances to be sequential timed automata. The following theorem, states that sequential
timed automata are periodic cyclic timed automata.

54

4.1 Sequential Timed Automata

`0

x1 ≤ 1

`1

x1 ≤ 6

`2

x1 ≤ 12

`3

x1 ≤ 1500

x1 ≥ 1

alive!

x1 ≥ 12 ack?

x1 ≥ 1500

x1 := 0
`0

x2 ≤ 13

`1

x2 ≤ 18

`2

x2 ≤ 24

`3

x2 ≤ 1500

x2 ≥ 13

alive!

x2 ≥ 24 ack?

x2 ≥ 1500

x2 := 0

Figure 4.2: Two sensors as sequential timed automata. Left, sensor 1. Right sensor 2.
The sensors are components of the fire alarm system presented in Section 1.2.

Theorem 4.2. Let (L,Σ,X, I, E, `0, `fin, sta, fin, pt, efin, x̂) be a sequential timed auto-
maton. Then (L,Σ,X, I, E, `0) is periodic cyclic with period pt.

Proof. Formulas saCyclic, saPeriod and the guard in x̂ ≥ p in efin ensure that there is an
action transition from 〈`fin, ν〉, p · p

α−→ 〈`0, ν ′〉, p · p for some p ∈ N for all computations
of A. Formulas saStart and saStartTime ensure that 〈`0, ν ′〉, p has a delay predecesor.
Therefore, 〈`0, ν ′〉, p ∈ Start(A). Formulas, saActive and saPeriod and the guard in efin

ensure that 〈`fin, ν〉, p · p has a delay predecesor, since they require fin < p and the guard
in efin and the invariant `fin require x̂ ≤ p and x̂ ≥ p. Formula saOneFin ensure the
uniqueness of `fin. Thus A is periodic cyclic with period pt.

Example 4.3. Consider the two sensors from Figure 4.2. The sensors are components
from the fire alarm system presented in Section 1.2. Let A1 = (L1,Σ1,X1, I1, E1, `10),
A2 = (L2,Σ2,X2, I2, E2, `20) denote the sensor 1 and the sensor 2. Clearly, A1 and A2

are timed automata. We will now represent the sensors as sequential timed automata.
Let A′1 and A′2 denote the corresponding sequential timed automata for sensor 1 and
sensor 2. Then,

A′1 = (L1,Σ1,X1, I1, E1, `10 , `3, 1, 12, 1500, (`3, τ, x1 ≥ 1500, x1, `0), x1)
A′2 = (L2,Σ2,X2, I2, E2, `20 , `3, 13, 24, 1500, (`3, τ, x2 ≥ 1500, x2, `0), x2)

Note that A′1 and A′2 satisfy the syntactic and semantic restrictions of sequential timed
automata. Therefore, by Theorem 4.2 A′1 and A′2 are periodic cyclic with period 1500.

♦

55

Chapter 4 Syntactic Optimizations for TDMA Systems

Before applying the sequential operator we must be sure that the activity phases of
the automata are disjoint. One goal of sequential timed automata is to make the check
of the sequentialisable assumptions from Definion 3.10 efficient. In sequential automata
sequentialisability can be syntacticaly proven, as the following lemma shows.

Lemma 4.4. Let A1 and A2 be sequential timed automata with the same period pt and
final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e. fin1 < sta2. Then
A1 and A2 are sequentialisable.

Proof. By Theorem 4.2, A1 and A2 are periodic cyclic with period pt. We now show,
that for any p ∈ N, the following holds

sup(Active(A1) ∩ (pt · i, pt · (i+ 1))) < inf(Active(A2) ∩ (pt · i, pt · (i+ 1)))

Formulas saActive, saStartTime and saFinalTime ensure that for time interval (pt · p, pt ·
(p+1)) the active points of A1 are in the interval [(pt ·p)+sta1, (pt ·p)+fin1] and for A2 in
the interval [(pt ·p)+sta2, (pt ·p)+fin2]. Therefore, sup(Active(A1)∩(pt ·p, pt ·(p+1))) =
sup([(pt · p) + sta1, (pt · p) + fin1]) = (pt · p) + fin1 and inf(Active(A2)∩ (pt · p, pt · (p+ 1)))
= inf([(pt · p) + sta2, (pt · p) + fin2]) = (pt · p) + sta2. Since fin1 < sta2 it follows
(pt · p) + fin1 < (pt · p) + sta2.

Once the syntactic and semantic restrictions of sequential automata have been proven.
Checking that these two sequential automata are sequentialisable, reduces to comparing
their periods and their start and final points of activity. This check can be performed
in constant time.

Example 4.5. Consider the two sensors from Figure 4.2. The sensors are components
from the fire alarm system presented in Section 1.2. Now consider their corresponding
sequential timed automata,

A′1 = (L1,Σ1,X1, I1, E1, `10 , `3, 1, 12, 1500, (`3, τ, x1 ≥ 1500, x1, `0), x1)
A′2 = (L2,Σ2,X2, I2, E2, `20 , `3, 13, 24, 1500, (`3, τ, x2 ≥ 1500, x2, `0), x2)

as defined in Example 4.3. In order to check if the two sequential automata are se-
quentialisable. Verify that their period is the same. This is the case since both have a
period of 1500. Finaly check that 12 = fin1 < 13 = sta2. Since, A′1 and A′2 satisfy the
conditions from Lemma 4.4. A′1 and A′2 are sequentialisable.

♦

56

4.2 Overclocks

4.2 Overclocks
The interleaving semantics of timed automata are often the source of state explosion
problem. For sequentialisable timed automata, using the concatenation operator or the
parallel composition operator, may cause the state space to grow expontentially in the
number of components. Consider the parallel product or the concatenation of n sequen-
tial timed automata (see Figure 4.1) which are sequentialisable. The automaton will
include a diamond like structure corresponding to the product of the n final locations.
This structure will have 2n locations and n! paths. In this section, we present an im-
portant observation on the clock behaviour of TDMA based systems. This observation
is formalized by the notion of overclocks. A reduction on clocks using overclocks is a
solution to the state explosion problem generated by interleaving semantics of timed
automata.
The principle behind the notion of overclocks is that TDMA components work syn-

chronously, every componet using its own clock. However, from the observer point of
view, one clock would suffice to measure the time and operations of the components.
Intuitively, given two timed automata with one clock each. A clock is an overclock for
the other two clocks, if for all computations the clocks are equal to the overclock, or
they are at their reset configurations. That is, clocks are always equal or they are at
their reset locations. For sequentialisable timed automata, clocks are different only at
the reset points of time. We continue with the formal definition of overclock.

Definition 4.6 (Overclock). Let A1 and A2 be timed automata with clocks x1 and x2,
respectively. A clock ô of A1 or A2 is an overclock for x1 and x2 in A1‖A2 if and only
if

∀π ∈ T S(A1‖A2), j ∈ N0, 〈(`1, `2), ν〉, t ∈ Conf (A1‖A2) • πj = 〈(`1, `2), ν〉, t

=⇒ ν |= (x1 = ô ∧ x2 = ô) ∨ `1 ∈ Lrst1 ∨ `2 ∈ Lrst2 .

♦

Example 4.7. Consider sensor 1 denoted by A1 and sensor 2 denoted by A2 from
Figure 4.2. The sensors are components from the fire alarm system presented in Sec-
tion 1.2. The corresponding sequential timed automata are given in Example 4.3. By
Definition 3.1, the sets of reset configurations of A1 and A2 are Lrst1 = {`0, `3} and
Lrst2 = {`0, `3} respectively. In the transistion system T S(A1‖A2), the set of reset
locations Lrst is {(`0, `0), (`0, `3), (`3, `0), (`3, `3)}. Note, that for all computations in
T S(A1‖A2) the master clocks x̂1 and x̂2 are always equal (or equal to the overclock)
except at some reset locations in Lrst. In particular, note that the clocks are different
during intervals of zero time duration.

♦

57

Chapter 4 Syntactic Optimizations for TDMA Systems

If two clocks which are equal, except at certain configurations. An Overclock can
be used to substitute the clocks and thus improve the verification time. The following
lemma shows that for sequential timed automata with the same period, there is always
an Overclock.

Lemma 4.8. Given sequential timed automata, A1,A2 with period pt and masterclocks
x̂1, x̂2 respectively. Then, there exist an overclock ô for x̂1 and x̂2.

Proof. Add a clock ô to A1||A2 such that ô is reset toguether with either x̂1 or x̂2. By the
interleaving semantics of || and since A1 and A2 are sequential automata in particular
that they satisfy the following formulas: saOneReset and saOneFin. It follows that the
resets can only occur at `1 ∈ Lfin1 and `2 ∈ Lfin2 . By Theorem 4.2 and Theorem 3.7,
A1||A2 is peridic cyclic with period pt. Therefore, this are the only reset points for all
computations of A1||A2.

4.3 Sequential Composition for Sequential Timed Automata
In Chapter 3, we introduced the concept of sequentialisable timed automata. We then
introduced a concatenation operator on sequentialisable timed automata. This operator
exploits the disjoint activity of sequentialisable timed automata. For sequentialisable
timed automata, applying the concatenation operator yield a transition system which
is bisimilar to the corresponding one obtained by parallel composition, with a reduced
number of locations and edges. The use of the concatenation operator yield quadratic
speed ups. Although this is an important result. The verification of a large number of
sequentialisable timed automata can still be intractable. This is because, at the points
of time which are multiples of the period, non-disjoint activity is allowed. That is, all
automata might be active at some points of time. Because of the interleaving semantics,
this fact can lead to a state explosion. The following example elucidates this problem.

Example 4.9. LetA1, . . . ,An be sequentialisable sequential timed automata with period
pt and masterclocks x̂1, . . . , x̂n. This automata, have disjoint activity except at the points
of time which are multiples of the period. i.e. time points pt · p for p ∈ N+.
Now consider the bisimilar systems T S(A1 · . . . · An) and T S(A1‖ . . . ‖An). At the

points of time where automata A1, . . . ,An are active. Both the concatenation and the
parallel composition operator, will construct the product of the locations involved in the
activity. in this case the Cartesian product of the reset locations i.e. Lrst1 × · · · × Lrstn .
The result is a diamond like structure with 2n locations and n! zero time interleaving
sequences. In the case of the fire alarm system presented in Section 1.2, the diamond
structure will have 2125 locations and at least 125! possible interleavings. The number

58

4.3 Sequential Composition for Sequential Timed Automata

`0, `0

ô ≤ 1

`1, `0

ô ≤ 6

`2, `0

ô ≤ 12

`3, `0

ô ≤ 13

`3, `1

ô ≤ 18

`3, `2

ô ≤ 24

`3, `3

ô ≤ 1500

ô ≥ 1

alive!

ô ≥ 12 ack?

ô ≥ 13

alive!

ô ≥ 24 ack?

ô ≥ 1500

ô := 0

Figure 4.3: Sequential composition of sensors one and two

of locations and interleavings will render turn the verification task to intractable. In
addition, note that clocks x̂1, . . . , x̂n are always equal up to the time points pt · p for
p ∈ N+.
By Lemma 4.8, there exist an overclock which is equal to one or both of these clocks

at all points of time except at the multiples of the period. This suggest a clock simpli-
fication.

♦

Fortunately, for sequentialisable sequential timed automata. We can easily identify
the points of time with non-disjoint activity. Further, at this points of time the allowed
actions are restricted. Thus, we can tackle the state explosion problem at this points of
time while preserving most of the properties.
Our approach consist in defining a sequential composition operator on sequentialisable

sequential timed automata. This operator exploits the syntactic properties of sequen-
tial timed automata and further improves the concatenation operator. The sequential
composition operator eliminates complete the interleavings and summarize the actions
at the non-disjoint activity points of time.
Intuitively, for two sequentialisable sequential timed automata, the sequential com-

position operator works as follows. First, the first automaton is active and performs his
actions while the second automaton is at his initial location. Then, the second auto-
maton is active and performs his actions while the first automaton is at his final location.
Next, both automata are active and at their final locations. We know that there is only
one edge for automaton that is enabled at these points of time. This edge resets the
corresponding master clock. The sequential composition operator summarizes the effect
of the resets by replacing the master clocks by one overclock and do not introduce the
locations resulting from the product of the reset locations. We continue with the formal
definition of the sequential composition operator.

59

Chapter 4 Syntactic Optimizations for TDMA Systems

Definition 4.10 (Sequential Composition). Let Ai,

Ai = (Li,Σi,Xi, Ii, Ei, `0i , `fini
, stai, fini, pt, efini

, x̂i), i = 1, 2,

be sequential timed automata.
Then the sequential composition of A1 and A2 yields the tuple

A1 #A2
def= (L,Σ1 ∪ Σ2,X1 ∪ X2, I, E, (`01 , `02), (`fin1 , `fin2), sta1, fin2, pt, efin, ô)

where

• the master clock ô is an overclock for x̂1, x̂2.

• the set of locations consists of pairs where A2 assumes an initial or A1 assumes a
final location, i.e.

L = ((L1 \ {`fin1})× {`02}) ∪ ({`fin1} × L2),

• the final edge efin is

((`fin1 , `fin2),∅, ϕ1 ∧ ϕ2, Y1 ∪ Y2, (`01 , `02))

given the final edges efini
= (`fini

,∅, ϕi, Yi, `0i), i = 1, 2,

• the clock constraint of location (`1, `2) is the conjunction of the corresponding clock
constraints in A1 and A2 where substitute each x̂1 and x̂2 is syntactically substi-
tuted by ô, i.e.

I(`1, `2) = (I1(`1) ∧ I(`2))[x̂1/ô, x̂2/ô],

• the set of edges comprises efin and compositions of A1 and A2 edges where x̂1 and
x̂2 are substituted by x̂ in guards and reset sets, i.e.

E = {efin} ∪ {((`1, `02), α, ϕ̃1, Ỹ1, (`′1, `02)) | (`1, α, ϕ1, Y1, `
′
1) ∈ E1 \ {efin1}}

∪ {((`fin1 , `2), α, ϕ̃2, Ỹ2, (`fin1 , `
′
2)) | (`2, α, ϕ2, Y2, `

′
2) ∈ E2 \ {efin2}}

where ϕ̃i = ϕi[x̂1/ô, x̂2/ô], i = 1, 2, and Ỹi = Yi[x̂1/ô, x̂2/ô], i = 1, 2.

♦

60

4.3 Sequential Composition for Sequential Timed Automata

Given two sequentialisable sequential timed automata, the sequential composition
operator yields a sequential timed automaton. The automaton has the start point of
its activity from the start point of activity of the first automata. The automaton has
the final point of its activity from the final point of activity of the second automata.
The final edge is a combination of the final edges of the corresponding automata. The
initial and final locations are pairs of the initial and final locations of the corresponding
automata. Note, that the master clocks are been substituted in all the invariants and
edges by an overclock.

Example 4.11. Consider the two sensors from Figure 4.2. The corresponding sequential
timed automata are described in Example 4.3. The resulting sequential timed automata
of applying the sequential composition operator on these automata is depicted in Fig-
ure 4.3 After the activity of sensor 1 is done, sensor 1 is at his final location and there
is an edge going to the start location of sensor 2. At point of time 1500 both sensors
are active and both move simultaneously to their initial locations. Note that the master
clocks, x̂1 and x̂2 are replaced by the overclock ô.
Consider Figure 3.3 corresponding to the reachable automaton obtained by parallel

composition of sensor 1 and sensor 2. Note that the diamond structure corresponding to
the product of the reset locations is not present. For the fire alarm system presented in
Section 1.2, the diamond structure with 2125 locations and 125! paths is not present. In
Section 6 we present our experimental results. We will show that the verification time
for the fire alarm system, goes from exponential to linear. ♦

In Section 3.3, we have shown that for sequentialisable sequential automata the trans-
itions systems corresponding to their parallel composition and their concatenation are
bisimilar. In what follows, we will show that the transition system obtained by their
sequential composition is weak bisimilar. The weak bisimilarity reflects the effect of
removing the diamond like structure generated by the Cartesian product of reset loca-
tions. In particular, the configurations occurring at reset points of time, have no delay
successors but action successors. We use the following definition in order to simplify a
definition of weak bisimulation.

Definition 4.12 (Action Reachability). Let A be a timed automaton and c, c′ ∈ Conf (A)
configurations. We say c′ is reachable in A from c via action transitions, denoted by
actReach(c, c′,A), if and only if

actReach(c, c′,A) def⇐⇒ ∃c0, . . . , cn ∈ Conf (A) • c0 = c ∧ cn = c′

∧ ∀0 ≤ j < n ∈ N0 • cj
λj−→ cj+1 ∧ λj ∈ Σ.

♦

61

Chapter 4 Syntactic Optimizations for TDMA Systems

c1

c′1

c2

c′2

λ1 λ2

c1

c′1

c2

c
′′
2

`(c2) = `fin2

`(c
′′
2) = `02

λ1

λ21

λ2i

λ2n

Figure 4.4: Weak bisimulation relation for timed automata A1 and A2. Timed auto-
maton A1 is the result of applying the sequential composition operator whereas A2 is
the result of applying the parallel composition operator. Left, weak bisimulation relation
in points of time different than multiples of the period. Right, weak bisimulation relation
at the period points of time, note that A2 performs a number of action transitions.

Definition 4.13 (Weak bisimulation). Let A1 and A2 be sequential automata with ô ∈
X1 and x̂1, x̂2 ∈ X2 such that ô is an overclock for x̂1, x̂2 and let

T Si(Ai) = (Conf (Ai),R ∪ Σi, {
λi

−→| λi ∈ R ∪ Σi}, C0i), i = 1, 2,

be the corresponding labelled transition systems.
A relation W ⊆ Conf (A1) × Conf (A2) is called weak bisimulation of A1 and A2 if

and only if it satisfies the following conditions.

1. ∀c1 ∈ C01 ∃c2 ∈ C02 • (c1, c2) ∈ W and ∀c2 ∈ C02 ∃c1 ∈ C01 • (c1, c2) ∈ W

2. for all (c1 = (〈`1, ν1〉, t1), c2 = (〈`2, ν2〉, t2)) ∈ W,

a) β(ν1) = ν2, t1 = t2 with β(ν) def= ν|ô ∪ {νx̂1 7→ ν(ô), νx̂2 7→ ν(ô)},

b) ∀c1
λ1
−→ c′1 • (∃c2

λ2
−→ c′2 • (c′1, c′2) ∈ W) ∨ (`(c1) = `fin1∧

∃c′′2 • actReach(c2, c
′′
2,A2) ∧ `(c′′2) = `02 ∧ (c′1, c′′2) ∈ W),

c) ∀c2
λ2
−→ c′2 ∃c1

λ1
−→ c′1 • (c′1, c′2) ∈ W ∨ (`(c2) = `fin2∧

∃c′′2 • actReach(c2, c
′′
2,A2) ∧ `(c′′2) = `02 ∧ (c′1, c′′2) ∈ W),

A1 is called weakly bisimilar to A2 iff there is a weak bisimulation of A1 and A2.

♦

62

4.3 Sequential Composition for Sequential Timed Automata

Our definition of weak bisimulation is a specific one characterizing the differences
between the system obtained by parallel composition and the one obtained by sequential
composition. Note, that a points of time which are different than the multiples of the
period, both systems perform the same number of steps. The difference and the reason
why the relation is a weak bisimulation and not a simulation relation, is that at points of
time which are multiples of the period, there are a number of action interleavings in the
system resulting from application of parallel composition. Whereas, the system resulting
from application of the sequential composition operator performs only one step. This is
illustrated in Figure 4.4 right.
The following theorem, states that for sequentialisable sequential timed automata.

The transition system induced by the automaton obtained by application of the se-
quential composition operator is weak-bisimilar with respect to the one obtained by
application of the parallel composition operator.

Theorem 4.14. Let A1 and A2 be sequential timed automata with the same period pt
and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e. fin1 < sta2.
Then A1 #A2 is weak-bisimilar to A1‖A2.

Proof. For the proof let ô be the overclock of A1 #A2, i.e. ô ∈ X1, let the masterclocks
x̂1, x̂2 be the master clocks in A1‖A2, i.e. x̂1, x̂2 ∈ X2, let configuration c1 = (〈`, ν〉, t) ∈
Conf (A1 # A2), and configuration c2 = (〈`, ν〉, t) ∈ Conf (A1‖A2). In the proof we will
find a correspondence between configurations in Conf (A1 # A2) and configurations in
Conf (A1‖A2). For this we will use functions Γ and β on configurations and valuations
respectively. Note that the definition of the function β is given in the definition of weak
bisimulation. The function β takes valuations where the overclock is present and uses
the value of the overclock to restore the value of the corresponding masterclocks. The
function Γ is a function which applies β to configurations in Conf (A1 #A2), i.e.

Γ(〈`, ν〉, t) def= 〈`, β(ν)〉, t

The function β−1 be a function which substitutes clocks x̂1 and x̂2 by ô. i.e.

β−1(ν) def= ν|x̂1,x̂2 ∪ {ν(ô) 7→ ν(x̂1)}

and Γ−1 the function which applied β−1 to configurations in Conf (A1‖A2).

Γ−1(〈`, ν〉, t) def= 〈`, β−1(ν)〉, t

Now construct the weak bisimulation relation W as follows,

W = {(c,Γ(c)) | c ∈ Conf (A1 #A2)}.

63

Chapter 4 Syntactic Optimizations for TDMA Systems

For condition (1) we have that c01 = 〈`01 , ν0〉, 0 and Γ(c01) = c02 . Therefore, (c01 , c02) ∈
W and the unique initial locations are in relation.
For condition (2), let (c1, c2) ∈ W. By definition of W we have that c2 = Γ(c1). Now
consider the following cases:

1. Condition (2.a). By construction of W we have that c1 = 〈`1, ν1〉, t1 and c2 =
〈`1, β(ν1)〉, t1. Therefore β(ν1) = ν2 and t1 = t2.

2. Condition (2.b). There is either a delay or an action transition in A1 #A2.

• Delay Transitions: there is a transition,

c1 = 〈(`1, `2), ν1〉, t1
t′−→ 〈(`1, `2), ν1 + t′〉, t1 + t′ = c′1

such that ν1 + t′′ |= I1(`1) ∧ I2(`2) for all t′′ ∈ [0, t′]. Now by definition
of overclock β(ν1) + t′′ |= β(I1(`1)) ∧ β(I2(`2)) for all t′′ ∈ [0, t′]. Now let
c′2 = 〈(`1, `2), β(ν1) + t′〉, t1 + t′. Then c2

t′−→ c′2 and (c′1, c′2) ∈ W since c′2 = c′1.

• Action Transitions: we consider two cases first the case when A1 is at is final
location i.e. `(c1) = `fin1 and second the case when A1 is not at is final location
i.e. `(c1) 6= `fin1 .

– `(c1) = `fin1 . Intuition, A1 #A2 takes the edge efin1 from `fin1 to `01 , this
edge summarizes the diamond generated by the interleaving semantics of
the parallel product operator, the diamond involves the locations in the
set Lfin of A1||A2, by Theorem 3.7, A1||A2 is periodic cyclic, therefore
it has to reach `fin2 . Formally: We have c1 = 〈`fin1 , ν1〉, t and c2 =
〈`fin1 , β(ν1)〉, t. By definition of efin1 , c1 = 〈`fin1 , ν1〉, t1

α−→ 〈`01 , ν1[{ô} :=
0]〉, t1 = c′1. Since A1||A2 is periodic cyclic there exist an action path
of the form c2

Y1−→ c′2
Y2−→ c′′2 and c′′2 = 〈`02 , ν1[Y1 ∪ Y2 := 0]〉, t1 and

Γ(c′1) = c′′2. Therefore, (c′1, c′′2) ∈ W.

– `(c1) 6= `fin1 . There is an action transition

c1 = 〈(`1, `2), ν1〉, t1
α−→ 〈(`′1, `2), ν ′1〉, t1 = c′1

then there is an edge e = (`1, α, ϕ, Y, `′1) ∈ E1 such that ν1 |= ϕ, ν ′1 =
ν1[Y := 0] and ν ′1 |= I1(`1). By definition of parallel composition operator
‖ such an edge exists in A1‖A2, and since ô is an overclock for x̂1, x̂2,

64

4.3 Sequential Composition for Sequential Timed Automata

it follows that β(ν1) |= (ϕ[ô/x̂1]) and β(ν ′1) = β(v1)[Y := 0]. Now let
c2

α−→ c′2 be the action transition induced by e with c′2 = 〈(`′1, `2), ν ′1〉, t1.
Clearly (c′1, c′2) ∈ W, since Γ(c′1) = c′2.

3. Condition (2.c). There is either a delay or an action transition in A1‖A2.

• Delay transitions: there is a transition,

c2 = 〈(`1, `2), ν2〉, t2
t′−→ 〈(`1, `2), ν2 + t′〉, t2 + t′ = c′2

such that ν2 + t′′ |= I1(`1) ∧ I2(`2) for all t′′ ∈ [0, t′]. Since Γ(c1) = c2 we
have that β(ν1) = ν2 and t1 = t2 Therefore, ν1 + t′′ |= I1(`1) ∧ I2(`2) and
c′1 = 〈(`1, `2), ν1+t′′〉, t1+t′′ ∈ Conf (A1#A2). Which implies that (c′1, c′2) ∈ W,
since Γ(c′1) = c′2.

• Action transitions: we need to distinguish three cases. First, when A1 is
active, i.e. the points in Active(A1). Second, when A2 is active, i.e. the points
in Active(A2). Finally, when both A1 and A2 are active. i.e. at points of time
pt · p for some p ∈ N. Note that Theorem 3.7 ensures that `(c2) = `fin2 is only
possible if c2 has time stamp pt · p for some p ∈ N.

– Time points in Active(A1). Let t ∈ Active(A1). There are action trans-
itions in T S(A1‖A2) corresponding to some edge in E1. Thus we have

c2 = 〈(`1, `2), ν2〉, t
α−→ 〈(`′1, `2), ν ′2〉, t = c′2

then by definition of parallel product and the fact that t ∈ Active(A1) we
know that there exist an edge (`1, α, ϕ1, Y1, `

′
1) ∈ E1 such that ν2 |= ϕ1,

ν ′2 = ν2[Y := 0] and ν ′2 |= I1(`′1) ∧ I2(`2). By lemma 3.13 we know that
`2 = `02 and by definition of the sequential composition operator, we know
that there exist an edge e = ((`1, `2), α, ϕ1, Y1, (`′1, `2)) inA1#A2 such that
(`1, α, ϕ1, Y1, `

′
1) ∈ E1. Now by using edge e complete c1 = Γ−1(c2) α−→ c′1

with c′1 = 〈(`′1, `2), ν ′1〉, t′1 where ν ′1 = β−1(ν ′2) and ν ′2 = ν2[Y := 0].
It follows that ν ′1 |= I11(`′1) ∧ I12(`2). Therefore, c′1 ∈ Conf (A1 # A2),
c′1 = Γ−1(c′2) and (c′1, c′2) ∈ W.

– Time points in Active(A2): there are action transitions in T S(A1||A2)
corresponding to some edge in E2. Thus we have

c2 = 〈(`1, `2), ν2〉, t
α−→ 〈(`1, `′2), ν ′2〉, t = c′2

65

Chapter 4 Syntactic Optimizations for TDMA Systems

then by definition of parallel product and the fact that t ∈ Active(A2) we
know that there exist an edge (`2, α, ϕ2, Y2, `

′
2) ∈ E2 such that ν2 |= ϕ,

ν ′2 = ν2[Y2 := 0] and ν ′2 |= I1(`1) ∧ I2(`′2). By Lemma 3.13 we know
that `1 = `fin1 and by definition of sequential composition we know that
there exist an edge e = ((`1, `2), α, ϕ2, Y2, (`1, `′2)) in A1 # A2 such that
(`2, α, ϕ2, Y2, `

′
2) ∈ E2 and `1 = `fin1 . Now complete Γ(c1) = c2

α−→ c′1 with
c′1 = Γ−1(c′2) = 〈(`1, `′2), β−1(ν ′2)〉, t′1 with ν ′1 = β−1(ν ′2) = β(ν2[Y2 := 0]).
It follows that β(ν ′1) |= I1(`1)∧I2(`′2). Therefore, c′1 ∈ Conf (A1 #A2) and
(c′1, c′2) ∈ W.

– Points of time pt · p for some p ∈ N0. Then, both A1 and A2 are active.
Therefore, there are action transitions in A1 and A2. The reachable
configurations of A1 #A2 with time stamp pt · p for some p ∈ N are either
at locations `fin or `0. By the above fact and by construction of W, c2

can either be at location `fin or `0.

Consider `(c2) = `0. Since A1‖A2 is periodic cyclic, by definition the
only possible transitions at time stamp pt ·p are delay transitions. Above
we have already considered delay transitions.

Now, consider `(c2) = `fin. Then there is a transition c2
λ2
−→ c′2By The-

orem 3.7, A1‖A2 is periodic cyclic and by lemma 3.13 we know that
`(c′2) ∈ Lfin2 Then it follows that c2 can reach via action transitions a
configuration c′′2 such that c2

Y1−→ c′2
Y2−→ c′′2 and c′′2 = 〈`02 , (ν2)[Y1 ∪ Y2 :=

0]〉, t2. By definition of final edge, either A1 or A2 have performed the ac-
tion transition induced by edge efin1 or efin2 . Let ϕ denote the guard of the
corresponding edge. Then we have that either x̂1 |= ϕ or x̂2 |= ϕ. Where
by definition of final edge ϕ is of the form x ≥ pt for some clock x. Since
ô is an overclock for x̂1 and x̂2 we have that ô |= ϕ. Then, by definition
of final edge we have ô ≥ pt. Since efin is the unique edge from `fin1 we
have efin induces the transition c1

λ1
−→ c′1 where c′1 = 〈`01 , ν1[{ô} := 0]〉, t2

and Γ(c′1) = c′′2. Therefore, (c′1, c′′2) ∈ W. This concludes our proof.

Since TDMA based systems include a large number of components. It is useful to
describe the system in a compositional manner. For this it is important that the class of
sequential timed automata is closed under the application of the sequential composition

66

4.3 Sequential Composition for Sequential Timed Automata

operator. The following theorem states that when the sequential composition operator
is applied to two sequentialisable sequential timed automata, the resulting automata is
a sequential timed automata.

Theorem 4.15. Let A1 and A2 be sequential timed automata with the same period pt
and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e. fin1 < sta2.
Then A1 #A2 is a sequential timed automata with period pt.

Proof. We need to show that the resulting timed automaton is a sequential timed auto-
maton. i.e. it satisfies the constraints from Definition 4.1 of sequential timed auto-
mata. By definition of sequential composition the masterclocks of both automata are
substituted by an overclock ô. Therefore, by construction, the syntactic constraints
saStart, saStartTime, saFinalTime and saPeriod are satisfied. By assumption we have
fin1 < sta2, since both automata have the same period pt, the condition saActive is
satisfied. For Conditions saOneReset and saOneFin, both automata had only one edge.
The sequential operator combines these two edges and creates a new final edge, which
satisfies these conditions. For the semantic constraint saCyclic. First we use Theorem 3.7,
which states that T S(A1‖A2) is periodic cyclic. Then by Theorem 4.14, the transition
system T S(A1‖A2) is weak-bisimilar with respect to the transition system T S(A1 #A2).
This fact implies that the initial location (start configurations) of T S(A1 #A2) are infin-
itely often visited. Since the initial location is the destination of the final location. The
final location is infinitely often visited. Therefore, condition saCyclic is satisfied. Since
all the conditions are satisfied, we conclude that A1 #A2 is a sequential timed automata
with period pt.

A consequence of the above theorem is that for sequentialisable sequential timed auto-
mata. The application of the sequential composition operator, produces a periodic cyclic
timed automaton.

Corollary 4.16. Let A1 and A2 be sequential timed automata with the same period pt
and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e. fin1 < sta2.
Then A1 #A2 is periodic cyclic with period pt.

Proof. By Theorem 4.15, we know that A1 # A2 is a sequential timed automata with
period pt. For sequential timed automata, Theorem 4.2, ensures the automata to be
periodic cyclic. Therefore, A1 #A2 is periodic cyclic with period pt.

67

Chapter 4 Syntactic Optimizations for TDMA Systems

4.3.1 Case Study: Steer-By-Wire Architecture Using TTP/C

In order to illustrate the applicability of our method, we propose the intuition of a model
for a system based on the Time-Triggered Architecture based on [62].
In most systems based on the Time-Triggered Architecture every node consist of a

local CPU, a Communication Network Interface, and a TTP/C controller. The data
communication over TTP/C is organized in TDMA rounds. A TDMA round is divided
into slots and every node is assigned to a slot. A recurring sequence of TDMA rounds
constitutes a cluster. The system can be globally monitored based on bus tracing.
A steer-by-wire system would require from 8 to 30 nodes. Interesting properties to

verify might include: If a node fails, is this node detected as malfunctioning in within a
TDMA round; or if a node fails, does the system still satisfy a given property.
Let us consider that the system has n nodes and one global monitor. The monitor

could be modeled by one timed automaton Am. Every node could be modeled by Two
timed Automata; one for the CPU ACPU and one for the TTP/C communication ATTP .
The automata corresponding to a node could communicate via shared variables.
A TDMA round would have the following form, Am||ACPU1 || . . . ||ACPUn ||ATTP1 || . . .
||ATTPn . Since Automaton ATPPi will only perform actions on its corresponding slot for
i ∈ {1, . . . , n}, we can apply our method and obtain: Am||ACPU1 || . . . ||ACPUn ||(ATTP1 #
. . . #ATTPn). Which we believe, would lead to an improvement on the verification time.
Given a fixed number of TDMA rounds we can use the above method to construct a
cluster.

4.4 Related Work

In [70] patterns are used in the context of timed systems. Patterns are used to specify
timed properties. The use of patters allows non-experts to specify relevant system prop-
erties. This work is similar in spirit to ours, since we provide patterns to ensure relevant
semantic properties of periodic cyclic timed automata. Further, the work in [70] focuses
on system properties. We on the other side, focus on the model of the system.
Let us note that the technique of clock reduction of [54] and its generalization in [16],

which may seem relevant in this context, are orthogonal to our approach. This is because,
even if a successful clock reduction has taken place, the optimized model can profit from
the disjoint activity, i.e. the model can be further optimized by reducing a number of
unnecessary edges.
We have seen that the automaton obtained by parallel product of n sequential timed

automata, at points of time which are multiples of the period, will have a diamond
structure with 2n locations and n! paths. This diamond will hinder the verification
procedure. Successful application of techniques such as partial order reduction [25, 52,
98, 72] or for the method proposed in [119] for dealing with interleavings, will remove
the diamond structure. Note, that our approach not only removes the diamond as well,
but also removes a number of unnecessary edges. The reduction of unnecessary edges
lead to quadratic speed ups.

68

4.4 Related Work

In Section 4.2 we introduce the notion of overclocks. A similar notion has been pub-
lished in [76, 77], where quasi-equal clocks are introduced. In [101] an efficient method for
detecting quasi-equal clocks is presented. After quasi-equal clocks have been detected, a
clock simplification [76] can be performed. For the case of the fire alarm system, the two
master clocks are quasi-equal and they are simplified and replaced by an overclock. In
our experimental section, we show that the sequential composition operator, can further
improve the clock optimization from [76] by removing unnecessary or unreachable edges.
In [106] a sequential composition operator is presented. However, the corresponding

timed automata do not allow cyclic behavior as we do. Another important difference
is that their approach is action oriented i.e. it exploits the independence of actions. In
contrast our approach which is time oriented.

69

Chapter 5

Clock Optimizations for Timed Systems

Contents
5.1 Quasi-equal Clocks . 73

5.2 Zero Time Behavior Abstraction 75

5.2.1 Abstract Zone Graph . 78

5.3 Complexity . 83

5.3.1 Quasi-equal Zones . 85

5.4 Algorithm . 86

5.5 Related Work . 88

Timed automata and timed model checking [5, 91, 140] have been successfully applied
for the verification of real-time systems. Still, the number of clocks in a timed automaton
will always be an issue for scalability and the optimization of timed model checking will
always be a topic of research. Optimization techniques for timed model checking are often
based on some notion of redundancy in the representation of the timed model and its
behavior in terms of clock valuations. The detection of the corresponding redundancies
is then a prerequisite for applying the optimization.
In the previous chapter, we have introduced a clock optimization method for sequen-

tialisable sequential timed automata. The optimization consisted in replacing two master
clocks by an overclock. The behavior of these two master clocks has been formalized
under the notion of Quasi-equal clocks. Two clocks x and y in a given timed automaton
are quasi-equal if the invariant x = y ∨ x = 0 ∨ y = 0 holds. That is, in every step in
every transition sequence, the two clocks x and y have equal value except for steps where
one of them has been reset but not the other. As a consequence, the invariant x = y
can be violated only at single time points (i.e. during time periods of length zero). In a
way, the violation of the invariant is an artefact of the model of the behavior of a timed
systems by discrete sequences.
Note that quasi-equal clocks are not restricted to TDMA based systems. In [76] an

optimization using quasi-equal clocks is presented. In [76] the clock reduction method

71

Chapter 5 Clock Optimizations for Timed Systems

starts with a given specification of quasi-equal clocks. In principle, the zone graph can
be used to detect which clocks are quasi-equal; the construction of the zone graph would,
however, defeat its very purpose (which is the optimization of this construction). In this
chapter, we present an abstraction that is coarse enough to yield a drastic reduction of
the zone graph and precise enough to identify a large class of quasi-clocks.
The abstraction is motivated by an intuition about the way quasi-equalities can be

tracked. The intuition is that the behavior of a timed automaton over a non-zero period
of time (without resets) will neither introduce new quasi-equalities nor “destroy” a quasi-
equality and hence we can apply the most coarse abstraction there. In contrast, when
different values for quasi-equal clocks arise in a sequence of configurations where time
does not elapse, we must track the constants for the values of the clocks as precisely as
possible (i.e. apply no proper abstraction). Thus, as an intermediate step for comput-
ing abstract zones, we must apply logical reasoning in order to infer whether the zone
accounts for behavior of zero (as opposed to: non-zero) periods of time.
Our abstraction methods amounts to computing an abstraction of the zone graph. We

use the abstract zone graph to detect quasi-equal clocks.
We have implemented our method in our tool sAsEt, which is built in top of the

Jahob verification framework. This allows us to represent zones (and abstract zones)
by linear real arithmetic formulas and to perform the required logical reasoning (on the
duration of the corresponding period of time) through calls of an SMT solver.
We have used our implementation to conduct preliminary experiments. The results

indicate that the abstraction is effective for the goal of the optimization based on quasi-
equal clocks: it is coarse enough to yield a drastic reduction of the size of the zone graph.
Still, the abstraction is precise enough to identify a large class of quasi-clocks.

Contributions

The key technical contributions that are described in this chapter are summarized as
follows:

• We present the notion of quasi-equal clocks. Quasi-equal clocks are clocks which
are always equal except at intervals of zero-time duration.

• We introduce the notion of zero-time configuration, zero-time behavior and a relax
operator on zones. By using these notions we present an abstraction technique,
zero-time abstraction. We show that that our abstraction technique is sound.

• We provide complexity results for our abstraction method. We show that the size
of the concrete zone graph is an upper bound for the size of our abstraction.

• We present an algorithm for effectively computing quasi-equal clocks. We present
a formal proof for the correctness of the algorithm.

Quasi-equal clocks are closely related to overclocks from the previous chapter. Re-
ductions of quasi-equal clocks have been published in [76, 77]. The abstraction method

72

5.1 Quasi-equal Clocks

`0x ≤ 60 ∧ y ≤ 60

`1

x ≤ 60 ∧ y ≤ 60

`2

x ≤ 60 ∧ y ≤ 60

`3 x ≤ 60 ∧ y ≤ 60

x ≥ 50 y ≥ 40

y ≥ 40 x ≥ 50

y ≥ 60 y := 0

x ≥ 60 x := 0

x ≥ 60 x := 0

y ≥ 60 y := 0

Figure 5.1: Timed automaton with quasi-equal clocks

that we present in this chapter has been published in [101]. In addition, we have suc-
cessfully generalized the notion of quasi-clocks for timed automata to the notion of
quasi-dependent variables for hybrid systems. We have successfully extended the ab-
straction technique from this chapter, to the context of hybrid systems. These results
are published in [30].

Outline

In Section 5.1, we use an example to illustrate the notion of quasi-equal clocks and
investigate the issue of zero time behavior. In Section 5.2, we formalize our abstraction
by means of an abstract zone graph and a simulation relation. In Section 5.3, we give an
upper bound for the size of the abstract zone graph. Then, we illustrate with an example
the effectiveness of the abstraction, i.e. the reduction of size through the abstraction. In
Section 5.4, we present an algorithm for computing the reachable abstract zone graph
(on the fly). The output of the algorithm is a relation that identifies which clocks are
quasi-equal.

5.1 Quasi-equal Clocks

Quasi-equal clocks are closely related to overclocks presented in Section 4.2. However,
they are not semantically defined in terms of reset locations from Section 3.1 but in
terms of time. Intuitively two clocks are quasi-equal if they are always equal except
at some points of time. In general, this clock differences are introduced by the inter-
leaving semantics of timed automata. Quasi-equal clocks can be simplified, (e.g. using
the reduction methodsd presented in [76, 77]) while preserving most or all the system

73

Chapter 5 Clock Optimizations for Timed Systems

properties. The result is often an exponential gain in the verification times.
In the case of TDMA based systems. Every component has its own clock. The clocks

are initialized and synchronized. At the end of the TDMA cycle, clocks are restarted and
continue to be synchronized and equal. Therefore, from an observer point of view these
clocks appear to be equal. In reality, clocks will not be perfectly synchronous. However,
studies (e.g. [88]) suggest that by having appropriate time guards, perfect clocks can be
assumed. For the semantics of timed automata these clocks will be however not equal,
but quasi-equal. This is because of the interleaving semantics. All clocks are reset at
one point of time, but in an interleaving fashion, leading to different clock valuations
in zero time. It is natural to observe that the system behavior can be preserved while
using a reduced number of clocks.
For the rest of this chapter, let us fix a timed automaton A = (L,Σ,X, I, E, `0). In

particular since for our abstraction method, actions are not relevant. We will disregard
actions in edges. Further, we will work with symbolic configurations, consisting of pairs
of locations and zones. We will use Z ∈ Φ(X) for some zone corresponding to A.

Definition 5.1 (Quasi-equal Relation). The quasi-equal relation ≡ for timed automaton
A is the relation containing all pairs of clocks for which in all computations of A their
values are equal, except at points of time where they are reset and time is not allowed to
elapse. Formally, it is defined as:

≡ def= {(x, y) | x, y ∈ X and 〈`0, {ν0}〉 →∗ZG 〈`, Z〉 =⇒
∀ν ∈ Z. ν |= x = y ∨ x = 0 ∨ y = 0}

♦

Two clocks are in relation, if for all reachable configurations in the zone graph, their
valuations are equal or one of the valuations is equal to zero. In [76] it has been shown
that the quasi-equal relation is an equivalence relation.

Proposition 5.2. The quasi-equal relation ≡ is an equivalence relation. ♦

The abstraction method that we present in this chapter, will enable us to efficiently
compute the quasi-equal relation for a given automaton. Let us illustrate the notion of
quasi-equal clocks with an example.

Example 5.3. (Quasi-equal clocks) Consider the timed automata presented in Fig-
ure 5.1 with clocks x and y. Clearly, clocks x and y are not equal since for ex-
ample in the computation 〈`0, {ν0}〉 →∗ZG 〈`1, x = 60 ∧ y = 0〉 the configuration
〈`1, x = 60 ∧ y = 0〉 yields different values for clocks x and y. However, note that
the invariant I(`1) = x ≤ 60 ∧ y ≤ 60 will prevent time to elapse at this configuration
and thus the only successor of this configuration is 〈`0, x = 0∧ y = 0∧ x ≤ 60∧ y ≤ 60〉

74

5.2 Zero Time Behavior Abstraction

in which the values for clocks x and y are equal. Indeed, it is the case that for all
computations from the automaton in Figure 5.1, the values for clocks x and y are either
equal or the value of one clock is zero and a reset in zero time for the other clock occurs.
Therefore, clocks x and y are quasi-equal. Clearly, the behavior of timed automata in
Figure 5.1, can be simulated by using one clock, which yields an important speed up in
the verification time. ♦

5.2 Zero Time Behavior Abstraction

In this section we present our method for detecting quasi-equal clocks. The main obser-
vation is that if two clocks x and y are quasi-equal then for all computations if one clock
say x is reset then a reset for the other clock y must appear in some future configuration
in the computation path. In particular, for all the configurations in the computation
fragment between the resets of x and y time cannot elapse (i.e. all the delay successors
of a configuration have a delay of zero). Another key observation is that if in a con-
figuration time is allowed to elapse, clocks x and y must be strictly equal. Therefore,
to detect quasi-equal clocks, we do not only need to consider resets of clocks but also
configurations in which time is allowed to elapse and configurations in which time is not
allowed to elapse.
As shown in Example 5.3, the zero time behavior of a timed automaton may cause

quasi-equal clocks to arise. Therefore, the zero time behavior of an automaton is im-
portant for detecting quasi-equal clocks.

Example 5.4. (Zero Time Behavior) Consider Example 5.3. In the computation,
〈`0, {ν0}〉 →∗ZG 〈`1, x = 60 ∧ y = 0〉, first a reset for clock y occurs, then in the next
transition a reset for clock x occurs. In this case, the length of the zero time computation
is just one transition. However, this does not need to be the case. Consider the compu-
tation 〈`0, {ν0}〉 →∗ZG 〈`0, x = 0∧y ≤ 60∧y ≥ 60〉, the invariant I(`0) = x ≤ 60∧y ≤ 60
will not let time elapse and the only successor is 〈`2, x = 0 ∧ y ≤ 60 ∧ y ≥ 60〉. The
invariant I(`2) = x ≤ 60 ∧ y ≤ 60 will not let time elapse and the only successor is
〈`0, x = 0 ∧ y = 0 ∧ x ≤ 60 ∧ y ≤ 60〉, where time may elapse but the values for clocks
x and y are equal. In general, the number of transitions that may occur in zero time
might be infinite. ♦

The following definition formalizes our notion of zero time configurations, i.e. config-
urations for which time cannot elapse.

Definition 5.5 (Zero Time Configuration). A configuration 〈`, Z〉 ∈ SConf (A) is zero

75

Chapter 5 Clock Optimizations for Timed Systems

1

5

x

1
5

y

4

z

Z

∞

x

∞

y

∞

z

x = y

Figure 5.2: The relax operator on zone Z := x−y ≤ 0∧x−y ≥ 0∧x ≥ 1∧y ≤ 5∧y−z ≤ 1.

time if the invariant of location ` precludes time to elapse. Formally,

zt(`, Z) def= ∀ν ∈ Z, d ∈ R+
0 . ν + d |= I(`) =⇒ d = 0.

♦

Our method preserves as much as possible the information corresponding to zero time
configurations and abstracts away much information from the non-zero time configura-
tions.
If a configuration 〈`, Z〉 is zero time, our method will preserve all the information in

Z. However, if the configuration 〈`, Z〉 is non-zero time, our method will abstract Z by
means of the relax operator rlx to a much bigger zone rlx(Z), which preservers the strict
equalities entailed by the zone Z. The following definition formalizes the relax operator.

Definition 5.6 (Relax Operator). Given a zone Z ∈ Φ(X). The relax operator rlx
applied to the zone Z over-approximates Z by a conjunction of the clock equalities it
entails. Formally,

rlx(Z) def=
∧
{x = y | x, y ∈ X and ∀ν ∈ Z. ν |= x = y}.

♦

Example 5.7. (Relax Operator) Consider the zone Z from Figure 5.2 left. It is the
case that all the valuations in Z satisfy the constraint x = y. However, there are
valuations in Z which do not satisfy x = z and also valuations which do not satisfy
y = z. Therefore, the result of applying the relax operator to Z yields the zone x = y as
shown in Figure 5.2 right. Note, that the zone rlx(Z) has no constraints on the unequal

76

5.2 Zero Time Behavior Abstraction

clocks. Another important property of rlx(Z) is that it contains only positive equalities
and thus will remain unaffected by passage of time, that is rlx(Z) = rlx(Z)↑. Note, that
rlx(Z) is much bigger than Z and it is closed with respect to the delay operator. ♦

If a configuration is zero time our method will abstract the configuration by means
of the normalization normk,G operator presented in Section 2.1.2. On the contrary, if
a configuration is non-zero time, our method will abstract the configuration by means
of the relax rlx operator. The normalization operator normk,G is increasing, idempotent
and yields a finite number of zones. Since our method relies on both the normalization
operator normk,G and the relax operator rlx it is important that the relax operator
exhibits the afore mentioned properties.

Lemma 5.8 (Properties Of The Relax Operator). The relax operator is increasing,
idempotent and yields a finite abstraction. Formally, the following hold:

1. Z ⊆ rlx(Z) for any Z ∈ Φ(X)

2. rlx(rlx(Z)) = rlx(Z) for any Z ∈ Φ(X)

3. the set {rlx(Z) | Z ∈ Φ(X)} is finite.

Proof. (1) By contradiction on the converse rlx(Z)c ⊂ Zc. Assume ν ∈ rlx(Z)c and
ν 6∈ Zc. which means that ν ∈ Z. By definition of rlx, we have ν ∈ rlx(Z)c if ν does
not satisfy a conjunct x = y in rlx(Z) for some x, y ∈ X. Since such a conjunct exists in
rlx(Z) by definition of rlx we have that ∀ν ′ ∈ Z.ν ′ |= x = y but ν ∈ Z and ν |= x 6= y

which is a contradiction.
(2) By definition of the relax operator rlx, rlx(Z) is a conjunction of equalities such

that ∀ν ′ ∈ Z.ν ′ |= x = y for every equality in rlx(Z). Clearly, applying rlx to rlx(Z) will
produce the same set of equalities since ∀ν ′ ∈ Z.ν ′ |= x = y for every equality in rlx(Z).
(3) Let |X| denote the number of clocks in A. Then the number of all possible relaxed

zones, i.e. all possible equality combinations for the clocks in X is in O(2|X|−1).

In Chapter 2 Section 2.1 we defined the normalization operator normk,G . The nor-
malization operator is used to produce a finite abstraction of the the system. Note that
the finite zone graph obtained by using the normalization operator normk,G , is a sound
and complete abstraction, i.e. abstracted zones preserve all the relevant information of
the system. Our abstraction is a combination of both the normalization normk,G op-
erator and the relax operator rlx. We now define an abstraction function on symbolic
configurations.

77

Chapter 5 Clock Optimizations for Timed Systems

Definition 5.9 (Zero Time Abstraction Function). The abstraction function αzt applied
to a configuration 〈`, Z〉 preserves the information if the configuration is zero time and
it abstracts it using the relax operator otherwise, i.e.

αzt(〈`, Z〉) :=

〈`, normk,G(Z)〉 if zt(`, Z)

〈`, rlx(Z)〉 otherwise.

5.2.1 Abstract Zone Graph

Our goal is to construct an abstract zone graph in which quasi-equalities can be soundly
and efficiently computed. Given a timed automaton, our method will construct an
abstract transition system, which preserves as much as possible the zero time behavior
of a timed automaton. The configurations of the abstract transition system are pairs
consisting of locations and zones. The zones that we compute are of two types. Either a
zone for which time is guaranteed not to elapse or a conjunction of equalities for clocks
for which time may elapse. We now continue with the formal definition of our method.

Definition 5.10 (Abstract Zone Graph). Timed automaton A induces the abstract zone
graph

ZG#(A) = (SConf (A),→#
ZG, c

#
0)

where:

• SConf (A) ⊆ L× Φ(X) is the set of configurations

• c#
0 = αzt(〈`0, {ν0}〉) is the initial configuration

• →#
ZG⊆ SConf (A) × SConf (A) is the transition relation. Given a configuration
〈`, P 〉 ∈ SConf (A), there is a transition 〈`, P 〉 →#

ZG αzt(〈`′, F 〉) if there is an edge
(`, ϕ, Y, `′) ∈ E and F is not empty. Where F = (P ∧ ϕ ∧ I(`))[Y := 0] ∧ I(`′)

♦

The initial abstract configuration is a conjunction asserting all clocks to be equal.
Given a configuration and an edge, the successor zone F is computed. By definition of
the abstraction function αzt, if the destination configuration is zero time, the zone F will
be normalized to normk,G(F). This is because in zero time it is important to preserve as
much information as possible. This information is useful for detecting zero time paths in
which quasi-equal clocks may arise. If the destination configuration is not zero time, the
zone F will be relaxed to rlx(F). The zone rlx(F) consist of conjuncts asserting all strict
equalities of clocks in zone F . In addition, the relax operator will remove inequalities
introduced by clock resets. Note that the abstract zone graph only performs discrete

78

5.2 Zero Time Behavior Abstraction

〈`0, x = y〉

〈`1, x = y〉

〈`2, x = y〉

〈`0, P1〉

〈`0, P2〉

〈`1, P2〉

〈`2, P1〉

〈`3, x = y〉

Figure 5.3: Abstract zone graph corresponding to TA in Figure 5.1.

transitions. This is because if a configuration is “detected” as non-zero time, the relax
operator will be applied and the corresponding zone is closed with respect to the delay
operator.
We use normk,G(F) to ensure the relation→#

ZG to be finite. We remind the reader that
any normalization operator norm′ such that Z ⊆ norm′(Z), norm′(norm′(Z)) = norm′(Z)
and the set {norm′(Z) | Z ∈ Φ(X)} is finite, will be suitable for our abstraction method.

Example 5.11. Figure 5.3 shows the abstract zone graph corresponding to the auto-
maton in Figure 5.1, where zones P1, P2 are P1 := x ≤ 60 ∧ x ≥ 60 ∧ y = 0 and
P2 := y ≤ 60 ∧ y ≥ 60 ∧ x = 0. Note, that in configurations where time may elapse the
corresponding zone is x = y. In the transition induced by the edge (`1, x ≥ 60, x := 0, `0)
from the automaton in Figure 5.1 and configuration 〈`1, P1〉, the successor configuration
〈`0, P ′〉 with zone P ′ = (P1 ∧ x ≥ 60)[{x} := 0] ∧ I(`0) is not zero time. Therefore,
(P1 ∧ x ≥ 60)[{x} := 0] ∧ I(`0) is relaxed to x = y, leading to configuration 〈`0, x = y〉.
Since, every zone in the set of reachable configurations implies that x = y∨x = 0∨y = 0,
our abstraction allow us to soundly conclude that x and y are quasi-equal.

♦

For a timed automaton A, we formalize the behavior of the corresponding abstract
zone graph ZG#(A) with respect to the zone graph ZG(A) via a simulation relation.

Definition 5.12 (Simulation Relation). Given a timed automaton A, a simulation re-
lation for the zone graph ZG(A) = (SConf (A),→ZG, c0) and the abstract zone graph
ZG#(A) = (SConf (A),→#

ZG, c
#
0), is a binary relation 4 on SConf (A) such that:

79

Chapter 5 Clock Optimizations for Timed Systems

1. c0 4 c
#
0

2. if 〈`, Z〉 4 〈`1, P 〉 then:

a) ` = `1 and Z ⊆ P

b) if 〈`, Z〉 →ZG 〈`′, Z ′〉 with edge (`, ϕ, Y, `′) ∈ E, then there exists 〈`′, P ′〉 such
that 〈`, P 〉 →#

ZG 〈`′, P ′〉 with edge (`, ϕ, Y, `′) and 〈`′, Z ′〉 4 〈`′, P ′〉

c) if 〈`, Z〉 →ZG 〈`, Z↑ ∧ I(`)〉, then 〈`, Z↑ ∧ I(`)〉 4 〈`, P 〉.

If a simulation relation 4 exists, we say that the abstract zone graph ZG#(A) simulates
the zone graph ZG(A). ♦

In the rest of the paper we will consistently use Z and P to refer to zones in the zone
and abstract zone graph respectively. The definition of simulation relation given above
is quite specific. This allow us to better explain the relation between the zone graph and
the abstract zone graph. If two configurations are in relation, the zone in the abstract
zone graph is always bigger or equal than the corresponding zone in the zone graph. If
there is a discrete transition in the zone graph then there is a discrete transition in the
abstract zone graph as well. If there is a delay transition in the zone graph, meaning
that the configuration is non-zero time, the abstract zone graph “remains” at its current
configuration. In the latter case, since zones in the abstract zone graph are bigger or
equal than zones in the zone graph, the corresponding abstract configuration is also
non-zero time and closed with respect to delays. The following lemma guarantees the
existence of a simulation relation.

Lemma 5.13. For a timed automaton A, the abstract zone graph ZG#(A) simulates
the zone graph ZG(A).

Proof. We will show the existence of a simulation relation 4 by inductively constructing
one. First let 40= {c0, αzt(c0)}. Therefore, initial configurations are in relation and
condition 1. is satisfied. For the inductive step, let (〈`, Z〉, 〈`, P 〉) ∈4n. By I.H. we can
assume that Z ⊆ P . We now need to consider the transitions in the concrete zone graph:

• Discrete transitions. There is a transition 〈`, Z〉 →ZG 〈`′, Z ′〉 with edge (`, ϕ, Y, `′) ∈
E. Then by definition of the abstract transition relation we have, 〈`, P 〉 →#

ZG

〈`′, P ′〉 with edge e. By definition of →ZG we have Z ′ = (Z ∧ ϕ)[Y := 0] ∧ I(`′)
and by definition of →#

ZG we have F = (P ∧ ϕ)[Y := 0] ∧ I(`′). Note, that since
Z ⊆ P it is the case that (Z ∧ ϕ)[Y := 0] ⊆ (P ∧ ϕ)[Y := 0]. An thus Z ′ ⊆ F .
Now, according to →#

ZG there are two possible values for P ′ (i.e. F and rlx(F)):

– zt(`′, F) = > then P ′ = normk,G(F) and P ′ ⊇ Z ′ since Z ⊆ F ⊆ normk,G(F).

80

5.2 Zero Time Behavior Abstraction

`0 `1 `2
x ≥ 5 y ≤ 2

x := 0
〈`0, x = y〉 〈`1, x = y〉 〈`2,>〉

Figure 5.4: Abstraction is sound but not complete. Left: an automaton with two equal
clocks x and y. Right: the abstract zone graph corresponding to the automaton at the
left. Note, that in the abstract zone graph clocks x and y at configurations in location
`2 are not equal. This is because at location `1 the abstraction is too coarse yielding
the predicate x = y. Thus, the guard y ≤ 2 is satisfied and the reset to x is executed,
causing clocks x and y to be unequal.

– zt(`′, F) = ⊥ then P ′ = rlx(F). By Lemma 5.8, we know that the rlx operator
is monotone. Thus, we have that Z ′ ⊆ F ⊆ P ′ = rlx(F).

For all the above cases we have that (〈`′, P ′)〉, 〈`′, Z ′〉) satisfies conditions under
(2). Let 4n+1=4n ∪{(〈`′, P ′)〉, 〈`′, Z ′〉)}

• Delay transitions. There is a transition 〈`, Z〉 →ZG 〈`, Z↑ ∧ I(`)〉. Since there is a
delay transition, the configuration is no zero time, i.e. zt(〈`, Z〉) = ⊥ since Z ⊆ P
it follows that zt(〈`, P 〉) = ⊥ and P is a relaxed zone closed under time passage.
Let 4n+1=4n ∪{(〈`↑ ∧ I(`), Z〉, 〈`, P 〉)}

Let 4 be the union of all 4i for i ∈ N. Since all elements in 4 satisfy the conditions
under (2) and 4 satisfies condition (1). We conclude that 4 is a simulation relation and
thus ZG(A) 4 ZG#(A).

Our goal is to find the set of quasi-equal clocks for a given timed automaton A. We
now define the quasi-equal relation induced by the abstract zone graph ZG#(A) as the
set of quasi-equalities implied by all the zones in the set of its reachable configurations.

Definition 5.14 (Abstract Quasi-equal Relation). Given timed automaton A. The
abstract quasi-equal relation ≡# induced by the abstract zone graph ZG#(A), is the set
of pairs of clocks such that for all pairs, their values in the reachable configurations are
equal or one clock is equal to zero. Formally,

≡# def= {(x, y) | x, y ∈ X and c#
0 (→#

ZG)∗〈`, P 〉 =⇒
P ⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0}}.

♦

81

Chapter 5 Clock Optimizations for Timed Systems

Our method is sound in the sense that if two clocks are quasi-equal in the abstract
zone graph, then they are quasi-equal in the concrete zone graph. Our method is not
complete in the sense that if two clocks are quasi-equal in the zone graph, then they
might not be quasi-equal in the abstract zone graph. We illustrate the non-completeness
of our method with an example.

Example 5.15. As an example consider the automaton in Figure 5.4. In the automaton
we have that x ≡ y. Further, x is strictly equal to y. Note that in the corresponding
abstract zone graph in Figure 5.4 right. Clocks x and y are not equal at location `2,
i.e. x 6≡# y. This is because the edge e = (`1, x ≤ 2, {x}, `2) is an unfeasible edge, i.e.
it does not induce a reachable transition in the zone graph. Edge e will cause clocks
x, y to be unequal in the abstract zone graph. Note, that at location `1 the clocks x
and y are equal, and their valuations are greater or equal than 5. Therefore, the guard
y ≤ 2 is never satisfied, and the clock x is never reset. Thus, clocks remain equal. Since
configurations at location `1 are not zero time. The abstract zone graph will summarize
all of this configurations by the predicate x = y. At computing the abstract successor
given the zone x = y, the guard y ≤ 2 is satisfied and the reset of x is executed. Since
the configuration at location `2 is not zero time and there is no reset for clock y, the
relax operator will make clocks x and y unequal. ♦

Surprisingly, we have not been able to find an example for which the abstraction is
not complete given that the considered timed automaton contains only feasible edges.
The following theorem states formally the soundness of the abstraction.

Theorem 5.16 (Zero Time Abstraction is Sound). Given timed automaton A. If two
clocks are quasi-equal in the abstract zone graph ZG#(A), then they are quasi-equal in
the zone graph ZG(A). Formally,

∀x, y ∈ X. x ≡# y =⇒ x ≡ y.

Proof. Given x ≡# y, by definition of the abstract quasi-equal relation ≡# the following
holds:

∀〈`, P 〉 ∈ SConf (A). q0(→#
ZG)∗〈`, P 〉 =⇒ P ⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0}.

We continue by contradiction. Assume x 6≡ y, then by definition of the quasi-equal
relation ≡ we have that

∃〈`, Z〉 ∈ SConf (A). c0 →ZG 〈`, Z〉 ∧ Z 6⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0}.

82

5.3 Complexity

Which means that there exist a valuation ν ∈ Z, such that ν 6|= x = y ∨ x = 0 ∨ y = 0.
By Lemma 5.13, we have that ZG(A) 4 ZG#(A). Therefore, there exist a 〈`, P 〉 ∈
SConf (A) s.t. (〈`, Z〉, 〈`, P 〉) ∈4. By definition of the simulation relation 4 it holds
that Z ⊆ P . Finally, we have that ν ∈ Z and ν 6∈ P which is a contradiction.

For implementation purposes, it is important that the relation →#
ZG is finite. Given

a timed automaton A and by definition of the transition relation →#
ZG. A configuration

has two possible successors. Either a successor corresponding to the application of the
normk,G operator, or a successor corresponding to the application of the rlx operator.
The set of zones generated by normk,G is finite. Further, the set of zones generated by
rlx is in O(2|X|), since it contains only positive equalities for the clocks in X. Thus, we
obtain the following theorem.

Theorem 5.17. The transition relation →#
ZG is finite.

Proof. By definition of →#
ZG there are two possible successors for a zone P . Namely,

normk,G(F) and rlx(F). By definition of normk,G we have that the set {normk,G(F) |
F ∈ Φ(X)} is finite. By Lemma 5.8 the zones generated by the rlx operator are finite.
Therefore, the reachable zones in ZG#(A) are finite which implies that →#

ZG is also
finite.

5.3 Complexity

In this section we characterize the size of the abstract zone graph based on the number
of reachable configurations. We show that when an automaton A contains only feasible
edges i.e. for each edge e in the timed automaton there exists a computation path in
which the edge e induces a transition, then the size of the zone graph ZG(A) is an upper
bound for the size of the abstract zone graph ZG#(A).

Definition 5.18 (Size). For timed automaton A we defined the size of the zone graph
ZG(A) = (Conf (A),→ZG, c0) and the size of the abstract zone graph ZG#(A) =
(Conf (A),→#

ZG, c
#
0) to be the number of reachable configurations. Formally,

|ZG(A)| = |{c | c0 →∗ZG c}|

and

|ZG#(A)| = |{c | c#
0 (→#

ZG)∗c}|

respectively. ♦

83

Chapter 5 Clock Optimizations for Timed Systems

`0

x ≤ 1

`1

y ≤ 1

`2

x ≥ 1

x := 0

y := 0

z ≥ 104 y := 0

〈`0, x = y = z〉

〈`1, x = 0 ∧ y = z ∧ y ≤ 1 ∧ y ≥ 1〉

〈`0, x = y〉

〈`1, x = 0 ∧ y ≤ 1 ∧ y ≥ 1〉

〈`2, x = y〉

Figure 5.5: Left: a timed automaton with clocks, x, y and z. Clocks x and y are quasi-
equal. Right: the corresponding abstract zone graph.

The following theorem shows that when in the input automaton all edges induce a
reachable configuration in the zone graph ZG(A). Then the number of configurations
from the corresponding abstract zone graph ZG#(A) is smaller or equal than the number
of configurations in the zone graph ZG(A). The theorem follows from the following facts.
First, if the abstract zone graph ZG#(A) performs an action transition with edge e then
the zone graph ZG(A) also performs a transition with edge e. Second, by Lemma 5.13 it
is the case that ZG#(A) simulates ZG(A) and all zones in the configurations of ZG#(A)
are bigger than the corresponding ones in ZG(A).

Theorem 5.19 (|ZG#(A)| ≤ |ZG(A)|). Given a timed automaton A, the zone graph
ZG(A) = (SConf (A),→ZG, c0) and the abstract zone graph ZG#(A) = (SConf (A),→#

ZG

, c#
0). If A is such that for all e = (`, ϕ, Y, `′) ∈ E there is a transition 〈`, Z〉 →ZG 〈`′, Z ′〉

with edge e and c0 →∗ZG 〈`, Z〉 then |ZG#(A)| ≤ |ZG(A)|.

Proof. We show that whenever there is a transition in ZG#(A) then there is also a trans-
ition in ZG(A) and that all the zones in ZG#(A) are bigger than their correspondent
ones in ZG(A). Thus we can conclude |ZG#(A)| ≤ |ZG(A)|. Formally, given a trans-
ition 〈`, P 〉 →#

ZG 〈`′, P ′〉, by definition of →#
ZG there exist an edge e ∈ E and since by

assumption for all edges e = (`, ϕ, Y, `′) ∈ E there is a transition 〈`, Z〉 →ZG 〈`′, Z ′〉 with
edge e such that c0 →∗ZG 〈`, Z〉. We have that ZG(A) has also performed a transition.
In addition, by the Simulation Lemma 5.13, we have that ZG#(A) 4 ZG(A). Thus, we
have that for all 〈`, Z〉 4 〈`, P 〉, Z ⊆ P . Therefore, |ZG#(A)| ≤ |ZG(A)|.

The feasibility of edges is not a strong condition, since in practice unfeasible edges
will not occur intentionally, except in the cases when the modeler makes a mistake.

84

5.3 Complexity

x

y

x
6=

y
∧

x
=

0
∧

P
(y

)

x = y

x 6= y ∧ y = 0 ∧ P (x)

x
6=
y
∧ x

6=
0
∧ y

6=
0x

6=
y
∧ x

6=
0
∧ y

6=
0

Figure 5.6: Quasi-equal zones for clocks x, y. Where P (x), P (y) is a clock constraint
over x and y respectively.

Theorem 5.19 gives an upper bound on the size of the abstract zone graph. In practice
for a timed automaton the difference on the size of the abstract and the size of the
concrete system can be exponential. We illustrate this fact in the following example.

Example 5.20. Consider the automaton A in Figure 5.5 left. We observe that the
zero time behavior occurs at points of time where x = 1 ∧ y = 1 ∧ z = n with n ∈
{1, 2, . . . , 106}. The normalized zone graph using maximal constant over approximation
will contain at least 106 configurations. In Figure 5.5 right the complete full abstract
zone graph ZG#(A) is illustrated. At point of time x = 1 ∧ y = 1 ∧ z = 1 our method
detects a zero time configuration and computes the exact successor zone Z1 := x =
0 ∧ y = z ∧ y ≤ 1 ∧ y ≥ 1. Note that zt(`1, Z1) is valid, then there is a transition
with edge (`1,>, {y}, `0). Our method computes F := x = 0 ∧ y = 0 ∧ z = 1 and the
formula zt(`0, F) is not valid, thus F is relax to rlx(F) := x = y leading to configuration
〈`0, x = y〉. Since F does not imply a quasi-equality for clock z, the clock z is abstracted
away. The resulting abstraction has only 5 configurations. ♦

5.3.1 Quasi-equal Zones
For theoretical reasons it is also interesting to see, how many zones are needed in order
to detect quasi-equal clocks. The quasi-equal relation ≡ is an equivalence relation and
thus induces a partition. We call the corresponding equivalence classes quasi-equal zones
(two clocks are quasi-equal or not in a zone). The set of quasi-equal zones is a subset of
the zones of the corresponding zone graph. In the worst case, a zone is a region. Regions
are used used to construct the region automaton as shown in [105]. The following lemma
gives an upper bound on the number of quasi-equal zones.

85

Chapter 5 Clock Optimizations for Timed Systems

Lemma 5.21. Given a timed automaton A = (L,Σ,X, I, E, `0), let k : X → Q+
0 be

a function mapping each clock x to the maximal constant k(x) appearing in the guards
or invariants in A containing x and c = max{k(x) | x ∈ X}. Then, the number of
quasi-equal zones induced by the equivalence relation ≡ is at most

|X| · (2c+ 2) + 2(|X|−1) − |X|.

Proof. The proof is similar to the one presented in [105], page 160. The first summand
|X|·(2c+2) corresponds to the intervals [x = 0], [0 < x < 1], [x = 1], [1 < x < 2], . . . , [x =
c], [x > c]. Since for clocks to be quasi-equal they can be either equal or be 0. We only
need to consider the intervals which are the axis of the euclidean space for |X|. Therefore,
we obtain the term |X| · (2c+ 2). The second and third term 2(|X|−1)− |X| correspond to
all regions, that are lines which represent some clocks to be equal and some clocks to be
different than zero, for example for clocks x, y, z we could have x = y ∧ z 6= 0. The term
2(|X|−1) corresponds to all possible combinations of clocks being equal or being equal to
zero, we substract |X| − 1 because we have already counted the combinations for which
one clock is not zero and the others are zero i.e. being in an axis. Finally, we substract
the number of axis |X| given us the above formula, because they were already counted
in the first term.

In the worst case, the abstraction will enumerate all the possible quasi-equal zones.
Clearly, the number of zones that we need to consider for finding quasi-equalities is
smaller than the full number of zones from the corresponding zone automaton. Namely,
O((2c+ 2)|X| · (4c+ 3)

1
2 ·|X|·(|X|−1)) as given in [105].

5.4 Algorithm
In this section, first we present a high level algorithm for performing a reachability
analysis on the abstract zone graph induced by a given timed automaton. We have
implemented the algorithm in our tool sAsEt and subsequently performed several ex-
periments. We will discuss details of our implementation and experiments in Chapter 6.
Algorithm 5.1 lists a high level algorithm for finding quasi-equal clocks in a given

timed automaton. For a timed automaton A, the idea of Algorithm 5.1 is to traverse the
reachable state space of ZG#(A) while maintaining a relation QE containing quasi-equal
clocks. The reachable state space is computed on the fly.
We continue by describing Algorithm 5.1 in detail. At line 2 the set QE is initialized

to have all non reflexive quasi-equalities. At line 3 the while condition ensures that the
algorithm will terminate either when the whole reachable space of ZG#(A) has been
visited or when there are no quasi-equal clocks in the relation QE. At lines 4 to 8

86

5.4 Algorithm

Algorithm 5.1 High level algorithm for detecting quasi-equal clocks
Input: timed automaton A = (L,Σ,X, I, E, `0)
Output: a binary relation QE ⊆ X× X containing quasi-equal clocks in A

1: W := {c#
0 }, V := ∅

2: QE := {(x, y) | x, y ∈ X and x is different than y}
3: while W 6= ∅ and QE 6= ∅ do
4: take 〈`, P 〉 from W

5: for all (x, y) ∈ QE do
6: if P 6⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0} then
7: QE := QE \ {(x, y)}
8: end if
9: end for

10: if P 6⊆ P ′ for all 〈`, P ′〉 ∈ V then
11: add 〈`, P 〉 to V
12: for all 〈`′, P ′〉 with 〈`, P 〉 →#

ZG 〈`′, P ′〉 do
13: add 〈`′, P ′〉 to W
14: end for
15: end if
16: end while
17: return QE

the algorithm picks a configuration 〈`, P 〉 to be explored and checks that all the quasi-
equalities (x, y) in QE are implied by P . If this is not the case, then it will remove (x, y)
from QE. Note that in the algorithm the size of QE only decreases. Finally, at lines 10
to 14 the algorithm computes the successor of 〈`, P 〉 using the transition relation →#

ZG.
Note, that all the operations needed in Algorithm 5.1 can be implemented using

difference bound matrices [21, 61, 141] and thus our approach can be implemented in
tools like Kronos [140] or Uppaal [91]. The check in line 6 for two clocks can be
implemented by checking independently whether P satisfies any disjunct in x = y ∨ x =
0 ∨ y = 0. For computing the successor in line 12 by definition of →#

ZG it is necessary
to compute zt(`′, F) where F is a convex zone. This can be computed by checking the
inclusion F ∧ I(`′) ⊇ F ↑ ∧ I(`′).
While the use of linear real arithmetic and SMT solvers in our tool is expensive

for difference logic constraints. It is also a flexible approach. By slightly modifying
our implementation, we have been able to use SMT solvers for solving more expressive
constraints which arise from the verification of hybrid systems [3].
If the set QE is never empty, Algorithm 5.1 computes the reachable space of ZG#(A)

87

Chapter 5 Clock Optimizations for Timed Systems

and if a pair of clocks (x, y) is in QE by Theorem 5.16 it follows that they are quasi-
equal in A. The following theorem states that all clocks in the return value QE of
Algorithm 5.1, are quasi-equal clocks.

Theorem 5.22 (Partial Correctness). For any timed automaton A, if two clocks are
in relation in the return value QE from Algorithm 5.1, then they are quasi-equal in the
corresponding zone graph. Formally,

∀x, y ∈ X.(x, y) ∈ QE =⇒ x ≡ y.

Proof. As long as QE 6= ∅, Algorithm 5.1 will generate the reachable configurations
in ZG#(A). Since (x, y) ∈ QE, the following holds: ∀〈`, P 〉 ∈ Conf (A). (c#

0 (→#
ZG

)∗〈`, P 〉) =⇒ P ⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0}. That is x ≡# y, by Theorem 5.16
it follows that x ≡ y.

Algorithm 5.1 will terminate whenever the relation QE is empty or whenever the wait
list W is empty. By Theorem 5.17, the relation →#

ZG is finite, meaning that the list W
will be eventually empty. Thus we obtain the following theorem.

Theorem 5.23 (Termination). Algorithm 5.1 terminates for all inputs.

Proof. The algorithm terminates if the set QE is empty. However, if there are quasi-
equal clocks, the set QE will not be empty. In this case, he algorithm terminates, because
the relation →#

ZG is finite as stated in Theorem 5.17.

5.5 Related Work
In [54] an abstraction method is proposed for detecting equal clocks (at a particular
location). Once equal clocks at a particular location have been detected, a substitution
method can be used to reduce the number of clocks in that location. Thus, the method
can effectively reduce the number of clocks per location and also in the whole timed
automaton. In this sense, the method [54] is similar wrt. its goal to our method. The
difference lies in technical details. Computing quasi-equal clocks requires to detect zero
time paths. For this, our method tracks the actual valuations of clocks, which the
method [54] does not. As a consequence, it will not be able to detect quasi-equal clocks
when they are not equal.
Our approach is based on the zone abstraction method. Therefore, we produce a fi-

nite system consisting of pairs of locations and zones. Zones are predicates over clocks.
Predicate abstraction [69, 28, 120] is used to compute finite approximations of infinite
transition systems. In [125] predicate abstraction is used in the context of timed auto-
mata. This approach is an interesting alternative for computing our abstraction. The set

88

5.5 Related Work

of predicates could be a subset of the predicates corresponding to the quasi-equal zones
given in Section 5.3. Then, an abstraction refinement process will be needed. Note,
that our definition of the abstract zone graph is constructive, i.e. the abstraction can be
directly computed from the given automaton and the initial configuration.
In the previous chapter published in [100], a syntactical pattern for timed automata

is proposed. Automata constructed under this pattern are called sequential timed auto-
mata. There, the so-called master clocks will be reset at exactly the same point of
time. Thus, master clocks are quasi-equal by construction. Unfortunately, the class of
sequential timed automata is rather restricted. Therefore, one would like to be able to
use the general class of timed automata and apply a method for detecting or checking
quasi-equal clocks. This motivates the use of quasi-equal clocks.
In [30] the notion quasi-dependent variables for hybrid systems is presented. For two

quasi-dependent variables, their valuations are always related via a function except at
some intervals of time of zero duration. Quasi-equal clocks are related by the identity
function. Therefore, quasi-dependent variables are a generalization of quasi-equal clocks.
We have successfully extended the abstraction method presented in this chapter for
detecting quasi-dependent variables in hybrid systems.
The classical maximal constant abstraction used for construction the finite zone graph [27].

May yield a large number of zones, if the maximal constant is a large number. Many
of these zones are not relevant for some local behavior, since the maximal constant is
not relevant at all locations. In [17, 16] different abstractions for timed automata are
presented. These abstractions have as goal to produce coarser, sound and complete
abstractions by choosing relevant constants from the guards. These methods are com-
plementary to our method, since we can always combine our analysis with an appropriate
normalization operator.

89

Chapter 6

Proof of Concept

Contents
6.1 A Tool for Analyzing Timed Automata 92

6.1.1 Design . 92

6.1.2 Implementation . 93

6.1.3 A Session in the Timed Automata Analyzer 95

6.2 Detecting Quasi-equal Clocks 98

6.2.1 Simplified Fire Alarm System 99

6.3 Real World Fire Alarm System 101

6.4 Future Work . 103

In this chapter, we show the applicability of the concepts presented in this thesis.
First, in order to produce experimental results we present our tool sAsEt for analyzing
timed systems. sAsEt is implemented in top of the Jahob [142, 114, 136] verification
system. We have used our tool to compute the benchmarks of detecting quasi-equal
clocks in timed automata [101] and quasi-dependent variables in hybrid systems [30].
Later in this chapter, we present our techniques applied to the fired alarm system from
Section 1.3. By reducing quasi-equal clocks the verification times for the fire alarm
system go from exponential to quadratic in the number of components(sensors) [76]. In
addition, for the fire alarm system we show that the use of the sequential composition
operator from Chapter 4, further improves the verification times to linear in the number
of components [100].

Outline

In Section 6.1, we present our tool sAsEt for analyzing hybrid systems. We give an
overview of the structure of the system. We then discuss important implementation
details. Next, we present an example on how to use our tool for detecting quasi-equal
clocks. In Section 6.2, we use our tool for detecting quasi-equal clocks in the simplified

91

Chapter 6 Proof of Concept

fire alarm system presented in Section 1.3. We run a number of experiments in both
sAsEt and Uppaal and show the corresponding results. In Section 6.3, we apply the
techniques presented in this thesis to the industrial version of the simplified fire alarm
system. Our results show that the verification times improve from exponential to linear
in the number of components.

6.1 A Tool for Analyzing Timed Automata

As a proof of concept we have implemented our approach in our prototype tool sAsEt.
sAsEt is implemented in top of the Jahob verification system. Our tool uses many
of the libraries implemented in Jahob, e.g. the form library. Among other functions,
the form library allows us to represent predicates as higher order logic (HOL [130])
formulae, rewrite higher order logic formulae to the SMT-LIB [13] standard, or use type
inference [78].
Our implementation represents zones as linear real arithmetic formulae. As sAsEt

constructs the abstract zone graph a number of constraints will arise. sAsEt will use
an SMT solver to discharge them. In our experiments we used the solver Z3 [56]. The
use of other solvers, e.g. CVC3 [14] is easy to implement, since this is already provided
by the Jahob verification system.
In the following. First, we give an overview of the structure of the tool. Then, we will

discuss some important implementation details. Finally, we will present an example on
how to use sAsEt for computing quasi-equal clocks.

6.1.1 Design

Figure 6.1 illustrates the structure of the sAsEt hybrid system analyzer. As the picture
shows, sAsEt builds on top of the Jahob system. The Jahob system provides a number
of libraries for manipulating and proving high order formulae. In particular, it provides
a number of rewriting techniques from higher order logic (HOL) to first order logic
(FOL) theories. Once the formulae is rewritten in a suitable theory, Jahob provides
interfaces for several theorem provers, e.g. Isabelle [108], Coq [29], or Spass [132]. For
our experiments, we use Z3.
The two main components of the tool sAsEt are the automata and the analyzer lib-

raries. The automata library contains definitions of timed automata, sequential timed
automata, hybrid systems and the definitions of different transitions systems. The ana-
lyzer library implements important operations (e.g. parallel product) and our abstrac-
tions for timed automata and hybrid systems. The tool provides two parsers for reading
and writing Uppaal timed automata or SpaceEx hybrid systems. Our tool supports
the full syntax of SpaceEx models. Currently our tool supports a subset of the Uppaal
syntax.

92

6.1 A Tool for Analyzing Timed Automata

sAsEt

Automata Analyzer

Uppaal.Parser SpaceEx.Parser

Uppaal SpaceEx Z3

Jahob

Figure 6.1: Architecture of the sAsEt system.

6.1.2 Implementation

Our tool is implemented in Ocaml 4 [117] under Linux [127]. We represent zones as
first order linear real arithmetic formulae (FOLLRA). We use SMT solvers for solving
constraints and several libraries from Jahob to manipulate formulae and perform SMT
calls.

Zones as Linear Real Arithmetic Predicates

We have implemented zones as linear real arithmetic (FOLLRA). Formulae in sAsEt are
HOL formulae as in the Isabelle theorem prover. Figure 6.2 shows a fragment of the
HOL logic implemented in Jahob. Formulae are thus, variables, constants, application
of a formula to a list of formula, a binder applied to identifiers in a formula, or a typed
formula. For more details on formulae in the Jahob system we refer the reader to [90].
We now need to express the valuations of the automaton in terms of linear real arith-

metic predicates. For this we use a strongest post condition operator. The definition of
the strongest post condition operator is given in Figure 6.3 right. The strongest post
condition operator takes as arguments a FOLLRA predicate and a clock constraint or a
clock. The operator returns a FOLLRA predicate.
Figure 6.3 left presents a fragment of a timed automaton. The predicate P represents

the clock valuations for some configuration 〈`1, P 〉. Given a predicate P and a clock
constraint (guard or invariant) ϕ the post condition operator will intersect the predicate

93

Chapter 6 Proof of Concept

1 type i dent = s t r i n g
2 type form =
3 | Var of i dent
4 | Const of constValue
5 | App of form ∗ form l i s t
6 | Binder of binderKind ∗ (typedIdent l i s t) ∗ form
7 | TypedForm of form ∗ typeForm

Figure 6.2: Subset of the high order logic implemented in Jahob.

with the constraint. If a predicate P and a clock x are given, the operator will update
the predicate P by setting the clock x equal to zero. The old value of the clock x is
then existentially quantified. Sets of clock resets, are considered as a list of actions. The
strongest post condition operator is inductively defined for lists of actions.

`1

I(`1)

P

`2

I(`2)

ϕ

Y

sp : FOLLRA × (Φ(X) ∪ X)→ FOLLRA

sp(P,ϕ) def= P ∧ ϕ
sp(P, x) def= ∃x0. x = 0 ∧ P [x/x0]
sp(P, s1; . . . ; sn) def= sp(sp(P, s1), s2; . . . sn)

Figure 6.3: Left: a fragment of a timed automaton, the predicate P represents the clock
valuations for some configuration 〈`1, P 〉. Right: definition of the strongest post con-
dition operator. Given a predicate and a clock constraint or a clock, it computes the
successor predicate.

Example 6.1. Consider the fragment of the automaton in Figure 6.3 left. Given the
configuration 〈`1, P 〉 and Y = {x, y}. The symbolic successors are given by the FOLLRA

predicate: sp(P, I(`1);ϕ;x; y; I(`2)). ♦

Note that our definition of strongest post-condition do not consider delay transitions.
Interestingly, for detecting quasi-equal clocks it is not necessary to compute delay suc-
cessors. If a configuration is non zero-time, the relax operator is applied and the resulting
zone consists of equalities among clocks. Equalities are closed with respect to the delay
operator. If a configuration is zero-time meaning that the configuration do not have
delay successors, then the configuration is normalized and stored.

94

6.1 A Tool for Analyzing Timed Automata

Timed Automata

Figure 6.4 shows some the basic types of the automata library in the sAsEt tool. Since
for our techniques the use of data types is irrelevant, our tool do not support data types
such as integers. However, introducing data types does not change the spirit of our
methods. Therefore, adding data types to our tool is straight forward.
The most basic type is the type channel, which are identifiers. The type actions is

defined over channels. Actions are send, receive, or silent. The type location, represents
a location as a list of identifiers. The type clock, represents a clock as variable of type
real which is of type form. The type invariant is a formula. For efficiency the invariant
function is implemented using a hash table which takes locations as keys. The type
guard is a formula. The type edge is a tuple of locations, actions, a guard, a list of
clocks and a location.
With these basic types we can define our type automaton. We define two types of

automaton, timed automata as presented in our preliminary work in Chapter 2, and a
sequential timed automata as presented in Chapter 4. As we see the definitions of both
types are identical to the theoretical definitions. A timed automaton in sAsEt is a tuple
consisting of a list of locations, a list of channels, a list of clocks, an invariant function, a
list of edges and a final location. A sequential timed automaton in sAsEt is analogously
defined.

6.1.3 A Session in the Timed Automata Analyzer
In the following we illustrate the use of our tool with an example. In the example, we
use our tool to detect quasi-equal clocks. Our tool incorporates a number of operations
on timed automata. Thus, it is a flexible framework for manipulating timed automata
and formulae.

Example 6.2. Consider the automaton A in Figure 5.1. The automaton has clocks x
and y. Figure 6.5 shows a session in the tool sAsEt. In this example, the tool takes as
input a timed automata model and the command qeAnalysis which means that the input
automata has to be analyzed for detecting quasi-equal clocks. The input automata is A.
Our tool provides a number of options for output visualization. Other options include,
e.g. computing and storing the abstract zone graph.
The result of the analysis is an abstract zone graph and a binary relation stating

which clocks are quasi-equal. In our example the output abstract transition system
corresponds to the one in Figure 5.3. Note that, for zero time configurations, all the
information is preserved. In particular, the value of the reset clocks is preserved by
existentially quantified variables. ♦

95

Chapter 6 Proof of Concept

1 type channel =
2 | Channel of i dent
3 | Broadcast of i dent
4
5 type ac t i on =
6 | Send of channel
7 | Receive of channel
8 | Tau of channel
9 | EmptyAction

10
11 type l o c a t i o n = Locat ion of i dent l i s t
12
13 type c l o ck = Clock of form
14
15 type i n va r i an t = Invar i an t of form Invar iantHash . t
16
17 type guard = Guard of form
18
19 type edge =
20 Edge of l o c a t i o n ∗ ac t i on ∗ guard ∗ c l o ck l i s t ∗ l o c a t i o n
21
22 type automaton =
23 TimedAutomaton of
24 l o c a t i o n l i s t ∗ channel l i s t ∗ c l o ck l i s t ∗ i n va r i an t ∗
25 edge l i s t ∗ l o c a t i o n
26 SequentialAutomaton of
27 l o c a t i o n l i s t ∗ channel l i s t ∗ c l o ck l i s t ∗ i n va r i an t ∗
28 edge l i s t ∗ l o c a t i o n ∗ l o c a t i o n ∗ i n t ∗ i n t ∗ i n t ∗
29 edge ∗ c l o ck

Figure 6.4: A subset of the data types in the tool sAsEt for representing timed auto-
mata. Basic types are identifiers which are strings, channels, actions over channels,
locations, clocks, invariant function, guards as FOLLRA formulae, edges ,timed automata
and sequential automata. The definition for hybrid systems is similar.

96

6.1 A Tool for Analyzing Timed Automata

1
2 :~/ sAsEt/ bin$. / sAsEt −qeAna lys i s −model l chemica lPlant
3
4 ======Abstract Zone Graph=========
5 c o n f i g u r a t i o n s :
6 < l0 , (EX (x_0_3 : : r e a l) .
7 ((x_0=0) & ((x_0_3=y_0) & (x_0_3<=60) & (y_0<=60) & (60<=x_0_3)))) >
8 < l2 , (EX (x_0_2 : : r e a l) .
9 ((x_0=0) & ((x_0_2=y_0) & (x_0_2<=60) & (y_0<=60) & (60<=x_0_2)))) >

10 < l1 , (EX (y_0_1 : : r e a l) .
11 ((y_0=0) & ((x_0=y_0_1) & (x_0<=60) & (y_0_1<=60) & (60<=y_0_1)))) >
12 < l0 , (EX (y_0_1 : : r e a l) .
13 ((y_0=0) & ((x_0=y_0_1) & (x_0<=60) & (y_0_1<=60) & (60<=y_0_1)))) >
14 < l3 , (x_0=y_0)>
15 < l2 , (x_0=y_0)>
16 < l1 , (x_0=y_0)>
17 < l0 , (x_0=y_0)>
18
19 t r a n s i t i o n s :
20 < l0 , (x_0=y_0)> −−−−−> < l2 , (x_0=y_0)>
21 < l0 , (x_0=y_0)> −−−−−> < l1 , (x_0=y_0)>
22 < l1 , (x_0=y_0)> −−−−−> < l3 , (x_0=y_0)>
23 < l2 , (x_0=y_0)> −−−−−> < l3 , (x_0=y_0)>
24
25 < l1 , (x_0=y_0)>
26 −−−−−> < l0 , (EX (x_0_3 : : r e a l) .
27 ((x_0=0) & ((x_0_3=y_0) & (x_0_3<=60) & (y_0<=60) & (60<=x_0_3)))) >
28
29 < l2 , (x_0=y_0)>
30 −−−−−> < l0 , (EX (y_0_1 : : r e a l) .
31 ((y_0=0) & ((x_0=y_0_1) & (x_0<=60) & (y_0_1<=60) & (60<=y_0_1)))) >
32 . . .
33 . . .
34 . . .
35 i n i t i a l c o n f i g :
36 < l0 , (x_0=y_0)>
37
38 end o f qe a n a l y s i s with QE r e l a t i o n : (x_0 , y_0)
39 time : 0 .724058 QE c o n f i g u r a t i o n s : 8 smtCal l s : 58

Figure 6.5: A session in the sAsEt hybrid system analyzer. The input automaton in
the one in Figure 5.1 with quasi-equal clocks x and y. The output is the abstract zone
graph depicted in Figure 5.3 and the relation QE. The clocks x and y are quasi-equal.

97

Chapter 6 Proof of Concept

6.2 Detecting Quasi-equal Clocks

In this section, we present results for detecting quasi-equal clocks. For the detection of
quasi-equal clocks we use our zero time abstraction method as presented in Chapter 5.
In general our results show that the size of the transition system computed using our
abstraction is very small in comparison to the one computed by Uppaal. Note that
Uppaal computes a sound and complete abstraction using a normalization operator,
e.g. the normk,G operator presented in Section 2.1.2. Therefore, the verification times for
sAsEt are fast in spite of the number of SMT calls which are time costly. We are thus
not saying that our tool is faster than Uppaal but we are showing that our abstraction
is a useful one.
In Table 6.3, we present a number of results obtained by using our tool and the model

checker Uppaal [91]. Our intention is not to outperform Uppaal in terms of time but to
show that the abstraction method that we propose for detecting quasi-equalities is a good
abstraction. Thus, we encourage the reader to focus on the number of states generated
by the tools for each automaton. Note, that for Uppaal to detect n clocks to be quasi-
equal it would need to perform 2n queries whereas our tool compute them directly as
explained in Algorithm 5.1. In Table 6.3, max k is the number of the maximal constant
appearing in the corresponding timed automaton and the queries ϕ are TCTL formulae
asserting a number of clocks to be quasi-equal, e.g. ϕ1 := AG x0 = x1 ∨ x0 = 0∨ x1 = 0,
ϕ2 := AG (x0 = x1∨x0 = 0∨x1 = 0)∧(x0 = x2∨x0 = 0∨x2 = 0). The experiments were
executed in a AMD Phenom II X6 3.2Ghz Processor with 8GB RAM running Linux 3.2.
We use three classes of timed automata which are relevant for our abstraction. For

classA the zero time behavior is constant and the non zero time behavior grows. For
classB the zero time behavior grows linear and the non-zero time behavior remains
constant. For classC, the zero time behavior grows exponentially.
The automata in classA correspond to the automaton in Figure 5.5. We only change

the maximal constant appearing in the automaton and observe that the size of the
abstraction remains the same. For the automata in classB the number of quasi-equal
clocks is increased but there is an order on the reset of the quasi-equal clocks. We
observe a linear increase in the number of states for both tools. For the automata in
classC the number of quasi-equal clocks is increased but there is no order in the reset of
the clocks. We observe an exponential increase in the number of states for both tools.
In Table 6.3, the construction of the abstraction for automaton classC6 required 8515
SMT calls, according to our tool these SMT calls took 695.2 seconds, which is 82% of
the time cost. Thus, a more efficient implementation is desirable. Since our algorithm
can be implemented using difference bound matrices a much efficient implementation is
possible. Figure 6.6 illustrates the results for automata in classC.
Once the quasi-equal clocks in a timed automaton have been detected. A reduction on

the number of clocks might take place, leading to a major speed up. As an example we
have reduced all the quasi-equal clocks for the automaton classC6 by replacing them with
a representative clock. The resulting zone graph computed by Uppaal consists of 5003
states and invariant properties can be verified in few seconds, which is an exponential
gain.

98

6.2 Detecting Quasi-equal Clocks

Automaton clocks qe-clocks max k
sAsEt Uppaal

SMT-calls states t (s) Q states t (s)

classA1 3 2 104 26 5 0.3 ϕ1 20k 7.3
classA2 3 2 105 26 5 0.3 ϕ1 200k 1200
classA3 3 2 106 26 5 0.3 ϕ1 t.o. t.o.

classB2 4 2 104 72 8 0.8 ϕ1 20k 7.4
classB3 5 3 104 105 10 1.3 ϕ2 30k 12.5
classB4 6 4 104 144 12 2.2 ϕ3 40k 21.0
classB5 7 5 104 193 14 3.5 ϕ4 50k 34.8
classB6 8 6 104 248 16 5.16 ϕ5 60k 45.2

classC2 3 2 5000 63 7 1.2 ϕ1 5k 5.2
classC3 4 3 5000 237 14 8.3 ϕ2 35k 31.8
classC4 5 4 5000 809 26 44.05 ϕ3 75k 202.3
classC5 6 5 5000 2389 47 195.3 ϕ3 150k 1007.3
classC6 7 6 5000 8515 85 844 ϕ4 t.o. t.o.

Table 6.1: Results for detecting quasi-equal clocks using tools sAsEt and Uppaal.
sAsEt returns the set of quasi-equal clocks whereas Uppaal performs a single query as-
serting clocks to be quasi-equal. Note, that for detecting quasi-equal clocks in Uppaal
multiple queries are needed. The zero time behavior for automata in classA remains
constant, in classB grows linearly and in classC grows exponentially.

6.2.1 Simplified Fire Alarm System

In this section, we apply our zero time abstraction for detecting quasi-equal clocks in
the simplified fire alarm system (SFAS) described in Chapter 1, Section 1.3.
Table 6.2 presents the results of our experiments. We present two different experi-

ments. The first one consist in computing the parallel product on a number of sensors
and then running the analysis (since the SFAS has 125 sensors this approach does not
scale). The second approach is an incremental approach consisting in a pairwise compar-
ison of quasi-equal clocks. Since the quasi-equal relation is an equivalence relation, the
relation is transitive. Therefore, in order to detect all quasi-equal clocks, in the worst
case we need to run the analysis O(n2) times, where n is the number of components.
In Table 6.2. The column automaton, describes the model being analyzed. We use

the acronym SFAS_i for simplified fire alarm system, where i indicates the number of
sensors starting from 0. For the incremental approach SFAS_i_j indicates the two
components i and j that are being analyzed. The column qe-clocks, describes the set
of quasi-equal clocks detected. The column sAsEt, describes the number of SMT-calls,

99

Chapter 6 Proof of Concept

2 3 4 5 6 7

0

2,000

4,000

6,000

8,000

number of clocks

se
co
n
d
s

sAsEt Uppaal

2 3 4 5 6 7

0

1

2

3

·105

number of clocks

st
at
es

sAsEt Uppaal

Figure 6.6: Left: Verification times for detecting quasi-equal clocks for automata in
classC. Right: Number of states explored for detecting quasi-equal clocks for automata
in classC. Note that in contrast to classA and classB the number of states in sAsEt and
Uppaal grow exponentially. However, the number of states in sAsEt is much smaller.

the number of generated states and the time required to detect the quasi-equal clocks.
For the first experiment, the input network SFAS_i consisting of i components is

given. We observe that this approach do not scale. As soon as there are 7 clocks, the
system times out. This is because, there is a diamond structure corresponding to all
the possible reset permutations of the 7 clocks. Since this diamond is zero time, the
explosion occurs in both our tool sAsEt and in Uppaal.
Since the simplified fire alarm system consist of 125 sensors, our first attempt do

not scale. In our second experiment we use a different strategy. Our strategy exploits
the fact that the quasi-equal relation is an equivalence relation. Therefore, because of
transitivity we can perform a piecewise analysis on the 125 sensors. In the worst case
this incremental approach will need to be run O(n2) times, where n is the number of
components. In the case of the fire alarm system we were able to detect all quasi-equal
clocks in 79.8 seconds.
Once quasi-equal clocks have been detected. A reduction on the number of clocks

can take place. By using the techniques presented in [76], a reduction on the number of
quasi-equal clocks for the simplified fire alarm system will reduce the verification times
of the system from exponential to quadratic in the number of components. Further, by
using the techniques presented in Chapter 4, the verification times for the simplified fire
alarm system will reduce from exponential to linear in the number of components.

100

6.3 Real World Fire Alarm System

Automaton QE-clocks
sAsEt

SMT-calls states t (s)
SFAS_1 x0, x1 38 9 0.66
SFAS_2 x0, x1, x2 93 16 2.43
SFAS_3 x0, x1, x2, x3 210 27 7.74
SFAS_4 x0, x1, x2, x3, x4 465 46 35.04
SFAS_5 x0, x1, x2, x3, x4, x5 1030 81 388.23
SFAS_6 x0, x1, x2, x3, x4, x5, x6 T.O. T.O. T.O.

SFAS_0_1 x0, x1 38 9 0.66
SFAS_1_2 x1, x2 38 9 0.64
SFAS_2_3 x2, x3 38 9 0.66
SFAS_3_4 x3, x4 38 9 0.63
...

...
...

...
...

SFAS_123_124 x123, x124 38 9 0.66∑
= 4712

∑
= 79.8

Table 6.2: Results for detection of quasi-equal clocks in the simplified fire alarm system
(SFAS). Top: analysis of quasi-equal clocks on the network SFAS_i, where i is the num-
ber of components. The approach times out with 7 components. Bottom: incremental
analysis of quasi-equal clocks in network SFAS_i_j with components i and j. This
analysis (pairwise comparison) is possible because the quasi-equal relation is a transitive
relation.

6.3 Real World Fire Alarm System

In Chapter 1, Section 1.3 we have introduced a simplified version of a real world fire
alarm system. We now show with experiments the effect of applying our techniques to
the corresponding real world fire alarm system. We successfully reduce the verification
times from exponential to linear in the number of components.
We consider a real world fire alarm system which we denote by FAS (the system is

being developed by a German company; an anonymized version of a model of the system
has been made public and can be found in [58]). The FAS monitors n sensors using m
channels. In order, for FAS to obtain an EU quality certificate it has to be conform,
among others, with the following condition: If a sensor is malfunctioning, the failure has
to be recognized in less than 300 seconds. We denote this property by AG less300 .

101

Chapter 6 Proof of Concept

System Q
Broadcast Sequential

t (s) states t (s) states

FAS-CB-SW
ϕ1 1103.9 5947.4k 318.1 5971.5k
ϕ2 2240.5 11508.3k 704.2 11614.5k

FAS-CB
ϕ1 196.4 1184.7k 120.3 1189.5k
ϕ2 272.6 165.7k 150.3 1666.9k

FAS-SW
ϕ1 13.7 104.1k 87.4 104.7k
ϕ2 10.62k 145.5 87.4 146.4k

FAS
ϕ1 2.5 20.7k 87.5 20.8k
ϕ2 1.3 20.7k 85.6 20.8k

Table 6.3: Verification times (AMD Opteron 6174 2.2GHz, 64Gb RAM) and visited
states for satisfied properties ϕ1 = (AG not deadlock) and ϕ2 = (AG less300) for the
fire alarm system with 125 sensors using Uppaal,

In addition, the certifying institution is able to: (i) block an arbitrary channel for any
number of seconds, then (ii) release the blocked channel for at least 1 second and repeat
(i), and (iii) execute (ii) any number of times.
In order to model the above mentioned situations, we constructed a sensor switcher SW

which non-deterministically turns off any sensor. We constructed a channel blocker CB,
which models the blocking of channels as described above. Now, let FAS-CB denote the
fire alarm system together with the channel blocker CB. Let FAS-SW be FAS together
with the sensor switcher. Let FAS-CB-SW be FAS together with the channel blocker
and a sensor switcher.
Table 6.3, show the verification results for the satisfied properties AG not deadlock

and AG less300 for the corresponding system with 125 sensors by using Uppaal. The
times include the parsing time of Uppaal templates. The attempt of modeling a sensor,
with its own clock, did not scale to more than 10 sensors. Therefore, our modelers
optimized the models by reducing the quasi-equal clocks using the approach presented
in [76]. Thus, all 125 sensors share one clock and synchronizations are performed via a
broadcast channel. This optimized models correspond to the column Broadcast. Models
corresponding to the column Sequential are constructed using the sequential composition
operator presented in Chapter 4.
We observe that for a large state space, sequential is much faster that broadcast. In

fact a quadratic speed up is achieved (non-enabled edges are not present in sequential).
This improvement is justified by Lemma 3.22. However, for small state space such as
FAS broadcast is faster; in this context, note that the parsing time for the large template
consisting of 125 sequentialized automata is taking about 85 sec. That is, the difference

102

6.4 Future Work

0 20 40 60 80 100 120

0

500

1,000

1,500

2,000

number of sensors

se
c

BroadCast300 Sequential300

Figure 6.7: Verification times of FAS-CB-SW for property (AG less300) over number
of sensors compared to the corresponding fired alarm system obtained by sequential
composition.

is due to the parsing of a big timed automata versus the parsing of a network of small
automata in Uppaal.
Figure 6.7 depicts the verification times of the system FAS-CB-SW and property AG

less300 for 10, 20, . . . , 120, and finally 125 sensors, the curve for broadcast is comparable
with the statement of Lemma 3.22. That is, there is a quadratic unnecessary number
of enablelesness of edges. The removal of this unnecessary edges by using the sequential
composition operator yields a quadratic speed ups (cf. Figure 6.7).

6.4 Future Work

As a proof of concept we have implemented our tool sAsEt for performing analysis in
hybrid systems. Due to the abstract and modular structure of our tool. It is easy to
further implement other analysis, transformations or encodings for hybrid systems. In
the following we summarize important aspects which could be further implemented in
our tool for increasing its usability.

• Extend the tool to a full model checker for timed automata, i.e. compute a finite,
complete and sound abstraction using a normalization operator e.g. the normk,G
operator.

• Our tool uses SMT solvers for discharging constraints. This enables us to solve not
only difference logic constraints but more complex constraints which arise during

103

Chapter 6 Proof of Concept

the analysis of hybrid systems. However, for the case of timed automata, adding
support for the DBM library will significantly increase the performance of our tool.

• Since the syntax of Uppaal is widely accepted, the implementation of an inter-
preter for Uppaal expressions would enable us to fully work with Uppaal models.

• Since our tool is implemented in top of the Jahob system. Our tool performs
a number of optimizations for discharging constraints, e.g. syntactic checking for
validity of formulae, avoiding the use of SMT solvers when possible. When analyz-
ing hybrid systems, a number of existentially quantified variables arise. Therefore,
an implementation of a quantifier elimination procedure for FOLLRAis desirable.

104

Chapter 7

Conclusion

In this thesis we have studied the formal verification of Time Division Multiple Access
(TDMA) based systems. TDMA based systems, are used to enable the communication
of several components using a shared communication channel. The TDMA paradigm
avoids message collisions using time division multiplexing. Since TDMA systems use
dense time, the theory of timed automata is natural formal model to describe these
systems.
The theory of timed automata, has been successfully used to formally verify several

real world applications. The theory of timed automata is subject of several publications
and is an area of active research. Despite of much effort from the research community,
the formal verification using timed automata, is often hindered by the so called state
explosion problem. The state explosion problem refers to the issue that given a number
of timed automata, the number of states of the model grows exponentially on the number
of automata and on the number of clocks. Since TDMA based systems include a large
number of components and clocks, the state explosion problem is an issue for the formal
verification of TDMA based systems.
In this thesis, we concern to the applicability of the theory of timed automata to form-

ally verify TDMA based systems. Towards this goal, we present a number of techniques
for avoiding the state explosion problem and to speed up the verification times.
In Chapter 3, we have formalized important characteristics of TDMA based systems.

We introduce concepts such as periodic cyclic timed automata, disjoint activity, se-
quentialialisability and a concatenation operator. Given a number of sequentialisable
periodic cyclic timed automata. The application of the concatenation operator will pro-
duce a system which is bisimilar(even identical) to the one obtained by using the parallel
product operator. However, there is a substantial reduction on the number of locations
and edges. This leads to better verification times.
In Chapter 4, we further concern with the applicability of timed automata to the

formal verification of TDMA based systems. Since proving semantic properties (e.g.
sequentialisability) might be as hard as the model checking task. We propose a number
of syntactic patterns on which relevant semantically properties (e.g. sequentialisability)
can be syntactically check. We call this class of syntactic automata, sequential timed
automata. For sequentialisable sequential timed automata, we provide a sequential com-
position operator. The sequential composition operator yields a much smaller system
which is weak bisimilar to the corresponding one obtained by parallel composition. Using

105

Chapter 7 Conclusion

the patterns, will render the time complexity from exponential to linear on the number
of components.
In Chapter 5, we consider a phenomena which is not only relevant to TDMA based

systems, but to the complete class of timed systems. The phenomena is because of the
semantics of timed automata (and other timed models). For equal clocks and a reset
sequence of transitions, clocks may reset their values in zero time. This may cause clocks
to be un-equal for intervals of time of zero duration. At the end of the reset sequence
clocks will be equal again. We call this clocks quasi-equal. A reduction on the number
of quasi-equal clocks has been proven to be an effective technique. Existing reduction
techniques take as input the set of quasi-equal clocks. We introduce an abstraction
for efficiently detecting quasi-equal clocks. Thus improving the verification of timed
automata with quasi-equal clocks.
In Chapter 6, we present our proof of concept. We present our tool sAsEt for ana-

lysis in hybrid systems. The we present a number of experiments using the techniques
described in this thesis. Our results are encouraging and ratify the applicability of our
approaches. In particular, we show the results of verifying a real world TDMA based sys-
tem. By using our techniques, the verification times from the real world system dropped
from exponential in the number of components to linear in the number of components.
Because of our results. We believe, that the techniques presented in this thesis, are

relevant and of practical impact for formally verifying TDMA based systems. Therefore,
we contribute to the formal verification of TDMA based systems using timed automata
as formal models. By using the syntactical patterns given in Chapter 4. The TDMA
components can be modeled and relevant properties can be verified. In our experience,
this is the fastest method for this class of systems (linear complexity in the number of
components). The techniques in Chapter 5 enable the reduction on the number of clocks
in timed automata. As a result, the corresponding models of, TDMA based systems and
several safety critical systems. Can be simplified and efficiently verified.

7.1 Future Work

We would like to conclude this thesis with an outlook on possible directions for future
work.

AMore General Sequential Operator The sequential composition operator from Chapter 4
relies on disjoint activity from the components, the disjoint activity is determined by
points of time. A possible extension might consist on the use of tokens. Tokens could
be used for indicating the ending of the activity of one component. When a component
is done with its activity the component could pass the token to the next component.
Tokens will ensure disjoint activity, and would enable the efficient verification of other
multiplexing protocols.

106

7.1 Future Work

Activity Analysis and Smart Operators

In the case of TDMA based systems. The architecture of the paradigm and the time
slots, give us intervals of time with disjoint activity. The concatenation operator and
the sequential composition operator from Chapter 3 and from Chapter 4 respectively,
exploit this information to construct a more compact system. The resulting system
preserves all or most of its properties. Since at points of time where two components
have disjoint activity, only one component is able to perform actions, computing the
parallel composition for these points of time is unnecessary and costly. This fact lead
us to think on analysis for detecting activity phases and on smart operators which may
profit from the disjoint activity.

Generalize Quasi-equal Clocks

In Chapter 5, quasi-equal clocks were presented. Quasi-equal clocks are always equal
except at some points of time where the clocks are reset. In [30], we have generalized
the notion of quasi-equal clocks to the notion of quasi-dependent variables for hybrid
systems. Quasi-dependent variables are always related via a function, except at some
points of time, where the variables can have arbitrary values. One possible extension
would be to allow a bounded difference value for variable valuations with respect to
a master variable. We can define and equivalence relation among these variables and
simplify them. This will allow to model systems with clock drifting while the simplified
system will be tractable.

Local Properties

Since TDMA systems consist of a large number of components, the corresponding models
are often untractable. However, in the case of TDMA based systems, many properties
may refer to only one component. That is, many properties can be locally proven in a
given component. Our idea is to construct only the relevant part of the transition system
to correctly proof a given property. The construction of the transition system can be
done by the semantics and a parallel composition operator at the transition system level.
We believe, that in many cases the relevant transition system would be much smaller.

107

Chapter 8

Zusammenfassung

Software und Hardware Systeme sind allgegenwärtig. Diese Systeme steuern, e.g. Flug-
zeuge, Satelliten, Herzschrittmacher, etc. Eine große und besondere Klasse von Systemen,
ist die Klasse, die ein Zeitmultiplexverfahren (Time Division Multiple Access TDMA)
Protokoll zur Kommunikation nutzt. Die Anwesenheit von Fehlern oder unerwartetem
Verhalten in solchen Systemen, kann zu schweren Konsequenzen führen, e.g. den Tod
von Menschen, katastrophale wirtschaftliche Verluste, etc. Daher ist das korrekte Funk-
tionieren von solchen Systemen kritisch.
Die Sicherstellung eines fehlerfreien Systems ist heute eines der aktivsten Forschungs-

gebiete. Ein erfolgversprechendes Verfahren zur vollautomatischen Verifikation einer Sys-
tembeschreibung ist die Modellprüfung (model checking) mit Zeitautomaten (timed au-
tomata). Zeitautomaten sind zur Modellprüfung von industriellen Systemen erfolgreich
angewendet worden. Allerdings wird in besonderen Fällen der induzierte Zustandsraum
unpraktikabel groß. Folglich gibt es in der Modellprüfungsgemeinde zahlreiche Publika-
tionen, die sich mit Verfahren, um den Zustandsraum zu verkleinern, beschäftigen.
In dieser Dissertation tragen wir zur Modellprüfung von TDMA Systemen mit Zeit-

automaten bei. Wir untersuchen die Prinzipien von TDMA Systemen. Dann charakte-
risieren wir diese Prinzipien in der Zeitautomatentheorie. Im Allgemeinen stellen wir
verschiedene Verfahren vor. Das Ziel unserer Verfahren ist den Zustandsraum zu redu-
zieren und alle oder die meisten Eigenschaften zu bewahren.
In dieser Arbeit geben wir als Erstes eine semantische Formalisierung der Kernprin-

zipien von TDMA Systemen. Dazu führen wir die Definitionen disjunkt Aktivität, Se-
quentialisierbarkeit und Konkatenierung ein. Wir beachten, dass die Anwendung dieser
Definitionen zu einer quadratischen Beschleunigung führen kann. Zweitens fokussieren
wir uns auf die Anwendbarkeit von Echtzeitmodellprüfung. Zu diesem Zweck präsentie-
ren wir syntaktische Vorlagen und Operatoren zur Modellierung von TDMA Systemen.
Für TDMA Systeme, die mit den syntaktischen Vorlagen modelliert wurden, haben
wir eine Reduktion in der Zeitkomplexität von exponentiell zu linear erzielt. Schließlich
erkennen wir einen weiteren wichtigen Bestandteil von Echtzeitsystemen, i.e. Nullzeit-
Uhren-Differenzen. Die Differenzen entstehen als semantische Konsequenz der Zeitauto-
matentheorie. Wir nennen diese Uhren quasi-equal Uhren. Eine Reduktion in der Anzahl
von Uhren führt zu einem reduzierten System. Bevor eine Reduktion stattfinden kann,
müssen die quasi-equal Uhren effizient erkannt werden. Daher präsentieren wir ein effi-
zientes Abstraktionsverfahren, um quasi-equal Uhren zu erkennen.

109

Chapter 8 Zusammenfassung

Als Konzeptnachweis haben wir unsere Methoden in unserem Tool sAsEt implemen-
tiert. Unsere Experimente bestätigen und motivieren die Anwendung von den in dieser
Thesis vorgestellten Verfahren. Zusätzlich wurden die oben genannten Verfahren zur
Verifizierung eines industriellen TDMA Systems erfolgreich angewendet.

110

Bibliography

[1] Alur, R.: Formal verification of hybrid systems. In: Embedded Software (EM-
SOFT), 2011 Proceedings of the International Conference on. pp. 273–278. IEEE
(2011)

[2] Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (May 1993)

[3] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical computer science 138(1), 3–34 (1995)

[4] Alur, R., Dang, T., Ivancic, F.: Reachability analysis of hybrid systems via pre-
dicate abstraction. In: Tomlin, C., Greenstreet, M. (eds.) Hybrid Systems: Com-
putation and Control, Lecture Notes in Computer Science, vol. 2289, pp. 35–48.
Springer Berlin Heidelberg (2002)

[5] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

[6] Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In:
Computer Aided Verification. pp. 1–13. Springer-Verlag (1994)

[7] Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-
ceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing.
pp. 592–601. STOC ’93, ACM, New York, NY, USA (1993)

[8] Asarin, E., Caspi, P., Maler, O.: A kleene theorem for timed automata. In: Pro-
ceedings of the 12th Annual IEEE Symposium on Logic in Computer Science. pp.
160–. LICS ’97, IEEE Computer Society, Washington, DC, USA (1997)

[9] Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press
(1999)

[10] Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

[11] Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of c programs. In: ACM SIGPLAN Notices. vol. 36, pp. 203–213. ACM
(2001)

111

Bibliography

[12] Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating
validity checker. In: CAV. LNCS, vol. 3114 (2004)

[13] Barrett, C., Stump, A., Tinelli, C.: The smt-lib standard: Version 2.0. In: Pro-
ceedings of the 8th International Workshop on Satisfiability Modulo Theories (Ed-
inburgh, England). vol. 13, p. 14 (2010)

[14] Barrett, C., Tinelli, C.: CVC3. In: CAV. LNCS, vol. 4590 (2007)

[15] Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
Uppaal implementation secrets. In: Formal Techniques in Real-Time and Fault-
Tolerant Systems. pp. 3–22. Springer-Verlag (2002)

[16] Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in
timed automata verification. In: Proceedings of the 9th international conference
on Tools and algorithms for the construction and analysis of systems. pp. 254–270.
TACAS’03, Springer-Verlag, Berlin, Heidelberg (2003)

[17] Behrmann, G., Bouyer, P., Larsen, K., Pelánek, R.: Lower and upper bounds in
zone based abstractions of timed automata. Tools and Algorithms for the Con-
struction and Analysis of Systems pp. 312–326 (2004)

[18] Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer 8(3), 204–215 (2006)

[19] Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
Uppaal-tiga: Time for playing games! In: Computer Aided Verification. pp. 121–
125. Springer-Verlag (2007)

[20] Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. pp. 200–236. No. 3185 in LNCS, Springer-
Verlag (2004)

[21] Bellman, R., Kalaba, R.E.: Dynamic programming and modern control theory.
Academic Press New York (1965)

[22] Ben-Ari, M.: Mathematical Logic for Computer Science. Series in Computer Sci-
ence, Prentice Hall International (1993)

[23] Ben Salah, R., Bozga, M.D., Maler, O.: Compositional timing analysis. In: Pro-
ceedings of the Seventh ACM International Conference on Embedded Software.
pp. 39–48. EMSOFT ’09, ACM, New York, NY, USA (2009)

[24] Bengtsson, J.: Clocks, dbms and states in timed systems. Acta Universitatis Up-
saliensis (2002)

112

Bibliography

[25] Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed
systems. In: CONCUR’98 Concurrency Theory, pp. 485–500. Springer-Verlag
(1998)

[26] Bengtsson, J., Yi, W.: On clock difference constraints and termination in reach-
ability analysis of timed automata. Formal Methods and Software Engineering pp.
491–503 (2003)

[27] Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In:
Advances in Petri Nets. pp. 87–124. Springer-Verlag (2004)

[28] Bensalem, S., Lakhnech, Y., Owre, S.: Computing abstractions of infinite state
systems compositionally and automatically. In: Computer Aided Verification. pp.
319–331. Springer-Verlag (1998)

[29] Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. springer (2004)

[30] Bogomolov, S., Herrera, C., Muñiz, M., Westphal, B., Podelski: Quasi-dependent
variables in hybrid automata. In: HSCC2014. LNCS, Springer Berlin Heidelberg
(2014)

[31] Börger, E., Grädel, E., Gurevich, Y.: The classical decision problem. Springer-
Verlag (2001)

[32] Bouyer, P.: Untameable timed automata! In: STACS 2003, pp. 620–631. Springer-
Verlag (2003)

[33] Bouyer, P., Petit, A.: Decomposition and composition of timed automata. In:
Proceedings of the 26th International Colloquium on Automata, Languages and
Programming. pp. 210–219. ICAL ’99, Springer-Verlag, London, UK (1999)

[34] Bradley, A.R., Manna, Z.: The Calculus of Computation. Springer-Verlag (2007)

[35] Bratley, P., Fox, B.L., Schrage, L.E.: A guide to simulation, vol. 2. Springer-Verlag
(1983)

[36] de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indag. Math. 34, 381–392 (1972)

[37] Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. TSE 30(6) (2003)

[38] Chaochen, Z., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid
real-time systems. Springer-Verlag (1993)

[39] Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Computer Aided Verification. pp. 258–263. Springer-Verlag
(2013)

113

Bibliography

[40] Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability
regions using parametric timed automata. In: Real-Time Systems Symposium,
2008. pp. 80–89 (Nov 2008)

[41] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 8(2), 244–263 (1986)

[42] Clarke, E.M., Kurshan, R.: Computer-aided verification. Spectrum, IEEE 33(6),
61–67 (1996)

[43] Clarke, E.M., Schlingloff, B.H.: Model checking. In: Robinson, A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, pp. 1635–1790. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, The Netherlands (2001)

[44] Clarke, E.M., Wing, J.M.: Formal methods: State of the art and future directions.
ACM Computing Surveys (CSUR) 28(4), 626–643 (1996)

[45] Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons us-
ing branching time temporal logic. In: Grumberg, O., Veith, H. (eds.) 25 Years
of Model Checking, Lecture Notes in Computer Science, vol. 5000, pp. 196–215.
Springer Berlin Heidelberg (2008)

[46] Cook, B., Podelski, A. (eds.): Verification, Model Checking, and Abstract In-
terpretation, 8th International Conference, VMCAI 2007, Nice, France, January
14-16, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4349. Springer-
Verlag (2007)

[47] Cousot, P.: Verification by abstract interpretation. In: Dershowitz, N. (ed.) Proc.
Int. Symp. on Verification – Theory & Practice – Honoring Zohar Manna’s 64th
Birthday. pp. 243–268. c© Springer-Verlag, Berlin, Germany, Taormina, Italy (June
29 – July 4 2003)

[48] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. 4th
POPL (1977)

[49] Cousot, P., Cousot, R.: Abstract interpretation frameworks. JLC 2(4), 511–547
(Aug 1992)

[50] Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: Lecture Notes in Computer Science. pp.
269–295 (1992)

[51] Dalsgaard, A.E., Laarman, A., Larsen, K.G., Olesen, M.C., Van De Pol, J.: Multi-
core reachability for timed automata. In: Formal Modeling and Analysis of Timed
Systems, pp. 91–106. Springer-Verlag (2012)

114

Bibliography

[52] Dams, D., Gerth, R., Knaack, B., Kuiper, R.: Partial-order reduction techniques
for real-time model checking. Formal Aspects of Computing 10(5-6), 469–482
(1998)

[53] David, A.: Uppaal dbm library programmer’s reference (2006)

[54] Daws, C., Yovine, S.: Reducing the number of clock variables of timed automata.
In: Proc. RTSS’96, 73-81, IEEE. pp. 73–81. IEEE Computer Society Press (1996)

[55] Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Proceedings of the 4th International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems. pp. 313–329. Springer-Verlag,
London, UK (1998)

[56] De Moura, L., Bjørner, N.: Z3: An efficient smt solver. Tools and Algorithms for
the Construction and Analysis of Systems pp. 337–340 (2008)

[57] Demichelis, F., Zielonka, W.: Controlled timed automata. In: Sangiorgi, D., de Si-
mone, R. (eds.) CONCUR’98 Concurrency Theory, Lecture Notes in Computer
Science, vol. 1466, pp. 455–469. Springer Berlin Heidelberg (1998)

[58] Dietsch, D., Feo-Arenis, S., Muñiz, M., Andisha, A.S., Westphal, B.: The wireless
fire alarm system: Ensuring conformance to industrial standards through formal
verification. In: FM2014. LNCS, Springer Berlin Heidelberg (2014)

[59] Dietsch, D., Feo-Arenis, S., Westphal, B., Podelski, A.: An accountable approach
to formal methods in small companies (2011), submitted for publication

[60] Dietsch, D., Feo-Arenis, S., Westphal, B., Podelski, A.: Disambiguation of in-
dustrial standards through formalization and graphical languages. In: IEEE 19th
International Requirements Engineering Conference. pp. 265–270 (2011)

[61] Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Automatic verification methods for finite state systems. pp. 197–212. Springer-
Verlag (1990)

[62] Elmenreich, W., Ipp, R.: Introduction to ttp/c and ttp/a. na (2003)

[63] Elrad, T., Francez, N.: Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program. 2(3), 155–173 (1982)

[64] Engels, H.: CAN-bus. Franzis (2000)

[65] Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: ACM
SIGPLAN Notices. vol. 37, pp. 191–202. ACM (2002)

[66] Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact
verification conditions. In: POPL01 (2001)

115

Bibliography

[67] Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado,
R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid
systems. In: Computer Aided Verification. pp. 379–395. Springer-Verlag (2011)

[68] Gagliardi, R.: Time-division multiple access. In: Satellite Communications, pp.
251–288. Springer Netherlands (1991)

[69] Graf, S., Saidi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
O. (ed.) Computer Aided Verification, Lecture Notes in Computer Science, vol.
1254, pp. 72–83. Springer Berlin Heidelberg (1997)

[70] Gruhn, V., Laue, R.: Patterns for timed property specifications. Electronic Notes
in Theoretical Computer Science 153(2), 117 – 133 (2006), proceedings of the
Third Workshop on Quantitative Aspects of Programming Languages (QAPL
2005) Quantitative Aspects of Programming Languages 2005

[71] Haartsen, J.C.: The bluetooth radio system. Personal Communications, IEEE
7(1), 28 –36 (feb 2000)

[72] Hakansson, J., Pettersson, P.: Partial order reduction for verification of real-time
components. In: Raskin, J.F., Thiagarajan, P. (eds.) Formal Modeling and Ana-
lysis of Timed Systems, Lecture Notes in Computer Science, vol. 4763, pp. 211–226.
Springer Berlin Heidelberg (2007)

[73] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the ACM (JACM) 40(1), 143–184 (1993)

[74] Heiner, G., Thurner, T.: Time-triggered architecture for safety-related distributed
real-time systems in transportation systems. In: FTCS. pp. 402–407 (1998)

[75] Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation 111(2), 193 – 244 (1994)

[76] Herrera, C., Westphal, B., Feo-Arenis, S., Muñiz, M., Podelski, A.: Reducing
quasi-equal clocks in networks of timed automata. In: FORMATS. pp. 155–170.
No. 7595 in LNCS, Springer-Verlag (2012)

[77] Herrera, C., Westphal, B., Podelski, A.: Quasi-equal clock reduction: More net-
works, more queries. In: Tools and Algorithms for the Construction and Analysis
of Systems, pp. 295–309. Springer-Verlag (2014)

[78] Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans-
actions of the american mathematical society pp. 29–60 (1969)

[79] Hoenicke, J., Meyer, R., Olderog, E.R.: Kleene, rabin, and scott are available. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency Theory (CON-
CUR). Lecture Notes in Computer Science, vol. 6269, pp. 462–477. Springer-Verlag
(2010)

116

Bibliography

[80] Hoenicke, J.: Combination of Processes, Data, and Time. Ph.D. thesis, University
of Oldenburg (July 2006)

[81] Hoenicke, J., Olderog, E.R.: Csp-oz-dc: A combination of specification techniques
for processes, data and time. Nord. J. Comput. 9(4), 301–334 (2002)

[82] Holzmann, G.J.: Design and validation of protocols: a tutorial. Computer Net-
works and ISDN Systems 25(9), 981–1017 (1993)

[83] Immerman, N.: Descriptive Complexity. Springer-Verlag (1998)

[84] Immerman, N., Rabinovich, A.M., Reps, T.W., Sagiv, S., Yorsh, G.: The boundary
between decidability and undecidability for transitive-closure logics. In: Computer
Science Logic (CSL). pp. 160–174 (2004)

[85] Jacobs, S.: Incremental instance generation in local reasoning. In: CAV. pp. 368–
382 (2009)

[86] Janssen, W., Poel, M., Xu, Q., Zwiers, J.: Layering of real-time distributed pro-
cesses. In: Proceedings of the Third International Symposium Organized Jointly
with the Working Group Provably Correct Systems on Formal Techniques in Real-
Time and Fault-Tolerant Systems. pp. 393–417. ProCoS, Springer-Verlag, London,
UK, UK (1994)

[87] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang: Symbolic Model
Checking: 1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE
Symposium on Logic in Computer Science. pp. 1–33. IEEE Computer Society
Press, Washington, D.C. (1990), citeseer.ist.psu.edu/burch90symbolic.html

[88] Jubran, O., Westphal, B.: Formal approach to guard time optimization for tdma.
In: Proceedings of the 21st International conference on Real-Time Networks and
Systems. pp. 223–233. ACM (2013)

[89] Kopetz, H., Grünsteidl, G.: Ttp - a time-triggered protocol for fault-tolerant real-
time systems. In: FTCS. pp. 524–533 (1993)

[90] Kuncak, V.: Modular data structure verification. Ph.D. thesis, Massachusetts In-
stitute of Technology (2007)

[91] Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

[92] Larsen, K.G., Pettersson, P., Yi, W.: Uppaal: Status & developments. In: Com-
puter Aided Verification. pp. 456–459. Springer-Verlag (1997)

[93] Law, A.M., Kelton, W.D., Kelton, W.D.: Simulation modeling and analysis, vol. 2.
McGraw-Hill New York (1991)

117

Bibliography

[94] Mahfoudh, M., Niebert, P., Asarin, E., Maler, O.: A satisfiability checker for
difference logic. Proceedings of SAT 2, 222–230 (2002)

[95] Makowitz, R., Temple, C.: Flexray-a communication network for automotive con-
trol systems. In: 2006 IEEE International Workshop on Factory Communication
Systems. pp. 207–212 (2006)

[96] Merz, S.: Model checking: A tutorial overview. In: Modeling and verification of
parallel processes, pp. 3–38. Springer-Verlag (2001)

[97] Miller, C., Scholl, C., Becker, B.: Verifying incomplete networks of timed auto-
mata. In: MBMV. pp. 113–122 (2011)

[98] Minea, M.: Partial order reduction for model checking of timed automata.
Springer-Verlag (1999)

[99] Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed
automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verifica-
tion, Lecture Notes in Computer Science, vol. 6806, pp. 616–632. Springer Berlin
Heidelberg (2011)

[100] Muñiz, M., Westphal, B., Podelski, A.: Timed automata with disjoint activity. In:
FORMATS. pp. 188–203. No. 7595 in LNCS, Springer-Verlag (2012)

[101] Muñiz, M., Westphal, B., Podelski, A.: Detecting quasi-equal clocks in timed
automata. In: Formal Modeling and Analysis of Timed Systems, pp. 198–212.
Springer-Verlag (2013)

[102] Myers, G.J., Sandler, C., Badgett, T.: The art of software testing. John Wiley &
Sons (2011)

[103] Navabi, Z.: VHDL: Analysis and modeling of digital systems. McGraw-Hill, Inc.
(1997)

[104] Nipkow, T.: Hoare logics in isabelle/hol. In: Proof and System-Reliability, pp.
341–367. Springer-Verlag (2002)

[105] Olderog, E.R., Dierks, H.: Real-Time Systems - Formal Specification and Auto-
matic Verification. Cambridge University Press (2008)

[106] Olderog, E.R., Swaminathan, M.: Layered composition for timed automata. In:
Proceedings of the 8th international conference on Formal modeling and analysis
of timed systems. pp. 228–242. FORMATS’10, Springer-Verlag, Berlin, Heidelberg
(2010)

[107] Olderog, E.R., Swaminathan, M.: Structural transformations for data-enriched
real-time systems. In: Johnsen, E., Petre, L. (eds.) Integrated Formal Methods,
Lecture Notes in Computer Science, vol. 7940, pp. 378–393. Springer Berlin Heidel-
berg (2013)

118

Bibliography

[108] Paulson, L.C.: Isabelle: A generic theorem prover, vol. 828. Springer-Verlag (1994)

[109] Peter, H.J., Mattmuller, R.: Component-based abstraction refinement for timed
controller synthesis. In: Real-Time Systems Symposium, 2009, RTSS 2009. 30th
IEEE. pp. 364–374. IEEE (2009)

[110] Peter, H.J.: A Uniform Approach to the Analysis and Complexity of Succinct
Systems. Ph.D. thesis, Universität des Saarlandes (2012)

[111] Peter, H.J., Ehlers, R., Mattmüller, R.: Synthia: Verification and synthesis for
timed automata. In: Computer Aided Verification. pp. 649–655. Springer-Verlag
(2011)

[112] Pettersson, P.: Modelling and verification of real-time systems using timed auto-
mata: theory and practice. Ph.D. thesis, Citeseer (1999)

[113] Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
1977., 18th Annual Symposium on. pp. 46–57. IEEE (1977)

[114] Podelski, A., Wies, T.: Counterexample-guided focus. In: Proceedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages. pp. 249–260. POPL ’10, ACM, New York, NY, USA (2010)

[115] Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
cesar. In: Proceedings of the 5th Colloquium on International Symposium on
Programming. pp. 337–351. Springer-Verlag, London, UK, UK (1982)

[116] Rappaport, T.S., et al.: Wireless communications: principles and practice, vol. 2.
Prentice Hall PTR New Jersey (1996)

[117] Rémy, D.: Using, understanding, and unraveling the ocaml language from practice
to theory and vice versa. In: Applied Semantics, pp. 413–536. Springer-Verlag
(2002)

[118] Rensink, A., Wehrheim, H.: Weak sequential composition in process algebras. In:
Jonsson, B., Parrow, J. (eds.) CONCUR ’94: Concurrency Theory, Lecture Notes
in Computer Science, vol. 836, pp. 226–241. Springer Berlin Heidelberg (1994)

[119] Salah, R., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006 – Concurrency Theory, Lecture Notes in
Computer Science, vol. 4137, pp. 465–476. Springer Berlin Heidelberg (2006)

[120] Saïdi, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs,
N., Peled, D. (eds.) Computer Aided Verification, Lecture Notes in Computer
Science, vol. 1633, pp. 443–454. Springer Berlin Heidelberg (1999)

[121] Scheidler, C., Heiner, G., Sasse, R., Fuchs, E., Kopetz, H., Temple, C.: Time-
triggered architecture (tta). Advances in Information Technologies: The Business
Challenge pp. 758–765 (1997)

119

Bibliography

[122] Sipser, M.: Introduction to the Theory of Computation. Thomson Course Tech-
nology, 2nd edn. (2006)

[123] Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
CADE. pp. 219–234 (2005)

[124] Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with
bridging functions. In: CADE (2009)

[125] Sorea, M.: Verification of real-time systems through lazy approximations. Ph.D.
thesis, University of Ulm, Germany (2004)

[126] Thomas, D.E., Moorby, P.R.: The Verilog hardware description language, vol. 2.
Springer-Verlag (2002)

[127] Torvalds, L.: The linux edge. Communications of the ACM 42(4), 38–39 (1999)

[128] Tripakis, S.: Checking timed büchi automata emptiness efficiently. In: Formal
Methods in System Design. pp. 267–292 (2005)

[129] Valmari, A.: The state explosion problem. In: Lectures on Petri nets I: Basic
models, pp. 429–528. Springer-Verlag (1998)

[130] Van Benthem, J., Doets, K.: Higher-order logic. In: Handbook of philosophical
logic, pp. 275–329. Springer-Verlag (1983)

[131] Wachter, B., Westphal, B.: The spotlight principle. In: VMCAI. pp. 182–198
(2007)

[132] Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topić, D.:
Spass version 2.0. In: Automated Deduction—CADE-18, pp. 275–279. Springer-
Verlag (2002)

[133] Whittaker, J.: What is software testing? and why is it so hard? Software, IEEE
17(1), 70–79 (Jan 2000)

[134] Wies, T.: Symbolic Shape Analysis. Ph.D. thesis, University of Freiburg (2009)

[135] Wies, T., Kuncak, V., Lam, P., Podelski, A., Rinard, M.: Field constraint analysis.
In: Proc. Int. Conf. Verification, Model Checking, and Abstract Interpratation
(2006)

[136] Wies, T., Muñiz, M., Kuncak, V.: Deciding functional lists with sublist sets. In:
Proceedings of the 4th International Conference on Verified Software: Theories,
Tools, Experiments. pp. 66–81. VSTTE’12, Springer-Verlag, Berlin, Heidelberg
(2012)

[137] Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative
tree data structures. Automated Deduction–CADE-23 pp. 476–491 (2011)

120

Bibliography

[138] Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition
systems. In: Courcoubetis, C. (ed.) Computer Aided Verification, Lecture Notes
in Computer Science, vol. 697, pp. 210–224. Springer Springer-Verlag (1993)

[139] Yoneda, T., Shibayama, A., Schlingloff, B.H., Clarke, E.M.: Efficient verification of
parallel real-time systems. In: Computer Aided Verification. pp. 321–332. Springer-
Verlag (1993)

[140] Yovine, S.: Kronos: A verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 123–133 (1997)

[141] Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.
(eds.) Lectures on Embedded Systems, Lecture Notes in Computer Science, vol.
1494, pp. 114–152. Springer Berlin Heidelberg (1998)

[142] Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. In: Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation. pp. 349–361. PLDI ’08, ACM, New York,
NY, USA (2008)

121

Index

Jahob, 91
Kronos, 87
sAsEt, 92
Uppaal, 87

abstract
model, 2
transition relation, 22
zone graph, 10, 78

acceptance condition, 27
action, 14

reachability, 61
transition, 17

activity, 27
disjoint, 9, 27
points, 37

CFTXOP, 5
channel access method, 4
clock, 13, 14

constraint, 13, 14
drift, 4
overclock, 10
quasi-equal, 9, 10, 72, 74
reset, 14
valuation, 16

computation, 18
projection, 32, 33

Computation Tree Logic (CTL), 23
concatenation, 9, 57
configuration, 16, 17

final, 29
restart, 29
start, 29
zero time, 76

zero-time, 10

DECT, 5
deductive verification, 1
delay

transition, 17
description language, 2
difference

bound matrices, 87
constraints, 14
logic, 87

digital enhanced cordless telecommunic-
ations, 5

edge, 14
asynchronous, 15
enable, 46
handshake, 15
outgoing, 46

FlexRay protocol, 5

GSM, 5
guard, 14

higher order logic (HOL), 92
hybrid systems, 10, 87

invariant
location, 7

LAN networks, 5
linear real arithmetic, 87
linux, 93
location, 14

final, 31

123

Index

initial, 14
invariant, 14
reachable, 41
restart, 29

model checker, 4
model checking, 1, 2

Ocaml, 93
operator

concatenation, 28, 41
complexity, 46

delay, 19
normalization, 21
parallel product, 15
relax, 10, 72, 76
reset, 19
sequential composition, 10
strongest post condition, 93

overclock, 52, 57

PDC, 5
period, 27, 28
PON networks, 5
properties

deadlock freedom, 9
invariant, 9
reachability, 46

quasi-dependent
variable, 10

quasi-dependent variables, 89
quasi-equal clocks, 72

reactive system, 9
region

automata, 21
equivalence, 21

relation
bisimulation, 42
satisfaction, 16
simulation, 23
transition, 16, 17
weak bisimulation, 62

requirements, 3

reset, 14

semantics
operational, 17
symbolic, 18, 20

sequential composition, 52, 60
sequentialisability, 9
sequentialisable, 38
sequentialisation, 28
simulation, 1
SMT solvers, 87, 93
SMT-LIB, 92
system, 2

TCTL, 3
formula
basic, 24
configuration, 24
path, 24

semantics, 24
syntax, 23

temporal logic, 3
testing, 1
theorem prover, 1
Time Division Multiple Access (TDMA),

4
timed automata, 2, 13

cyclic, 28
periodic, 28
periodic cyclic, 9, 27, 31
sequential, 10, 52, 53

timed Büchi automata, 27
Timed Computation Tree Logic (TCTL),

23
Timed Triggered Protocol (TTP), 5
transition

delay, 17
discrete, 17

transition system, 16
labeled, 17

TTA, 68
TTP_C, 68
type inference, 92

valuation

124

Index

equivalence, 21
variable, 14

quasi-dependent, 91
Verilog, 2
VHDL, 2

Z3, 92
zero-time

abstraction, 72
behavior, 10, 72
configuration, 10, 72

zone, 19
zone graph, 20

abstract, 78
finite, 22

125

Index

126

