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Abstract. The core component of Statistical Model Checking (SMC)
is the repeated sampling of a given system as to estimate statistical
measures. To obtain probabilistic estimates with high confidence a sig-
nificant number of simulations is required, in particular in the presence
of rare events. In this paper we explore the use of Graphical Processing
Unit (GPU) for accelerating SMC for Networks of Stochastic Extended
Timed Automata (SXTA). We discuss the many challenges and solutions
required to achieve significant speedups on a GPU architecture. In col-
laboration with NVIDIA we develop a prototype tool for parallel SMC
using both GPU and multi-core CPU. Experimental results demonstrate
trade-offs in the computation time when utilizing either CPU or GPU.
In one case we observed the GPU using 20% of the power of the CPU
equivalent while delivering a 2.73 time speedup.

1 Introduction

Statistical model checking (SMC) is a technique where the (statistical) correct-
ness of a given system model is inferred via repeated statistical sampling. SMC
is applied for both qualitative and quantitative studies of systems where classical
model checking is unpractical due to e.g. the state-space explosion, or impossi-
ble e.g. due to intractability of a symbolic analysis [14]. Furthermore, repeated
statistical simulation is required for both training and evaluating AI based con-
trollers in a safe environment (see e.g. [7,21]). One formalism for expressing com-
plex stochastic systems is Networks of Stochastic Extended Timed Automata
(NSXTA), for which the model checking tool Uppaal provides an SMC engine.
While the SMC technique generally enjoys good scalability, recent applications
call for run-time reductions, e.g. training controllers for residential heating sys-
tems [21] or simulating large-scale agent-based COVID19-models [5,25]. Addi-
tionally, the recent energy cost surges, global warming and increased needs for
large-scale AI system training call for more studies of cost of computation [32].

Numerical simulation problems have classically enjoyed good speedups from
GPU acceleration, e.g. Computational Fluid Dynamics [2]. We note here that
such classical problems generally enjoy matrix-like descriptions with little or no
branching and little or no stochastics, a strong contrast to NSXTA.
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In this paper, we study the use of parallel computing via GPUs and CPUs to
increase the performance of SMC for NSXTA. Our main contribution is a par-
allel implementation of SMC for NSXTA on GPU. In addition, our experiments
show substantial time and energy savings while using a GPU compared to an
equivalent CPU cluster implementation. Another contribution is that estimation
of probabilities for large real world scenarios e.g. COVID19-models [5,25] which
required a CPU cluster, can now be carried out on workstation or laptop with a
suitable GPU.

Relationship to Joost-Pieter Katoen The SMC engine of Uppaal dates back to
the European FP7 project Quasimodo (2008-2011), where Joost-Pieter Katoen
was a main contributor representing RWTH Aachen. Aalborg University was a
project coordinator and the other partners of the Quasimodo project were ESI,
University of Twente, Radboud University, ENS Cachan, Saarland University,
University Libre de Bruxelles, Terma A/S, Chess, Inchron, and Hydac.

The objective of the Quasimodo project was to develop theory, techniques
and tools for handling quantitative constraints in model-driven development of
real-time embedded systems. This involved explicit handling of real-time, hybrid
and stochastic constraints to capture use of resources, assumptions about an
environment, as well as requirements on the services that the system has to
provide. During the project, a large number of tools for probabilistic and real-
time analysis were developed, refined, and combined, including MoDEST and
Uppaal SMC.

The first presentation of Uppaal SMC was made at a Quasimodo project
meeting in February 2011 in Aachen, with Joost-Pieter Katoen being the host
and Kim G. Larsen (coauthor of this paper) giving the presentation. At that
time Joost-Pieter Katoen was focusing on (exact) model checking of CTMC
and stochastic hybrid systems against various specifications (including time au-
tomata), the probabilistic model checker MRMC, as well as compositional veri-
fication of probabilistic systems. The Quasimodo meetings were characterized
by true scientific curiosity and frank discussions, and it is fair to say that the
discussion after (and during) this first presentation of Uppaal SMC was very
frank, with several of the other partners questioning the entire statistical model
checking approach. Fortunately, we continued the work with Uppaal SMC be-
coming part of the standard Uppaal distribution in 2015 [16]. Throughout the
years – in line with the core contribution of this paper – there has been a focus
on constantly improving the performance of Uppaal SMC with contributions
including importance sampling and splitting [24,26] for efficient estimation of
rare events as well as distributed statistical model checking [9]. Most impor-
tantly, Uppaal SMC has since its introduction been successfully applied to the
analysis of a number of highly critical systems ranging from maintenance of rail-
way systems [31], performance analysis of routing protocols [35] to analysis of
impact of close-down measures for controlling the spreading of Covid-19 [25,5].
Also, Joost-Pieter Katoen himself has made good use of Uppaal SMC with
respect to the modeling and analysis of a microgrid with wind, microturbines,
and the main grid as generation resources [10]. We hope all this work inspires
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Joost-Pieter Katoen and his group to introduce statistical model checking into
the Storm model checker [22].

Finally, in 2017 Joost-Pieter Katoen became Honoris doctor causa at Aalborg
University in "recognition of his numerous contributions to the research commu-
nity in model checking including probabilistic model checking and programming
in particular".

Related Work GPUs have been explored in the context of model-checkers, e.g.
for accelerating state-space generation [18], probabilistic model-checking [6], im-
proving convergence of value-iteration [11] and speeding up SMT-solvers [28].
Additional examples of model checking using GPUs are GPUExplore [36] and
Grapple [17], implemented using CUDA to perform state-space exploration in
parallel. ParaFROST [30] uses GPUs to parallelize variable-clause elimination
during bounded model checking with CBMC [12]. Closer to our approach is
the work of Copik et al. [13] describing the implementation of an extension of
Prism for statistic probabilistic model checking of Markov decision processes us-
ing GPUs, implemented using OpenCL. Similarly, the work of Gainer et al. [20]
describes the use of CUDA to speed up model checking of parametric Markov
chains. In contrast to previous work we extend the modeling language to Net-
works of Stochastic Extended Timed Automata and provide two ways of han-
dling discrete data expressions: JIT-compiled C code and interpreted through
Polish notation. To the best of our knowledge, this work is the first GPU-based
statistical model checking engine for systems with mixed linear and non-linear
behavior and complex interleaving stochastics.

The remainder of the paper is structured as follows; Section 2 builds up
our modeling formalism from variables and automata to its semantics, intro-
duces statistical model checking algorithms and NVIDIA CUDA programming
framework, Section 3 presents our parallel version of the algorithm followed by
a discussion in Section 4 on the required technical optimizations. This is fol-
lowed by experimental findings in Section 5, shortly followed by conclusions in
Section 6.

2 Preliminaries

We use Timed Automata [1] extended with discrete variables and given a stochas-
tic semantics just like in statistical model checking (SMC) implemented in Up-
paal [3]. For parallel implementation of SMC algorithm we use NVIDIA CUDA
framework.

2.1 Networks of Extended Stochastic Timed Automata (NSXTA)

Clocks and Discrete Variables. Let X be a finite set of clocks. A clock valuation
is a function µ ∶ X → R≥0. We use V(X) to denote the sets of all valuations
for clocks in X. Let V be a set of discrete variables. The function D assigns
to each variable v ∈ V a finite domain D(v). A variable valuation is a function
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ν ∶ V → ⋃v∈V D(v) that maps variables to values such that ν(v) ∈D(v). We use
V(V ) to denote the set of all variable valuations. We let µ0 resp. ν0 denote the
valuation that maps every clock resp. variable to the value 0.

Expressions. We use expr to denote an expression over V . We assume that
expressions are well typed. For an expression expr we use D(expr) to denote its
domain. Given a variable valuation ν and an expression expr, we use exprν ∈
D(expr) to denote the value of expr under ν. We use V (expr) ∈ 2V to denote the
set of variables in expr such that if ν(v) = ν′(v) for all v ∈ V (expr) and for all
ν, ν′ ∈ V(V ) then exprν = exprν′ .

Constraints. The set B(X) is the set of clock constraints generated by the
grammar ϕ ∶∶= x & expr ∣ ϕ1 ∧ ϕ2, where x ∈ X, D(expr) is the domain of all
natural numbers N and & ∈ {<,≤,≥,>}. The set B(V ) is a set of Boolean variable
constraints over V . The set B(X,V ) of constraints comprises B(X), B(V ), and
conjunctions over clock and variable constraints. Given a constraint ϕ ∈ B(X,V ),
we use X(ϕ) to denote the set of clocks in ϕ, and V (ϕ) to denote the set of
variables in ϕ. A constraint ϕ ∈ B(X,V ) evaluation under ν is denoted as ϕν .

Updates. A clock update is of the form x ∶= expr where x ∈X, andD(expr) =N.
A variable update is of the form v ∶= expr where v ∈ V and D(v) = D(expr). The
set U(X,V ) of updates contains all finite, possibly empty sequences of clock
and variable updates. Given clock valuation µ ∈ V(X), variable valuation ν ∈
V(V ), and update r ∈ U(X,V ), we use rν to denote the resulting update after
evaluating all expressions in r under ν, we use X(r) to denote the set of clocks
in r, and V (r) to denote the set of variables in r. We let JrνK ∶ V(X) ∪ V(V ) →
V(X) ∪ V(V ) be a map from valuations to valuations. We use µ[rν] to denote
the updated clock valuation JrνK(µ). Analogously, for variable valuation ν′, we
use ν′[rν] to denote the updated variable valuation JrνK(ν′).

Definition 1 (Extended Timed Automata XTA). An extended timed au-
tomaton A is a tuple (L, ℓ0,X,V,Σ,E, I) where: L is a set of locations, ℓ0 ∈ L
is the initial location, X is the finite set of clocks, V is the finite set of variables,
Σ is a set of actions, E ⊆ L ×Σ ×B(X) ×B(V ) ×U(X,V ) ×L is a set of edges
between locations with an action, a clock guard, a variable guard, and an update
set, I ∶ L→ B(X,V ) assigns clock and variable invariants to locations.

Semantics of an XTA. The semantics of an XTA is given by a timed transition
system (S, s0,Ð→) where S ⊆ L × V(X) × V(V ) is the set of states comprising a
location, a clock valuation, and a variable valuation, s0 = ⟨ℓ0, µ0, ν0⟩ is the initial
state, and Ð→⊆ S × (R≥0 ∪ Σ) × S is the transition relation defined by: Delay
transitions ⟨ℓ, µ, ν⟩ dÐ→ ⟨ℓ′, µ′, ν⟩ with d ∈ R≥0, µ′ = µ+ d and µ′ ⊧ I(ℓ′)ν . Discrete
transitions ⟨ℓ, µ, ν⟩ aÐ→ ⟨ℓ, µ′, ν′⟩ if exists e = (ℓi, a, ϕ,ψ, r, ℓ′i) ∈ E s.t. µ ⊧ ϕν ,
ν ⊧ ψν , µ′ = µ[rν], ν′ = ν[rν], µ′ ⊧ I(ℓ′)ν′ , and ν′ ⊧ I(ℓ)ν′ .

Given a transition system (S, s0,Ð→) we use s
d,aÐÐ→ s′ as a shorthand for

s
dÐ→ s′′

aÐ→ s′. A run is a finite (infinite) sequence of transitions s0
d1,a1ÐÐÐ→ s1

d2,a2ÐÐÐ→
s2 . . . .The set En(s) = {a ∈ Σ ∣ ∃d, s′. s d,aÐÐ→ s′} is the set of enabled actions at
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A B

int m = 1, n = 1;
clock x;
clock y;

Fig. 1: NSXTA N 1 with components A and B sharing two discrete variables n
and m initialized with 1.

s. Given state s and action a we define T (s, a) = {d ∈ R≥0 ∣ ∃s′.s
d,aÐÐ→ s′} and

T (s) = ⋃a T (s, a).

Definition 2 (Stochastic Extended Timed Automata (SXTA)). A Stochas-
tic Timed Automaton is a tuple (A,w, r,u) where A is a timed automaton with
local 3 semantics (S, s0,Ð→), w ∶ Σ → N assigns weights to actions, r ∶ L → N
assigns rates to locations, u is a family of probability measures, (us)s∈S, such
that us(T (s)) = 1 and if sup{T (s)} < ∞, then us is a uniform distribution on
T (s), otherwise us is an exponential distribution with rate r(ℓ). For state s ∈ S.
We assume a probability distribution γs over actions, such that for every action
a ∈ Σ, γs(a) = 0 iff a ∉ En(s), and otherwise γs(a) = w(a)/∑a′∈En(s)w(a′).

Network of Stochastic XTA (NSXTA). A formal definition for NSXTA re-
quires additional notation and long definitions. We refer the reader to [15,4,24]
for the precise semantics. In contrast we introduce NSXTA algorithmically and
via an example. In a nutshell a network of SXTA N = (Ai,wi, ri,ui) refines the
semantics of a network of XTA [27], non-deterministic time delays are refined
by races and stochastic choices induced by ui and discrete non-deterministic
choices are refined by probabilistic choices. The semantics of NSXTA assign a
probability measure to sets of runs.

Example. As an example consider the networkN1 of SXTA from Figure 1 with
discrete variables n and m with initial value 1. The run ⟨ℓ2, ℓ1, x = y = 0.5,m =
2, n = 4⟩ 3, bÐÐ→ ⟨ℓ2, ℓ2, x = y = 3.5,m = 4, n = 4⟩ shows that variable m with value 4

can be reached in 3.5 timed units. The run s0 = ⟨ℓ1, ℓ1, x = y = 0,m = n = 1⟩
0.6,bÐÐ→

⟨ℓ1, ℓ2, x = y = 0.6,m = 2, n = 1⟩ 0.1,aÐÐ→ ⟨ℓ2, ℓ2, x = y = 0.7,m = 3, n = 4⟩ shows
that variable m with value 3 can be reached in 0.7 timed units. In particular
we have that the probability of m to have value 4 within 2 time units, i.e.
P(N1 ⊧ ◇ m = 4 ∧ x ≤ 2) ≈ 0.23. Similarly, P(N1 ⊧ ◇ m = 3 ∧ x ≤ 2) ≈ 0.49. In
fact, the final value of m is decided by the outcome of the initial race between the
components A and B for outputting a or b. Following the semantics of [15] the
component with the smaller delay given by uAs0 respectively uBs0 wins the race. In
the present case it is a fifty-fifty race given two uniform distributions on [0,1].
Note also, that component A writes on the shared variable n, which is used in
the invariant (a uniform distribution) of the initial location of component B.
3 as opposed to (global) semantics of network of timed automata.
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This modification causes bigger delays which makes it less likely to reach m = 4
within two time units.

2.2 Statistical Model Checking

The core idea of Statistical Model Checking (SMC) [33] is to generate a number of
independent runs for an NSXTA, while monitoring them with respect to a given
temporal property. Standard statistics is then used to estimate the probability
of system runs satisfying the property with some desired degree of confidence.

To generate a random run according to the stochastic semantics of NSXTA,
we assume that the given network has a special clock x̂ which is never updated.
The clock is used as a time stamp. Algorithm 1 (as in [15,14]) describes the
computation of a random run bounded by time horizon c. Line 3 computes the
smallest delay (of the component winning the race). A delay can be infinite if no
edge is enabled, e.g. a component is only expecting inputs. If the current time
plus the smallest delay exceed the given time horizon c the algorithm returns.
Otherwise at line 7 time elapses and at Line 8 an enabled action of the winning
component is taken. The GPU implementation of Algorithm 1 is complex and a
key contribution of this paper.

In this work we focus on the Quantitative question for a given NSXTA N
and (time) bounded reachability property φ. Algorithm 2 [23] uses Chernoff-
Hoeffding bound to estimate probability P(N ⊧ φ) by using N runs and pro-
viding an interval p± ε with confidence level 1−α (where α is a probability that
P(N ⊧ φ) ∉ [p−ε, p+ε]). Note that each run is sampled independently, therefore
random variables derived from runs are independent and identically distributed,
and thus Alg. 2 is suitable for a parallel implementation.

2.3 The GP-GPU Framework CUDA

CUDA is a programming interface developed by NVIDIA that allows issuing
and managing data-parallel computations on specifically NVIDIA Graphical

Algorithm 1 Random run for N = ∥ni=1 (Ai,wi, ri,ui), state ⟨ℓ⃗, µ, ν⟩, bound c

1: s ∶= ⟨ℓ⃗0, µ0, ν0⟩, run ∶= (s) ▷ initialize with an initial state
2: while µ(x̂) < c do
3: d ∶=minn

i=1(delay(usi )) ▷ pick smallest delay of component i from s
4: if µ(x̂) + d ≥ c then ▷ beyond time bound
5: d ∶= c−µ(x̂); return run ⊕ ( dÐ→ ⟨ℓ⃗, µ+d, ν⟩) ▷ concatenate remaining delay
6: else
7: let µd ∶= µ + d and s′ = ⟨ℓ⃗, µd, ν⟩ ▷ compute delay
8: pick a ∈ En(s′) according to γs′ ▷ choose action
9: run ∶= run ⊕ ( dÐ→ s′) ⊕ ( aÐ→ s′′) ▷ concatenate delay and action

10: s ∶= s′′
11: return run



GPU Accelerating Statistical Model Checking 7

Processing Units (GPU). It is a language extension of C and C++, however
with certain limitations, such as no dynamic recursion or function pointers [29].

The CUDA interface discriminates between CPU and GPU computations, by
viewing them as co-processing units named host and device, respectively. The de-
vice is viewed as a set of multiprocessors, each of which uses a Single Instruction,
Multiple Data (SIMD) architecture. In this paradigm, each single sub-processor
of a multiprocessor executes the same instruction at the same clock-cycle – al-
though on different data. The host issues instructions to the device in the form
of kernels – arbitrarily complex code units expressed as C++ functions. The
kernels are executed by a grid of parallel threads. The grid is divided into equal
size blocks with efficient memory sharing among threads within each block. The
blocks are divided into SIMD groups called warps of synchronous execution
where precisely 32 threads within each warp execute the same instruction. If
some threads diverge within warp (e.g. due to conditional branching), then their
instruction is executed on a different cycle from the rest, thus slowing down the
overall progress.

The exact number of blocks and number of threads within a block is con-
figurable upon each kernel launch. An example of a configuration could be 64
blocks with 256 threads per block, which would result in a grid of 16384 threads.

During the execution of a kernel, each block is mapped to a multiprocessor.
Per clock cycle, the instruction unit of the multiprocessor will issue an instruction
to a given warp from the set of blocks residing on the multiprocessor. This follows
the SIMD architecture and allows the GPU a large degree of parallelism for
computations where all threads in a given warp execute the same instruction.
If the threads within a warp diverge in their execution path, the performance
may be impacted. For example, for a given if-else statement if (A) then B else
C, if A holds for at least one thread of a given warp, then the multiprocessor
will execute the instruction for B, while the remaining threads of the warp will
be stalled. Afterwards, when C is executed, the threads where A holds idle.
By having this thread divergence, the warp may use additional clock cycles to
execute instructions, significantly limiting parallelism. This implies that a device
executes between #multiprocessors ⋅1 and #multiprocessors ⋅32 computations in
parallel depending on the severity of thread divergence.

Algorithm 2 Prob. estimation of N ⊧ φ with confidence (1 − α) and error ε
1: N ∶= ln(2/α)/(2ε2), a ∶= 0
2: for i = 1 to N do
3: Use Alg. 1 to generate a random run and observe random var x ∶= (run ⊧ φ)
4: a ∶= a + x ▷ count satisfying runs
5: return a/N ; ▷ P(N ⊧ φ) ∈ [a/N − ε, a/N + ε] with confidence (1 − α)



8 Bak et al.

3 Statistical Model Checking on GPU

Our tool SMAcc (Statistical Model-checking ACCelerated) [19] accepts NSXTA
as a subset of the Uppaal specification language. Initially the input model is
parsed in the host (CPU) and converted into an internal representation. After
this, the model undergoes various optimization steps attempting to minimize
thread divergence. These are discussed in detail in Section 4. In addition to fa-
cilitating computations on the GPU, CUDA facilitates running an almost equiv-
alent code-base directly on the host CPU in a parallel fashion. We have utilized
this feature to also allow for SMAcc to be executed on multi-core CPU systems.

Internally SMAcc represents an NSXTA as Abstract Syntax Trees and Ex-
pression Trees where each semantic component is decomposed into a tree with
its leafs being atomic. This representation is designed for fast model traversal
in order to perform analysis and optimizations efficiently. This structure further
eases the migration of the model from the host to the device memory.

We utilize expression trees to represent user-supplied values and equations,
such as update values, node exponential rates, edge weights, etc. We take partic-
ular care in implementing these tree structures such that they can be evaluated
through a generic non-recursive post-order tree traversal algorithm using two
stacks (one for operations and another for operands). This is particular to work
around the limitations of CUDA where dynamic call stacks are not supported.
This limitation implies that classical constructs using inheritance and recursion
can not be utilized. In practice we determine the size of the required stack-size
statically as O(depth(expr)) given that the expressions are evaluated bottom up.
As we shall discuss later, these expression trees make the efficient implementa-
tion of a GPU accelerated SMC algorithm challenging, and remain a large source
of thread divergence, as illustrated in Figures 2(a) and 2(b). We shall discuss
different strategies of mitigation later in Section 4.

3.1 SMC Algorithm for the GPU

In a conventional use-case of SMC, e.g. for simulating disease propagation [25,5],
the main challenge is to obtain a large number of simulations in limited time.
For this work we thus focus on the parallelization of drawing a large set of

. . . . . .
 

  

Fig. 2: Models triggering thread divergence due to: (a) expression complexity,
(b) delay re-sampling.
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Algorithm 3 CUDA probability estimation for network N , property φ, confi-
dence (1 − α), error ε, and number of threads T

1: N ∶= ⌈(ln 2
δ
)/(2ε2)⌉; Nt ∶= ⌈NT ⌉; A ∶= int[T ]{0, . . . ,0}

2: Cuda parallel t ∈ {0, . . . , T − 1} do ▷ dispatch threads in warps
3: for i ∈ {1, . . . ,Nt} do ▷ batch of simulations per thread
4: observe x ∶= (N ⊧ φ) using GPU implementation of Alg. 1
5: A[t] ∶= A[t] + x ▷ count satisfying runs per thread
6: return 1

Nt ⋅T
∑T

i=1A[i] ▷ sum satisfying runs and divide by total

samples from the system. While the challenge of parallelizing a single simulation
is interesting we leave that challenge for further work.

The GPU specific version of Alg. 2 is given in Alg. 3. The number of simula-
tions each thread executes is predetermined and evenly distributed between all
the threads in the execution (line 2), as to not introduce bias in the form of over-
representing shorter traces through race-conditions [37]. This has the effect that
the total number of simulations must be divisible by the number of threads used.
As an example, with a 64-block 256-thread configuration, the total number of
simulation runs must be divisible by the minimum number of simulations, which
in this case is 16384. These threads are launched concurrently and run indepen-
dently within their warp groups, as can be seen in line 2. A potential side-effect
is the creation of stragglers: threads generating significantly longer simulations
and thus taking longer computation times, which may become a bottleneck for
simulation batches, especially when an entire warp group can be delayed by one
straggler.

The simulation of a single trajectory concludes when one of a few conditions
is met; the run can be bounded by time progression or a step counter, the
trajectory has met a deadlock, or the monitored random variable has reached its
terminal value (i.e. the property holds for the trajectory). This aligns with the
semantics of properties as used in Uppaal [15]. The step-by-step progression of
a single simulation trajectory follows the definition of NSXTA closely; for each
individual XTA, sample the delay according to the delay distribution then resolve
the race between the individual components in the network and conclude with
sampling a winning out-edge in the winning XTA. This sampling procedure is
also sketched in Alg. 1. Following this, the results from the individual simulations
are aggregated (line 5) using dedicated counter A[t] per thread t and thus avoid
race conditions. Finally the result are tallied, normalized and returned (line 6).

3.2 Thread Divergence in SMC for NSXTA

For applications such as Computational Fluid Dynamics [2] and Value Itera-
tion [11] both enjoy little to no thread-divergence, in part due to their roots in
linear algebra. In the case of SMC for NSXTA, thread divergence is unavoidable
for all but trivial stochastic systems, as traces of different executions naturally
diverge, partly due to varied complexity of the expressions used in the system
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and partly due to the delay computation. In Fig. 2(a) we observe (1) that the
complexity of the expressions used in invariants and guards differs and (2) that
the out-degree of each location differs. For Alg. 1 this implies that the number
(and sequence) of GPU instructions used for sampling of the delay on line 3 will
vary depending on the location of the automata, leading to thread divergence. In
the model seen in Fig. 2(b) we observe divergence related to the delay operation.
Consider n threads sampling a delay for location p0. At the first sample 50%
of the threads (on average) will have picked a delay for which an edge can be
taken. However, these 50% must await the remainder of the threads to re-sample
and find a suitable delay. This re-sampling causes the successful branches to idle
until all threads have completed the delay sampling. In the remainder of this
work we address the former type of thread divergence and leave the latter to
further work.

4 Optimizations

To fully utilize the computational capabilities of the GPU, we have implemented
several optimization strategies as to maximize the parallelism and throughput
of the simulations when executed on the GPU. The main cause of performance
problems in CUDA programs is thread divergence. Our optimization strategies
therefore largely focus on reducing thread divergence, either in size or frequency.

Expression Trees As discussed in Section 2.3, expression trees are a source of
thread divergence when interpreted naively using the post-order-tree-traversal.
Because expressions allow for ease of modeling complex arithmetic operations,
these constructions are frequently used in practice. We attempt to combat this
issue via two strategies: Just In Time (JIT) compilation of model expressions
through CUDA C code, and interpreting the expression trees through Polish
notation.

JIT compilation is accomplished through NVIDIA’s runtime compilation li-
brary NVRTC. This translation is done by a straight-forward conversion of the
internal representation of each model expression into a C equivalent formula-
tion. Each expression is given a numerical identifier, and is added to a lookup
table, implemented via a switch statement. This table is then injected to the
source code of the engine, which is compiled at runtime. Using JIT compila-
tion does not directly reduce thread divergence. However, it produces smaller
and more uniform branches. In addition, the JIT compiler is at liberty to opti-
mize and re-order the byte-code to be optimized towards the device architecture.
However, JIT compilation of expressions introduces a significant overhead in pre-
processing when running simulations – an effect observed in the experiments in
Section 5.

Model expression interpretation through Polish notation is an alternative to
JIT compilation, where the sequences of expression trees are translated to Polish
notation and interpreted during simulation. This avoids having to traverse the
expression trees at runtime, which vastly simplifies the evaluation. Furthermore,
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Polish notation has the added benefit of entirely eliminating branching caused
by varying tree balance, while also limiting the branching caused by varying tree
size.

Weakest Preconditions and Expression Simplification Existing tools such
as Uppaal implement the successor computation by first sampling delays, then
applying guards, updates and finally invariants – with a potential reversal of
the operation if the invariant is invalidated. This approach thereby has several
potential points for thread divergence. This form of divergence can be limited
to only a single branching point by “moving” the destination location invari-
ant over to guards over edges that lead to such location: compute the weakest
preconditions for the destination invariant after an update execution and add
the resulting constraint to the guards. Additionally, we apply a set of identi-
ties to further simplify expressions and to remove trivial constraints added by
computing weakest preconditions.

Shared Memory Shared memory is a part of the GPU’s L1 cache memory,
which can be accessed by all threads in a block and can be controlled by the
programmer. The L1 memory bank of the device enjoys faster reading time com-
pared to the global memory of the device. Typically, shared L1 memory is used
for intra-block communication, increasing performance of parallel computing
through synchronization of thread operations. We utilize this memory for storing
the model that each thread will simulate. The L1 cache is though at a limited size,
and is further restricted as the number of threads in a block dictates the amount
of shared memory available, with up to 32 bytes per thread. Therefore, utilizing
shared memory to store the model can be used if threads ⋅ 32B > modelsize. In
the future, the model representation can be further compressed by taking ad-
vantage of Uppaal templates where many processes share the same automata
structure.

5 Experiments

We experimentally show the applicability of GPUs for statistical model checking
on stochastic systems through its use on seven different model families, whereof
four are scalable problem instances. Specifically, our experiments are conducted
with the CSMA and Aloha wireless communication protocol models [8], the
Agent-Based and CTMC SEIHR Covid models [25], and the Bluetooth, Firewire

Table 1: Configurations of hardware used for the experiments. Experiments pit-
ting different hardware platforms can be found in Appendix A, B and C.

Power usage SM/Cores Clock speed Release year

NVIDIA A100 250W 108 765 MHz 2020
2 × AMD EPYC 7642 2 × 225W 2 × 48 2.4 GHz 2019
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and Fischer Uppaal SMC case study models [34]. The Fischer protocol model
has modified timings s.t. multiple components can reside within the critical sec-
tion concurrently, thus breaking the mutual exclusion of the protocol. We draw
comparison between the performance of running the implementation on the CPU
and GPU, using the hardware listed in Table 1, and CUDA version 11.8.

Furthermore, we investigate the impact of using the implemented optimiza-
tion strategies from Section 4. As a final note, all experiments have been con-
ducted with a kernel configuration of 64 blocks and 256 threads. The kernel
configuration has significant impact on the GPU performance, and there is no
way of deducing the optimal configuration for non-trivial kernel executions a
priori. In addition, the optimal kernel configuration is dependent on both the
specific model instance and the targeted GPU platform. This specific configura-
tion has been chosen by sweeping through a grid of configurations and picking
best performing largest numbers for CTMC Covid model.

The parallel experiments executed on the CPU are conducted by oversub-
scribing the CPUs with threads; in preliminary experiments we found that a
ratio of 10 threads per physical core yields good performance. We hypothesize
that this is due to an uneven computational effort between within simulation
batches, where the overall simulation time is straggled by a single thread having
longer runs. This is similar to the effect observed across threads in the GPU sim-
ulation, and thus an artifact of the pipeline of SMAcc for the CPU execution
also.

For each problem instance we test 8 different configurations:

– Uppaal 4.1.26-2 statistical model checker, executed on a single core,
– a Baseline, executing SMAcc on a single core,
– a CPU (from Table 1) configuration using post order tree traversal PO-

CPU, utilizing all the 96 cores of the CPU,
– a GPU (from Table 1) configuration using post order tree traversal PO-

GPU, configured for 64 blocks of 256 threads,
– versions utilizing the Polish notation optimization for CPU (PN-CPU),

executed on all 96 CPU cores,
– the GPU version with Polish notation optimization (PN-GPU),
– a configuration utilizing the JIT optimization – a feature limited to the

GPU, vis-à-vis the restrictions of NVRTC framework, and
– a configuration utilizing the shared memory of the GPU (SM) when the

problem instance fits into memory. Post order tree traversal is used for ex-
pression evaluation.

In all experiments we compute exactly 16384 simulations, corresponding to
one simulation per GPU thread (64 ⋅ 256). All experiments are limited to 1 hour
of computation, and have been run 10 times giving an average runtime. The
results have been compared to Uppaal to guarantee correctness.

A note on the scalability of the models The scaling method of the scalable sys-
tems varies between models with and without local variables. Specifically, Aloha
and Agent-Based SEIHR Covid are scaled by the number of components on the
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Fig. 3: Simulation computation times (omitted points exceed 1h timeout).

same model, while CSMA and Fischer are scaled by duplicating the model and
slightly changing the variables used for each component. Consequently, CSMA
and Fischer suffer from increased model size for each added component thus
requiring more memory to represent, making the Shared Memory optimization
inapplicable. In addition, the Bluetooth and Firewire models are too large on
their own to fit into shared memory. In these cases the SM configuration is
omitted from the experiment. The only model families that fit within the Shared
Memory are Agent-Based Covid, Aloha and CTMC Covid.

Discussion Let us initially compare the performance of Uppaal to the Baseline
configuration. In general we observe that these two configurations are incompara-
ble; Uppaal enjoys significantly lower computation times than the SMAcc base-
line implementation in the ALOHA (Fig. 3a), CSMA (Fig. 3c), Fischer (Fig. 3d)
and Firewire (Table 2) experiments. On the other hand, the Baseline configura-
tion outperforms Uppaal on the remainder. We hypothesize that architectural
differences, optimizations and fine-tuning are the cause of this discrepancy and
leave it to further work to bring optimizations from Uppaal into SMAcc.

By comparing the PO-GPU and the SM configuration in Fig. 3a, Fig. 3b
and Table 2 we observe marginal differences. We attribute this effect to the ef-
ficient memory-caches of the GPUs; for sufficiently small models, cache misses
are rare, thus limiting its benefit of allocation directly in the shared memory.
The largest improvements over the Baseline is enjoyed by the optimization tech-
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niques targeting thread divergence. Generally we observe that the Polish notation
optimization has an insignificant effect for the CPU (PN-CPU) and only rarely
a dramatic effect for the GPU (PN-GPU). Specifically the PN-GPU configu-
ration enjoys good improvements for the Agent-Based SEIHR models (Fig. 3b)
as the Bluetooth and Firewire models (Table 2). Importantly, the Polish notation
never appears detrimental to the performance.

Contrary to PN-GPU, the JIT optimization has a varied impact on the
performance. Specifically, JIT performs well on models where components have
identical expressions, as is the case in the Aloha and Agent-Based Covid models.

In the CSMA (Fig. 3c) and Fischer (Fig. 3d) models the JIT compilation
instead causes a slowdown compared to the post order tree traversal PO-GPU
implementation. We hypothesize that the effect of JIT compilation is especially
subject to the number of unique expressions evaluated at a given time. Dissimilar
expressions are guaranteed to cause thread divergence for JIT, whereas this is
not necessarily the case for neither PO-GPU nor PN-GPU. Furthermore, for
the CSMA case study we observe a surprising decrease in run time with increas-
ing problem size. A functional error in the resulting GPU kernel is unlikely, as
the obtained SMC results coincide. It is however plausible that larger problem
sizes lead to better occupancy1. It may be the case that a larger problem results
in more concurrent blocks being available, allowing the GPU to schedule inter-
leaved work such that memory access can be coalesced, and that work can be
performed on the same multiprocessor while some threads are waiting for data
from device memory.

In Fig. 4a and Fig. 4b we see the cactus plots of the speed-up and power-ratio
over all the experiments conducted. In these plots, the speedup (power-ratio re-
spectively) is compared to the PO-CPU configuration using all 96 cores, sorted
individually and then plotted. This implies that a given point in the x-axis may
stem from different experiments for a given configuration. We observe in Fig. 4a
that the PN-GPU configuration delivers the most stable performance compared
to the reference with the JIT having a more varied effect on the performance.
We can also observe that the Polish notation optimization has a generally posi-
tive impact on the performance for both GPU and CPU versions, albeit with a
point-wise smaller degradation for the CPU-version. Studying instead the power
consumption, we see in Fig. 4b that Uppaal appears to be the most power effi-
1 https://docs.nvidia.com/gameworks/content/developertools/desktop/
analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

Table 2: Performance measurements for various models in seconds.
Model Baseline PO-

CPU
PN-

CPU
PO-

GPU
PN-

GPU
JIT Uppaal SM

CTMC Covid 263.633 3.777 3.405 2.080 1.689 11.019 565.199 2.295
Bluetooth 4.976 0.191 0.165 0.736 0.736 11.284 5.539 -
Firewire 9.315 0.252 0.277 0.811 1.689 10.914 1.197 -

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
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Fig. 4: Cactus plots for speed-up and power ratio over all experiments. Problems
solved by any configurations in < 2sec are excluded.

cient configuration, however with notable exceptions and an inability to complete
the computation within the provided 1 hour time limit. Across the majority of
examples the PN-GPU and PO-GPU provide solid reductions in the power-
usage, and peaking at a doubling of the power consumption compared to the
reference. Studying Table 3, we observe that the degrading efficiency observed
in Fig. 4b can be attributed to the CSMA model family. We hypothesize that
these models exhibit the re-sampling branch divergence as illustrated by Fig. 2.
Such divergence can be reduced by re-sampling only the processes affected by a
recent transition, but it requires tracking the dependencies between transitions.

Table 3: Estimated power ratio of the GPU compared to the CPU: (TGPU ⋅
PGPU/TCPU ⋅PCPU) where T and P denote the time and power consumption of
the CPU and GPU by assuming that devices use max TDP for the entire com-
putation time. The parentheses state the number of components in the scalable
models. The best CPU and GPU configuration is chosen for each row.

Model CPU(s) GPU(s) Speed-up Power ratio

AB Covid (5K) 375.33 137.48 2.73 0.20
Aloha (500) 1306.40 644.42 2.03 0.27
CTMC Covid 2.31 1.69 1.37 0.41
Fischer (500) 484.23 476.94 1.02 0.55
CSMA (100) 84.49 195.65 0.43 1.29
Firewire 0.21 0.81 0.26 2.14
Bluetooth 0.13 0.74 0.18 3.16

https://en.wikipedia.org/wiki/Thermal_design_power
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6 Conclusion

In this work we show the applicability and advantages of GPU technologies in
the context of Statistical Model Checking for Networks of Stochastic Extended
Timed Automata. We presented SMAcc a prototype for performing SMC in
NSXTA on the GPU. We have identified and experimented with several opti-
mization and program transformation techniques to better accommodate the
Single Instruction Multiple Data architecture employed by NVIDIA GPUs. Our
experiments show reduced time and energy consumption which demonstrates the
potential use of GPU technology for SMC algorithms for larger models. We ob-
serve that for one case GPU accelerated SMC uses as little as 20% of the energy
of the CPU for completing an equivalent task while conducting the computation
2.73 times faster. Additionally we identify the bottlenecks of the current imple-
mentation, exemplified by a worse computation time and power consumption on
single model instances.
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A NVIDIA Tesla T4 vs dual AMD EPYC 7551

Tested using a configuration of 40 blocks and 256 threads, giving us 10240 sims.
This has been tested using CUDA version 11.0, which lacks a few optimisations
available in newer CUDA versions. These results are from a single run of the
experiments.

Table 4: Different configurations of hardware used for the experiments.
Power usage SM/Cores Clock speed Release year

NVIDIA Tesla T4 70W 40 585 MHz 2018
2 × AMD EPYC 7551 2 × 180W 2 × 32 2.0 GHz 2017

Table 5: The model families and their parameters. F indicates whether model
fits in GPU shared memory.
Model family Property #Components F

AB Covid E[<=100;10240] (max: inf) 100,500,1k,5k,10k ✓
Aloha E[<=100;10240] (max: nt) 2,5,10,25,50,100, 250,500 ✓
CSMA Pr[<=2000;10240](<> Proc(0).SUCCESS) 2,5,10,25,50,100
Fischer E[<=300;10240] (max:in_critical) 2,5,10,25,50,100, 250,500

CTMC Covid Pr[<=100;10240](<> I > 1000) 5 ✓
Bluetooth Pr[<=5000;10240](<> receiver1.Reply) 4
Firewire Pr[<=1000;10240](<> node1.s5) 4

Table 6: Tesla T4 results in seconds.
Model Baseline PO-

CPU
PN-

CPU
PO-

GPU
PN-

GPU
JIT Uppaal SM

Bluetooth 2.718 0.165 0.265 0.868 0.969 8.490 5.858 -
CTMC Covid 158.445 3.428 2.818 3.574 2.772 10.844 513.376 3.523
Firewire 4.870 0.415 0.265 0.818 0.768 11.345 1.112 -
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Fig. 5: Tesla T4 results for scalable models (omitted points exceed 1h timeout).
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Table 7: Comparison of CPU vs. GPU, estimating the power ratio of the GPU
compared to the CPU: (TGPU ⋅ PGPU /TCPU ⋅ PCPU) where T and P denote
the time and power-consumption of the CPU and GPU. The parentheses state
the number of components in the scalable systems. The best CPU and GPU
configuration is chosen for each row.

Model CPU(s) GPU(s) Speed-up Power ratio

Aloha (500) 1525.76 1246.60 1.22 0.16
AB Covid (5K) 436.30 412.94 1.06 0.18
CTMC Covid 2.82 2.77 1.02 0.19
Fischer (500) 551.89 1006.87 0.55 0.35
Firewire 0.27 0.77 0.29 0.68
CSMA (100) 109.28 388.67 0.28 0.69
Bluetooth 0.17 0.87 0.20 1.00
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B NVIDIA RTX 3070 vs dual AMD EPYC 7642

Tested using a configuration of 46 blocks and 256 threads, giving us 11776 sims.
This has been tested using CUDA version 11.8. These results are from a single
run of the experiments.

Table 8: Different configurations of hardware used for the experiments.
Power usage SM/Cores Clock speed Release year

NVIDIA RTX 3070 220W 46 1500 MHz 2020
2 × AMD EPYC 7642 2 × 225W 2 × 48 2.4 GHz 2019

Table 9: Model families and their parameters. F column indicates whether model
fits in GPU shared memory.
Model family Property #Components F

AB Covid E[<=100;11776] (max: inf) 100,500,1k,5k,10k ✓
Aloha E[<=100;11776] (max: nt) 2,5,10,25,50,100, 250,500 ✓
CSMA Pr[<=2000;11776](<> Proc(0).SUCCESS) 2,5,10,25,50,100
Fischer E[<=300;11776] (max:in_critical) 2,5,10,25,50,100, 250,500

CTMC Covid Pr[<=100;11776](<> I > 1000) 5 ✓
Bluetooth Pr[<=5000;11776](<> receiver1.Reply) 4
Firewire Pr[<=1000;11776](<> node1.s5) 4

Table 10: RTX 3070 results in seconds.
Model Baseline PO-

CPU
PN-

CPU
PO-

GPU
PN-

GPU
JIT Uppaal SM

CTMC Covid 112.608 1.968 1.781 1.731 1.378 9.351 422.666 1.731
Bluetooth 2.220 0.216 0.166 0.368 0.368 7.988 4.041 -
Firewire 4.024 0.316 0.216 0.418 0.374 8.746 0.891 -
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Fig. 7: RTX 3070 results for scalable models (omitted points exceed 1h timeout).
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Fig. 8: Speed-up and power ratio comparison of RTX 3070 over PO-CPU.
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Table 11: Comparison of CPU vs. GPU, estimating the power ratio of the GPU
compared to the CPU: (TGPU ⋅ PGPU /TCPU ⋅ PCPU) where T and P denote
the time and power-consumption of the CPU and GPU. The parentheses state
the number of components in the scalable systems. The best CPU and GPU
configuration is chosen for each row.

Model CPU(s) GPU(s) Speed-up Power ratio

Aloha (500) 947.96 590.05 1.61 0.30
CTMC Covid 1.78 1.38 1.29 0.38
AB Covid (5K) 272.65 320.45 0.85 0.57
Firewire 0.22 0.37 0.59 0.82
Fischer (500) 337.29 609.41 0.55 0.88
Bluetooth 0.17 0.37 0.46 1.06
CSMA (100) 62.09 173.38 0.36 1.37
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C NVIDIA A100 vs dual AMD EPYC 7642

Tested using a configuration of 64 blocks and 256 threads, giving us 16384 sims.
This has been tested using CUDA version 11.8. These results are from a single
run of the experiments.

Table 12: Configurations of hardware used for the experiments. Experiments
pitting different hardware platforms can be found in Appendix A, B and C.

Power usage SM/Cores Clock speed Release year

NVIDIA A100 250W 108 765 MHz 2020
2 × AMD EPYC 7642 2 × 225W 2 × 48 2.4 GHz 2019

Table 13: Models and parameters. F indicates if model fits in GPU shared mem-
ory.
Model family Property #Components F

AB Covid E[<=100;16384] (max: inf) 100,500,1k,5k,10k ✓
Aloha E[<=100;16384] (max: nt) 2,5,10,25,50,100, 250,500 ✓
CSMA Pr[<=2000;16384](<> Proc(0).SUCCESS) 2,5,10,25,50,100
Fischer E[<=300;16384] (max:in_critical) 2,5,10,25,50,100, 250,500

CTMC Covid Pr[<=100;16384](<> I > 1000) 5 ✓
Bluetooth Pr[<=5000;16384](<> receiver1.Reply) 4
Firewire Pr[<=1000;16384](<> node1.s5) 4

Table 14: A100 results in seconds.
Baseline PO-

CPU
PN-

CPU
PO-

GPU
PN-

GPU
JIT Uppaal SM

CTMC Covid 156.609 2.574 2.418 1.269 1.119 12.864 565.199 1.420
Bluetooth 2.972 0.166 0.165 0.266 0.265 13.464 5.539 -
Firewire 5.527 0.265 0.215 0.266 0.266 12.914 1.197 -
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Fig. 9: A100 results for scalable models (omitted points exceeds 1 hour timeout).
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Fig. 10: Speed-up and power ratio for A100 over CPU.
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Table 15: Comparison of CPU vs. GPU, estimating the power ratio of the GPU
compared to the CPU: (TGPU ⋅ PGPU /TCPU ⋅ PCPU) where T and P denote
the time and power-consumption of the CPU and GPU. The parentheses state
the number of components in the scalable systems. The best CPU and GPU
configuration is chosen for each row.

Model CPU(s) GPU(s) Speed-up Power ratio

AB Covid (5K) 375.09 139.65 2.69 0.21
CTMC Covid 2.42 1.12 2.16 0.26
Aloha (500) 1311.32 649.20 2.02 0.28
Fischer (500) 491.23 430.13 1.14 0.49
Firewire 0.22 0.27 0.81 0.68
Bluetooth 0.17 0.27 0.63 0.88
CSMA (100) 84.13 194.38 0.43 1.28
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D Kernel configuration

In order to determine well performing numbers of blocks and threads, we sweep
through configurations. Fig. 11 shows that 40 blocks of 256 threads is the fastest
configuration for CTMC Covid model.
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Fig. 11: Performance of various block/thread configurations, using the PO-GPU
expression evaluation method on the CTMC Covid model. All experiments were
run with 10k simulations on the NVIDIA Tesla T4 GPU. The red dot signifies
the optimal configuration.
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E Parallel Simulation on GPU

Listing 1.1: NVIDIA CUDA GPU C++ encoding of Alg. 3.
CPU GPU void simulate_automata(

const unsigned idx,
const network* model,
const result_store* output,
const sim_config* config)

{
void* cache = static_cast<void*>(&static_cast<char*>(

config->cache)[(idx*thread_heap_size(config)) / sizeof(char)]);
curandState* r_state = &config->random_state_arr[idx];
curand_init(config->seed, idx, idx, r_state);
state sim_state = state::init(cache, r_state, model,

config->max_expression_depth, config->max_backtrace_depth,
config->max_edge_fanout);

for (unsigned i = 0; i < config->sim_pr_thread; ++i) {
const unsigned int sim_id = i + config->sim_pr_thread *

static_cast<unsigned int>(idx);
sim_state.reset(sim_id, model, config->initial_urgent,

config->initial_committed);
while (true) {

// model->query->check_query()
const int process = progress_sim(&sim_state, config);
if (IS_NO_PROCESS(process))

break;
if (sim_state.models.store[process]->type == node::goal)

break;
do {

const node* current = sim_state.models.store[process];
const edge* e = pick_next_edge_stack(current->edges,

&sim_state);
if (e == nullptr)

break;
sim_state.traverse_edge(process, e->dest);
e->apply_updates(&sim_state);
sim_state.broadcast_channel(e->channel, process);

} while (sim_state.models.store[process]->type == node::branch);
}
output->write_output(idx, &sim_state);

}
}
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