
Supervisor synthesis under partial
observation of uncontrollable events using

full observation synthesis ?

Martijn Goorden ∗ Michel Reniers ∗∗

∗ Department of Computer Science, Aalborg University, Denmark
(e-mail: mgoorden@cs.aau.dk)

∗∗ Department of Mechanical Engineering, Eindhoven University of
Technology, The Netherlands (e-mail: m.a.reniers@tue.nl)

Abstract: This paper presents an approach towards the synthesis of maximally permissive, safe,
controllable, control consistent and nonblocking supervisors where the supervisor is assumed to
have partial observation of the events in the plant that is modeled as a discrete event system. In
contrast to existing work, the presented approach avoids the use of concepts such as observability
and normality and only relies on a transformation of the plant into another discrete event system
to which subsequently supervisory control synthesis with full observation is applied.

Keywords: discrete event systems, supervisory control synthesis, partial observation.

1. INTRODUCTION

Supervisory control theory of Ramadge and Wonham
(1987) provides a formal framework to analyze the problem
of controlling discrete event systems (DES). Based on a
model of the uncontrolled plant and a model of the control
specification, a correct-by-construction supervisor can be
synthesized. This supervisor ensures that the controlled
system is safe and nonblocking while also being control-
lable and maximally permissive.
In the basic control problem setting, all events specified
in the plant model are observable. In practice though,
not everything might be observable, for example due to a
limited number of sensors. Supervisory control for partially
observed systems was initially studied in Cieslak et al.
(1988); Lin and Wonham (1988). To deal with partial
observability, the notion of observability of a specification
language is introduced to establish if such a specification
can be exactly realized by means of a supervisor. The
condition entails that if a continuation with a certain
event is prohibited by the specification, then from all
observationally equivalent observations the event must
also be prohibited.
In practice, it is often not possible to exactly realize
the specification language. In this situation, as much safe
behavior as possible is desired. Since observability is not
closed under union, no supremal solution exists in general.
Various approaches have been proposed to resolve this
situation. A stronger condition that is closed under union,
normality, is introduced in Cieslak et al. (1988); Lin and
Wonham (1988) as a work around, but this comes at the
price of sacrificing maximal permissiveness. In Takai and
Ushio (2003) a class of observable sublanguages has been
identified that is closed under the union operation of strict
? This research is partly funded by the Digital Research Centre
Denmark (DIREC), Innovation Fund Denmark.

subautomata. More recently, Cai et al. (2015) proposed
the notion of relative observability that is stronger than
observability but weaker than normality. Neither Takai
and Ushio (2003) nor Cai et al. (2015) may always obtain
a maximally permissive supervisor in general. In Hu et al.
(2023) a supervisor is allowed to use quiescent information
such that a maximally permissive nonblocking supervisor
can be obtained. Effectively, a supervisor is able to time-
out when no observable event has been registered for a
while, thus being able to identify dead states.
The first paper that solves the problem of synthesizing
a maximally permissive, safe, controllable, nonblocking
supervisor for a plant and a specification is Yin and
Lafortune (2016). It is assumed that the specification is
controllable and observable. In the paper, such a super-
visor is synthesized in a number of steps. First, an All
Inclusive Controller (AIC) is generated from the plant
that represents all safe controllers. This AIC is a bipar-
tite transition system which represents a game between
a controller (proposing a set of enabled events) and a
plant (selecting one such proposed event). From the AIC
a NonBlocking All Inclusive Controller (NB-AIC) is com-
posed that represent all nonblocking safe controllers. On
the NB-AIC a dedicated synthesis algorithm is applied
that achieves an information-state-based supervisor (i.e.,
a supervisor that each time when confronted with the
same information state makes the same control decision)
and removes livelocks by iteratively unfolding states that
represent a livelock.
In this paper, we propose a different solution for synthesiz-
ing supervisors for partially observed DES using supervisor
synthesis for fully observable plants. In our set-up, there
are no assumptions on the specification, so controllability
and observability are not assumed. For the case where all
controllable events are observable, in Section 4, we trans-
form the original partially observable plant automaton into

17th IFAC Workshop on Discrete Event Systems
April 29-May 1, 2024. Rio de Janeiro, Brazil

Copyright © 2024 the authors. Accepted by IFAC for
publication under a Creative
Commons License CC-BY-NC-ND.

114

a fully observable (plant) automaton and some additional
information (to be elaborated later) in such a way that we
can apply full observation supervisory control synthesis
to obtain a supervisor for the partially observable plant.
Before we elaborate on this transformation, in Section 3,
we analyze the reasons why projection of the partially ob-
servable plant onto the observable events does not provide
us with a full observable plant that can be used for fully
observable synthesis. The cause is that the projection loses
information about blocking. We circumvent this problem
by collecting nonblocking providing events for each state
before performing projection. This information allows us
to perform synthesis on the fully observable, projected
plant.
In Su et al. (2008), an abstraction operator is proposed
(that operates on a network of automata) that preserves
the nonblocking property and may also be used to remove
the unobservable events from the plant. Nevertheless, as
the abstraction may result in a nondeterministic plant
(and with an additional new event τ) we cannot directly
apply standard synthesis algorithms. Inan (1994) also uses
projection and nondeterminism to show the existence of a
solution, but, based on this work, the algorithm of Yoo
and Lafortune (2006) might not result in a maximally
permissive supervisor.

2. PRELIMINARIES

An automaton is a five-tuple G = (Q,Σ,→, q0, Qm), where
Q is the (finite) nonempty state set, Σ is the alphabet
of events, →⊆ Q × Σ × Q the partial transition relation,
q0 ∈ Q the initial state, and Qm ⊆ Q the set of marked
states. Such an automaton is called deterministic in case
(q, σ, q′) ∈ → and (q, σ, q′′) ∈ → implies that q′ = q′′ for
all q, q′, q′′ ∈ Q and σ ∈ Σ. In the remainder of this paper,
it is assumed that all automata are deterministic.
Σ∗ represents the Kleene closure of Σ, i.e. the set of all
finite strings of events in Σ, including the empty string ε.
We use the infix notation for transitions: we write q

σ−→ q′

to indicate that (q, σ, q′) ∈→. We extend this infix notation
to words w ∈ Σ∗ in the usual way. Furthermore, we write
q

w−→ iff there exists q′ ∈ Q such that q
w−→ q′. The events

enabled from a state q in an automaton G are denoted
En(q,G) and defined by En(q,G) = {σ ∈ Σ | q σ−→}. The
language generated by the automaton G is L(G) = {w ∈
Σ∗ | q0 w−→} and the language marked by the automaton
G is Lm(G) = {w ∈ Σ∗ | ∃q′∈Qmq0

w−→ q′}.
A state q of an automaton is called reachable if there exists
a word w ∈ Σ∗ such that q0

w−→ q. The set of all reachable
states of an automaton G is denoted by Reach(G). An
automaton G is called reachable if every state q ∈ Q is
reachable, i.e., Reach(G) = Q. A state q is coreachable if
there exist a word w ∈ Σ∗ and a marked state q′ ∈ Qm

such that q
q−→ q′. The set of all coreachable states of an

automaton G is denoted by Coreach(G). An automaton G
is called coreachable if every state q ∈ Q is coreachable.,
i.e., Coreach(G) = Q. A state is called nonblocking if
it is reachable and coreachable. An automaton is called
nonblocking if every reachable state is coreachable. An
automaton is called trim if it is reachable and coreach-
able. Notice that a trim automaton is nonblocking, but

a nonblocking automaton may not be trim, since it may
have unreachable states. In the remainder of this paper, it
is assumed that every automaton is (made) reachable and
hence a state is coreachable iff it is nonblocking.
The alphabet Σ = Σc ∪ Σu is partitioned into two
disjoint sets containing the controllable events (Σc) and
the uncontrollable events (Σu). Some events may not be
observable to the environment of an automaton. Therefore,
the alphabet Σ = Σo ∪ Σuo is partitioned into two
disjoint sets containing the observable events (Σo) and the
unobservable events (Σuo).
Natural projection, also simply called projection, from a
set of events to a smaller set of events erases events that
do not belong in the smaller set. In supervisory control
synthesis literature projection is typically defined on the
level of languages, e.g., Cassandras and Lafortune (2009),
or on the automata-level by replacing the unobservable
events by an empty transition (denoted ε or λ) and a
subsequent determinization step (Ware and Malik, 2008).
In this paper, we provide a mathematical definition that
results in a deterministic projection automaton.
Definition 1. (E-closure). For a given automaton G and
a given set of events E ⊆ Σ, we define the E-closure of
a set of states Q′ ⊆ Q, notation clE(Q

′), as the smallest
subset of Q that satisfies (1) Q′ ⊆ clE(Q

′) and (2) for all
q, q′ ∈ Q and e ∈ E, whenever q

e−→ q′ and q ∈ clE(Q
′),

then q′ ∈ clE(Q
′).

Our notion of closure is a (trivial) generalization of the no-
tion of unobservable reach (denoted UR) from Cassandras
and Lafortune (2009) to an arbitrary set of events E, i.e.,
for E the set of unobservable events the notions coincide.
Using the notion of closure, the projection of an automaton
to a given set of events O, typically observing at least the
observable events (in this paper), can be defined as follows.
Definition 2. (Projection). Given automaton G and O ⊆
Σ. Then the projection automaton πO(G) = (Qπ,Σπ,→π,
q0π, Q

m
π) is defined as follows:

• Qπ = {clO(Q
′) | Q′ ⊆ Q},

• Σπ = O,
• →π is the smallest relation that satisfies, for Qs ∈ Qπ

and σ ∈ Σπ: if qs
σ−→ qt for some qs ∈ Qs and qt ∈ Q,

then Qs
σ−→π clO({q

′ ∈ Q | ∃qs∈Qs
qs

σ−→ q′}),
• q0π = clO({q0}),
• Qm

π = {Q′ ∈ Qπ | Q′ ∩Qm 6= ∅}.

When applied with O the set of observable events, the
reachable part 1 of πO(G) and Obs(G) (from Cassandras
and Lafortune (2009)) are identical.
Note that the automaton that results from projection is
deterministic and has the same language and marked lan-
guage as the original automaton (when restricting words to
events from O). Similar properties are provided in Cassan-
dras and Lafortune (2009) for their observer automaton.
Also note that the projection defined here when applied
with the set of all events coincides with determinization

1 The reachable part of an automaton G = (Q,Σ,→, q0, Qm) is
defined to be the automaton (Reach(G),Σ,→∩(Reach(G) × Σ ×
Reach(G)), q0, Qm ∩ Reach(G)).

17th IFAC Workshop on Discrete Event Systems
April 29-May 1, 2024. Rio de Janeiro, Brazil

115

as presented for automata throughout literature, the so-
called subset-construction.
Proposition 3. (Projection). For arbitrary automaton G
with O ⊆ Σ we have
(1) πO(G) is deterministic,
(2) L(πO(G)) = PO(L(G)), and
(3) Lm(πO(G)) = PO(Lm(G)),

where PO denotes the natural projection of a language on
the set of events O as in Cassandras and Lafortune (2009),
for example.

A supervisor can be represented as a (strict) subautoma-
ton of the plant, though in literature also different repre-
sentations exists. E.g., in Ramadge and Wonham (1989)
a supervisor is represented as a mapping from states of
the plant to sets of events (that are allowed to occur).
In supervisory control theory with full observation it is
assumed that the alphabet of the supervisor is contained
in that of the plant (Wonham and Cai, 2019), while in the
setting with partial observability, it is assumed that the
alphabet of the supervisor ΣS is contained in the sets of
observable events and controllable events of the plant, i.e.,
ΣS ⊆ Σo ∪ Σc (Wonham and Cai, 2019; Cassandras and
Lafortune, 2009). In this paper, we use the notion of strict
subautomaton, which is also used in Yin and Lafortune
(2016), as this format naturally arises in synthesis with
full observability and synthesis with normality (Cho and
Marcus, 1989).
Definition 4. (Strict subautomaton). An automaton S =
(QS ,ΣS ,→S , q

0
S , Q

m
S) is a strict subautomaton of an au-

tomaton G = (Q,Σ,→, q0, Qm) iff QS ⊆ Q, ΣS = Σ,
→S =→∩(QS ×ΣS ×QS), q0S = q0, and Qm

S = Qm ∩QS .

The closed-loop behaviour of a plant and a supervisor
is defined using parallel composition, denoted by ‖, see
Cassandras and Lafortune (2009) for definition.
The objective of supervisory control theory (Ramadge and
Wonham, 1987, 1989; Cassandras and Lafortune, 2009;
Komenda, 2013; Wonham and Cai, 2019) is to design
an automaton called a supervisor (with an event set
that does not contain events that are both uncontrollable
and unobservable) that has the function to dynamically
disable controllable events so that the closed-loop system
of the plant and the supervisor obeys some specified
behavior. Different ways exist in literature to specify
allowed behaviors, such as by means of automata, event
conditions and state invariants (Markovski et al., 2010).
In this paper, however, we use the specification of a set of
forbidden plant states. More formally, given a plant model
G = (Q,Σ,−→G, q

0, Qm) and given a set of forbidden states
F ⊆ Q, the goal is to synthesize supervisor S (with state
set QS) that adheres to the following control objectives.
• Safety: the closed-loop system G ‖ S may never reach

a state in which the plant would be in a forbidden
state, i.e., Reach(G ‖ S) ∩ (F ×QS) = ∅.

• Controllability: uncontrollable events may never be
disabled by the supervisor, i.e., for all reachable states
(qG, qS) ∈ Reach(G ‖ S), if qG

u−→G for some u ∈ Σu,
then (qG, qS)

u−→ (where → denotes the transition
relation of G ‖ S).

q0 q1

q2 q3

u

a a

q0q1

q2q3

a

Fig. 1. Plant automaton and its observer automaton.
States with different markings are merged. The ob-
server automaton cannot be used directly for synthe-
sis.
• Control consistency: the supervisor S is control con-

sistent w.r.t. the plant G, i.e., for any two observation-
ally equivalent states q1 and q2 from the initial state
q0 in the closed-loop system G ‖ S (i.e., states such
that q0

w1−−→ q1 and q0
w2−−→ q2 for some w1, w2 ∈ Σ∗

with PΣo
(w1) = PΣo

(w2)) it is the case that q1
σ−→ iff

q2
σ−→ for any σ ∈ Σc.

• Nonblockingness: the closed-loop system G ‖ S should
be nonblocking.

A supervisor that is safe, controllable, control consistent,
and nonblocking is called proper. A proper supervisor S is
called maximally permissive when there does not exist a
proper supervisor S′ such that L(G ‖ S) ⊂ L(G ‖ S′).
Note that for fully observable systems and for partially
observable systems where all controllable events are ob-
servable, there can be many (automaton-based) maximally
permissive supervisors. However, they all result in the
same closed-loop behavior.

3. INADEQUACY OF OBSERVER AUTOMATA

It is not possible to only use the observer automaton
obtained by projection on the observable events for syn-
thesizing a supervisor for the partially observable plant.
This is illustrated by the following example.
Example 5. Consider the plant automaton with unobserv-
able and uncontrollable event u as depicted in the left
part of Fig. 1 (unobservable transitions are depicted with
a zigzag arrow, uncontrollable ones with a dashed arrow).
Applying supervisory control synthesis to this plant should
result in the event a being disabled (in states q0 and q1).
However, in the projection automaton, shown in the figure
on the right, there seems to be no reason to disable the
event a as there are no blocking states in the projection
automaton.

As mentioned in Example 5, the main problem with us-
ing projection to obtain a fully observable plant from a
partially observable plant is that the property of blocking
is not invariant w.r.t. projection. The partially observed
plant is blocking, but its fully observable projection version
is not! Consequently, a subsequent synthesis procedure will
fail to remove those blocking states that are observation-
ally indistinguishable from a nonblocking state (in the
example, q3 is a blocking state that is indistinguishable
from nonblocking state q2). Note that if a partially ob-
served plant is nonblocking, then also its fully observable
projection is nonblocking.
Example 6. The example from Fig. 1 shows that merging
states with different marking is problematic with the

17th IFAC Workshop on Discrete Event Systems
April 29-May 1, 2024. Rio de Janeiro, Brazil

116

q0 q1

q2 q3

q4

u

a a

b

q0q1

q2q3

q4

a

b

Fig. 2. Plant automaton and its observer automaton. No
states with different marking are merged; neverthe-
less, the observer automaton cannot be used directly
for synthesis.

traditional projection. But even if all merged states agree
on their marking, blocking states in the partially observed
plant can become nonblocking in the fully observable
projection. Fig. 2 illustrates this. In the partially observed
plant, state q2 is blocking, while state q3 is nonblocking,
even though both states are not marked. In the partially
observed system, event a should be disabled from state
q0. After applying the traditional projection, it seems that
event a is not required to be disabled from state q0q1.

From the previous two examples, we can conclude that a
fully observable version of the plant that we can use for
synthesis of the partially observed plant needs to preserve
the blocking status of states. Note that the (reachable)
blocking states of automaton G can be identified as follows:
B(G) = Reach(G) \ Coreach(G).
Example 7. Considering the plant automaton G in Fig. 3.
One can observe that only state q5 is blocking, all other
states are nonblocking. This means that a supervisor is
expected to prevent the controlled system from reaching
state q5 and it can achieve this by disabling the event b
from states q3 (because enabling b on that state would
allow the system to reach state q5) and q2 (because it
is observationally equivalent to state q3). The interesting
situation that now arises is that the disabling of event b
from state q2 has the effect that state q2 becomes block-
ing. So simply remembering whether states are blocking
or nonblocking in the original plant is insufficient.

From the examples introduced in this section it can be
concluded that (1) the observer automaton obtained by
traditional projection is not sufficient for synthesizing a
supervisory controller for the partially observable plant,
and (2) incorporating the blocking status of states from the
plant alone is also not sufficient. The last example shows
that this blocking status may change as a consequence of
the desire to achieve control consistency.

4. SYNTHESIS UNDER PARTIAL OBSERVATION OF
UNCONTROLLABLE EVENTS

In this section, we formulate the synthesis of a maximally
permissive proper supervisor for a plant under partial
observation of uncontrollable events. This means that it
is assumed that all controllable events (of the plant) are
observable (to the supervisor), i.e., Σc ⊆ Σo. Note that
in this case, the event set of the supervisor only considers
observable events as ΣS ⊆ Σo∪Σc = Σo. This assumption

is not restrictive in practice, and is also common in several
other approaches, such as Hu et al. (2023); Tai et al.
(2023).
Our solution to obtain a maximally permissive proper
supervisor for a partially observable plant is provided in
Algorithm 2, SCSpo, and informally introduced as follows:
(1) Compute the projection automaton w.r.t. the observ-

able events.
(2) Compute for the plant for each state whether it is

nonblocking or not, and if it is nonblocking and not
marked, compute the set of all enabled events from
such a state that connect to a nonblocking successor
state. We call this set the nonblocking providing
events, denoted by NB . Algorithm 1, NBP, a variant
of a standard nonblocking computation algorithm, is
used for this purpose.

(3) Define the set of forbidden states to be those multi-
states that contain a blocking or forbidden state from
the plant. These are the non-marked states for which
none of the observable nonblocking providing events
are enabled anymore.

(4) Perform synthesis on this projection plant such that
the forbidden states are avoided.

(5) Repeat the previous two steps until synthesis results
in an automaton that does not change anymore.

In Algorithm 1 for each non-marked state a set of events is
computed that connect that state to a coreachable state.
The algorithm performs a backward reachability analysis
much the same as in algorithms for computing nonblocking
states (see e.g., Ouedraogo et al. (2011)). Instead of simply
recording whether a state is nonblocking it collects all
events for which a transition labeled with that event is
available to a nonblocking state. This information will
later be used in synthesizing a supervisor. Note that all
marked states and states for which NB(q) is nonempty
are nonblocking. The blocking states are the non-marked
states for which this set is empty.
Proposition 8. (Termination). Algorithm 1 terminates. 2
Theorem 9. (Correctness). Let a plant G be given. For all
q ∈ Q \Qm and σ ∈ Σ: σ ∈ NBP(G)(q) iff q

σ−→ q′ for some
nonblocking state q′ ∈ Q.

In Algorithm 2 an algorithm for supervisory control under
full observation SCSfo is used. It is assumed that for an
input automaton, say G, and a set of forbidden states
F , this algorithm results in an automaton, say S, such
that (1) S is a strict subautomaton of G that is achieved
by removing zero or more states from G, and (2) S is
a maximally permissive proper supervisor for G. Such
algorithms are readily available in literature (Cassandras
and Lafortune, 2009) and in tools such as CIF (van Beek
et al., 2014; Fokkink et al., 2023) and Supremica (Åkesson
et al., 2006). In Algorithm 2 we use the notation Qπ,i to
indicate the state set of Gfo

i . We explicitly include π in this
notation, as individual states of Gfo

i are sets of original
states from G due to the projection on line 1.
Example 10. In Fig. 3, besides plant G, also πΣo(G) =

Gfo
0 , Gfo

1 , and SCSpo(G) = Gfo
2 are given. Note that state

2 Due to page limitations, no proofs are provided in this conference
paper. They are though available upon request.

17th IFAC Workshop on Discrete Event Systems
April 29-May 1, 2024. Rio de Janeiro, Brazil

117

G

q0 q1

q2 q3

q5q4 q6

u

a a

bb c

πΣo (G)

q0q1

q2q3

q4q5 q6

a

b c

Gfo
1

q0q1

q2q3

q6

a

c

Gfo
2

q0q1

Fig. 3. Plant automaton G, its projection πΣo
(G), and the results of the first two iterations of SCSpo. In G, the nonblocking

providing events (for the non-marked states) are indicated by green outgoing transitions.

Algorithm 1 Nonblocking providing events: NBP.
Require: plant G = (Q,Σ,→, q0, Qm)
Ensure: mapping NB : Q \ Qm 7→ 2Σ such that for all

q ∈ Q \Qm and σ ∈ Σ: σ ∈ NB(q) iff q
σ−→ q′ for some

coreachable state q′ ∈ Q
1:
2: i← 0
3: for q ∈ Q \Qm do
4: NB0(q)← ∅
5: end for
6: repeat
7: for q ∈ Q \Qm do
8: A← ∅
9: for σ ∈ En(q,G) do

10: Let q′ be the state reached after σ: q σ−→ q′.
11: if q′ 6= q ∧ (q′ ∈ Qm ∨NB i(q

′) 6= ∅) then
12: A← A ∪ {σ}
13: end if
14: end for
15: NB i+1(q)← NB i(q) ∪A
16: end for
17: i← i+ 1
18: until NB i = NB i−1

19: NB ← NB i

q2 has only one nonblocking providing event, namely b,
and that state q5 has no nonblocking providing events.
Because for state q5 in aggregate state q4q5 no nonblock-
ing providing events are available, state q4q5 is removed
in iteration 1. As a consequence, the only nonblocking
proving event for state q2 in aggregate state q2q3 is
also removed. Therefore, in iteration 2, the aggregate state
q2q3 is removed and only the initial state remains.
Proposition 11. (Termination). Algorithm 2 terminates.

The following theorem states that the supervisor that
results from Algorithm 2 is indeed a maximally permissive
proper supervisor for the plant under partial observation.
Theorem 12. (Correctness). Let a plant G with set of
observable events Σo ⊆ Σ and forbidden states F ⊆
Q be given. SCSpo(G) is a maximally permissive proper
supervisor for G under partial observation.
Theorem 13. The worst case time complexity of SCSpo of
Algorithm 2 is O(|Σ| · 23|Q|).

The time complexity of the algorithm proposed by Yin and
Lafortune (2016) is O((|Q|3 · 2|Q| + |Σ|) · |Q| · 22|Q|+|Σ|).
Note that this algorithm handles the more general case of

Algorithm 2 Supervisory Control Synthesis: SCSpo.
Require: plant G = (Q,Σ,→, q0, Qm) with observable

events Σo ⊆ Σ, controllable events Σc ⊆ Σo, and
forbidden states F ⊆ Q

Ensure: Maximally permissive proper supervisor S for G
1: Gfo

0 ← πΣo
(G)

2: S ← SCS
po
core(G,Gfo

0)
3:
4: function SCS

po
core(G, Gfo

0)
5: N ← NBP(G)
6: i← 0
7: repeat
8: Fi ← ∅
9: for Q′ ∈ Qπ,i do

10: for q ∈ Q′ \Qm do
11: if N(q)∩En(Q′, Gfo

i) = ∅ or q ∈ F then
12: Fi ← Fi ∪ {Q′}
13: end if
14: end for
15: end for
16: Gfo

i+1 ← SCSfo(Gfo
i , Fi)

17: i← i+ 1
18: until Gfo

i = Gfo
i−1

19: return Gfo
i

20: end function

arbitrary unobservable events. Although the precise com-
plexities of theirs and ours differ, both suffer from expo-
nential blow-up. This is probably unavoidable, as Tsitsiklis
(1989) has shown that no polynomial algorithm exists for
synthesis of a partial observation supervisor.
Next, we compare the complexities of these two algorithms
in two different situations:
(1) Assuming that Σ is either larger or approximately of

the same size as Q, the complexity of the algorithm
of Yin and Lafortune (2016) can be considered to be
O((|Q|3 · 2|Q| + |Σ|) · |Q| · 22|Q|+|Σ|) ≈ O((|Q|3 · 2|Q| +
|Q|) · |Q| · 23|Q|) = O(|Q|4 · 24|Q|).

(2) Assuming that the size of Σ is small compared to
the size of Q, we obtain O((|Q|3 · 2|Q| + |Σ|) · |Q| ·
22|Q|+|Σ|) = O(|Q|3 · 2|Q| · |Q| · 22|Q|) = O(|Q|4 · 23|Q|)
for the algorithm from Yin and Lafortune (2016).

Observe that in both cases our worst case time complexity
of O(|Σ| · 23|Q|) is better.

17th IFAC Workshop on Discrete Event Systems
April 29-May 1, 2024. Rio de Janeiro, Brazil

118

The all inclusive controller used in the algorithm of Yin
and Lafortune (2016) has a state space size of O(2|Q| ·
(2|Σc| + 1)). The projection automaton used in our ap-
proach has a state space size O(2|Q|). Additionally, note
that in the algorithm of Yin and Lafortune (2016) an
additional expansion may take place to solve livelocks. In
our approach, this is not needed.

5. CONCLUSION

In this paper, an algorithm has been proposed for syn-
thesizing a maximally permissive proper supervisor for
a given partially observed plant where all controllable
events are assumed to be observable. The approach relies
upon the construction of an observer automaton equipped
with extra information about the nonblocking providing
events for each state. Using this information iteratively
using full observation supervisory control synthesis (on
the observed plant), we obtain a desired supervisor. Our
approach avoids the use of complicated constructions as
in known algorithms (in our opinion), and shows a better
worst-case time complexity.
In future work, we have the intention to extend this work
towards unobservable controllable events, to implement
it in the tool ESCET, and to apply it to benchmark
cases in literature in order to also compare approaches
on (realistic) case studies.

REFERENCES
Cai, K., Zhang, R., and Wonham, W.M. (2015). Relative

observability of discrete-event systems and its supremal
sublanguages. IEEE TAC, 60(3), 659–670. doi:10.1109/
TAC.2014.2341891.

Cassandras, C.G. and Lafortune, S. (2009). Introduction
to discrete event systems. Springer Science & Business
Media.

Cho, H. and Marcus, S.I. (1989). On supremal languages of
classes of sublanguages that arise in supervisor synthesis
problems with partial observation. Mathematics of
Control, Signals and Systems, 2(1), 47–69. doi:10.1007/
BF02551361.

Cieslak, R., Desclaux, C., Fawaz, A., and Varaiya, P.
(1988). Supervisory control of discrete-event processes
with partial observations. IEEE TAC, 33(3), 249–260.
doi:10.1109/9.402.

Fokkink, W.J., Goorden, M.A., Hendriks, D., van Beek,
D.A., Hofkamp, A.T., Reijnen, F.F.H., Etman, L.F.P.,
Moormann, L., van de Mortel-Fronczak, J.M., Reniers,
M.A., Rooda, J.E., van der Sanden, L.J., Schiffel-
ers, R.R.H., Thuijsman, S.B., Verbakel, J.J., and Vo-
gel, J.A. (2023). Eclipse ESCET™: The Eclipse Su-
pervisory Control Engineering Toolkit. In TACAS,
44–52. Springer Nature Switzerland. doi:10.1007/
978-3-031-30820-8_6.

Hu, Y., Ma, Z., and Li, Z. (2023). Design of supervisors for
partially observed discrete event systems using quiescent
information. IEEE TASE. doi:10.1109/TASE.2023.
3301997. Early access.

Inan, K. (1994). Nondeterministic supervision under
partial observations. In 11th Int. Conf. on Analysis
and Optimization of Systems: Discrete Event Systems,
LNCIS, 39–48. Springer. doi:10.1007/BFb0033530.

Komenda, J. (2013). Supervisory control with partial
observations. In Control of Discrete-Event Systems:
Automata and Petri Net Perspectives, LNCIS, 65–84.
Springer. doi:10.1007/978-1-4471-4276-8_4.

Lin, F. and Wonham, W.M. (1988). On observability
of discrete-event systems. Information Sciences, 44(3),
173–198. doi:10.1016/0020-0255(88)90001-1.

Markovski, J., van Beek, D.A., Theunissen, R.J.M., Ja-
cobs, K.G.M., and Rooda, J.E. (2010). A state-based
framework for supervisory control synthesis and verifi-
cation. In IEEE CDC, 3481–3486. doi:10.1109/CDC.
2010.5717095.

Ouedraogo, L., Kumar, R., Malik, R., and Akesson, K.
(2011). Nonblocking and safe control of discrete-event
systems modeled as extended finite automata. IEEE
TASE, 8(3), 560–569. doi:10.1109/TASE.2011.2124457.

Åkesson, K., Fabian, M., Flordal, H., and Malik, R. (2006).
Supremica – An integrated environment for verification,
synthesis and simulation of discrete event systems. In
WODES, 384–385. IEEE. doi:10.1109/WODES.2006.
382401.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory
control of a class of discrete event processes. SIAM
Journal on Control and Optimization, 25(1), 206–230.

Ramadge, P.J. and Wonham, W.M. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77(1),
81–98.

Su, R., van Schuppen, J.H., and Rooda, J.E. (2008). Su-
pervisor synthesis based on abstractions of nondeter-
ministic automata. In WODES, 412–418. IEEE. doi:10.
1109/WODES.2008.4605981.

Tai, R., Lin, L., Zhu, Y., and Su, R. (2023). Synthe-
sis of the supremal covert attacker against unknown
supervisors by using observations. IEEE TAC, 68(6),
3453–3468. doi:10.1109/TAC.2022.3191393.

Takai, S. and Ushio, T. (2003). Effective computation of an
Lm(G)-closed, controllable, and observable sublanguage
arising in supervisory control. Systems & Control
Letters, 49(3), 191–200. doi:10.1016/S0167-6911(02)
00322-5.

Tsitsiklis, J.N. (1989). On the control of discrete-event
dynamical systems. Mathematics of Control, Signals
and Systems, 2(2), 95–107. doi:10.1007/BF02551817.

van Beek, D.A., Fokkink, W., Hendriks, D., Hofkamp,
A., Markovski, J., Van De Mortel-Fronczak, J., and
Reniers, M.A. (2014). CIF 3: Model-based engineering of
supervisory controllers. In TACAS, 575–580. Springer.
doi:10.1007/978-3-642-54862-8_48.

Ware, S. and Malik, R. (2008). The use of language pro-
jection for compositional verification of discrete event
systems. In WODES, 322–327. IEEE. doi:10.1109/
WODES.2008.4605966.

Wonham, W.M. and Cai, K. (2019). Supervisory Control of
Discrete-Event Systems. Communications and Control
Engineering. Springer International Publishing. doi:10.
1007/978-3-319-77452-7.

Yin, X. and Lafortune, S. (2016). Synthesis of maximally
permissive supervisors for partially-observed discrete-
event systems. IEEE TAC, 61(5), 1239–1254. doi:10.
1109/TAC.2015.2460391.

Yoo, T.S. and Lafortune, S. (2006). Solvability of cen-
tralized supervisory control under partial observation.
DEDS, 16(4), 527–553. doi:10.1007/s10626-006-0023-7.

17th IFAC Workshop on Discrete Event Systems
April 29-May 1, 2024. Rio de Janeiro, Brazil

119

