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Abstract
Modern navigation systems warn the user of traffic jams ahead and suggest alternative routes. However, a lemming effect can
cause the alternative routes also to become congested, as the system suggests the same route to all users. As such, in an
attempt to optimize for the individual driver, the welfare of the traffic network is punished. In this paper we introduce an
online and proactive method for collective rerouting recommendations based on real-time data and stochastic optimization.
Our system periodically monitors the status of the network to identify potentially congested roads together with vehicles
affected by them. The system then uses Uppaal Stratego to perform machine learning and approximate the best rerouting
scenarios. As a proof of concept, we build a SUMO model of a representative traffic network. We perform exhaustive
experiments considering different traffic loads and different traffic light controllers. Our results are promising, showing con-
siderable improvement in travel times, queue lengths, and CO2 emissions.

As cities and populations grow, so do traffic and traffic
congestion. Congestion can be caused by road works,
malfunctioning traffic lights, accidents, and so forth, but
also by too much traffic in road networks ill equipped to
handle it. Modern navigation systems might propose
alternative routes to users, but may suggest the same
route to several vehicles, causing congestion on the alter-
native route. Congestion in urban traffic networks has
several negative effects on the environment and society.
Thus, reducing congestion is an important goal. There
have been several initiatives to address congestion in
Denmark. For example, in (1) the Danish Congestion
Commission called for improved traffic signal control to
reduce congestion. Additionally, rerouting strategies to
avoid congestion are being actively investigated, as seen
in (2–5).

In this work we propose an online and proactive
method for collective reroute recommendations based on
real-time data and stochastic optimization. Our models
are stochastic to represent the choice of the drivers to
accept or reject a recommended route. Our system peri-
odically monitors the status of the network to identify
potentially congested roads together with vehicles
affected by them. For example these data could be gath-
ered as seen in Work et al. (6). Given the current obser-
vations on the network, our system will build a David

et al. (7) model. The tool will perform simulations and
apply machine learning techniques to approximate the
best rerouting scenarios. The solution avoids the lem-
ming effect experienced in current solutions, as this will
result in a worse optimization value. The solution will
seek to find the optimal solution—with regard to average
travel time—between rerouting to an alternative route
and continuing on the same route.

Problem Definition

In this work we consider urban traffic networks with
multiple intersections, each with traffic lights. We assume
that the vehicles in the network have a current route and
destination. For each of these vehicles there is the possi-
bility to recommend a new route, for example, via a
GPS. Vehicles will accept or decline the proposed route
with some probability. Different route assignments to
vehicles will induce different measurements, for example,
waiting times, queue lengths, and so forth. In this work

1Department of Computer Science, Aalborg University, Denmark
2Department of Civil Engineering, Aalborg University, Denmark

Corresponding Authors:

Peter Taankvist, ptaank16@student.aau.dk
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we would like to approximate the best set of route assign-
ments using stochastic models and machine learning.

Related Work

There are multiple proposals for dissolving traffic con-
gestions such as Uppaal Stratego intelligent traffic lights
(8). However, the traffic lights presented in the paper do
not communicate in any way and therefore only look at a
single intersection. There are also services such as Google
Maps and Waze that suggest new routes based on events
such as accidents or congestions. However, both of these
are reactive and not preventive. Furthermore, they sug-
gest the same alternative routes to all vehicles using the
application resulting in a lemming effect. As such, an
increase in the number of users could become proble-
matic (9). We instead attempt to distribute traffic so that
more users only contribute to the system’s performance.
In Seongmoon Kim and White (5) they route vehicles
according to real-time traffic information. The authors
make optimal routing policies under time varying traffic
flows based on a Markov decision process formulation.
In Cao et al. (3), the authors introduce a pheromone-
based framework for reducing traffic congestion in met-
ropolitan cities. In Pan et al. (4), three different rerouting
algorithms, based on live data, are presented. The algo-
rithms attempt to distribute traffic across a network to
reduce travel times. The algorithms presented all show
promising results, giving motivation for researching other
approaches as well. As opposed to these approaches we
use techniques from model checking and machine learn-
ing as well as considering environmental conditions and
different traffic light controllers.

Outline

The next section will cover the implementation and look
in depth at how the rerouting model is made. This
includes the implementation of the two sub-models, pre-
liminaries for the models, and how we apply the traffic
lights presented in Eriksen et al. (8). We then introduce
our case study. This is what the experiments will be con-
ducted on. Thereafter, we present the results of the
experiments we conducted and the measurements we use.
Here we present the results of the experiments without
closed roads, followed by the results of experiments
where some roads are closed. Lastly, we conclude and
describe concepts for further work.

Vehicle Rerouting with Uppaal Stratego

In this section we explain the high level idea of our solu-
tion. First, we briefly describe the tool Uppaal Stratego
and the stochastic models we use for finding near-optimal

rerouting strategies. We then give a high level idea of
how our rerouting system works. This is followed by a
description of the preparations required before Uppaal
Stratego is invoked on a model generated online. Finally,
we describe in detail the Uppaal Stratego model for
synthesizing near-optimal rerouting strategies.

Uppaal Stratego

Uppaal Stratego is part of the Uppaal Stratego tool suite,
which are integrated tool environments for modeling,
validating, and verifying real-time systems modeled as
networks of timed automata (10). The tool has been suc-
cessfully applied to multiple cases of cyber-physical sys-
tems such as online floor heating (11), adaptive cruise
control (12), and intelligent traffic lights (8). The tool
combines techniques from both model checking and
machine learning to synthesize near-optimal strategies
for a given scenario. The idea behind Uppaal Stratego is
that we can state certain guarantees, for example, safety
or liveness using model checking, while optimizing the
outcome of the problem using machine learning. For
example, in Larsen et al. (12) the authors create a model
that guarantees that a vehicle does not collide with the
vehicle in front, while minimizing the travel time of the
given vehicle.

In our case, we compute a near-optimal rerouting
strategy for a given configuration of vehicles in a traffic
network. This is done by feeding the Uppaal Stratego
models a snapshot of the current traffic situation.
Uppaal Stratego will use reinforced learning to synthe-
size a near-optimal solution to the problem. It does this
by either minimizing or maximizing a value. We attempt
to minimize the average travel time through the traffic
network.

The Uppaal Stratego models can be seen as one and a
half player games, in which a controller plays against the
environment. In our case the controller only has the
option to suggest a rerouting option. The environment is
everything that can affect this choice such as the prob-
ability that drivers accept the rerouting suggestion, road
conditions, speed, and so forth.

Example. Figure 1 shows an example Uppaal Stratego
model, reflecting the choice of whether or not to reroute
a vehicle. In the first location, Chooser, the controller
has a choice between going to DoReroute or NoReroute
represented by the solid arrows. If it chooses the former,
it proceeds to a branch point representing a probability
of a driver accepting/rejecting the suggested route, where
p is the probability that the driver accepts the suggestion.
At this point any transition is uncontrollable and is rep-
resented by the dashed arrows. Assuming every vehicle is
considered according to this Uppaal Stratego model,
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Uppaal Stratego estimates a near-optimal strategy of
who to recommend rerouting to. The model presented
below reflects exactly this.

Vehicle Rerouting Intuition

Formally, we implement a stochastic hybrid game as
defined in Larsen et al. (11), in which the controllable
modes are route suggestions in conjunction with all pos-
sible traffic light phases for each traffic light. The
uncontrollable modes are the environment actions such
as the flow of the vehicles. A high level description of the
implementation of our rerouting system is given in
Algorithm 1 together with Algorithm 2.

In Algorithm 1 we observe, that every 10 time units
(this can be easily modified) the system monitors the sta-
tus of the network. It then estimates which roads are
congested and detects the affected vehicles which are
thus flagged for rerouting. This step is explained in more

detail below. With this information, a Uppaal Stratego
model is built and used to find near-optimal rerouting
strategies. Algorithm 2 describes this step. Finally, the
system will propose the new routes to vehicles flagged
for rerouting. These vehicles can accept or reject the pro-
posed routes with some probability.

Preparations for Model Generation

To generate rerouting strategies. We periodically gener-
ate a Uppaal Stratego model with the current state of the
network. Computing strategies is computationally expen-
sive, thus we need several preparations to reduce compu-
tation done by the model. We have two major
considerations. First, since computational complexity
increases exponentially with the number of choices, we
identify and mark a limited number of vehicles for
rerouting. Second, Uppaal Stratego recommends routes
dynamically, for this it uses Dijkstra’s shortest path algo-
rithm. To speed up this computation an adjacency
matrix is precomputed. In what follows we describe how
estimation of congested roads and flagging vehicles is
computed. We then describe how the Uppaal Stratego
model is generated.

Congested Roads and Flagged Vehicles. Which vehicles are
flagged for rerouting is essential for the system, and
dependent on the congestion of roads. In our system this
is done by continually updating the current weight of the
roads according to a case specific weight function
(defined below). When flagging vehicles we look two
road segments ahead and consider their current weight.
If the weight of either of the two road segments is above

Figure 1. Example Uppaal Stratego model.

Algorithm 1. High Level Explanation of Online and Proactive Vehicle Rerouting

1 while True // as long as the traffic network is functioning
2 Control trafficlights // e.g., use Algorithm 1 from Paper (8)
3 if Time % 10 ==0 then //every 10 time units, observe the status of the system
4 Predict congested roads
5 Detect affected vehicles // these vehicles are flaged for rerouting
6 Compute near-optimal routes // create model and call Algorithm 2
7 Suggest new routes in traffic network
8 end if
9 end while

Algorithm 2 High level explanation of our model

1 //The status of the traffic network is represented in a rerouter model
2 for all vehicles
3 if a vehicle has a rerouting flag then
4 A new route is calculated using Dijkstra’s algorithm
5 The vehicle accepts the new route with a fixed probability
6 else
7 The vehicle keeps its current route
8 end if
9 end for
10 Simulate traffic until the horizon is reached
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a case specific threshold (also defined below) we flag the
vehicle as a potential rerouting possibility.

Model Generation. Figure 2 shows the interaction between
the traffic network and Uppaal Stratego. Our method
periodically generates a Uppaal Stratego model which is
fed with Formatted Data which includes information
such as: the flagged vehicles, the road network repre-
sented as a directed weighted graph, the number of vehi-
cles per edge, a time horizon for which to simulate, and
so forth. This model is used for generating a strategy
which is then implemented in the traffic network via a
controller.

Models

A Uppaal Stratego model for rerouting is the composi-
tion of two internal models. These internal models
include the Simulator model responsible for simulating
traffic flow, and the Rerouter model responsible for
route suggestions.

Simulator Model. The entry point of the model is the
Simulator model, seen in Figure 3. All transitions in this
model are uncontrollable. Initially, the Simulator model
synchronizes with the Rerouter model via the Reroute!
channel. The main functionality of the Simulator model
revolves around simulating traffic after the Rerouter
model has yielded a reroute suggestion strategy. In the
location, SimulateTraffic, the model flows the traffic and
updates the edge weights every 10 time units until either
the horizon is reached or all vehicles have reached their
destination. Lastly, the transition to End calculates the
sum of the average travel time per edge. Formally shown
in Equation 1.

XV

i= 1

traveltimei

numEdgesi

ð1Þ

where
V is the number of vehicles,
traveltimei is the i -th vehicle’s travel time, and

numEdgesi is the number of edges the i -th vehicle has
traversed.

This summation is performed to provide a value for
Uppaal Stratego to minimize.

Rerouter Model. The Rerouter model seen in Figure 4 is in
control of suggesting new routes to vehicles that are
flagged. The internal logic in this model is similar to the
example seen in Figure 1. It is invoked when it can syn-
chronize on the Reroute? channel. The Rerouter model
then goes through all vehicles, checking if they are
flagged for rerouting. The vehicles can be rerouted in
any arbitrary order, but to reduce computation time we
suggest reroutes in a sequential manner. This is possible
because the vehicles are moved after they have been
rerouted. If Uppaal Stratego chooses to reroute the vehi-
cle, choose_route() finds a route for the vehicle, accord-
ing to a Dijkstra’s shortest path algorithm. If the route
of the vehicle contains a closed edge then the vehicle has
to receive a new route, and the choice is bypassed.
Although, the probability remains that the vehicle
accepts or declines the route suggestion. If it declines it
will keep the route it already has. At the CarDone loca-
tion, we check if all vehicles have been processed, at
which point the transition to done is taken, and the
model synchronizes with the Simulator model.

Traffic Light Controllers

In the traffic network there are several intersections. We
assume that there is a traffic light at every intersection.
We consider two different types of traffic light control-
lers. We consider static time traffic light controllers, where
the traffic light follows a fixed time cycle of red/amber/
green phases, and a smart traffic light controller from
Eriksen et al. (8). The smart traffic light controllers are
based on Uppaal Stratego and are traffic controlled traffic
lights (contrary to time controlled traffic lights), that is,
the traffic light controller adapts to the current traffic flow
and changes the phases accordingly to maximize the
throughput of the intersection. This is done to measure the
performance both with and against a solution for smarter
traffic management. To properly use the traffic light con-
troller from Eriksen et al. (8) in our scenario, we modify it
to consider if the outgoing lanes are already congested.
Furthermore, for fast computations, traffic lights are exe-
cuted concurrently using multiple threads.

Case Study

As a proof of concept we consider a representative traffic
network modeled in the simulation tool SUMO (13).
SUMO is a tool for microscopic traffic simulation.

Figure 2. Interaction with a model of a traffic network.

4 Transportation Research Record 00(0)



SUMO comes with an interface, TraCI, which we use to
gather the required information for periodically generat-
ing Uppaal Stratego models. In Figure 2, SUMO imple-
ments a Model of a traffic network and a Python script
using TraCI serves as the Interface and the Controller
processing both the traffic data and the strategy. The full
source code of this project can be found in https://
github.com/Marglib/AAUP7.

Network Preliminaries

Figure 5 shows the artificial SUMO traffic network we
consider. The figure also includes additional information
explained below. The network consists of two perpendi-
cular large roads and several smaller side roads. We will
refer to the large roads as the main roads. The small
roads each have a single lane in each direction. The main
roads have two outgoing lanes and two incoming lanes
that fork into three lanes, with dedicated left turn lanes,
when nearing an intersection with a small road. When
the two main roads meet they fork into four lanes, with
dedicated left and right turn lanes. As a constraint,

U-turns are illegal in any intersection with a main road.
Additionally, each road has a speed limit of 16m/s, as

Figure 4. Model that controls the rerouting suggestions of the vehicles within the network.

Figure 5. SUMO model for an urban traffic network with 25
intersections. The entry point probabilities for traffic generation
are displayed for every road. For additional experiments, the
network supports closing roads. These roads are displayed with
their corresponding closing times.

Figure 3. Model used for simulating traffic.
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we want to represent an urban traffic network. The dif-
ferent types of intersections can be seen in Figure 6. For
simplicity there is only one type of vehicle, which is a
standard passenger car. Additionally, we assume perfect
knowledge of the network to acquire the data mentioned
above.

Case Specific Functions

As described above, we have two case specific functions,
the threshold and the weight function. We conducted a
series of smaller experiments to test the capacity of the
various road types. Using linear regression we found the
following weight functions:

The threshold is calculated as threshold =
12 � edgeLength

100
, where 12 is a heuristic value and we multiply

with edgeLength

100
to account for longer edges being able to hold

more vehicles before congesting. We divide by 100 to nor-
malize the threshold according to the weight function.

Scenarios for Experiments

We experiment with four different configurations using
different traffic light controllers, with or without our
rerouting model. The four configurations are as follows:
no rerouting model and Default SUMO traffic light (14)

(ND); Rerouting model and Default SUMO traffic light
(RD); no rerouting model and smart traffic light (NS);
and rerouting model and smart traffic light (RS). When
no rerouting is applied, the vehicles receive a route using
a shortest path algorithm on entering the traffic network
(15). To conduct the experiments we generate traffic
loads through repeated Bernoulli Trials over a Poisson
distribution for every incoming road:

P(k vehicles per hour)=
lk � e�l

k!

where l is given by the entry point probability for the
given road, seen in Figure 5, multiplied by differing vehi-
cles per hour (vph): 5,400 vph, 6,300 vph, 7,200 vph,
8,100 vph, and 9,000 vph.

We refer to a scenario as a configuration with a given
load. We sample 50 simulations for each scenario to gain
confidence in the results. This means that we conduct 50
times the number of loads times the number of config-
urations, giving a total of 1,000 experiments. In case the
generated traffic results in an incoming road being con-
gested, SUMO will maintain a queue of vehicles waiting
to enter the network on the given road. Such vehicles will
not count toward the queue length. If a vehicle is trying
to cross an intersection, where the outgoing road is con-
gested, SUMO makes the vehicle wait until there is space
on the outgoing road.

Additional Considerations. In addition to the network, sce-
narios, and probability distributions, we need to fix a
horizon for the Uppaal Stratego models (see above).
We set the horizon to 40 s. We fix the probability of a
vehicle accepting a route suggestion to 90% (p= 0:9 in

Figure 6. Different types of intersections: (a) intersection between two small roads, (b) intersection between small and main road, and
(c) intersection between two main roads.

Number of lanes Weight function

1 1.54 � numberOfCars + 13.73
2 0.17 � numberOfCars + 7.37
3 0.44 � numberOfCars + 6.46
4 0.84 � numberOfCars + 5.69
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Figure 4). These probabilities could be obtained from
historical data in a real scenario.

Scheduled Road Closing

Using the network, as described above, we assume there
are some scheduled road closings, for example, scheduled
road work or events. We fix a set of closed roads in the
network. These are the red lines seen in Figure 5.

Because of time constraints we fix a set of closed roads,
and experiment only with this one set. For this set, we
instead conduct only three simulations for each scenario,
totaling in 48 experiments with closed roads. This is again
because of time constraints, as we deem the aforementioned
experiments more important for testing the system in a real
scenario. For the experiments we parse the information that
the road is going to close 20 s before the road closes, such
that the Uppaal Stratego model has time to react.

Experimental Results

In this section we present the results of our experiments
for each of the four configurations. The results with no

closed roads can be seen in Table 1 while the results with
closed roads can be seen in Table 2.

Measurements. We measure the performance of our model
on 10 different parameters. All of the measurements are
retrieved from the SUMO (13) statistics files. The
measurements we consider are: average travel time per
vehicle in seconds (ATT); average delay per vehicle in
seconds (AD); average waiting time per vehicle in seconds
(AWT); max travel time in seconds (MTT); max delay in
seconds (MD); max waiting time in seconds (MWT);
average queue length per road in meters (AQL); max
queue length in meters (MQL); 95th percentile queue
length in meters (95%); and average CO2 emission per
vehicle in grams (CO2). Waiting time is the time the
vehicle spends driving slower than 0.1m/s and delay is the
time in which the vehicle was delayed, for example, time it
would not have lost if it had been driving at the maximum
speed limit at every point in time.

Results Without Closed Roads

The first thing to notice, in Table 1, is that in most cases,
ND is the worst. Furthermore, it should be noted that

Table 1. Results for the Experiments without Closed Roads. The Average Measurements are the Mean Over the 50 Simulations, and the
Max Values are the Maximum Across the 50 Simulations

ATT AD AWT AQL MTT MD MWT MQL 95% CO2

5,400 vph
ND 196.2 95.2 57.9 14.1 499.6 356.2 252.7 282.2 42.0 532.9
RD 190.3 89.5 54.3 12.9 450.5 307.7 221.5 251.2 36.0 520.4
NS 156.0 55.1 25.6 9.5 380.6 243.1 189.3 254.2 27.9 439.7
RS 155.5 54.6 25.3 9.4 371.5 237.4 184.4 233.7 26.8 438.5

6,300 vph
ND 211.2 109.9 67.0 17.0 579.3 438.7 304.6 278.2 53.3 562.5
RD 197.3 96.4 58.4 14.3 512.6 369.9 267.3 267.4 42.6 534.4
NS 167.6 66.6 33.6 12.0 450.3 317.5 255.8 288.7 35.9 466.0
RS 166.1 65.1 32.6 11.5 445.2 309.6 251.9 278.9 33.9 462.7

7,200 vph
ND 240.7 138.6 85.8 21.8 766.7 631.8 443.9 295.0 76.7 621.3
RD 209.0 107.7 65.4 16.3 626.8 485.8 344.5 286.6 47.7 558.1
NS 194.0 92.4 53.1 17.5 625.0 494.1 416.5 290.9 61.6 526.8
RS 185.0 83.4 46.1 15.2 542.4 415.0 339.4 292.4 49.3 505.9

8,100 vph
ND 306.7 203.2 131.2 31.1 1230.8 1098.2 801.1 315.2 115.3 752.9
RD 233.3 131.8 80.8 19.4 911.7 774.0 548.1 311.4 62.1 605.4
NS 261.0 158.1 106.3 29.4 1068.7 933.6 817.9 309.4 113.0 681.4
RS 221.6 119.5 74.6 21.8 790.4 661.0 567.8 300.6 78.0 590.9

9,000 vph
ND 395.5 290.5 202.1 41.1 1843.4 1704.8 1368.9 322.3 158.8 944.5
RD 272.7 171.0 107.3 24.0 1193.8 1060.6 775.0 319.6 80.9 682.8
NS 456.1 350.1 281.0 49.1 2293.2 2158.0 1982.4 356.1 171.4 1147.7
RS 288.7 186.0 129.8 31.7 1187.5 1056.3 937.5 315.5 106.3 747.2

Note: Bold indicates the minimum value for the given measurement and load. vph = vehicles per hour; ATT = Average Travel Time; AD = average delay;

AWT = Average Waiting Time; MTT = Max Travel Time; MD = Max Delay; MWT = Max Waiting Time; AQL = Average Queue Length; MQL = Max

Queue Length; 95% = the 95th percentile queue length; CO2 = the average CO2 emission.
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each configuration performs worse on the 9,000 vph load
than on any of the other loads. This is likely a result of
some lanes in the network being congested.

Additionally, it can also be deduced that for our
rerouting model to have any effect we need a relatively
large load. This can be seen when comparing NS and
RS, as seen in Figure 7a, where the only notable differ-
ence is on the three largest loads. Here, there is a rela-
tively large difference between NS and RS showing that
it is worthwhile rerouting the vehicles in some cases. The
same can be seen when comparing ND and RD. As such,
our rerouting model can improve travel time with either
traffic light controller on the three largest loads

Another thing we can derive from Table 1 is that using
our rerouting model is less punishing for the individual
vehicle in most cases as can be seen in the max measure-
ments (MTT, MD, MWT, and MQL) when comparing
ND with RD and NS with RS.

Results with Closed Roads

The results in Table 2 show many of the same tendencies
as seen in the results without closed roads. However, every
configuration performs worse than their counterparts in
Table 1, which can be seen when looking at the ATT for
closed roads in Figure 7b. It should be noted that, when
comparing NS and RS, it is still better to use our rerouting

model, with the exception of the 5,400vph load. We see
that RS and RD, in general, are less negatively affected
than NS and ND by the closed roads. This can be seen,
comparing NS and RS on ATT for 7,200vph, where NS is
increased by 36.4 s while RS is only increased by 19.4 s.

We also see that NS performs better than RD in every
load but the two largest loads. This indicates that, at some
point, given closed roads, the reroute recommendations
are more effective than only having a smart traffic light
controller. Though these results are promising the experi-
ments are not as exhaustive as the experiments without
closed roads, and thus not completely conclusive.

Whether roads are closed or not, the results suggest
that rerouting can improve the traffic flow in general,
especially with large traffic loads.

Discussion

Throughout the conduct of the experiments we identified
some sources of error. The largest source of error being
that the vehicles are removed by SUMO from the net-
work after a certain amount of time standing completely
still (300 s). This is a necessity to ensure that the simula-
tion progresses and the network cannot be gridlocked
forever. We measured how many vehicles were removed
and in most cases there was no need to remove vehicles.
However, some experiment scenarios congested to the

Table 2. Results for the Experiments with Closed Roads. The Average Measurements are the Mean Over the three Simulations, and the
Max Values are the Maximum Across the three Simulations

ATT AD AWT AQL MTT MD MWT MQL 95% CO2

5,400 vph
ND 201.9 100.3 61.0 14.8 496.3 386.2 265.7 295.9 43.5 545.8
RD 193.6 92.1 55.8 13.3 508.0 380.0 246.5 225.9 36.0 528.3
NS 158.9 57.5 27.1 10.0 373.7 247.2 182.0 295.8 28.5 447.6
RS 161.3 59.9 29.4 10.6 449.3 301.7 251.0 295.9 33.5 454.3

6,300 vph
ND 221.0 118.6 72.5 18.4 647.7 502.3 361.7 218.0 61.0 585.1
RD 203.8 101.8 61.8 15.1 503.0 362.7 266.0 328.1 43.5 550.3
NS 179.1 76.8 40.8 14.1 609.0 475.1 393.7 295.9 46.0 494.7
RS 173.2 71.2 36.9 12.6 483.7 336.0 283.7 254.3 38.7 480.7

7,200 vph
ND 283.8 179.6 115.9 28.2 1263.7 1117.9 865.7 295.9 98.5 713.3
RD 219.8 117.7 71.9 18.0 655.3 519.7 390.0 295.9 56.0 582.0
NS 230.4 127.4 79.9 23.7 878.3 752.5 635.7 295.9 88.8 610.1
RS 204.4 102.0 60.2 18.4 644.3 518.0 431.0 328.1 68.2 553.0

9,000 vph
ND 1065.9 941.9 813.7 65.7 4848.3 4703.3 4248.7 368.5 211.0 2533.4
RD 315.1 212.4 137.6 28.9 1338.7 1220.6 896.7 295.9 88.5 772.9
NS 891.2 777.2 672.3 74.4 3979.7 3825.8 3522.7 392.7 193.8 2182.2
RS 346.2 242.3 177.2 38.1 1614.0 1482.3 1337.7 295.9 136.0 882.0

Note: Bold indicates the minimum value for the given measurement and load. vph = vehicles per hour; ATT = Average Travel Time; AD = Average Delay;

AWT = Average Waiting Time; MTT = Max Travel Time; MD = Max Delay; MWT = Max Waiting Time; AQL = Average Queue Length; MQL = Max

Queue Length; 95% = the 95th percentile queue length; CO2 = the average CO2 emission.
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point where removals were needed. The worst case was a
load with 9,000 vph. This load was used with NS and
resulted in 121 removals throughout the simulation. The
worst case of removals for other configurations was: 17 for
ND, 6 for RD, and 13 for RS. We assume that, if not for
the removed vehicles, the net would have been gridlocked.
We see in the results that the smart traffic lights yielded
worse results than expected. We believe this is because of
some unexpected behavior, which probably also caused the
high amount of removals. When the smart traffic lights are
run in conjunction with our rerouter (RS) it seems that the
bug is negated and the results are better when using this
configuration compared with ND, NS, and RD. However,
we have not identified why this is the case.

We performed the experiments in parallel on the AAU
MCC cluster (16). We allocated four cores, AMD Opteron
6376 Processor, 2.3GHz, and up to 1TB memory for each
experiment. With these specifications the longest experi-
ment took around ; 25days of computation time. This
was an instance of RS with the largest load.

Conclusion

It is possible to optimize traffic flow on an urban traffic
network using our Uppaal Stratego model to synthesize
reroute recommendation strategies. We show by simula-
tion in SUMO that, rerouting vehicles is a valid method
for reducing travel times, queue lengths, and CO2 emis-
sions. The results show that on small loads the smart traf-
fic lights are the most important, but that, as the loads
get larger, rerouting becomes increasingly effective to the
point where it outperforms the smart traffic lights.

We observe improvements of up to a 31% decrease in
average travel time for the representative traffic network

without closed roads and up to 70% with closed roads,
while also observing promising results in relation to fairness.
As such, we conclude that using rerouting recommendation
strategies, made with Uppaal Stratego, is a valid approach
to distributing traffic to prevent and dissolve congestions,
with and without closed roads. Additionally, our study sug-
gests that incorporating the smart traffic light controller fur-
ther improves this approach.

Future Work

This paper considers applying a Uppaal Stratego model
to a traffic network, which showed promising results.
However, further testing of the model is necessary. In
this paper the model was tested on a single traffic network.
To explore whether these results hold for traffic in general,
experiments on more heterogeneous scenarios should also
be considered. This includes testing different speed limits,
road sizes, vehicle route distributions, and intersection con-
trollers as well as testing our rerouting model on real road
networks with actual data. Some of the experiments took
several days. To combat this, partitioning could be a possi-
bility as done in Larsen et al. (11). However, we expect this
would yield slightly worse results.

Modification of the model itself should also be investi-
gated. Using a different weight function, threshold, or
allowing Uppaal Stratego to choose from different pre-
computed routes may yield improved results. However,
pre-computing routes will only be possible for the cases
where no roads are closed or when the specific road clos-
ing cases are known. Although, it might be computation-
ally heavy, allowing Uppaal Stratego to have a choice
for all vehicles might also improve results. Testing with
different road closing sets is required to further discover

Figure 7. Average travel time per configuration with and without closed roads: (a) without closed roads, and (b) with closed roads.
Note: vph = vehicles per hour; ND = No rerouting model and Default SUMO traffic light (14); RD = Rerouting model and Default SUMO
traffic light; NS = no rerouting model and smart traffic light; RS = rerouting model and smart traffic light.
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the solution’s ability to handle these as we only experi-
mented with a fixed set of closed roads. In much the same
way, testing different probabilities (possibly based on real
data) would be relevant. This also means that many
experiments are needed (theoretically infinite) to properly
represent the effects of the probabilities. Additionally,
data gathering methods and the percentage of drivers
using the system should also be considered.
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P. Taankvist and T. Pedersen; draft manuscript preparation: A.
Bilgram, E. Ernstsen, P. Greve, M. Muñiz, P. Taankvist and T.
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