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The behavior of complex organisms or systems is often stored as time series
data. Time series data is valuable because it contains valuable information in
the form of timed patterns. However, this patterns are difficult to formalize and
to detect. We present Extended Timed Regular Expressions (ETRE) to express
complex timed patterns which can be systematically and efficiently matched in
large sets of time series data. We translate ETRE to Timed Automata (TA),
where pattern matching is computed by reachability analysis in TA. We imple-
ment our theory using C++ in the new tool TimeRex. Our tool can be used for
online (run time) or offline (post processing) pattern matching. We run extensive
experiments on real data. We have been able to efficiently match a number of
relevant patterns.

1 Introduction

Time series data is present everywhere, it can be produced by a Cyber Physical
System (CPS), by sensors monitoring the human body, communication proto-
cols, etc. As an example consider Figure 1a shows an example of time series data
from an ECG from the PhysionNet MIT-BIH Arrhythmia Database [10]. Time
series data is valuable because it contains valuable information in the form of
timed patterns. These patterns can be used to classify the data, to do predictions,
and when possible to control the behavior of a system. As example consider Fig-
ure 1a where it is of interest to find early occurrence of a QRS complex (peak)
a sign of arrhythmia.

Regular Expressions (RE) is a fundamental formalism in Computer Science
developed in formal language theory by Kleene [11] and formalizes the concept
of a regular language. An equivalent – similarly fundamental – formalism is that
of Finite State Automata. By now RE are commonly used to specify patterns
in a text with supporting search and replace engines of word processors and
text editors and with support in many programming languages. Timed patterns
can be expressed in a number of formalisms including Timed Regular Expres-
sions [3], Signal Temporal Logic [14,15], Linear Temporal Logic [18] , and Timed
Automata [1] (TA).

This work introduces Extended Timed Regular Expressions (ETRE) which
generalizes Timed Regular Expressions in two principles ways: events are value
constraints (e.g. intervals) on one or more of the continuous signals present in
the time-series, and sub-expressions may be subject to timing-constraints. In-
spired on the equivalence notion between TRE and TA [3] we translate ETRE
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(a) ⟨fMLII
0.38 ⟩[0.039s,0.045s] · ⟨Σ∗⟩[0.47s,0.67s] · ⟨fMLII
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(b) ⟨fMLII
0.38 ⟩[0.039s,0.045s]

Fig. 1: Pattern Matching ETRE to detect Arrhythmia. Red rectangle is a match.

to Extended TA (XTA) where ETRE pattern matching can be decided as reach-
ability in XTA. Our translation carefully exploits the notion of urgency to allow
for a discrete-time engine. We have implemented our theory using C++ in the
new tool TimeRex. Our tool supports both online (run time) and offline pattern
matching. Later in this paper we present an extensive experimental evaluation
with encouraging results.

As an example consider Figure 1a which shows an ECG from the MIT-
BIH arrhythmia database [10]. A QRS complex is a sophisticated temporal
pattern with several points of inflection. Therefore, a high degree polynomial
could be an initial approximation. Figure 1b describes a tube generated by the
ETRE ⟨fMLII

δ=0.38⟩[d1=0.039s,d2=0.045s] where f is a seventh degree polynomial. A
seventh degree polynomial is an approximation based on our experiments. It
will correctly match on a one to one relation all QRS complex in the given
data. Finally, the more complex ETRE ⟨fMLII

δ=0.38⟩[0.039s,0.045s] · ⟨Σ∗⟩[0.04s,0.65s] ·
⟨fMLII

δ=0.38⟩[0.039s,0.045s] approximates a QRS complex followed by any value (Σ∗)
for a period of in less than 0.65s and then followed by another QRS complex (a
sign of arrhythmia). The red rectangle in Figure 1a shows a match of this ETRE
in the signal from our tool TimeRex. This ETRE can be used to systematically
detect all premature heart beats on the given signal.

Finally, the notions of ETRE and TA provide an unambiguous (explainable)
formalism for the domain expert to specify important patterns (for matching)
as well evaluate possibly learned patterns. Learning formulae is an active re-
search area e.g. LTL learning [20], RE learning [13], parametric timed pattern
matching [2,16].

Related Work ETRE are based on the seminal work for Timed Regular Ex-
pressions TRE [3]. ETRE syntax allows for arbitrary functions with a tolerance
for noise. ETRE extend the alphabet by allowing tuples of real valued events.
ETRE semantics align with those from TRE [3] (time event sequence semantics).
In the following we compare our approach with the state of the art.
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Timed Pattern Matching. The work in [19] introduces Timed Pattern Match-
ing for TRE. The semantics of TRE in [19] are over boolean signals (signal
semantics) and it is believed that the semantics do not coincide with the time
event sequence semantics from [3]. The authors introduce the notion of match set.
A match set contains the start and stop points of uncountably many matches.
The authors show that for finite variability signals a match set can be com-
puted and represented by a finite union of zones. The algorithms are based on
operations on zones. The main differences with our approach are that ETRE
semantics are the so called time event sequence semantics which align with the
semantics from [3]. In addition, as input (corpus) we require finite timed words
(discrete time series) with no finite variability constraints. As a result there is
only finitely many sub-words which match the given ETRE. We do not compute
a match set. We only compute the start and stop indexes of the first sub-word
which matches. Further, our assumptions and construction allow for a discrete
time engine implementation avoiding complex operations on zones.

Existing formalisms. Signal Temporal Logic (STL) [15,14] allows for predi-
cates over real values. The semantics are over continuous time signals. ETRE are
interpreted over time series data and arbitrary functions are supported by the
syntax. Regular Expressions are widely used in industry. In the industrial con-
text, we expect a smoother transition from RE to ETRE than from RE to STL.
Signal Regular Expressions (SRE). The work in [5] introduces SRE together
with qualitative and quantitative semantics. SRE allows to compare variables
on signals against real numbers. The main differences with our approach are
that SRE are interpreted in the signal semantics where as ETRE are interpreted
using time event sequence semantics. Further the semantics for the Kleene star
operator are different. In addition, ETRE support the use of functions. Shape Ex-
pressions [17,8] allows RE over parameterized signal shapes. Shape expressions
translate to Shape Automata which act as recognisers. While Shape Expressions
and ETRE aim at describing complex patterns, the underlying assumptions and
techniques are different. A simple inspection could suggest that both formalisms
complement. However, a formal comparison is be needed.

Online Monitoring Using Automata In [6] and [22,23] patterns are specified
as Timed Automata. TA is then used for timed pattern matching on continuous
signals. The underlying algorithms perform symbolic reachability using zones.
On the contrary, our translation from ETRE yields a subset of TA for which
a discrete engine implementation is possible. Further our construction enables
efficient application of Partial Order Reduction.

Parametric Timed Pattern Matching The works in [2] and Parametric TRE [16]
study parametric pattern matching. Here specifications allow parameters to cope
with uncertainty. An extended match set is computed using reachability synthe-
sis in parametric Timed Automata. In our case studies e.g. ECG for arrhythmia
detection, identifying the right durations is challenging. We believe that this ap-
proach could complement nicely with ETRE for identifying adequate durations.

Skipping Techniques The work in [22] applies Boyer-Moore pattern matching
method. In contrast to our work, the procedure in [22] requires pre-computing
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the region graph. The same authors improve this result in [23], by using a more
efficient skipping method and by replacing the region automaton by the zone
graph. Our results ensure that we only need to construct a discrete transition
system. Therefore, it should be possible to profit from such advanced techniques.
As future work, we aim at including these techniques in our framework.

Quantitative Timed Pattern Matching The work in [5] introduces robust se-
mantics for pattern matching of SRE. The semantics shows how robustly a signal
satisfies (or violates) the given specification. The work in [21] presents and on-
line method for computing robust semantics where the specification is given as
a Timed Automata. Robust semantics for ETRE is interesting and relevant for
many industrial applications.

2 Preliminaries

We apply our method to the theory of timed automata [1]. Our formal model
is extended timed automata and it is an abstract representation of modeling
formalism used in the tool Uppaal [7]. Clocks and Variables. Let X be a set of
clocks. A clock valuation is a function µ : X → R≥0. We use V(X) to denote the
sets of all valuations for clocks in X. We use µini to denote the valuation where
all clocks in X are assign the value 0. Let V be a set of variables. A variable
valuation is a function ν : V → R that maps variables to real numbers. We
use V(V ) to denote the set of all variable valuations. We use νini to denote the
valuation where all variables are assign the value 0. Constraints. The set B(X)
is the set of clock constraints generated by the grammar ϕ ::= x ▷◁ c | ϕ1 ∧ ϕ2,
where x ∈ X, ▷◁∈ {<,≤,≥, >}, and c ∈ Q. The set B(V ) is a set of Boolean
variable constraints over V . The set B(X,V ) of constraints comprises B(X),
B(V ), and conjunctions over clock and variable constraints. Updates. A clock
update is of the form x := 0. A variable update is of the form v := c where
c ∈ R. The set U(X,V ) of updates contains all finite, possibly empty sequences
of clock and variable updates. We let JrνK : V(X) ∪ V(V ) → V(X) ∪ V(V ) be
a map from valuations to valuations. We use µ[r] to denote the updated clock
valuation JrK(µ). Analogously, for variable valuations. Channels. Given a set C
of channels, the set H(C) of synchronizations over channels is {h!, h?, τ} where
h ∈ C, and τ represents an internal action.

Definition 1 (Extended Timed Automata XTA). An extended timed au-
tomaton A is a tuple (L,Lu, Lf , lini, X, V,H(C), E, I) where: L is a set of lo-
cations, Lu ⊆ L denotes the set of urgent locations, Lf ⊆ L denotes the set of
accepting locations, lini ∈ L is the initial location, X is a set of clocks, V is a set
of variables, H(C) is a set of channel synchronizations for set of channels C,
E ⊆ L×H(C)×B(X)×B(V )×U(X,V )×L is a set of edges between locations
with a channel expressions, a clock guard, a variable guard, an update set, and
I : L→ B(X) assigns clock invariants to locations.

Definition 2 (Network of XTA). A network N of XTA consists of a finite

sequence A1, . . . ,An of XTA, where Ai = (Li, L
u
i , L

f
i , l

ini
i , Xi, Vi, H(C)i, Ei, Ii)
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for 1 ≤ i ≤ n. Locations are pairwise disjoint i.e. Li∩Lj = ∅ for 1 ≤ i, j ≤ n and
i ̸= j. The set of locations is L = ∪n

i=1Li, analogously for urgent Lu locations.
The set of clocks is X =

⋃n
i=1Xi and the set of variables is V = ∪n

i=1Vi. The set
of channel expressions is H(C) = ∪n

i=1H(C)i. The set of edges is E = ∪n
i=1Ei.

A location vector is a vector l⃗ = (l1, . . . , ln), and l⃗0 = (l01, . . . , l
0
n) is the initial

location vector. The invariant function over location vectors is I (⃗l) =
∧

i Ii(li).

We write l⃗[l′i/li] to denote the vector where the i-th element li of l⃗ is replaced

by l′i. We write l⃗i to denote the i-th element of l⃗. We write l⃗ini to denote the

vector where for all 1 ≤ i ≤ n we have l⃗iini = linii .

Definition 3 (Semantics of a Network of XTA). Let N = A1, . . . ,An be a
network of TA. Its semantics is defined as a transition system (S, s0,−→), where
S ⊆ (L1 × · · · × Ln) × V(X) × V(V ) is the set of states comprising a location

vector, a zone, and a variable valuation, sini = (⃗lini, µini, νini) is the initial state,
and −→⊆ S × (R≥0 ∪ 2E)× S is the transition relation defined by:

– Delay transition, (⃗l, µ, ν)
d−→ (⃗l, µ + d, ν) iff l⃗i ̸∈ Lu

i for 1 ≤ i ≤ n, d ∈ R≥0

and µ+ d′ |= I (⃗l) holds for all d′ ∈ [0, d].

– Internal transition, (⃗l, µ, ν)
{ei}−−−→ (⃗l[l′i/li], µ

′, ν′) iff exits ei = (li, τ, ϕ, ψ, r, l
′
i) ∈

Ei with µ
′ = µ[r], µ′ |= I (⃗l[l′i/li]), ν

′ = ν[r], and ν |= ψ.

– Broadcast transition, (⃗l, µ, ν)
E′

−→ (⃗l′, µ′, ν′) iff E′ = {e, e1, e2, . . . , em} ⊆ E,
|E′| > 1, and E′ is such that e = (l, h!, ϕ, ψ, r, l′) is a sender and for 1 ≤ i ≤
m ei = (li, h?, ϕi, ψi, ri, l

′
i) is a receiver. Where

• edges e, e1, e2, . . . , em are from different components,
• e1, e2, . . . , em are ordered according the component ordering A1, . . . ,An,
• l⃗′ = l⃗[l/l′][l′1/l1] . . . [l

′
m/lm],

• µ |= ϕ and for 1 ≤ i ≤ m µ |= ϕi, µ
′ = µ[r][r1] . . . [rm], µ′ |= I (⃗l′),

• ν |= ψ and for 1 ≤ i ≤ m ν |= ψi, ν
′ = ν[r][r1] . . . [rm].

Additional Notation In the following, we are given a network of TA N =
A1, . . . ,An with locations L, clocks X, variables V , edges E, and induced sym-
bolic transition system (S, s0,−→). Given state s = (⃗l, µ, ν) ∈ S we use l⃗(s) = l⃗,
µ(s) = µ, ν(s) = ν to denote the location vector, clock valuation, and vari-

able valuation of s. A finite run ρ of N is a finite sequence ρ = (⃗l0, µ0, ν0)
λ0−→

(⃗l1, µ1ν1)
λ1−→ . . .

λn−1−−−→ (⃗ln, µn, νn). An accepting run is a run starting from the
initial configuration sini and terminating at state s such that for all 1 ≤ i ≤ n,
l⃗(s)i ∈ Lf

i i.e. all locations in l⃗ are accepting locations. Network N is accepting
if there exists an accepting run.

A state s ∈ S is zero time if it can not delay, denoted by zt(s) and defined

by zt(s) iff ∀s′ ∈ S, λ ∈ R≥0 ∪ 2E . s
λ−→ s′ =⇒ λ ∈ 2E . We write s0 −→∗ sn iff

exists run s0
λ0−→ s1

λ1−→ s1 . . . sn. We write s0 −→zt
∗ sn iff exists run s0

λ0−→ s1
λ1−→

s1 . . . sn such that λi ∈ 2E and if n > 0 we have zt(si) for 0 ≤ i < n.
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Fig. 2: Heating and ventilation in Thomas Manns vej 23. in Aalborg Uni-
versity. Red rectangles at the bottom indicates the matches of the ETRE
⟨(80heat20 )∗⟩[3600s,7200s]∩⟨(60vent40 )∗⟩[3600s,7200s]. This are instances where the heater
and the ventilator are ON at the same time for a period between 1 to 2 hours.

Time-additivity. For any d1, d2 ∈ R≥0, s, s
′ ∈ S it holds that s

d1−→ · d2−→ s′

iff s
d1+d2−−−−→ s′ Given any run we can use time-additivity to produce a run which

consists of alternations of delays and discrete transitions. We denote such runs
as runs closed under time-additivity.

3 Extended Timed Regular Expressions (ETRE)

Our intention is to extend the applicability of Timed Regular Expressions to
the context of time series data and to industrial applications involving large
magnitudes of data. First we use timed words to formalize time series data.
Then we define ETRE by keeping in mind the nature of time series data and
computational efficiency. We describe timed words and Extended Timed Regular
Expressions in the spirit of [4].

3.1 Timed Words

A monoid is a triple (M, ·, ϵ) whereM is a set, · is an associative binary operation
on M and ϵ is the identity element of M satisfying ϵ ·m = m · ϵ = m for every
m ∈ M . Time passage is described by the time monoid (R≥0,+, 0) of positive
real numbers under addition. Events are described by the event monoid (Σ,+,0)
of vectors Σ ⊆ Rn under vector addition. As described in [4] the time-event
monoid T = (R≥0 ⊎ Σ, ·, ε) is obtained as the free product of the time and
event monoids, where · is concatenation and ε is the empty word. A timed word
w = t0 ·a0 · t1 ·a1 · . . ., is an element of the time-event monoid with ti ∈ R>0 and
ai ∈ Σ for i > 0. Given timed word w its duration is given by dur(w) ∈ R≥0.
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Figure 1a shows a finite timed word on a single dimension i.e. Σ = R1.
Figure 2 shows a finite timed word on two dimensions. Dimensions correspond
to the valve position for the heating and the ventilation of a room in a building
at Aalborg University. Our goal is to define and match complex patterns in time
series data, for this we define Extended Timed Regular Expressions.

Definition 4 (Extended Timed Regular Expressions (ETRE)). The set
E of ETRE is given by the following grammar:

φ ::= ϕ | φ ∩ φ
ϕ ::= ε | ciδ | Σ | ⟨f iδ⟩J | ϕ ∪ ϕ | ϕ · ϕ | ϕ+ | ϕ∗ | ⟨ϕ⟩J

where c ∈ R, 0 ≤ i < n, δ ∈ R≥0, J is an integer-bounded interval, and f is a
real-valued computable function.

Definition 4 is similar to that given in [4]. The main differences include, events
are vectors in Rn, we include functions, and intersections are only allowed at the
top level. Restriction on intersections is to avoid the expensive automata product
construction (allowing nesting of intersections would not affect our theoretical
results). Instead, intersections will be translated to networks of XTA which will
be explored on the fly.

Definition 5 (ETRE semantics). The semantics of a regular expression φ is
given by a set of elements of the time-event monoid. Formally, JK : E → 2T .

JεK = {ε}
JciδK = {r · (a0, . . . , an) | r ∈ R≥0, a

i ∈ [c− δ, c+ δ], ak ∈ R for k ̸= i}
JΣK = {r · (a0, . . . , an) | r ∈ R≥0, a

i ∈ R}
J⟨f iδ⟩[d1,d2]K = {w | w = t0 · a0 · . . . · tm · am with dur(w0:m−1) < d1,

dur(w) ∈ [d1, d2], and for 0 ≤ j ≤ m and k ̸= i we have
0 < tj , a

k
j ∈ R, aij ∈ [f (dur(w0:j))− δ, f (dur(w0:j)) + δ]}

Jϕ1 · ϕ2K = Jϕ1K · Jϕ2K
Jϕ1 ∪ ϕ2K = Jϕ1K ∪ Jϕ2K
J⟨ϕ⟩JK = JϕK ∩ {w | dur(w) ∈ J}
Jϕ∗K =

⋃∞
i=0(Jϕ · . . . · ϕ︸ ︷︷ ︸

i times

K)

Jϕ+K = ϕ · ϕ∗
Jφ1 ∩ φ2K = Jφ1K ∩ Jφ2K

As an example consider the ETRE ⟨fMLII
δ=0.38⟩[d1=0.039s,d2=0.045s] we use MLII

instead of 1 for readability. The function f is a 7th degree polynomial as illus-
trated by the dashed line in Figure 1b. The semantics of this expression is the
set of timed words inside the tube induced by f and δ with duration in the inter-
val [d1, d2]. The semantics of the more complex expression ⟨fMLII

0.38 ⟩[0.039s,0.045s] ·
⟨Σ∗⟩[0.47s,0.67s]·⟨fMLII

0.38 ⟩[0.039s,0.045s] is the set of timed words in ⟨fMLII
0.38 ⟩[0.039s,0.045s]

concatenated with any word (Σ∗) with duration in [0.47s, 0.67s] followed by
timed words in ⟨fMLII

0.38 ⟩[0.039s,0.045s]. This set of timed words hint to a QRS com-
plex followed by another QRS complex too early, a sign of arrhythmia.
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l0

x ≤ t0

l1

x ≤ t1

. . . lm

x ≤ tm

lm+1

va1 := a1
0

. . .
van := an

0
x := 0

h!
x >= t0

va1 := a1
1

. . .
van := an

1
x := 0

h!
x >= t1

va1 := a1
m−1

. . .
van := an

m−1
x := 0

h!
x >= tm−1

va1 := a1
m

. . .
van := an

m
x := 0

h!
x >= t1

Fig. 3: XTA Aw for timed word w = t0 · a0 · t1 · a1 · t2 · a2 · . . . tm · am

As another example consider ETRE ⟨(80heat20 )∗⟩[1h,2h]∩⟨(60vent40 )∗⟩[1h,2h] from
Figure 2. The semantics of the ETRE ⟨(80heat20 )∗⟩[1h,2h] is the set of all timed
words with value 80± 20 in the dimension heat with duration between 1 and 2
hours. This ETRE indicate that the heater has been ON for the given duration.
An intersection with the set ⟨(60vent40 )∗⟩[1h,2h] indicates that both heater and
ventilation have been ON for the duration. Note that computing matches for
every conjunt independently, will require to merge the results while satisfying
the time constraints. Table 1 shows a number of ETRE used in our case studies.

4 Timed Word Membership for ETRE

The work in [4] shows the language equivalence between Timed Regular Expres-
sions and Timed Automata. The expressiveness of ETRE goes beyond that of
Timed Automata. However, we are interested in matching patterns in finite time
series data (finite timed words) i.e. given a finite timed word w with non-zero
delays and ETRE φ we need to decide if w ∈ JφK. We show that we can decide
this problem by translating w and φ to a network of XTA, and then checking if
the resulting network is accepting.

Definition 6 (XTA for a word). Given non-empty finite word w = t0 ·
a0 · t1 · a1 · . . . tm · am with ti > 0 the corresponding XTA is given by Aw =
(L, ∅, Lf , l0, {x̂, x}, {va1, . . . , van}, H(C), E, I) where: L = {l0, . . . , lm+1}, C =
{h}, E = {(lj , h!, x ≥ tj , true, [va0 := a0j , . . . van := anj , x := 0], lj+1) | 0 ≤ j ≤
m}, I(lj) = x ≤ tj for 0 ≤ j ≤ m and I(lm+1) = true.

Figure 3 describesAw. The automaton for the empty word ε is the automaton
consisting of a unique location which is initial and accepting. Given ETRE φ the
next step is to construct a network of XTA Nφ which accepts and produces finite
words in φ. Note that Aw will generate inputs on which Nφ will synchronize.
We carefully design Nφ to be input enabled by using urgent locations.

Definition 7 (Network of XTA for an ETRE). Given ETRE φ the corre-
sponding network Nφ = A1, . . . ,An with channel C = {h} is defined inductively
as follows. The network for φ ≡ ϕ consist of a single automaton given by:

– ϕ ≡ ε then Aε = ({l0, l1}, {l0}, {l1}, l0, ∅, ∅, H(C), E, I) where E = {(l0, τ,
true, true, [], l1)} and I(l) = true for l ∈ {l0, l1}.
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– ϕ ≡ ciδ then Aϕ = (L, {l1}, {l2}, l0, ∅, {vai}, H(C), E, I) where L = {l0, l1, l2},
E = {(l0, h?, true, true, l1), (l1, τ, true, c − δ ≤ vai ≤ c + δ, [], l2)} and I(l) =
true for l ∈ {l0, l1, l2}.

– ϕ ≡ Σ then Aϕ = (L, {l1}, {l2}, l0, ∅, ∅, H(C), E, I) where L = {l0, l1, l2},
E = {(l0, h?, true, true, l1), (l1, τ, true, true, [], l2)} and I(l) = true for l ∈
{l0, l1, l2}.

– ϕ ≡ ⟨f iδ⟩[d1,d2] then Aϕ = (L, {l1},{l2},l0,{x},{vai, δ, f, d1, d2}, H(C), E, I),
L = {l0, l1, l2}, I(l) = true for l ∈ L, and E = { (l0, h?, true, true, [], l1),(l1, τ,
x < d1, f(x)− δ ≤ vai ≤ f(x) + δ, [], l0),(l1, τ, d1 ≤ x ≤ d2, f(x)− δ ≤ vai ≤
f(x) + δ, [], l2)}.

– ϕ ≡ ϕ1 ·ϕ2 then Aϕ = (L,Lu, Lf
2 , l

ini
1 , X1∪X2, V1∪V2, H(C), E′∪E2, I1∪I2)

where E′ is obtained from E1 by replacing every edge of the form (l, α, ϕ, ψ, r, l′)

with l′ ∈ Lf
1 by an edge (l, α, ϕ, ψ, r′, lini2 ) where r′ appends to r reset x := 0

for every clock x ∈ X2, L = (L1 \ Lf
1 ) ∪ L2, and L

u = (Lu
1 \ Lf

1 ) ∪ Lu
2 .

– ϕ ≡ ϕ1 ∪ϕ2 then Aϕ = (L1 ∪L2 ∪{l}, Lu
1 ∪Lu

2 ∪{l}, Lf
1 ∪L

f
2 , l, X1 ∪X2, V1 ∪

V2, H(C), E′ ∪ E1 ∪ E2, I) where E′ = {(l, τ, true, true, [], linii ) | 1 ≤ i ≤ 2}
and I = I1 ∪ I2 ∪ {(l, true)}.

– ϕ ≡ ϕ+1 then Aϕ = (L1, L
u
1 , L

f
1 , l

ini
1 , X1, V1, H(C), E1 ∪ E′, I1) where E′ is

obtained by adding for every edge (l′, α, ϕ, ψ, r, lf ) in E1 with lf ∈ Lf
1 an

edge of the form (l′, α, ϕ, ψ, r′, lini1 ). Where r′ appends to r reset x := 0 for
every clock x ∈ X1.

– ϕ ≡ ϕ∗1 then Aε∪ϕ+
1
results of the union of ε ∪ ϕ+1 .

– ϕ ≡ ⟨ϕ1⟩[d1,d2] then Aϕ = (L1, L
u
1 , L

f
1 , l

ini
1 , X1 ∪ {x}, V1, H(C), E, I) where E

is obtained from E1 by replacing every edge of the form (l′, α, ϕ, ψ, r, lf ) ∈ E1

where lf ∈ Lf
1 with an edge (l′, α, ϕ ∧ d1 ≤ x ≤ d2, ψ, r, lf ).

The network for φ ≡ φ1∩φ2 consists of the automata in the network for φ1 and
in the network for φ2.

Figure 4 illustrates our construction. Note that some locations can delay
“wait” for inputs in channel h. We call such locations input locations.

Definition 8 (Input Locations). Given network with locations L and edges
E. Location l is an input location iff exists edge (l, h?, ϕ, ψ, r, l′) in E.

The network Nφ has a number of syntactic structural invariants. These in-
variants are key to our results, proofs, and algorithms.

Lemma 1. Given ETRE φ and the induced network Nφ = A1, . . . ,An. Then
the network Nφ has the following structural invariants:

1. Initial locations are not accepting locations.
2. Accepting locations have no outgoing edges.
3. Input locations have a unique outgoing edge e. The destination location of e

is not an accepting or input location.
4. For any location l. Location l is not urgent iff l is accepting or l is an input

location.
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l0

∈ Lu

l1

(a) φ ≡ ε

l0 l1

∈ Lu

l2
h? c− δ ≤ vai ≤ c+ δ

(b) φ ≡ ciδ

l0 l1

∈ Lu

l2
h?

d1 < x∧
f(x)−δ ≤ vai ≤ f(x)+δ

d1 ≤ x ≤ d2∧
f(x)−δ ≤ vai ≤ f(x)+δ

(c) φ ≡ ⟨f i
δ⟩[d1,d2]

Aφ1

Aφ2

X2 := 0

X2 := 0

(d) φ ≡ φ1 · φ2

Aφ1

Aφ2

∈ Lu

(e) φ ≡ φ1 ∪ φ2

Aφ1

X1 := 0

X1 := 0

(f) φ ≡ φ+
1

Fig. 4: XTA for ETRE

Given a finite timed word w Lemma 1 implies that accepting runs of the
network including Aw and the automata in Nφ have a particular form. Infor-
mally, Aw delays and send an input, then Nφ consumes the input and urgently
(a sequence −→zt

∗) checks if the corresponding prefix of w is inside JφK.

Lemma 2. Given finite timed word w = t0 · a0 · t1 · a1 · . . . · tm · am, ETRE φ,
induced network Aw,A1, . . . ,An, and closed under time-additivity accepting run
ρ. Then ρ is of the form:

sini −→zt
∗ s0

t0−→ ·
Ea0−−−→ s′0 −→zt

∗ s1
t1−→ ·

Ea1−−−→ s′1 −→zt
∗ . . . −→∗ sm

tm−−→ ·
Eam−−−→ s′m −→zt

∗ sm+1

where Eai ⊆ 2E for 0 ≤ i ≤ m is the set of edges participating in the broadcast
induced by the edge going from li to li+1 in Aw.

Lemma 2 implies that for accepting runs, the only possible delays (closed
under time-additivity) are the ones in Aw. This will allow us to implement
an efficient discrete-time engine avoiding the expensive difference-bound matri-
ces (DBM) operations. Note, that Lemma 2 indicates that there can be urgent
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behavior from the initial state before automaton Aw has updated the shared
variables va and sent a synchronization. If an operation e.g. concatenation of
φ1 ·φ2 is applied, the variable valuation after executing Aφ1

will differ from the
initial valuation for Aφ2

and could potentially block Aφ2
. The following lemma

ensures that the initial urgent behavior can not be blocked by variable guards.

Lemma 3. Let sini
u−→zt s0 be a prefix of an accepting run with u ∈ (E1∪· · ·∪En)

∗.
For any edge ui = (l, α, ϕ, ψ, r, l′) in u the variable guard ψ is true.

In the following we are given a finite timed word w and ETRE φ. We use
Nw

φ to denote the network Aw,A1, . . . ,An.

Lemma 4. Given finite timed word w. If w ∈ JφK then Nw
φ is accepting.

Lemma 5. Given finite timed word w. If Nw
φ is accepting then w ∈ JφK.

The proofs are quite technical and long. Detailed proofs for all the lemmas
and theorems can be found in the extended version of this paper. Informally,
for the above lemmas. We apply Lemma 2 and use structural induction on φ.
For the case when φ ≡ ϕ we use induction on the length of w (accepting run ρ
respectively). For the case when φ ≡ φ1 ∩φ2 we use the structural I.H. together
with the fact that after receiving an input from Aw, the actions in automata φ1,
φ2 are urgent and commute (only read shared variables). The following theorem
indicates that we can perform a reachability analysis in Nw

φ to decide if w ∈ JφK.

Theorem 1. Given finite timed word w then w ∈ JφK iff Nw
φ is accepting.

5 Timed Pattern Matching with ETRE

Our goal is to efficiently match complex timed patterns described as an ETRE
in time series data. An additional step is to transform a given time series into a
timed word. This can be easily done by replacing the time stamps in the data by
the induced delays. We require that the delays are not 0. Note that in [19] timed
pattern matching returns a match set with uncountably many points where the
expression matches. In contrast our algorithm will only return the start (and
stop) indexes of the first sub-word that matches the expression. Our pattern
matching method is described in Algorithm 1 presented in the spirit of [9]. For
illustration purposes and clarity Line 1 ask to compute Aw. As expected our
implementation will not construct Aw but only inject the events and delays
from w. Our implementation supports injection of events online (run time) and
off-line for e.g. post processing.

Our method exploits the form of the runs as described in Lemma 2. The
lemma indicates that there is an alternation among non-urgent and urgent be-
havior. For this reason, after delaying and injecting an event, Algorithm 1 calls
Algorithm 2 for urgent exploration in Line 8 (or if the initial state is urgent
Line 2). Algorithm 2, is the well known reachability algorithm for model check-
ing. An invariant of this algorithm is that all the states in the waiting listWzt are
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Algorithm 1 Timed Pattern Matching for ETRE using XTA

Input Word w = t0 · a0 . . . tm · am, ETRE φ.
Output First position k with w0:k ∈ JφK, or ⊥ if no match exists.

1: compute Aw,A1, . . . ,An from φ using Definition 7
2: if zt(sini) then W := UrgentExploration(sini)
3: else W := {sini}
4: for k = 0 to m do
5: W ′ := ∅
6: for all s ∈ W do
7: if s is accepting for A1, . . . ,An then return k

8: if exists s′ with s
tk−→ · E′

−→ s′ then W ′ := W ′ ∪UrgentExploration(s′)

9: W := W ′

10: if exists s ∈ W s.t. s is accepting for A1, . . . ,An then return m

11: return ⊥

Algorithm 2 UrgentExploration(s)

Input urgent state s
Output a pair with a set with non urgent states and a boolean indicating if an ac-
cepting state was found

1: Wzt := {s}, P := ∅, W¬zt := ∅
2: while Wzt ̸= ∅ do
3: pick s ∈ Wzt, Wzt := Wzt \ {s}
4: if s ∈ P then continue

5: P := P ∪ {s}
6: compute stubborn set St(s)
7: Succs := {s′ | ∃i ∈ {1, . . . , n}, e ∈ Ei.s

e−→ s′ and {e} ∈ St(s)}
8: for all s ∈ Succs do
9: if zt(s) then Wzt := Wzt ∪ {s}
10: else W¬zt := W¬zt ∪ {s}
11: return W¬zt

urgent. In addition, since automata A1, . . . ,An do not share clocks and only read
shared variables (they are independent) it is an ideal scenario for application of
urgent partial order reduction techniques [12] Line 6.

The intuition for the correctness of our method is as follows. Algorithm 1
simulates w in the network Nφ. If Line 7 returns k then all locations in Nφ

are accepting. From the algorithm execution we can construct an accepting run
indicating that Nw[0:k]

φ is accepting. By Lemma 5 we have that w[0:k] ∈ JφK.
In the case where w[0:k] ∈ JφK for the first k. By Lemma 4, we have that exits
accepting run ρ in Aw[0:k]

,A1, . . . ,An. By Lemma 2 we have the form of ρ and we
can easily see that the algorithm can execute ρ (or equivalent if POR is applied).

Theorem 2 (Total Correctness). Given w = t0 · a0 . . . tm · am and ETRE
φ. Algorithm 1 terminates and if Algorithm 1 returns k ≥ 0 then w[0:k] ∈ JφK
otherwise w ̸∈ JφK.
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Table 1: ETRE expressions for case studies.

Property ETRE

qrs-constδ 1MLII
δ

qrs-const-verifyδ qrs-constδ ∩ (1annot0.1 ∪ −0.5annot0.1 )

early-constδ qrs-constδ · ⟨Σ∗⟩[0.04s,0.65s] · qrs-constδ
early-const-verify early-constδ ∩ ⟨Σ∗⟩[0.47s,0.77s] · 1.0annot0.1 · ⟨Σ∗⟩[0,03s]
qrs-funcδ ⟨fMLII

δ ⟩[0.039s,0.045s]
qrs-func-verifyδ qrs-funcδ ∩ (⟨Σ∗⟩[0s,0.45s] · 1annot0.1 ∪ −0.5annot0.1 · ⟨Σ∗⟩[0,03s])

early-funcδ qrs-funcδ · ⟨Σ∗⟩[0.47s,0.67s] · qrs-funcδ
early-func-verifyδ early-funcδ ∩ ⟨Σ∗⟩[0.47s,0.77s] · 1annot0.1 · ⟨Σ∗⟩[0s,0.03s]

sto-gates-closedδ 300havn270 ∩ 77portδ

sto-safe-fjord-ubδ 50fjordδ

sto-close-diff (−200diff100 ∪ 200diff100) ∩ 51port50

sto-water-levelsδ 0diff25 ∩ 0portδ

tmv-energyJ ⟨(80heat20 )∗⟩J ∩ ⟨(60vent40 )∗⟩J

tmv-solarJ ⟨(f(t) = 268.2 + 0.1t)solar100 ⟩J

6 Evaluation

We have implemented our theory using C++ in the tool TimeRex. Our tool
supports both online (run time) and offline pattern matching. The online ver-
sion uses C++20 coroutines and ranges to compose lazy reading from a JSON-
formatted stream of records, parsing and matching, and a buffer to store the
passed records for a limited backtracking. Our tool includes a simple python
GUI to enter ETRE and visualize the matches in the corresponding data. We
run our experiments using a HPC cluster with AMD EPYC 9334 CPUs. For
every experiment we allocate a single CPU with 10GB or RAM. Table 2 gives
information on the time series data for each case study.

6.1 Arrhythmia

We consider the PhysionNet MIT-BIH Arrhythmia Database [10] 1. We analyze
the data for patient 100 which contains 650000 samples and 2274 annotations.
Annotations classify ventricular myocardial depolarization called the QRS com-
plex as normal (value -0.5) and arrhythmia (value 1). From the 2274 annotations

1 https://physionet.org/content/mitdb/1.0.0/

https://physionet.org/content/mitdb/1.0.0/
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33 are classified as arrhythmia. We use ETRE to approximate the QRS complex,
and arrhythmia. Table 1 presents the ETRE we use for matching and Table 2a
presents our results. We briefly describe the properties:

1. qrs-constδ approximates a QRS complex using the constant 1 (a peak) on
the dimension MLII.

2. qrs-const-verifyδ verifies qrs-constδ by checking (the second conjunct) that
the corresponding annotation is either normal -0.5 or arrhythmia 1.

3. early-constδ approximates arrhythmia by matching a peak qrs-constδ followed
by any value (Σ) in the given interval and then followed by another peak.

4. early-const-verify verifies early-constδ by checking that during the duration of
early-constδ the value 1 appears in the annotation.

5. qrs-funcδ approximates a QRS complex using ETRE ⟨fMLII
δ ⟩[0.039s,0.045s]

where function f is a 7th degree polynomial illustrated in Figure 1b.
6. qrs-func-verifyδ verifies qrs-funcδ by checking that during the duration of

qrs-func-verifyδ values -0.5 or 1 appear in the annotation signal.
7. early-funcδ approximates arrhythmia by matching a QRS complex (using

qrs-funcδ) followed by any sequence of values with a duration between 0.47
to 0.67 seconds and then followed by another QRS complex. Figure 1a shows
a match for this expression when δ = 0.38.

8. early-func-verifyδ verifies early-funcδ by checking that during the duration of
early-funcδ the value 1 appears in the annotation.

Table 2a presents our results of matching the ETRE described above for dif-
ferent δ values. We observe that execution times are below 2 minutes (we consider
it fast given the number of samples), even in the presence of Σ∗ which might
cause a quadratic number of calls (in the number of samples) to Algorithm 1.

Consider early-const0.4 with 177 matches of which 155 were also annotated
qrs-const-verify0.4. Remember that there is a total of 33 arrhythmia annotations.
A visual inspection shows that there are repetitions (an arrhythmia detected
more than once). We also observe that 1 arrhythmia annotation is not matched
and few QRS complex are matched but not annotated as arrhythmia. We obtain
a similar result with expression early-func. However, with few more false positives
in a period where the heart rate of the patient is slightly higher. Note that the
duration of the unconstrained time word (Σ∗) in early-const an in early-func
is different and has a big impact in the matches. We report that finding the
appropriate ETRE and their parameters such as δ or duration is involved and
can greatly affect the number of matches.

6.2 Storm Surge Barriers

The data comes from sea water gates provided by Danish Coastal Authorities2

through Storm Safe project3. The gate installation consists of 14 identical
gates at Hvide Sande harbor controlling the flow of water between North Sea
and Ringkøbing fjord, with the following objectives:

2 https://kyst.dk/hav-og-anlaeg/maalinger-og-data/
3 https://www.interregnorthsea.eu/stormsafe

https://kyst.dk/hav-og-anlaeg/maalinger-og-data/
https://www.interregnorthsea.eu/stormsafe
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Fig. 5: early-const0.4 missing one arrhythmia and matching one non annotated.

1. Protect the fjord coasts from North Sea storms: all gates must be closed
during storms. Query for finding counter examples: sto-gates-closedδ.

2. Protect the fjord coasts from (precipitation and melting snow) floods by
letting the fjord water out into North Sea and maintain the water levels
below 25cm. Counter example query: sto-safe-fjord-ubδ.

3. Protect the installation and harbor navigation from strong water currents
by allowing the gates to open only if the difference between sea and fjord
water levels is less than 100cm. Counter example query: sto-close-diff.

4. Support the fish migration by opening all gates when the sea and fjord levels
are the same. Counter example query: sto-water-levelsδ.

The prepared data consists of a time series of: timestamp, North Sea water
level, Ringkøbing fjord level (both at Hvide Sande harbor), state of each gate
(0cm means fully closed, 550cm means fully open) and a reason behind the
gate control command. The water levels are sampled every 10 minutes from a
4 minute running average and the gate state changes according to the control
commands.

The algorithm has detected tens of thousands of requirement violations over
the 14 years worth of data (see Table 2b). The violations were minor, stemming
from underestimating the storm magnitude (e.g. sea water levels exceeding the
fjord levels just a little above 1m, and/or operator closing the last fish water
passage right after the sea levels were reported above the limit), making the tool
useful for both local operator alerts and monitoring transparency. Even though
the log files contain millions of records (hundreds of megabytes) the memory
consumption stays very limited (up to 5.7MB), which makes the tool suitable
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for embedded platforms, responsible for safe and autonomous operations close
to the physical gates.

6.3 Smart Building

As example we consider the time series data from the AAU Civil Engineering
building (Thomas Manns Vej 23, Aalborg). The building is highly automated
and provides interfaces for automatic control of e.g. blinds, heaters, ventilation,
etc. In spite of the buildings high level of automation, current controllers are not
collaborative and energy consumption or user comfort can be improved.

1. tmv-energyJ identifies instances where the heater and the ventilation (cool-
ing) are open (about 80% or 60%) simultaneously for a duration in the
interval J seconds.

2. tmv-solarJ matches when the solar radiation is increasing according to a first
degree polynomial for a duration in the interval J , this information can be
used to control the automatic blinds to improve user comfort.

Table 2c shows the number of matches, time and memory usage for both
ETRE. There are 23360 data points, memory usage is below 6Mb and computing
times below 3 seconds. Figure 2 shows some matches for tmv-energyJ . For every
sample, our implementation only returns the start and stop indexes of the first
match. However, we observe that many consecutive matches are found. While
not incorrect it can be redundant. In deed, it would be interesting to apply
parametric techniques e.g. [2,16] to find the maximal interval J where both the
heating and the cooling are active.

7 Discussion

We presented Extended Timed Regular Expressions (ETRE) which extend TRE
to the context of time series data. Events are vectors over signals. We present
a sound and complete translation for finite words from ETRE to Timed Au-
tomata. We have implemented our approach in the tool TimeRex. We conduct
experiments on 3 case studies with real world time series data. Our experiments
are encouraging with fast execution times for complex ETRE in large time se-
ries data. We observe that finding the appropriate ETRE which contains several
parameters e.g. for arrhythmia detection is complex task and requires domain ex-
pertise. Future work includes learning ETRE expressions, studying complement
of ETRE expressions, and studying automata based optimizations.

Acknowledgments. We thank MD. Ernesto Barrientos and DVM. Gonzalo
Malaga for their feedback on ECG and arrhythmia detection. We are also grate-
ful to Ole Skovsgaard Daniel and the rest of DCA team for explaining storm
barrier data and requirements. We thank the reviewers for their thorough and
constructive comments and suggestions.
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Table 2: ETRE experiments. Time in seconds. Memory usage for all experiments
with mean 5.5MB and standard deviation 0.158MB

(a) Arrhythmia.

δ ETRE Matches Time ETRE Matches Time

0.32

qrs-constδ

9545 1.7

qrs-const-verifyδ

2253 2.8
0.34 9918 1.7 2263 2.8
0.36 10274 1.8 2265 2.8
0.38 10591 1.8 2268 2.8
0.40 10875 1.8 2271 2.8
0.32

early-constδ

153 6.9

early-const-verifyδ

136 20.3
0.34 158 7.2 140 20.9
0.36 165 7.3 145 21.5
0.38 169 7.5 148 22.1
0.40 177 7.9 155 23.9
0.32

qrs-funcδ

2409 30.5

qrs-func-verifyδ

2409 109.4
0.34 2681 33.1 2681 118.6
0.36 2930 35.1 2930 126.7
0.38 3189 37.0 3189 133.4
0.40 3469 37.9 3469 136.1
0.32

early-funcδ

94 41.2

early-func-verifyδ

29 63.7
0.34 105 46.1 34 69.9
0.36 115 50.9 39 77.9
0.38 128 54.0 40 84.3
0.40 143 57.8 44 92.1

(b) Storm Surge Barriers.

δ ETRE Match Time

73

sto-gates-closed

39473 7.7
74 41049 7.5
75 144246 7.7
76 147210 7.7
20

sto-safe-fjord-ub

41429 7.2
21 45668 7.3
22 50116 7.3
23 55152 7.5
24 61829 7.2
25 68631 7.3
100 sto-close-diff 3074 8.9
0

sto-water-levels

72937 7.7
1 76733 7.7
2 214435 8.0
3 219446 8.0

(c) Thomas Manns Vej 23.

J in s. ETRE Match Time

[1800, 3600]

tmv-energyJ

172 2.7
[3600, 5400] 81 2.7
[5400, 7200] 43 2.7
[7200, 9000] 13 2.7
[300, 600]

tmv-solarJ

8142 2.5
[600, 900] 5648 2.7
[900, 1200] 3845 2.9
[1200, 1500] 2619 3.0

(d) Time series data for case studies.

Data Dimensions Size,MB Samples Annotations

Arrhythmia 3 60 650000 2274
Storm-safe 19 50 764572 –
TMV 23 13 23 23360 –
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A Proofs

Proof (Lemma 1). Given word w, ETRE φ and induced networkAw,A1, . . . ,An,
note that the Lemma only applies to Ai with i ∈ {1, . . . , n}. We continue by
structural induction on φ. Base case: φ ≡ ε, φ ≡ ciδ, φ ≡ Σ, φ ≡ ⟨f iδ⟩[d1,d2] with
induced network Aw,Aφ. A simple insepction in Aφ can show that it has the
desired structural invariants. Inductive step.

– φ ≡ ⟨φ1⟩[d1,d2]. With induced network Aw,Aφ where Aφ is obtained from
Aφ1

. By I.H. Aφ1
has the desired properties. Note that by Definition 7

locations, urgent locations, and accepting locations in Aφ are the same as in
Aφ1

. Further no edges were added or removed.
– φ ≡ φ1 · φ2. With induced network Aw,Aφ where Aφ is obtained from

Aφ1 ,Aφ2 . By I.H. Aφ1 , Aφ2 respectively L1, L2 have the desired structural

properties. Lemma 1 (1), clearly lini1 ̸∈ Lf
2 . Lemma 1 (2), holds because Lf =

Lf
2 and by I.H. Lf

2 has no outgoing edges. Lemma 1 (3), holds because E =
E′ ∪E2 where E′ has been obtained from E1 by redirecting the destination
of some edges to lini2 . This will not add outgoing edges for any location and

by I.H. lini2 ̸∈ Lf
2 . Note that since the redirected edges where pointint to a

location in Lini
1 . By I.H. the source of the edges where not input locations.

Lemma 1 (4). (⇒ direction) Note that by Definition 7 we have L ⊆ L1 ∪L2

because Lf
1 was removed. By I.H. L1∪L2 have the desired property and every

edge leading to a location in Lf
1 has been redirected to lini2 . We continue by

contradiction. Assume l ∈ L and l ̸∈ Lu and l is not an input location or
l ̸∈ L2

f . By I.H. l was either an input location or l ∈ L2
f . Note that redirecting

edges did not change (created, removed) input locations. In both cases we get
a contradiction. Therefore we can conclude that Aφ has the desired property.
(⇐ direction) Holds from the I.H. and the fact that no location was changed
fron non urgent to urgent.

– φ ≡ φ1 ∪ φ2. With induced network Aw,Aφ where Aφ is obtained from
Aφ1 ,Aφ2 . By I.H. Aφ1 , Aφ2 have the desired structural properties. property.
Definition 7 we have L = {l} ∪L1 ∪L2, E ⊇ E1 ∪E2, l ∈ Lu. Lemma 1 (1),

holds because the new initial location l ̸∈ Lf
1 ∪ Lf

2 . Lemma 1 (2) (3), holds
because l is nor accepting or input location. Lemma 1 (4), because of the
I.H. we only need to consider the new added location l.(⇒ direction) trivially
holds because l ∈ Lu. (⇐ direction) trivially holds because l is not accepting
nor an input location.

– φ ≡ φ1 ∩ φ2. With induced network Aw,Aφ1
,Aφ2

. By I.H. Aφ1
, Aφ2

have
the desired structural properties.

– φ ≡ φ+
1 then Nw

φ = Aw,Aφ. Lemma 1 (1), by I.H. we have lini1 ̸∈ Lf
1 .

Lemma 1 (2), By I.H. we have that Lf
1 has no outgoing edges. Further,

we have Lf = Lf
1 and the source locations of the added edges are not in Lf

1

(otherwise Lf
1 would have outgoing edges). Lemma 1 (3), we have E = E1∪E′

where E′ is obtained by adding for every edge (l′, α, ϕ, ψ, r, lf ) in E1 with

lf ∈ Lf
1 an edge of the form (l′, α, ϕ, ψ, r′, lini1 ). By I.H. we have that l′ is not
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an input location (because it leads to accepting location lf ). Therefore, the
new added edges do not affect any input location in L = L1. In particular the
added edges have no synchronizations (otherwise the source will be an input

location). Lemma 1 (4), holds by I.H. and because Lu = Lu
1 , L

f = Lf
1 , and

the added edges did not modify or creaded any input locations in L = L1.
– φ ≡ φ∗

1. We have Nw
φ = Aw,Aε∪φ+

1
where Aε∪φ+

1
is the union of Aε with

Aφ1 which has been proven above. ⊓⊔

Corollary 1. Given finite timed word w = t0 · a0 · . . . · tm · am, ETRE φ, in-

duced network Nw
φ , and closed under time-additivy accepting run s0

λ0−→ s1
λ1−→

. . .
λn−1−−−→ sn. If d0 . . . dk are the non-zero delays obtained from λ0 . . . λn−1 by

removing discrete transitions i.e. λi ∈ 2E. Then k = m and for i ∈ {0, . . . , k}
we have ti = di.

Proof (Corollary 1). Let ρ = s0
λ0−→ s1

λ1−→ . . .
λn−1−−−→ sn. We continue by induc-

tion on the length n of ρ. Base case |ρ| = 1. Then ρ = s, s is accepting and there
are no transitions. Inductive step |ρ| = n. Case λ0 ∈ 2E then by the induction
hypothesis d0, . . . , dk are the delays in λ1, . . . , λn−1 and ti = di, k = m for i ≤ k.
Case λ0 > 0, note that Aw is at location l0. We need to consider the following
cases:

– Case λ0 > t0. Then the invariant x ≤ t0 of l0 will be violated.
– Case λ0 < t0. Then since ρ can reach the accepting location. The guard
x ≥ t0 of the only outgoing edge has to be satisfied. Therefore we must have
for some j with v = λ0, . . . , λj induces delays d′0, . . . , d

′
k′ with Σk′

i=0d
′ = t0.

Assume there exist a discrete transition λi ∈ 2E with i < j. By Lemma 1
since it is possible to delay, every component is at an input or accepting
location. Accepting locations have no outgoing edges and λi can not be a
syncronization because Aw is at l0. Therefore v is a sequence of pure delays.
But this contradicts the assumption that ρ is closed unter timed additivity.
Thus this case is not possible.

– Case λ0 = t0. Then we have d0 = t0 and by I.H. we have d1, . . . , dk are the
delays in λ1, . . . , λn−1, ti = dk for 0 < i ≤ k, and m− 1 = k − 1. Therefore
we have d0, . . . , dk are the delays in λ0, . . . , λn−1 and m = k.

Proof (Lemma 2). We expand ρ using w showing that it has the desired form.

First let s0 to be the first state in ρ having a delay that is sini −→∗ s0
λ0−→ s.

Consider the following cases:

– sini = s0 then it trivially holds that sini −→zt
∗ s0

λ0−→ s

– sini ̸= s0 then we need to show sini
e0−→ s′′1

e1−→ . . . s′′2
e2−→ . . .

em−−→ s0 with zt(q)
for q ∈ {sini, s′′1 , . . . , s′′m}. Clearly at sini automaton Aw can not execute any
edge without doing a delay. Therefore, ei ∈ Ej for 0 ≤ i ≤ m and 1 ≤ j ≤ n
i.e. ei belongs to some automaton Aj for φ. Since accepting locations have
not outgoing egdes and input locations require synchorinzation from Aw.
By using Lemma 1 (4), we can conclude that the source locations for any ei

0 ≤ i ≤ m are urgent. Therefore we can conclude sini −→zt
∗ s0

λ0−→ s.
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At this point ρ has been expanded to sini −→zt
∗ s0

λ0−→ s. We need to show that
λ0 = t0. Consider the following cases:

– Case λ0 > t0. Then the invariant x ≤ t0 of l0 will be violated.

– Case λ0 < t0. Then since ρ can reach the accepting location. The guard
x ≥ t0 of the only outgoing edge has to be satisfied. Therefore we must have
for some j with v = λ0, . . . , λj induces delays d′0, . . . , d

′
k′ with Σk′

i=0d
′ = t0.

Assume there exist a discrete transition λi ∈ 2E with i < j. By Lemma 1
since it is possible to delay, every component is at an input or accepting
location. Accepting locations have no outgoing edges and λi can not be a
syncronization because Aw is at l0. Therefore v is a sequence of pure delays.
But this contradicts the assumption that ρ is closed unter timed additivity.
Thus this case is not possible.

– Case λ0 = t0. As desired an ρ has prefix sini −→zt
∗ s0

t0−→ s

At this point we have sini −→zt
∗ s0

t0−→ s and Aw is at location l0 with enabled
broadcast synchronization edge from l0 to l1. By semantics of XTA we have

sini −→zt
∗ s0

t0−→ ·
Ea0−−→ s′0. Note that since it was possible to delay t0 by Lemma 1

automata for φ are at input or accepting locations. If all locations in s′0 are
accepting we are done. Otherwise, some Ai was at an input location and syn-
chronized in Ea0 and s′0 has a location destination of an input location say
l ∈ Li by Lemma 1 that location is not an input location and not accept-
ing, and l ∈ Lu

i . Therefore, we can conclude zt(s′0). Therefore we can produce

sini −→zt
∗ s0

t0−→ ·
Ea0−−→ s′0 −→zt s′′0 . In particular, the same reasoning as the case

as when sini ̸= s0 and we need to show sini −→zt
∗ s0 can be used to conclude

sini −→zt
∗ s0

t0−→ ·
Ea0−−→ s′0 −→zt

∗ s1. The above described steps show how to expand
ρ for t0 ·a0. We can repeat the previously described steps for t1 ·a1 ·. . . tm ·am. ⊓⊔

Proof (Lemma 4). Given φ, the size of φ is given by number of sub-terms in φ.
We continue by induction the size k = |φ|. By assumption w ∈ JφK. k = 1

– φ ≡ ε. We have Nw
ε = Aw,Aε = A1,A2 where Aε has unique accepting loca-

tion, and Aε can execute the unique edge e ∈ Eε since it has no constraints.
Therefore Nw

ε can reach execute the accepting run (lini1 , l
ini
2 )

e−→ (lini1 , l) with

lini1 ∈ Lf
1 and l ∈ Lf

2 .

– φ ≡ ciδ. Since w ∈ JφK by Definition 5 we have w ∈ {r · (a0, . . . , an) | r ∈
R≥0, c−δ ≤ ai ≤ c+δ and ak ∈ R for k ̸= i}. Thus w is of the form r ·a with
r > 0. By Definition 7 we have Nw

φ = Aw,Aφ = A1,A2. With C = {h},
Aw = (L1, ∅, l11, l10, {x̂, x}, {va1, . . . , van}, H(C), E1, I1) with L1 = {l10, l11},
I(l10) = x ≤ r, and E1 = { e10 = (l10, h!, x ≥ r, true, [va0 := a0j , . . . van :=

anj , x := 0], l11). Further Aφ = (L2, {l21}, {l22}, l20, ∅, ∅, H(C), E2, I2) where

L2 = {l20, l21, l22}, E2 = {e20 = (l20, h?, true, true, l
2
1), e

2
1 = (l21, τ, true, c − δ ≤

vai ≤ c+ δ, [], l22)} and I2(l) = true for l ∈ {l20, l21, l22}. Then Nw
φ can execute

the following accepting run:
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delay r ((l10, l
2
0), µini, νini)

r−→ ((l10, l
2
0), µini + r, νini)

broadcast
{e10,e

2
0}−−−−−→ ((l11, l

2
1), x̂ = r ∧ x = 0, va0 = a0 ∧ · · · ∧ van = an)

accept
{e21}−−−→ ((l11, l

2
2), x̂ = r ∧ x = 0, va0 = a0 ∧ · · · ∧ van = an)

Note that guard c − δ ≤ vai ≤ c + δ of e21 is satisfied because vai = ai and
c− δ ≤ ai ≤ c+ δ.

– φ ≡ Σ. Similar as the case ciδ, but condition is weaker since there is no
variable guard in the edge going to accepting in Aφ.

– φ ≡ ⟨f iδ⟩[d1,d2]. Since w ∈ JφK by Definition 5 we have

w ∈ {w | w = t0 · a0 · . . . · tm · am with dur(w0:m−1) < d1,
dur(w) ∈ [d1, d2], tj > 0, akj ∈ R for k ̸= i, and
aij ∈ [f iδ(dur(w0:j))− δ, f iδ(dur(w0:j)) + δ]}

By Definition 7 we have Nw
φ = Aw,Aφ = A1,A2. With C = {h}, Aw

as given by Definition 6 but renaming edges by its component e.g. edge
e4 to e14 and Aφ as given by Definition 7 Aφ = (L, {l1}, {l2},l0,{x2},∅,
H(C), E, I) with L = {l0, l1, l2}, I(l) = true for l ∈ {l0, l1, l2} and E = {
e20 = (l0, h?, true, true, [], l1),e

2
1 = (l1, τ, x2 < d1, f(x2) − δ ≤ vai ≤ f(x2) +

δ, [], l0),e
2
2 = (l1, τ, d1 ≤ x2 ≤ d2, f(x2) − δ ≤ vai ≤ f(x2) + δ, [], l2) }. We

continue by induction on the length m = |w| of w. As I.H. let sini −→∗ s with
s = ((lm, l2), x̂ = dur(w0:m) = x2 ∧ x = 0, va = am).
Case |w| = 1 then w = t0 · a0 then the following run is a witness

delay t0 ((l10, l
2
0), µini, νini)

t0−→ ((l10, l
2
0), µini + t0, νini)

broadcast
{e11,e

2
0}−−−−−→ ((l11, l

2
1), x̂ = x2 = t0 ∧ x = 0, va = a0)

accept
{e22}−−−→ ((l11, l

2
2), x̂ = x2 = t0 ∧ x = 0, va = a0)

since dur(w) = t0 = x2 and dur(w) ∈ [d1, d2] by assumption.
Case |w| = m. By I.H. we have ρ ≡ sini −→∗ s with s = ((lm−1, l2), x̂ =
dur(w0:m−1) = x2 ∧ x = 0, va = am−1). By assumption dur(w0:m−1) < d1
then the guard x2 < d1 of edge e21 is satisfied and there is a transition

s
{e21}−−−→ s′ with s′ = ((lm−1, l

2
0), x̂ = dur(w0:m−1) = x2 ∧ x = 0, va = am−1).

The next steps are analogous to the base case.

Inductive step |φ| = k > 1.

– φ ≡ ⟨φ1⟩[d1,d2] then w ∈ JφK ∩ {a | dur(a) ∈ [d1, d2]}. Then by I.H we
have exists accepting run ρ1 in Aw,Aφ1

= A1,A2 with ρ1 = s0 −→∗ s′ =

((l1f , l
′), µ, ν)

ef−→ ((l1f , l
2
f ), µ1, ν1) with l2 ∈ Lf

2 . By Definition 7 Aφ is ob-

tained from Aφ1 = A2 as Aφ = (L2, L
u
2 , L

f
2 , l

ini
2 , X2 ∪ {x}, V2, H(C), E, I)

where E is obtained from E2 by replacing for every edge of the form (l′, α, ϕ,

ψ, r, lf ) ∈ E2 with lf ∈ Lf
2 a new edge (l′, α, ϕ ∧ d1 ≤ x ≤ d2, ψ, r, l), and

I = I1 ∪ {(l, true)}. Then edge ef in execution ρ1 has been replaced by edge
e′f = (l′, α, ϕ ∧ d1 ≤ x ≤ d2, ψ, r, l

2
f ) with µ |= ϕ and ν |= ψ. Since we have

that µ(x) = dur(w) and d1 ≤ dur(w) ≤ d2 the edge e
′
f is enabled at s′ and we

can produce an accepting run from ρ1 as follows s0 −→∗ s′
e′f−→ ((l1f , l

2
f ), µ1, ν1).
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– φ ≡ φ1 ·φ2. Then w ∈ Jφ1K · Jφ2K. Which implies w = w1 ·w2 with w1 ∈ Jφ1K
and w2 ∈ Jφ2K. By Definition 7 we have Nw

φ = Aw,Aφ. With C = {h}.
Aw is as given by Definition 6 from w = w1 · w2. By I.H. we have exists
accepting run ρ1 in Aw1

,Aφ1
and ρ2 in Aw2

,Aφ2
. We construct accepting

run ρ in Aw,Aφ from ρ1 and ρ2. Note that if φi ≡ ε then the run can be
trivially extended. Therefore, assume φi ̸= ε. Further, let Aφi be Ai with
Li etc. Then let w = t0 · a0 · . . . · ti · ai︸ ︷︷ ︸

w1

· ti+1 · ai+1 · . . . · tm · am︸ ︷︷ ︸
w2

and let ρ1 =

((l0, l
ini
1 ), µ1

ini, ν
1
ini)

u−→
∗
((li+1, l

1), µ1, ν1)
ef−→ ((li+1, l

f
1 ), µ

1′ , ν1
′
) and let ρ2 =

((li+1, l
ini
2 ), µ2

ini, ν
2
ini)

v−→
∗
((lf , lf ), µ2, ν2). By Definition 7 edge ef has added

edge e = (l1, α, ϕ, ψ, r, l2ini) with r resetting all clocks inX2 and clearly µ1 |= ϕ
and ν1 |= ψ. Then ρ can be constructed from the delay and edge transitions

in u, v in ρ1, ρ2 as follows: ρ = ((l0, l
ini), µini, νini)

u−→
∗
((li+1, l

1), µ, ν)
e−→

((li+1, l
ini
2 ), µ′, ν′)

v−→
∗
sf where locations in sf are accepting, µ′|A2

= µ2
ini

because edge e resets all clocks in X2. In addition Lemma 3 ensures that
there is no variable guard until a broadcast synchronization has occured.

– φ ≡ φ1 ∪ φ2. Then w ∈ Jφ1K ∪ Jφ2K. Definition 7 Nw
φ = Aw,Aφ with

Aφ = (L1 ∪ L2 ∪ {l}, Lu
1 ∪ Lu

2 ∪ {l}, Lf
1 ∪ Lf

2 , l, X1 ∪X2, V1 ∪ V2, H(C), E′ ∪
E1 ∪ E2, I1 ∪ I2) where E′ = {(l, τ, true, true, [], linii ) | 1 ≤ i ≤ 2}. W.l.o.g.
let w ∈ Jφ1K. By I.H. we have that Aw,Aφ1 have an accepting run ρ1 =

s1ini
u−→

∗
s1f . Definition 7 Aφ has added edge e = ((l, τ, true, true, [], lini1 )). Then

accepting run ρ can be constructed from ρ1 as follows:

((lini, l), µini, νini)
e−→ ((lini, l

ini
1 ), µini, νini)

u−→
∗
sf

where locations in sf are accepting locations.
– φ ≡ φ1 ∩ φ2. Then w ∈ Jφ1K ∩ Jφ2K. Definition 7 Nw

φ = Aw,Aφ1 ,Aφ2 .

By I.H. we have accepting runs ρi in Aw,Aφi
. We construct accepting run

ρ for Nw
φ from ρ1 and ρ2. We continue by lexicographic induction, let S =

{0, . . . , |ρ1|}×{0, . . . , |ρ2|} and ≼⊆ S×S. As I.H. have that for any (i, j) such
that ρ10 −→∗ ρ1i , ρ

2
0 −→∗ ρ2j with ρ1i = ((l0, l1, µ1, ν1)), ρ2j = ((l0, l2, µ2, ν2))

such that µ1(x̂) = µ2(x̂) there exists run ρ ≡ sini −→∗ ((l0, l1, l2), µ, ν) in Nw
φ

such that µ|Aw,A1
= µ1, µ|Aw,A2

= µ2, ν|Aw,A1
= ν1 and ν|Aw,A2

= ν2.
We show case (i, j). From Lemma 2 we have that ρ1i is of the form

s1ini −→zt
∗ s10

t0−→ ·
Ea0−−−→ s1

′
0 −→zt

∗ s1
t1−→ ·

Ea1−−−→ s1
′

1 −→zt
∗ . . . −→∗ s1i = ((l0, l1), µ1, ν1)

and ρ2 is of the form

s2ini −→zt
∗ s20

t0−→ ·
Ea0−−−→ s2

′
0 −→zt

∗ s1
t1−→ ·

Ea1−−−→ s2
′

1 −→zt
∗ . . . −→∗ s2j = ((l0, l2), µ2, ν2)

Let (i′, j′) ≼ (i, j), consider the case with i′ +1 = i and j′ = j (the case for
j′ < j is symmetric). By I.H. we have exists s1ini −→

∗ s1i′ = ((l0, l1i′ , µ
1
i′ , ν

1
i′))

in Aw,Aφ1 , and ρ ≡ sini −→∗ ρi′,j = ((l0, l1i′ , l
2), µ, ν) in Aw,Aφ1 ,Aφ2 with

µ|Aw,A1 = µ1
i′ , µ|Aw,A2 = µ2, ν|Aw,A1 = ν1i′ and ν|Aw,A2 = ν2. As a con-

sequence of Lemma 2 and the form of ρ1 we need to consider the following

cases for ρ1i′
λ−→ ρ1i .
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• λ ∈ R>0. That is λ = tk for some k ∈ {0, . . . ,m}. We have that µ1
i′(x̂) =

µ2
j (x̂) and µ1

i′(x) = µ2
j (x). If l2 ̸∈ Lu

2 then it is possible to delay for

Aw,A2 and we have ρ ≡ sini −→∗ ρi′,j
tk−→ ρi,j with µ(ρi,j)|Aw,A1

= µ(ρi)
(similar for Aw,A2) as desired. If l2 ∈ Lu

2 , then since Aw is accepting

and the form of the run we have ρ2 ≡ ρ2ini −→∗ ρ2j
v−→zt ρ2k

tk−→ ρ2k−1.

Where v ∈ (2E2)∗ is a sequence of edges in E2. That is A2 executed a
number of edges without any delays. By construction of A1 and A2 we
have that X(A1) ∩ X(A2) = ∅ and V (A1) ∩ V (A2) = ∅, thus A1 can
not disable any edge in v. We can extend the accepting run as follows:

ρ ≡ sini −→∗ ρi′,j
v−→zt ρk

tk−→ ρi,j as which agrees on the valuations as
desired.

• λ ∈ 2E .
∗ Case λ = e ∈ E1 is a discrete transition in A1. Then we have
ρ1ini −→∗ ρ1i′

e−→ ρ1i . Since by I.H. we have µ(ρi′,j)|Aw,A1 = µ(ρ1i′),
and µ(ρ1i′) satisfies the guards of e (similar for variable valuations)

we can extend the accepting run as follows: ρ ≡ sini −→∗ ρi′,j
e−→ ρi,j .

By construction of A1 and A2 we have that X(A1) ∩ X(A2) = ∅
and V (A1) ∩ V (A2) = ∅. Therefore, edge e has can not modify any
clock or variable in A2 and we have µ(ρi,j)|Aw,A2

= µ(ρ2j ) (similar
for Aw,A1 and variable valuations).

∗ Case λ = Eak
with Eak

= {ew, e1} i.e. a broadcast transition. If
l2 ̸∈ Lu

2 then by Lemma 1 (4) l is either an accepting or an input
location. If l2 is accepting then we can just extend the run ρ ≡
sini −→∗ ρi′,j

{ew,e1}−−−−−→ ρi,j . If l2 is an input location, then by definition
of input location and Lemma 1 (3) we have unique outgoing edge

e2 from l2 such that ρ2ini −→
∗ ρ2j

{ew,e2}−−−−−→ (l′0, l
′
2, µ

2′ , ν2
′
). Since e1 and

e2 can not disable each other we have ρ ≡ sini −→∗ ρi′,j
{ew,e1,e2}−−−−−−−→

((l′0, l1, l
′
2), µ

′, ν′) and since e2 can not modify any clock or variable
in A1 we have µ′|Aw,A1

= µ1 (analogously for e1). Finally, note that

ν′|Aw,A1
= ν1 and ν′|Aw,A2

= ν2
′

– φ ≡ φ+
1 . Then w ∈ Jφ+

1 K ≡ Jφ1K · . . . · Jφ1K︸ ︷︷ ︸
i>0 times

. We continue by induction on i.

Base case i = 1. By I.H. of the structural induction we have w ∈ Jφ1K.
Case i + 1. We have u · v = w ∈ Jφ1K · . . . · Jφ1K︸ ︷︷ ︸

i+1 times

and By I.H. we have u ∈

Jφ1K · . . . · Jφ1K︸ ︷︷ ︸
i times

with accepting run ρ in Au,Aφ+
1
of the form ρ0 −→∗ ρk

e′−→ ρi

induced by u. By Definition 7 we have that edge e′ = (l′, α, ϕ, ψ, r, lf ) in Eφ+
1

with lf ∈ Lf

φ+
1

induced an added edge of the form e = (l′, α, ϕ, ψ, r′, lini1 ). Note

that by structural I.H. we have v ∈ Jφ1K with accepting run ρ1 in Av,Aφ1

with ρ1 of the form ρ1ini
v′

−→ ρ1f where v′ ∈ (2E ∪ R>0)
∗ is the sequence of

transitions induced by word v. We can now extend ρ to accept u · v with
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ρ0 −→∗ ρk
e−→ ((lu, l

1
ini), µ, ν)

v′

−→ sf . Note that edge e resets all clocks in Aφ1 .
Therefore µ(x) = µ(ρ10)(x) for x ∈ Xφ1

. Thus clock guards for edges in v′

are satisfied. Lemma 3 ensures that edges in v′ have no variable guards until
a broadcast has been received. Ensuring that v′ can be executed starting at
ν ̸= ρ1ini = νini. ⊓⊔

Proof (Lemma 5). Given finite timed word w = t0 ·a0 · t1 ·a1 · t2 ·a2 · . . . tm ·am. If
Nw

φ is accepting then w ∈ JφK. Since Nw
φ is accepting we have exist an accepting

run ρ We continue by induction the size k = |φ|. k = 1

– φ ≡ ε. Then clearly ε ∈ JεK. If w ̸= ε, then it is not possible to perform
a broadcast synchronization and Aw is stuck in a non-acepting location. A
contradiction.

– φ ≡ ciδ. From Lemma 2 ρ is of the form sini −→zt
∗ s0

t0−→ ·
Ea0−−→ s′0 −→zt

∗ sf In

particular because of Definition 7 we have the concrete run sini
t0−→ · {ew,e10}−−−−−→

s1
{e11}−−−→ sf where all locations in sf are accepting. ew is the only edge in

Aw, e
1
0 is the input edge in Aφ and e11 = (l1, τ, true, c− δ ≤ vai ≤ c+ δ, [], l2)

in Aφ. Since a0 = va we have that t0 · a0 ∈ JciδK.
– φ ≡ Σ. Trivial, similar as the case ciδ.
– φ ≡ ⟨f iδ⟩[d1,d2]. By Definition 7 we have A1,A2 with A2 having edges E = {
e20 = (l0, h?, true, true, [], l1),e

2
1 = (l1, τ, x2 < d1, f(x2) − δ ≤ vai ≤ f(x2) +

δ, [], l0),e
2
2 = (l1, τ, d1 ≤ x2 ≤ d2, f(x2) − δ ≤ vai ≤ f(x2) + δ, [], l2) }. By

Lemma 2 ρ is of the form

sini −→zt
∗ s0

t0−→ ·
Ea0−−−→ s′0

{e21}−−−→zt s1
t1−→ ·

Ea1−−−→ s′1 . . . −→∗ sm
tm−−→ ·

Eam−−−→ s′m
e22−→zt sm+1

Note that clock x2 is never reseted. Then, because of the clock guard from
x2 < d1 from e21 we have that dur(w0:m−1) < d1 and because of the clock
guard d1 ≤ x2 ≤ d2 we have dur(w0:m) ∈ [d1, d2]. Finally, after every syn-
chronization Eaj

for 0 ≤ j ≤ m we have va = aj and the guard f(x2)− δ ≤
vai ≤ f(x2)+ δ in e

2
1 and e22 ensure aij ∈ [f iδ(dur(w0:j))− δ, f iδ(dur(w0:j))+ δ.

Therefore, w ∈ J⟨f iδ⟩[d1,d2]K.

Inductive step |φ| = k > 1

– φ ≡ ⟨φ1⟩[d1,d2]. By assumption we have exists accepting run ρ in Aw,Aφ.
By Lemma 2 we have that ρ has the shape

sini −→zt
∗ s0

t0−→ ·
Ea0−−−→ s′0 −→zt

∗ . . . −→∗ sm
tm−−→ ·

Eam−−−→ s′m −→zt
∗ sm

e′−→zt sm+1

Where e′ = (l′, α, ϕ ∧ d1 ≤ x ≤ d2, ψ, r, lf ) has been obtained from e =
(l′, α, ϕ, ψ, r, lf ) ∈ Eφ1

and lf ∈ Lf
φ1
. Now, Aφ has been obtained from Aφ1

by adding clock x. We have that Σm
i=0ti = µ(sm)(x) and µ(sm) |= ϕ ∧ d1 ≤

x ≤ d2. Therefore for the weaker guard of e we have µ(sm) |= ϕ so we can
produce accepting run ρ′ in Aw,Aφ1

.

sini −→zt
∗ s0

t0−→ ·
Ea0−−−→ s′0 −→zt

∗ . . . −→∗ sm
tm−−→ ·

Eam−−−→ s′m −→zt
∗ sm

e−→zt sm+1

And by I.H. we have and w ∈ Jφ1K. Since µ(sm) |= ϕ ∧ d1 ≤ x ≤ d2 we have
dur(w) ∈ [d1, d2]. Therefore, w ∈ JφK ∩ {w | dur(w) ∈ [d1, d2]}.
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– φ ≡ φ1 ·φ2. By assumption we have exists accepting run ρ in Aw,Aφ. In the
following let w = u ·v thus u = t0 ·a0 · . . . tk ·ak and v = tk+1 ·ak+1 · . . . tm ·am
By Lemma 2 we have that ρ has the shape

sini −→zt
∗ s0

t0−→ ·
Ea0−−→ s′0 −→zt

∗ . . . −→∗ sk
tk−→ ·

Eak−−→ s′k −→zt
∗ · e′−→zt sk+1

−→zt
∗ s′k+1

tk+1−−−→ ·
Eak+1−−−−→ s′′k+1 −→zt

∗ . . . −→∗ sm
tm−−→ · Eam−−−→ s′m −→zt

∗ sm+1

Note that all edges in the path from sini −→ sk+1 are in Au,Aφ1
and all

edges in the path from sk+1 −→ sm+1 are in Av,Aφ2
. In particular, edge

e′ = (l′, α, ϕ, ψ, r, lf ) has been obtained from e = (l′, α, ϕ, ψ, r, lf ) ∈ Eφ1
,

lf ∈ Lf
φ1

and r resets all clocks and variables for Av,Aφ2 . Therefore, we can
construct the following accepting run ρ1 from ρ for Au,Aφ1

s1ini −→zt
∗ s10

t0−→ ·
Ea0−−→ s1

′

0 −→zt
∗ . . . −→∗ s1k

tk−→ ·
Eak−−→ s1

′

k −→zt
∗ s1k

e−→zt s1k+1

where ρ1i = ρi|Au,Aφ1
for i < |ρ1| and accepting run ρ2 for Av,Aφ2

s2k+1 −→zt
∗ s2

′

k+1

tk+1−−−→ ·
Eak+1−−−−→ s2

′′

k+1 −→zt
∗ . . . −→∗ s2m

tm−−→ · Eam−−−→ s2
′

m −→zt
∗ s2m+1

Note that sk+1|Av,Aφ2
= s2k+1 = s2ini because edge e′ resets all clocks and

variables for Av,Aφ2
. In particular we have ρ2i = ρk+1+i|Av,Aφ2

for 0 ≤ i <

|ρ2|. Since ρ1 and ρ2 are accepting by I.H. we have u ∈ Jφ1K and v ∈ Jφ2K.
Therefore, w = u · v ∈ Jφ1K · Jφ2K.

– φ ≡ φ1 ∪ φ2. By assumption we have exists accepting run ρ in Aw,Aφ

(with edges E) with ρ0
e−→ ρ1

u−→
∗
ρf where u ∈ (R>0 ∪ 2E)∗. W.l.o.g. let

e = (l, τ, true, true, [], lini1 ) then we can construct accepting run ρ1 for Aw,Aφ1

from ρ as follows: ρ1 ≡ ρ1|Aw,Aφ1

u−→
∗
ρf |Aw,Aφ1

. Since ρ1 is accepting in

Aw,Aφ1 . Note that ρ1|Aw,Aφ1
= s1ini. By I.H. we have w ∈ Jφ1K as desired.

– φ ≡ φ1∩φ2. By assumption we have exists accepting run ρ in Aw,Aφ1
,Aφ2

.
We show that for any ρi with 0 ≤ i ≤ |ρ| there exist ρ1 and j such that
ρi|Aw,Aφ1

= ρ1j . Base case i = 0 then clearly ρ0|Aw,Aφ1
= ρ10 = s1ini. Inductive

step i + 1. We have ρ −→∗ ρi = ((l0, l1, l2), µ, ν)
λi−→ ((l0

′
, l1

′
, l2

′
), µ′, ν′). By

I.H. we have ρ1 −→∗ ρ1j s.t. ρi|Aw,Aφ1
= ρ1j . We have the following cases for

λi
• λi ∈ R>0 then clearly µ + λi models the invariants I(l0) and I(l1).

Therefore we have ρ1 −→∗ ρ1j
λi−→ ρ1j+1 with ρi+1|Aw,Aφ1

= ρ1j+1.

• λi ∈ E1 we have ρ1 −→∗ ρ1j
λi−→ ρ1j+1 with ρi+1|Aw,Aφ1

= ρ1j+1.

• λi ∈ E2 then there is no need to extend ρ1 and note that since A2 does
not share variables or clocks with A1 and only reads variables from Aw

we have ρi+1|Aw,Aφ1
= ρi|Aw,Aφ1

= ρ1j .

• λi ⊆ {e0, e1, e2} is a broad cast synchronization with ek ∈ Ek for 0 ≤
k ≤ 2. Note that e0 needs to be in λi otherwise there is no sender. Note
that the case where e2 is not participating is subsumed with this case.
Also note that e1 and e2 can not enable or disable each other. We have

ρ1 −→∗ ρ1j
{e0,e1}−−−−−→ ρ1j+1 with ρi+1|Aw,Aφ1

= ρ1j+1.
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Note that the case for accepting run ρ2 is symmetric. It follows that we can
use ρ to construct accepting runs ρi for Aw,Aφi

for 1 ≤ i ≤ 2. By I.H. we
have w ∈ Jφ1K and w ∈ Jφ2K. Therefore, w ∈ Jφ1 ∩ φ2K.

– φ ≡ φ+
1 . Let w = u1 · . . . ·ui for 1 ≤ i. By assumption there is accepting run ρ

in Aw,Aφ induced by w of the following shape, ρ0 −→∗ ρ1
e1−→ ρu1 −→∗ ρ2

e2−→
ρu2 . . . −→∗ ρ2

ei−→ ρui where every ek ∈ Eφ with ek = (l′, α, ϕ, ψ, r′, lini) has
been obtained from e′k = (l′, α, ϕ, ψ, r, lf ) ∈ Eφ1 with lf ∈ Lf

φ1
. Lets consider

the prefix induced by u1 i.e. ρ0 −→∗ ρ1
e1−→ ρu1

= ((l|u1|, l
1
ini), µ, ν) then the

run ρ0 −→∗ ρ1
e′1−→ ((l|u1|, lf ), µ

′, ν′) is accepting in Au1
,Aφ1

. By I.H. we have
u1 ∈ Jφ1K. We continue by showing how to construct accepting run for u2

Au2
,Aφ1

. From ρu1

v−→
∗
ρ2

e2−→ ρu2
construct ((l0, l

1
ini), µini, νini)

v−→
∗
ρ′2

e′2−→
ρ′u2

. Note that µ(x) = µini(x) for x ∈ Xφ1
because e1 resets all clocks in

Xφ1 . However, this is not the case for ν. Lemma 3 ensures that there will
be no variable guards until the next synchronization from Au2 which make
variable valuations agree. Therefore, we can execute the transitions in v.
By I.H. we have u2 ∈ Jφ1K. We can repeat this argument i times to obtain
u1 ∈ Jφ1K, . . . , ui ∈ Jφ1K and w = u1 · . . . · ui ∈ Jφ1K · . . . · Jφ1K︸ ︷︷ ︸

i times

. ⊓⊔

Proof (Theorem 2).

– Termination. We are given a finite word w of size m and a discrete state
space (time is discrete). Note that Algorithm 2 is the standard fix point
computation for model checking reachability properties. The only difference
is that instead of returning that a property was satisfied, it collects and
returns accepting states. Therefore Algorithm 2 terminates and returns a
finite number of states. Finally, Algorithm 1 will iterate at most O(m ∗ |W |)
where |W | is the biggest size of a list returned by Algorithm 2.

– If Algorithm 1 returns k ≥ 0 then w[0:k] ∈ JφK. The the algorithm traverses
a witness accepting run ρ. It is easy to conclude that the form of ρ agrees
with Lemma 2. Since ρ is accepting, Lemma 5 ensures that w ∈ JφK.

– If w[0:k] ∈ JφK then Algorithm 1 returns k ≥ 0. Let u = w0:k By Lemma 4
we have that exits accepting run ρ in Au,A1, . . . ,An. By Lemma 2 we have
that ρ is of the form

sini −→zt
∗ s0

t0−→ ·
Ea0−−−→ s′0 −→zt

∗ s1
t1−→ ·

Ea1−−−→ s′1 −→zt
∗ . . . −→∗ sk

tk−→ ·
Eak−−−→ s′k −→zt

∗ sf

We continue by induction on the length i of ρ. As I.H. have that Algorithm 1
can find state ρi. For simplicity let us consider the case where Urgent Partial
Order Reduction (UPOR) is disabled. i.e. for every state s we have En(s) ⊆
St(s). However, note that the results will hold because UPOR preserves
states which can delay and accepting states can delay.

• Base case i = 0. Then ρ0 = sini and we are done.
• Inductive step i + 1. By I.H. we have that Algorithm 1 can reach state

ρ0 −→∗ ρi. Need to show ρi
λi−→ ρi+1.
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Fig. 6: Multiple matches using ETRE qrs-const

∗ λi ∈ R>0. Then Algorithm 1 Line 8 is executed and it can reach
ρi+1.

∗ λi ∈ 2E and |λi| > 1 with 1 ≤ j ≤ n. Then Algorithm 1 Line 8 is
executed and it can reach ρi+1.

∗ λi ∈ Ei for 1 ≤ i ≤ n. Then ρi is urgent and Algorithm 2 Line 7 can
reach ρi+1.

Since sf is accepting and it can be reached, at k-th iteration Algorithm 1
Line 7 returns value k. ⊓⊔

B Complement for Case Studies

The following table shows the data used for our evaluation section.

Data Dimensions Size,MB Samples Annotations

Arrhythmia 3 60 650000 2274
Storm-safe 19 50 764572 –
TMV 23 13 23 23360 –

Table 3: Data

B.1 Arrhythmia

Figure 7 shows the automaton corresponding to the ETRE qrs-funcδ·⟨Σ∗⟩[0.47s,0.67s]·
qrs-funcδ. Locations 0 to 2 correspond to qrs-funcδ locations 6 to 8 correspond
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to qrs-funcδ. At location 2 the construction for ⟨Σ∗⟩[0.47s,0.67s] starts. This is
the union of the empty word locations 3 and 6 with Σ+ constraint to interval
[0.47s, 0.67s] locations 4,5 and 6.

0

1

h? x_1<0.039 && f(x)-0.38<=MLII<= f(x)+0.38

2

0.039<=x_1<=0.045 && f(x)-0.38<=MLII<=f(x)+0.38

3

x_2<=0.67

4

x_2<=0.67

6

0.47<=x_2<=0.67 5

h?,x_2<=0.67 x_2<=0.67

0.47<=x_2<=0.67

7

h? x_3<0.039 && f(x_3)-0.38<=MLII<=f(x_3)+0.38

8

0.039<=x_3<=0.045 && f(x_3)-0.38<=MLII<=f(x_3)+0.38

Fig. 7: Automaton for ETRE early-func0.38. Square locations denote urgent loca-
tions.
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B.2 Storm Surge Barriers

Figure 8 shows a match for sto-close-diff. A violation to the requirement that the
gates should be open only if the difference on the levels is below 100.

Fig. 8: Storm Surge Barriers. Match for ETRE sto-close-diff. Matching a violation
when a gate is open (port sum) when the difference in water levels is bigger than
100.

B.3 Smart Buildings

Figures 9a shows the data collected from from 2024-11-20 to 2025-05-04. Fig-
ure 9b shows matches using a first degree polynomial to detect increase in the
solar watt signal.
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(a) Data from building TMV 23. from 2024-11-20 to 2025-05-04 in seconds.

(b) Matching solar watt is increasing within 45min. using first degree polynomial.

Fig. 9: Pattern Matching ETRE for building TMV 23.
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