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ABSTRACT
Tourism Recommender Systems (TRS) assist tourists in designing
a plan for a soon-to-be visited city, which consists of a selection
of relevant points-of-interest (POI), the order in which they will
be visited, the start and end time of the visits, etc. These tools
filter POIs based on the tourist’s preferences and take into account
time constraints, like the desired duration of the plan, or the POI’s
opening or closing times. However, being able to provide tourists
with an additional travel plan which explains how to reach those
POIs using public transportation is a feature in which TRSs come
short. Existing solutions try to solve the problem in a simplified
way and do not model all possible events involved in using public
transportation, such as combining transfer times and trips, changing
vehicles, or dealingwith delays of transportation units.We therefore
propose three novel approaches to generate visit plans and their
corresponding travel plans, namely SILS, TRILS and PHILS, which
overcome these weaknesses. These approaches generate visit plans
by iteratively adjusting them according to the traveling information
and differ in the way the adjustment is done. Our experiments on
a real-world POI dataset and public transportation information of
the city of Izmir show that our approaches outperform the state-
of-the-art in terms of quality of recommendations. Moreover, they
are also able to provide both visit and travel plans in real-time and
are robust in case of delays. To the best of our knowledge previous
approaches have not been able to achieve this level of practicality.
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1 INTRODUCTION
Visiting touristic attractions, walking through historical places, or
trying local food are among the main activities tourists undertake
when they visit a new city or country. Given that the number of
attractions is typically large and that tourists are also restricted to

time and/or money budgets, they need to optimize and sometimes
compromise on the selection of relevant attractions. In addition
to this, they also have to figure out if the place is reachable and
eventually find a feasible way to reach the location using public
transportation. This process can be very cumbersome. Therefore,
Tourism Recommender Systems (TRS) have been developed for
assisting tourists in planning their trips.

In the literature the problem of generating a visit plan (no public
transportation involved) is known as the tourist trip design prob-
lem (TTDP) [10], while the attractions are referred to as points-of-
interest (POIs). This problem is formally defined as follows: given
a set of POIs p1, ...,pn , each POI is associated with some profit si ,
which reflects the user’s affinity towards this POI. The goal is to find
V = (pi ,pj , ...,pl ,pk ), a sequence of POIs to be visited in a given
order (i.e. a visit plan) which maximizes the collected profits taking
into account the following time constraints: (1) the user’s specified
time budget, (2) the availability of POIs (e.g. opening hours), and
(3) the travel time required to move from one POI to the next one.

In this paper we aim at additionally integrating public transporta-
tion information to assist the user in traveling from one attraction
to the next one. This feature is indeed perceived by tourists as one of
the most useful functionalities [6]. However, the biggest challenge
when tackling the TTDP problem including also public transporta-
tion information is the increased level of difficulty of constraint
(3), i.e. the fact that travel times can significantly vary depending
on the situation, e.g. the timetables, the time required to reach the
closest station by foot, etc. This effect is known as time-dependency.
Formally, in addition to the visit plan V , we would like to generate
T = (t(i, j), ..., t(l,k)), the sequence of travel plans, each indicating
how to move from one attraction to the next one, e.g. from pi to
pj , according to V using public transportation. Examples of those
instructions could be how to reach the departure station from an
attraction by foot, at what time to leave the attraction, in which
station to get out from a bus/tram, when to change service type,
etc. Moreover, both plans V and T should be provided in real-time
(time response below 5 secs).
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Surprisingly, integrating public transportation information is
still quite unexplored [10]. This is likely due to the associated com-
putational challenges and the need for real-time data. Note that
a TRS of this kind needs to consider (i) the public transportation
system’s status itself (e.g. buses and trams may have delays) as well
as (ii) the point in time when the user departs to the next attraction1
(e.g. if a bus cannot be reached any more, the user needs to wait,
which stretches the travel time and which might lead to the fact that
a planned attraction cannot be visited any more). The TTDP prob-
lem with public transportation becomes even more complicated
when considering changing buses etc.

Existing solutions for TTDP, which integrate public transporta-
tion information (and therefore, with the time-dependency con-
straint) such as [6, 8, 11, 25] try to solve the problem in a simplified
and therefore not realistic way. They can be grouped as follows:
(1) Approaches that get rid of the time-dependency by considering
a time-independent approximation of the problem, e.g. by using
average travel times. However, trip plans computed with average
travel times differ in practice significantly with respect to solu-
tions with real travel times [25]. (2) Approaches that pre-compute
all travel times for all possible pairs of POIs and times. However,
pre-computing all possible travel times, considering all possible
combinations of POIs and times is clearly feasible only for small
transportation networks or small cities [6]. (3) Approaches that
pre-compute travel times exploiting regularities in the schedules.
However, the assumption of periodic service schedules does not
hold in realistic urban transportation networks [11]. (4) Approaches
that sacrifice some route planning aspects, e.g. the multi-modal fea-
ture which allows us to model different types of transportation
services, or transfers which allows us to model changes between
transportation services in a route.

It is important to note that incorporating real-time transporta-
tion information of a city and generating a travel plan T with
detailed instructions to move along POIs, even in case of delays,
is not provided by any approach so far, to the best of our knowl-
edge. We therefore propose such an approach which generates a
sequence of attractions to visit, together with a travel plan with
concrete instructions for the user. In total, we make the following
contributions:

(1) We combine i) an approach for generating a sequence of
attractions to be visited, using the time constraints regard-
ing attractions and total trip time (i.e. solving the TTDP
problem and using the time-dependency constraint for
public transportation) with ii) an approach for generat-
ing a realistic, delay-aware travel plan. We employ three
different strategies (sections 5.1 to 5.3). The travel plan
generation is designed to be realistic, as it uses the real-
time transportation system’s information (departure times
with potential delays) and the current place and time of the
user. Furthermore, the real-time computation constraint is
considered.

1In this paper, we assume that the user does not want to leave the attractions ear-
lier than planed, as this might stress her and as it would make the problem hardly
manageable.

(2) We evaluate our three approaches extensively with a large
real-world data set, namely the POIs and the public trans-
portation information of Izmir, Turkey. This data set con-
tains 75 POIs, and a large transportation network which
consists of approx. 8K stations and 26K bus runs per day.
Our evaluation results show that the designed strategies
outperform the state-of-the-art in terms of quality of rec-
ommendations.

Our approach is applicable to tourist plan recommendation in
any city or location in which data about the attractions, their lo-
cations, and availability times are available, as its real-time public
transportation system information.

The rest of the paper is organized as follows: First we give an
overview of the TTDP and the approaches to solve that problem
in Related Work (section 2). Then we present the Task Description
(section 3) and the models our approaches are based on. We explain
the basic concepts of the state-of-the-art method to solve the TTDP,
the Iterated Local Search (ILS), in section 4. Section 5 describes our
main contribution, three approaches built on top of ILS, i.e. SILS,
TRILS, and PHILS, to produce feasible and realistic trip and travel
plans. The experiments are shown in section 6. Finally, conclusions
and future work are presented in section 7.

2 RELATEDWORK
The tourist trip design problem (TTDP) is the problem of generating
a sequence of the most relevant POIs to visit without violating user
restrictions such as time budget. Although the TTDP has been
widely investigated, a gap remains between theoretically solving
TTDPs and applying them in practice [26]. One example is the
incorporation of public transportation information into the trip plan.
In fact, both creating travel plans for POIs and generating travel
plans incorporating public transportation are separately considered
to be hard to solve and have their own challenges in terms of
modeling and computation. In addition to this, the solutions have
to be computed in real-time.

One of the earlier works which addresses the TTDP problem is
the one by Tumas and Ricci [20], which provides a set of ranked
routes (using public transportation) fixing a start and end location.
The route itself might lead through famous POIs.While this involves
the user in selecting her preferences, the route selection remains
the central concept.

However, most of the solutions seen in the literature consist of
modeling the problem as extensions of the Orienteering problem
(OP). The OP is a combination of two classical problems: the Knap-
sack Problem and the Traveling Salesman problem. This problem
can be defined formally as a graph in which nodes represent POIs
and the edges a feasible travel route from one POI to another one.
Each node has a “profit ‘score” (henceforth simply “profit”) that
the user can collect by visiting the POI and the edges are weighted
with travel times. The OP and its variations cannot be solved in
polynomial time and therefore most of the solutions proposed are
based on meta-heuristic algorithms which provide near-optimal
solutions [10]. Among the existing OP extensions, the best modeler
of the usage of public transportation is the Time-dependent Team
Orienteering Problem with Time Windows (TDTOPTW) [14, 23]. The
term time-dependency (TD) reflects the fact that the travel time to
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move from one POI to the other depends on the departure time,
e.g. on the schedule of buses, trams, etc. The “Team" (T) extension
allows one to model trip plans for multiple days. Moreover, the
Time Windows (TW) represent the fact that visits are limited by
opening and closing times of the POI. Algorithms based on Iterated
Local Search (ILS) heuristics are considered the state-of-the-art to
solve OP and their extensions [14]. An ILS approach for solving ex-
tensions of OP typically consists of two operations: INSERT, which
inserts a POI into the solution, and SHAKE, which removes a POI
to escape from local optima. The most popular version of ILS is
probably the one proposed by Vansteenwegen [21].
State-of-the-art for TD(T)OPTW. Garcia et al. [6] were the first
ones who tried to address the TDTOPTW problem using real public
transportation data from the city of San Sebastian. Their ILS meta-
heuristic is built upon that of Vansteenwegen [21]. To deal with
time-dependency they implement two approaches. The first one
consists of using average travel times in their ILS. Since average
travel times are not always accurate, they propose an approach to
adjust the plan according to real travel times in case this is infeasi-
ble, i.e. if the time windows of the nodes included in the solution
are violated [11]. This might lead to the removal of some of the
attractions, reducing then the overall profit. The second approach
is based on a fast local evaluation of the possible insertions. They
design three variants: 1) direct public transportation without trans-
fers; 2) an approach based on a pre-calculation which considers
transfers; 3) an approach in which transfers are modeled as direct
connections. The first two variants fulfill the real-time response
requirement. However, they do not realistically model public trans-
portation, because in large networks like cities, it is not always
possible to reach a place without transfers, nor are the schedules
always regular. To deal with the time-dependency Gavalas et al.
extend in [11] a previous cluster-based meta-heuristic approach
called CSCRoutes to deal with TDTOPTW. This results into two
new approaches, TDCSCRoutes and SlackCSCRoutes. These do
not make any assumptions about periodic schedules. In a subse-
quent work [8] they integrate multimodality into the routing logic
as well as other features, such as the possibility of incorporating
lunch breaks and the support of arbitrary start and end itinerary
locations. Travel instructions are also included. The approach is
validated with metropolitan transit network information and real
POIs from Athens and Berlin. Verbeeck et al. [25] extend a previ-
ous approach [24] to solve the TDTOPTW problem. They use an
ant colony system (ACS) based algorithm which constructs several
independent solutions. The road network data used consists of data
sent by taxis, commercial vehicles, and private cars, rather than
public transportation so it is very unlikely that they model transfers.
Moreover, they consider some kind of regularities by dividing a day
into k slots. Then the set of time-dependent travel times is calcu-
lated by repeatedly using a modified version of Dijkstra’s algorithm
with a departure time equal to the start of a time slot.
Further extensions. The TDTOPTW is not the only extension of
TOPTW which tries to model more realistic scenarios. For example
POIs are typically treated as points. However, in pratice these might
represent large areas such as market areas or neighborhoods in
which tourists might require a walking route. Therefore, Gavalas et
al. [7] extend the TOPTW problem to incorporate scenic walking

routes for exploring tourist destinations and call the new model
MTOPTW. Vansteenwegen et al. [22] extend TOPTW by adding
constraints that allow POIs to have multiple time windows, e.g.
windows which differ on different days. The first extension which
aims at generating plans for groups of tourists was proposed by
Sylejmani et al. [19]. They extend the Multi Constraint TOPTW
(MCTOPTW) to MC-Multiple-TOPTW (MCMTOPTW) to model
the multiple trips and tours for tourist groups. Other approaches
model congestions or other events which might affect the travel
times between nodes. Sometimes these events are difficult or even
impossible to predict in a deterministic way [14]. These models
are therefore called Stochastic OPTW (SOPTW) and are related to
vehicle routing models [15].
Other approaches to solve TTDP.While the most popular ver-
sion of ILS is the one proposed by Vansteenwegen [21], other vari-
ants have been proposed [12, 17]. In [12] they extend the ILS with
further operations, namely SWAP, INSERT, ACCEPTANCE CRITE-
RION, and TIMELIMIT.

Completely different strategies have been suggested as well,
in addition to these ILS heuristics. In [9] another near-optimal
heuristic approach called DailyTRIP was proposed. Other examples
include a Tabu Search meta-heuristic [18], fireworks algorithm [5],
and simulated annealing [13, 16]. Bitonto et al. [4] model the prob-
lem of building itineraries for tourists addressing a Constraint Satis-
faction Problem (CSP) by means of the transitive closure. The work
of Wörndl [26] is particularly interesting, since they try to solve
the whole problem with a modified version of Dijkstra’s algorithm,
which not only finds shortest paths but also solves TTDP. To do so
theymaximize the quotient of entertainment divided by distance for
each subpath (entertainment is the sum of the scores of all venues
along the path). An extended version called constraint-based takes
into account the time and budget constraints for the route. None of
these approaches directly deals with public transportation.

3 TASK DESCRIPTION
3.1 Overall Task (TTDP-TI)
Figure. 1 illustrates the desired result, i.e. plans,V andT . In order to
explain the underlying models used in our approach we need to pro-
vide some fundamental definitions. The POIs part of the visit plan
V are selected among the set of available POIs P = {p1,p2, ...,pn }.
Each POI has a time window [oi , ci ]with opening time oi and closing
time ci . Therefore, visits should take place within the time window.
There is a variable for each POI pi which models if the user visits it
or not. Let vi be this variable: vi = 1 if pi is visited and included
in the plan V , 0 otherwise. Let tvi be the time the tourist u spends
at pi , if vi = 1. If the visit takes place, this time is fixed, i.e. each
POI has a recommended visit time and we assume for simplicity
this cannot be shortened or extended. Let tsi be the start time of
a visit at pi . Then, the ending time of a visit is simply given by
tei = tsi + tvi . The time required to travel from pi to pj is wt

(i, j).
This times depends on the departure time t from pi . When a tourist
visits a POI pi she collects the profit si . Furthermore, let x(i, j) be
a variable which models the fact that u visits pj after she visited
pi . If this occurs, then x(i, j) = 1, and 0 otherwise. The overall visit
time for a plan should not exceed the tourist’s total available time.
Let tmax be the time budget of u. The goal is to generate a visit
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planV together with a travel planT (which includes the detailed in-
structions tailored for public transportation). The time-dependency
itself is modeled withinwt

(i, j). Therefore, we call this problem the
tourist trip design problem with travel instructions (TTDP-TI). This
can be divided into two subtasks: (1) the generation of a visit plan
V taking into account the time-dependency, and (2) providing the
travel instructions. Each of these subtasks will be explained in the
following subsections.

3.2 Part 1: TTDP
The TTDP part of our problem is modeled as the time-dependent
orienteering problem with time windows (TDOPTW). The goal is
to produce a visit plan V , i.e. a route r which goes through some
of the available POIs, thereby collecting as much profit as possible
(objective function). For this problem one POI is required as the
starting point and one as the ending point of the trip. Typically p1
and pn are picked as start and end locations [14, 23]. The problem
is subject to a given set of constraints:

(1) A tour starts and ends at two fixed POIs ∈ P .
(2) A tour is a path which connects all visited POIs ∈ V . Each

POI included in V should be visited at most once.
(3) The waiting time before a visit at a POI starts is limited by

a constantM .
tei +w

t
(i, j) − tsj ≤ M(1 − x(i, j)), (i, j = 1, ...,n).

(4) The total time spent for the trip which includes the visit
times, travel times and eventually the waiting times before
a visit takes place should be less than the specified time
budget tmax .

(5) The visits take place within the POI’s time window.
In the same way as OP, TDOPTW can be formulated in two possible
ways: as a graph or as integer linear programming problem.We refer
to Vansteenwegen et al. [21] for a linear programming formulation
of this problem.

The sequenceV = (pi , ...,pk ) is reconstructed from the variables
x(l,m), each of which represents a consecutive visit. In addition
to V the visitation times for the each POI, ((tsi , t

e
i ), ..., (t

s
k , t

e
k )) are

returned. It is important here to notice that getting the travel plansT
(i.e. how to reach POIs) are beyond the scope of TDOPTW. They are
generated by a separate algorithm, if needed. Most of the solutions
relax the travel timewt

(i, j) by removing the time-dependency:w(i, j).
Therefore, when the plan is adjusted according to real travel times,
this might become infeasible (see section 5).

One important aspect of the TTDP is to determine the impor-
tance of a POI for a user u, i.e. to estimate the profit si the user
could get by visiting the POI. This can be done in different ways.

3.3 Part 2: Route planning for public
transportation

In order to obtain the travel instructions T we make use of a route
planner in real-time. In fact, designing approaches which provide
travel plans has been one of the main concerns of route planning.
Not only the time-dependency, but also the real-time requirement
are aspects which have been widely studied in this field. To fulfill
the real-time requirement graphs are the most recurrent models in
public transportation [2].

Figure 1: Example for solving the TTDP-IT problem

Our route planner has two key features: the time-dependent
model (TDM) together with a state-of-the-art speed-up technique
called transfer patterns [1]. The route planner is able to provide
the path of minimum cost between two locations in the order of
milliseconds. Note that without a route planner with these char-
acteristics it would not have been possible to couple the TTDP
approach with the travel information. This model supports walking
(between stations or to change vehicle), transfers, waiting times
at stations, etc. Delays of transportation units are also supported,
although the optimality of the solution is no longer guaranteed.
However, empirical studies show that transfer patterns are a very
robust technique in the presence of delays and leads to suboptimal
solutions in less than 3% of the cases in large networks [3].

4 ITERATED LOCAL SEARCH
We now come back to the TTDP problem, which is modeled in
our case as a TDOPTW. In this regard the Iterated Local Search
(ILS) heuristic is the state-of-the-art to solve TDOPTW. Our three
approaches, SILS, TRILS, and PHILS are built upon ILS as con-
ceived by Vansteenwegen [21] and García [6]. Our approaches will
be presented in section 5 with a special focus on the novelty as-
pect. In this section, we will explain the basic concepts underlying
the ILS algorithm, which are necessary to explain our approaches.
The goal of an ILS algorithm is to return a near-optimal visit plan
V = (pi , ...,pk ). Solutions are built by applying iteratively two op-
erations: An insertion step, which inserts a POI into the solution,
and a shake step, which removes a POI from it. The purpose of
the latter is to escape from local optima. The stop condition of ILS
requires that a solution is not improved for a certain number of
iterations. The time-dependency plays a key role when inserting
a new POI into the solution, because the exact time in which the
visit starts depends on the departure from the previous POI. In the
following, we explain these two steps and the ILS algorithm that
combines them.
Insertion Step. In the insertion step, a new visit (POI) is added to
the tour. The POI with the highest Ratioi is always the one picked
for the insertion and we calculate Ratioi as follows:

Ratioi = (si )
2/Shi f ti (1)

where si is the profit, and Shi f ti is the extra time added to the
duration of the trip plan if pi is added to it. To compute the extra
time, not only the visiting time of pi is taken into account but also
the travel time from the previous POI and to the following POI in
the sequence. Since time is limited by the time budget tmax , every
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time we insert a new POI it is checked whether existing visits still
fit in their corresponding POI’s time window.
Shake Step. The shake step removes at least one visit from the
given tour. The purpose of this step is to escape local optima. The
soon-to-be-removed POI is selected in a random fashion by means
of variables which rotate over the whole visit plan. The visits sched-
uled after the removed POI are shifted towards the beginning to
avoid unnecessary waiting times. Some of the visits may not be
shifted because of the time window constraint. The visits after those
non-shiftable visits remain unchanged.

For further details about the used variables and how these are
updated in both the INSERT and SHAKE steps, we refer the reader
to [21].
ILS: combining both steps.A pseudo-code showing the key steps
of the ILS can be found in [21]. The search for a solution is per-
formed until no better solution is found for 150 iterations2. At the
beginning visits are inserted one by one using Ratioi until it is not
possible to add more of them. This plan is then stored as the current
best solution, using the variable BestSolution. Another variable
NoImprovementCounter keeps track of the number of iterations
in which no improvement could be achieved with respect to the
current best solution. In the next iterations another produced visit
plan might be compared with the last best solution found and if
this is beaten, BestSolution is updated and NoImprovementCounter
is reset. After checking the new solution, the shake step is applied.

The insertion operation deals directly with the time-dependency,
because the travel time from the previous POI has to be considered
in order to place the inserted POI at the right position in time. This
might lead to the false belief that this information can be directly
requested from the route planner every time an insertion is carried
out. However, in practice too many visits are inserted and therefore
the number of requests sent to the route planner would be too high
to keep the whole computation of ILS operating in real-time.

Therefore, works like that of García et al. [6] either use pre-
computed travel times, e.g. average travel times, or leave some
events, such as transfers (changing buses in a trip), aside. We adopt
instead a different strategy, which is outlined in section 5.

5 OUR APPROACHES
A method to produce a visit plan V based on pre-computed values
might differ from the real travel times provided by a route planner.
Therefore, a visit plan might have to be adjusted, i.e. the travel time
between POIs has to be corrected. This might cause an increase in
the waiting time or a shift of the visit times. If the time window of
any of the POIs included in the solution is violated, then the plan
is said to be infeasible [11] and it requires a repair strategy. García
et al. [6] propose a simple repair strategy: if the real travel time is
larger than the average one, some visits have to start later. If this
causes a visit to become infeasible the POI is removed from the
route. This means that in the best case the profit remains the same.
Otherwise some profit is lost.

We therefore designed three strategies which not only provide
feasible visit plans but also avoid sacrificing profit. The novelty
2This value has been empirically found in the experiments of Vansteenwegen and is
a good trade-off between the execution time and the quality of the solution. In that
setting the results of the ILS metaheuristic deviate from the optimal solution by only
1.8% using only 1 second of computation [17].

Figure 2: SILS Logic

aspect lies in the fact that we dynamically adjust the visit plan
according to real travel times obtained from the route planner. Our
heuristics are similar to those of Vansteenwegen [21] and García [6]
in the sense that an optimal solution is first computed using average
travel times for efficiency. However, while searching for an optimal
solution the adjustment takes place by shifting some visits forwards
or backwards in time, repairing the plan if required, and then letting
the ILS continue with the search. This process allows our ILS-based
heuristics to potentially find a different near-optimal solution, while
keeping the plan realistic.

5.1 Strict ILS (SILS)
The logic of SILS is illustrated in Figure 2. The intuition behind
this heuristic is as follows: When NoImprovementCounter=150 the
found visit plan is adjusted with respect to the real travel times
returned by the route planner. If after this adjustment the visit plan
is feasible, this is returned as the solution (Va ).

Otherwise, the plan is repaired by removing the POIs in which
the time window constraints are violated. The repaired solution Vr
is then given to the ILS heuristic, which continues the search for an
optimal solution from the plan. In addition, the removed POI(s) are
penalized and relocated among other POI candidates with a profit
si = 0. This basically disables the POI, which cannot be selected
anymore (Ratioi = 0). Moreover, the NoImprovementCounter is set
to 0.

The process is repeated until a feasible visit plan is returned.
Note that this approach can fail if all POIs are disabled. However,
this never occurred in our experiments.

5.2 Time-relaxed ILS (TRILS)
The logic of TRILS is illustrated in Figure 3. Excluding one or more
POIs from the ILS computation might not help in situations where
the average travel time is a bad estimator of the actual travel time.
This is the case when the timetable is not very regular or when the
variance of the travel times in a day is too large.

Therefore, this approach rather gradually increases the estimated
average travel times every time a solution is infeasible by multi-
plying it with a constant (step = 0.05). In this way the estimated
travel times can be greater than the real travel times at some point
and therefore a feasible plan can be returned. The downside of this
strategy is that it might exclude more compact solutions with a
higher profit.
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Figure 3: TRILS Logic represented as flowchart

As in SILS, TRILS checks the validity of the solution when NoIm-
provementCounter=150. The visit plan is validated against the real
time travels returned by the route planner. If after the adjustment,
the visit plan is feasible, this is returned as the solution (Va ). Other-
wise, the plan is repaired by removing the POIs in which the visits
violate the time window constraints. In addition to this, the average
travel times are increased by a constant. The first time an infeasible
solution is returned, the average travel times are multiplied by 1.05.
The second time by 1.10, and so on. The ILS heuristic continues the
computation using the repaired plan Vr . It is important to notice
that although the profits of the removed POIs remain unchanged,
the insert operation might exclude them because of the increased
average travel time, which potentially reduces the number of time
slots into which these can be potentially inserted.

The process of increasing the average travel times is repeated
until eventually a feasible solution is found. The approach fails if
the average travel times are increased 5 times. However, this never
occurred in our experiments.

5.3 Precise Hybrid ILS (PHILS)
The logic of PHILS is shown in Figure 4. This approach combines
the ideas of the two previous approaches in a more fine-grained
fashion. First, this approach tries to validate the current best so-
lution when NoImprovementCounter=50, i.e. at an earlier stage of
the solution computation. Let V be the best known plan at this
point of calculation. If the alignment with the route planner does
not cause the visit plan to be infeasible, then the ILS continues
the search for a better solution. If no better solution is found until
NoImprovementCounter=150 then the visit planVa , which is already
adjusted, is returned as the solution.

In contrast, if the adjustment causes the plan V to be infeasible
three measures are taken: (1) if pi is the POI in V = {...,pj ,pi , ...}
in which the time window constraint is violated, then the average
travel time between pj and pi is increased. Note that this correction
is done for only a single pair of POIs and not for all possible pairs
as in TRILS. (2) Instead of letting the ILS continue the search from
the repaired plan Vr , the previous best known solution is retrieved.
Let V ′ be this solution. (3) If V ′ contains pi , then this is removed
from it and this solution is used as the new starting point. The
intuition is that it is better to correct the solution which lead to the
infeasible plan, rather than the plan itself. Then, the ID of pi and
the position k in the sequence at which it failed are stored. If pi

Figure 4: PHILS Logic

disrupts another solution at the same position, pi is permanently
removed from the candidate set. Note that pi is disabled when the
failure is produced at the same position k in the sequence and not
simply when it occurs, as in SILS. The ILS continues the search for
a better solution based on the repaired planV ′

r . The process is then
repeated until a feasible visit plan is produced.

5.4 Travel instructions
To generate the travel instructions T required to move from one
POI to the next one in the sequence, the route planner can simply
store the travel plans (including the travel instructions) of the last
adjusted visit plan V . In fact, the last-adjusted plan is also the final
returned solution in all three strategies.

To summarize. The three approaches are able to produce feasible
solutions, in contrast to approaches based on ILS and average travel
times. On the one hand, in the case of SILS and TRILS, the solution
is adjusted according to the real travel times before it is returned as
the final solution. If the adjusted plan is infeasible, some corrections
are being made in the selection strategy, i.e. disabling an out-of-
window POI, or increasing the average travel times, respectively.
A new optimal solution is then searched iteratively on top of that
repaired plan. On the other hand, PHILS combines both strategies
in a more fine-grained manner. The travel instructions are provided
by the route planner without the need for further calculations.

6 EXPERIMENTS
The ultimate goal of Recommender Systems is to maximize the
user satisfaction. Solutions which model the TTDP as TDOPTW
or similar extensions assume that profit is a good measure of the
user’s satisfaction. Therefore, they are compared based on their
collected profit under the same constraints. We follow the same
line of evaluation. An additional aspect we assess is whether our
approaches are able to provide a plan in real-time.

6.1 Set up
Our POI dataset for Izmir consists of 75 POIs in total. POI informa-
tion like the labels used to build both the user and POI profiles are
obtained from Foursquare3. The POIs are distributed in 4 Regions
(see figure 5): 36 are located within the city center; 17 POIs in the
north; 8 POIs east; 11 POIs south-west and 3 POIs outside of the city

3https://developer.foursquare.com/
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Figure 5: Distribution of POIs in Izmir

(not shown in the map). The General Directorate of ESHOT4, the
public bus transportation corporation of the Municipality of Izmir,
Turkey kindly provided us with the public transportation data upon
request. All POIs can be reached using the public transportation
network. The network consists of 7788 stations and 333 working
bus lines operating both ways, which results in 25849 bus runs in a
single day.

In order evaluate the performance of the different approaches
we first build visit plan requests. Using two of the 75 available
POIs as the starting and ending points of the tour, we produce
75 × 75 = 5625 requests for visit plans. Note that this also includes
the case in which the same POI is used as both starting and ending
point. This simply means that a route would start and end at the
same position, but it might still contain an arbitrary number of
POIs to visit based on the user’s specified time budget. The time
budget is set as either 4, 6 or 8 hours. Starting times of the visit plan
are either 10:00 or 12:00. This gives us 6 time-spans, 10:00 to 14:00
(4 hours), 10:00 to 16:00 (6 hours), 10:00 to 18:00 (8 hours), 12:00 to
16:00 (4 hours), etc. In addition, we also consider 5 different user
profiles. To summarize, we have 5 × 5625 × 6 = 168, 750 requests
for visit plans. The following approaches are compared:
(1) AvgILS. This is the approach implemented by García et al. [6].
Their ILS approach is computed using average travel times. Note
that this approach is validated against our route planner to assess
how many infeasible plans are produced. The evaluation scores for
infeasible plans are counted as 0.
(2) RepAvgILS. AvgILS combined with the repairing method pro-
posed by García et al. [6] which is described in section 5.
Our three designed approaches, (3) SILS, (4) TRILS, and (5) PHILS,
which dynamically adjust the visit plan according to the real travel
times provided by a route planner.

Each of the approaches is evaluated under two different cir-
cumstances:Without Delays (ND), i.e. the case in which all bus
units run perfectly on time according to their timetable, and With
Delays (D), in which delays are simulated at the level of single
transportation units. Note that we assume that the time of request

4General Directorate of ESHOT. http://www.eshot.gov.tr

is the start of each time-span, i.e. either 10:00 or 12:00. The delays
are therefore introduced before the time of request.

The evaluated metrics are shown at the end of the results table.
All experiments were conducted on a single machine with 40 GB of
RAM and a 64 bit Intel Xeon E5-2640, 2.5 GHz processor. The route
planner ran for the entire duration of the experiments.

6.2 Interpretation of results
Tables 1 to 5 show the results of our experiments for each approach
without and with delays in the transportation network. Each table’s
cell condenses the scores obtained for all requests and the five con-
sidered profiles in the given timespan. Moreover, for each timespan
and metric the best scores achieved are shown in red.
Without delays (left tables). SILS produced 0.07% more profit
than RepAvgILS, while TRILS and PHILS obtain 0.05% and 0.06%,
respectively. A first observation is that the differences between
overall total scores (TS) increase the more infeasible plans are pro-
duced (VTW) by AvgILS. The reason is that our approaches produce
only feasible plans and therefore manage to gain additional profit
in these cases (infeasible solutions contribute zero profit to the
TS). This is also reflected in the columns TRS and ARS, the total
and average repaired scores for those infeasible solutions. For the
infeasible plans the improvement with respect to RepAvgILS is as
follows: SILS achieves 6.76% improvement whereas PHILS 6.06%,
and TRILS 5.12%.
With delays (right tables). Interestingly, all approaches generate
trip plans with higher scores because the number of infeasible trip
plans decreases. The reason for this is that delays are simulated for
randomly picked units under independent assumptions. Therefore
when a user travels to a POI more options, namely the delayed units,
are available to reach it, which might reduce the travel time. PHILS
performs the best, with an improvement in the overall score of
0.05% wrt. RepAvgILS. This is followed by SILS (0.04%) and TRILS
(0.035%). For the infeasible plans the improvement with respect
to RepAvgILS is as follows: PHILS achieves a 6.9% improvement
whereas SILS 6.6%, and TRILS 4.95%. This shows the robustness of
our approaches in the presence of delays.

As expected RepAvgILS was the fastest ILS-based heuristic due
to its simple repairing strategy, whereas PHILS required the longest
time (26.12% slower) to find the final solution. However, the execu-
tion times of both SILS and TRILS, approx. 1.2% and 1.5% slower,
respectively, are very close to that of RepAvgILS. In any case our
approaches are able to generate a plan in under 15ms (on average)
which is a nice achievement considering this includes the adjust-
ment time and interaction with the route planner.
Conclusion. SILS, TRILS and PHILS manage to produce only fea-
sible plans thanks to the novel interactive aspect, i.e. the two-way
flow of information between the core approach, which assembles
the solution, and the route planner. Our results also show that more
infeasible plans are produced when the time budget is large or the
visit ends late (visits are closer to the closing times of all POIs).

7 CONCLUSION AND FUTUREWORK
We presented, SILS, TRILS and PHILS, three novel approaches to
solve the tourist trip design problem with travel instructions (TTDP-
TI). This problem is an extension of the TTDP which, in addition
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AvgILS without delays AvgILS with delays

TS AS StD TRS ARS ARP StD AET StD VTW VTB TS AS StD TRS ARS ARP StD AET StD VTW VTB

10:00-14:00 1429877,3 50,84 8,57 - - 6,52 1,24 5,72 2,24 2 12908 1429979,6 50,84 8,57 - - 6,52 1,24 5,82 2,12 0 12629

10:00-16:00 1893186,9 67,31 7,98 - - 8,73 1,24 9,64 2,45 97 6292 1897425,1 67,47 7,98 - - 8,73 1,24 9,3 2,58 46 6010

10:00-18:00 2335471,4 83,04 7,72 - - 10,81 1,23 13,65 3,84 330 3793 2345451,9 83,39 7,73 - - 10,81 1,23 13,58 3,88 209 3657

12:00-16:00 1428277,3 50,78 8,76 - - 6,39 1,2 5,73 1,66 108 12675 1430924,7 50,88 8,76 - - 6,39 1,2 5,76 1,68 62 12453

12:00-18:00 1872254,5 66,57 7,81 - - 8,56 1,16 9,23 2,29 352 6011 1881889,1 66,91 7,8 - - 8,56 1,16 9,25 2,3 224 5852

12:00-20:00 2268541,3 80,66 7,34 - - 10,48 1,17 12,38 3,44 689 3651 2284818,9 81,24 7,34 - - 10,48 1,17 11,5 3,34 507 3523

Table 1: Results of the AvgILS experiments

RepAvgILS without delays RepAvgILS with delays

TS AS StD TRS ARS ARP StD AET StD VTW VTB TS AS StD TRS ARS ARP StD AET StD VTW VTB

10:00-14:00 1429960,6 50,84 8,57 83,3 41,65 6,52 1,24 5,72 2,24 0 12910 1429979,6 50,84 8,57 0 0 6,52 1,24 5,82 2,12 0 12629

10:00-16:00 1901084,4 67,59 7,98 7897,5 81,42 8,73 1,24 9,61 2,49 0 6323 1901546 67,61 7,97 4120,9 89,58 8,73 1,24 9,29 2,6 0 6024

10:00-18:00 2363974,4 84,05 7,74 28503 86,37 10,8 1,23 13,51 4,03 0 3837 2365012,7 84,09 7,71 19560,8 93,59 10,8 1,23 13,49 4,01 0 3664

12:00-16:00 1433242,4 50,96 8,77 4965,1 45,97 6,38 1,2 5,71 1,67 0 12727 1433662 50,97 8,76 2737,3 44,15 6,38 1,2 5,76 1,68 0 12476

12:00-18:00 1895734,8 67,4 7,81 23480,3 66,71 8,55 1,16 9,13 2,42 0 6096 1896849,3 67,44 7,8 14960,2 66,79 8,56 1,15 9,13 2,43 0 5911

12:00-20:00 2324103,1 82,63 7,44 55561,8 80,64 10,46 1,18 12,13 3,73 0 3714 2325649,1 82,69 7,38 40830,2 80,53 10,47 1,17 12,07 3,71 0 3578

Table 2: Results of the RepAvgILS experiments

SILS without delays SILS with delays

TS AS StD TRS ARS ARP StD AET StD VTW VTB TS AS StD TRS ARS ARP StD AET StD VTW VTB

10:00-14:00 1429926,3 50,84 8,57 49 24,5 6,52 1,24 5,72 2,24 0 12908 1429979,6 50,84 8,57 0 0 6,52 1,24 5,82 2,12 0 12629

10:00-16:00 1900967,6 67,59 7,98 7780,7 80,21 8,73 1,24 9,65 2,45 0 6320 1901444,9 67,61 7,98 4019,8 87,39 8,73 1,24 9,3 2,58 0 6020

10:00-18:00 2365608,7 84,11 7,71 30137,3 91,33 10,8 1,23 13,68 3,86 0 3883 2366033,7 84,13 7,7 20581,8 98,48 10,81 1,23 13,61 3,89 0 3677

12:00-16:00 1433759,7 50,98 8,76 5482,4 50,76 6,39 1,2 5,73 1,66 0 12747 1433910,5 50,98 8,76 2985,8 48,16 6,39 1,2 5,87 1,69 0 12487

12:00-18:00 1897730,1 67,47 7,79 25475,6 72,37 8,56 1,15 9,26 2,3 0 6135 1898078,5 67,49 7,79 16189,4 72,27 8,56 1,15 9,26 2,38 0 5907

12:00-20:00 2328254 82,78 7,32 59712,7 86,67 10,47 1,17 12,46 3,53 0 3793 2328678,3 82,8 7,31 43859,4 86,51 10,48 1,17 12,35 3,53 0 3619

Table 3: Results of the SILS experiments

TRILS without delays TRILS with delays

TS AS StD TRS ARS ARP StD AET StD VTW VTB TS AS StD TRS ARS ARP StD AET StD VTW VTB

10:00-14:00 1429926,3 50,84 8,57 49 24,5 6,52 1,24 5,72 2,24 0 12908 1429979,6 50,84 8,57 0 0 6,52 1,24 5,82 2,12 0 12629

10:00-16:00 1901007,6 67,59 7,98 7820,7 80,63 8,73 1,24 9,65 2,46 0 6322 1901460,7 67,61 7,98 4035,6 87,73 8,73 1,24 9,3 2,58 0 6018

10:00-18:00 2365043,9 84,09 7,72 29572,5 89,61 10,8 1,23 13,7 3,99 0 3915 2365623,1 84,11 7,71 20171,2 96,51 10,81 1,23 13,63 4,04 0 3709

12:00-16:00 1433735,6 50,98 8,76 5458,3 50,54 6,38 1,2 5,73 1,66 0 12756 1433906,3 50,98 8,76 2981,6 48,09 6,39 1,2 5,76 1,69 0 12496

12:00-18:00 1897355,7 67,46 7,79 25101,2 71,31 8,56 1,15 9,28 2,44 0 6160 1897846,3 67,48 7,79 15957,2 71,24 8,56 1,15 9,27 2,41 0 5941

12:00-20:00 2327203,1 82,74 7,34 58661,8 85,14 10,47 1,17 12,57 4,29 0 3896 2327957,7 82,77 7,32 43138,8 85,09 10,47 1,17 12,52 4,25 0 3702

Table 4: Results of the TRILS experiments

PHILS without delays PHILS with delays

TS AS StD TRS ARS ARP StD AET StD VTW VTB TS AS StD TRS ARS ARP StD AET StD VTW VTB

10:00-14:00 1429925,5 50,84 8,57 48,2 24,1 6,52 1,24 7,82 2,41 0 12910 1429979,6 50,84 8,57 0 0 6,52 1,24 8,03 2,42 0 12629

10:00-16:00 1900914,5 67,59 7,99 7727,6 79,66 8,73 1,24 12,07 2,95 0 6300 1901497,8 67,61 7,98 4087,64 88,86 8,73 1,24 12,02 2,77 0 6011

10:00-18:00 2365429,1 84,1 7,72 29957,7 90,78 10,8 1,23 16,59 4,44 0 3858 2366359,4 84,14 7,7 20852,84 99,77 10,81 1,23 16,87 4,42 0 3678

12:00-16:00 1432980,6 50,95 8,78 4703,3 43,5 6,38 1,21 7,8 1,94 0 12705 1433667,3 50,97 8,77 2742,6 44,23 6,38 1,2 7,99 2,12 0 12471

12:00-18:00 1897202,8 67,46 7,79 24948,3 70,87 8,56 1,15 11,21 2,97 0 6081 1897777,2 67,48 7,79 15888,1 70,92 8,56 1,16 11,2 2,87 0 5885

12:00-20:00 2328961,9 82,81 7,31 60416,39 87,68 10,48 1,17 14,9 4,31 0 3763 2329146 82,81 7,31 44322,9 87,42 10,48 1,17 14,46 4,32 0 3598

Table 5: Results of the PHILS experiments

METRICS: Total Score (TS). Overall score for all visit plans requests. Average Score (AS). The average score obtained, i.e. TS
5625×5 . Total Repair Score (TRS). Overall score for the repaired visit plans. Average Repair Score (ARS). The average score obtained from the repaired visit plans, i.e.

TRS
VTWAvдI LS

.Avg. number of Recommended POIs (ARP). Number of recommended POIs on average for the feasible visit plans.Avg. Execution time (AET). The execution time in milliseconds to return a solution. Standard deviation from AS, ARP and AET are provided next to each corresponding

column. Number of plans with at least one violation of a POI’s time window (VTW). Number of requests which have at least one visiting time out of the POI time window. Number of plans which violate the time budget (VTB). After adjusting the plan using the route planner, some visits are
shifted back and forth leading to violations of the time budge constraint tmax .



to producing a visit plan (i.e. the sequence of POIs to visit in a
city), also produces a travel plan with instructions on how to reach
those attractions using public transportation. The novelty of these
approaches lies in the way the visit plan is dynamically adjusted
according to real travel times. While average travel times are still
used in the computation for efficiency, the solution is eventually
adjusted with the information provided by a route planner. If the
adjustment leads to an infeasible plan each approach takes different
countermeasures to repair it. The search for an optimal solution
continues on top of the repaired plan. This makes it possible to
not only return feasible plans (without violations of the POI’s time
windows) without sacrificing profit, but also to return both visit
and travel times in real-time. Moreover, our state-of-the-art route
planner is able to model a large variety of events related to public
transportation, such as walking times (between stations, to a station
to take a bus, etc.), changing vehicles (transfers), but especially to
model delays of transportation units. To the best of our knowledge,
no previous approach was able to provide travel instructions for
the visit plans at this level of realism.

As we showed in our experiments, SILS, TRILS and PHILS are at
comparable performance levels in terms of collected profit, while
all approaches manage to outperform ILS-heuristics based on esti-
mated travel times even after a repair. Moreover even PHILS, which
required the longest execution time, is able to produce plans in
real-time.

In the future we would like to extend our approach by model-
ing further constraints and events. In addition we would like to
focus more on the personalization aspect of the TRS. Finally, our
approaches could be used to model dynamic changes, too, thanks
to the ability to deliver fast plans. If the user deviates from the visit
plan, e.g. if she enjoys staying at one place and prolongs the visit, a
new plan has to be recomputed together with the travel plans. Our
approaches seem to be a good fit for this problem too.
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