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A B S T R A C T

Stormwater detention ponds are essential stormwater management solutions that regulate the
urban catchment discharge towards streams. Their purposes are to reduce the hydraulic load
to avoid stream erosion, as well as to minimize the degradation of the natural waterbody by
direct discharge of pollutants. Currently, static controllers are widely implemented for detention
pond outflow regulation in engineering practice, i.e., the outflow discharge is capped at a fixed
value. Such a passive discharge setting fails to exploit the full potential of the overall water
system, hence further improvements are needed. We apply formal methods to synthesize (i.e.,
derive automatically) optimal active controllers. We model the stormwater detention pond,
including the urban catchment area and the rain forecasts with its uncertainty, as hybrid Markov
decision processes. Subsequently, we use the tool Uppaal Stratego to synthesize using Q-learning
a control strategy maximizing the retention time for pollutant sedimentation (optimality) while
also minimizing the duration of emergency overflow in the detention pond (safety). These
strategies are synthesized for both an off-line and on-line settings. Simulation results for an
existing pond show that Uppaal Stratego can learn optimal strategies that significantly reduce
emergency overflows. For off-line controllers, a scenario with low rain periods shows a 26%
improvement of pollutant sedimentation with respect to static control, and a scenario with high
rain periods shows a reduction of overflow probability of 10%–19% for static control to lower
than 5%, while pollutant sedimentation has only declined by 7% compared to static-control.
For on-line controllers, one scenario with heavy rain shows a 95% overflow duration reduction
and a 29% pollutant sedimentation improvement compared to static control.

. Introduction

Urbanization and climate change poses two major challenges related to urban stormwater management: flooding of the urban
rea, and the environmental impact on receiving waters from urban catchment runoff [1,2]. A storm drainage system collects
nd conveys the runoff generated from impervious urban surface areas, like roads and other man-made surfaces, and discharges
he excessive volume into receiving waterbodies in order to avoid urban flooding. The urban runoff carries high concentration of
ollutants from washoff of the urban surfaces [3]. Stormwater detention ponds are the most commonly used stormwater management
ool for avoiding or reducing the impacts of stormwater discharges [4]. Negative impacts of stormwater direct discharge include
nnatural disturbances in sediment transportation, environmental pollution, and downstream flooding [5,6].
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Urbanization and climate change have significantly increased the costs of constructing, maintaining, and upgrading detention
onds for water utility companies to ensure efficient and safe stormwater discharge. For example, the Danish Water and Wastewater
ssociation estimates that the cost of updating the Danish storm water systems will be between 0.6 and 1.3 billion euros [7]. The
ischarge permits have been increasingly changed over the last 15 years, so even recently constructed stormwater detention ponds
o not comply with present recommendations (see [8]).

The requirements for the design of stormwater detention ponds are, in general, based on the maximum allowed discharge flow
ate into the nearby receiving stream or river, the probability of emergency overflow, and the concentration of pollutants in the
ischarged water [9]. In Europe, these requirements are derived from the European Water Framework Directive [10] and discharge
ermits issued by the local authorities.

Currently, the most common discharge strategies involve static settings to control flows (when there is stormwater in the
etention pond) into the stream without taking into account the actual capacity of the receiving stream. These strategies do not
ecessarily comply with the regulations set by the European Water Framework Directive, as pointed out by [11]. The use of active
ontrollers that change the outflow dynamically, also called real-time controllers or ‘‘smart’’ stormwater management [12], has the
otential to improve the efficiency of stormwater infrastructure.

Existing work on the design of active control strategies for urban water systems primarily focus on sewer systems and wastewater
reatment plants, which include detention ponds as subsystems, see for example [11–16]. Controlled discharge from detention ponds
as also been studied. For example, in [17], a real-time controller is designed for improving the efficiency of particle removal.
urther improvements are presented in [18,19], where off-line strategies take weather forecasts into account. However, these works
ocus primarily on particle removal efficiency as the objective, as most of the pollution is bound strongly to organic and inorganic
articles. Furthermore, the underlying rule-based control strategies are manually derived and the discharge output can only be
hanged infrequently, like once a day.

More recently, real-time controllers that prevent overflow of ponds while also maximizing the retention time were presented
n [20,21]. Here, a controller active during wet periods is obtained by solving a linear programming problem, yet during dry periods
manually designed rule-based controller is used. Similarly, [22,23] present real-time controllers for rainwater harvesting systems,
hich are single-household tanks that collect rainwater for domestic water demands like flushing toilets. While in [22] four different

ontrollers were designed manually, in [23] the authors used the evolutionary algorithm NSGA-II [24] to obtain a safe and optimal
ontroller. In [25] deep reinforcement learning is used to obtain a system-level controller for a coastal urban stormwater system.
ven though all these works mention that weather forecasts are inherently stochastic, none of the optimization problems take
tochasticity explicitly into account. In our work, we show how stochastic weather predictions can be incorporated into the model.

In the field of cyber–physical systems, there is considerable research in deploying formal methods for verifying or even
ynthesizing controllers for stochastic hybrid systems. For example, the tool Uppaal Stratego [26] is able to synthesize safe and near-

optimal controllers by combining model checking and reinforcement learning. Case studies using Uppaal Stratego include battery
aware scheduling problems [27], adaptive cruise control [28], floor heating [29], and fleet management for autonomous robots [30].

The objective of this paper is to deploy reinforcement learning, in particular Q-learning [31], to automatically synthesize active
control strategies for stormwater detention ponds, where we maximize particle sedimentation residual time while also minimizing
the (expected) emergency overflow duration. As basis for the control synthesis, we model the stormwater detention pond as a hybrid
Markov decision process utilizing a combination of differential equations and (stochastic) timed automata. By using this modeling
formalism, this paper extends existing work by explicitly model uncertainties inherent to weather forecasts, which controller
synthesis then can take into account. The synthesized controller is able to periodically change the discharge flow, thus allowing
a more rapid and precise response to uncertain weather events. We synthesize both off-line and on-line controllers, with the on-line
controllers using model-predictive control [32]. Simulation experiments of a real-world detention pond are used to compare the
performance of synthesized active control strategies with the performance of the current static control.

This paper is an extended version of the conference paper [33]. First, we include the formal definitions of the used mathematical
modeling framework. Second, we describe the full model in this paper, where the conference paper only described the main
components. Third, model-predictive control has been added where new strategies are synthesized on-line. For this, we combined
Uppaal Stratego, for synthesizing the controllers, with EPA-SWMM [34], a domain specific stormwater simulator. Fourth, we include
additional simulation experiments for off-line control. Finally, we discuss what the synthesized strategies can and cannot guarantee,
especially with respect to safety (in our case emergency overflow). This is reflected mainly in the control problem formulation and
the results discussion.

This paper is structured as follows. Section 2 introduces stormwater detention ponds in more details and Section 3 introduces
the preliminaries necessary for this paper. The full model and the control problem formulation are presented in Section 4. The main
results for off-line controller synthesis are presented in Section 5 and the main results for on-line controller synthesis in Section 6.
Section 7 concludes the paper.

2. Storm water detention ponds

Stormwater detention ponds collect stormwater from urban build-up areas, like streets, roofs and parking lots. When it is raining
or snow is melting, two main risks arise. First, the urban discharges can exceed the capacity of nearby streams. Second, urban
pollutants conveyed by the stormwater can degrade the ecosystem of the receiving waterbodies. Stormwater detention ponds aim
2

to mitigate the impact of both risks. Stormwater detention ponds can be characterized by being either a wet or a dry detention
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Fig. 1. Satellite image of the Vilhelmsborg Skov pond south of Aarhus, Denmark. A is the detention pond, where the inlet is located at B and the outlet at C.
Stormwater is discharged in the stream labeled with D, which runs from the south to the north.
Source: Image from Google Maps.

Fig. 2. Overview of the storm water detention pond.

pond. A wet detention pond always has a minimal amount of constant water in it, while a dry one can empty completely (hence
the names). In our case study, we focus on a wet detention pond.

An example of such a pond is shown in Fig. 1. The satellite image shows the Vilhelmsborg Skov pond south of Aarhus, Denmark.
Labeled by A is the storm water detention pond, partially filled with water. It collects the water from the neighborhoods south of
it through the sewer system next to the roads, entering the pond through B. The pond’s outlet is indicated by C, which connects to
the stream labeled with D. This stream runs from south to north and discharges the water from the neighborhood.

Currently, stormwater detention ponds are often designed with static outlet flow regulator creating a capped outlet flow into
the stream. The capacity of the stream (reflected in the issued permits) dictates the maximum outlet flow of the pond. This capped
outlet flow is determined by criteria such as the impervious area of the connecting urban catchment and the predicted return period
of emergency overflows. This in turn determines the pond volume.

Recent research has focused on the design of energy efficient dynamic outlet flow regulator.1 Having these flow regulators
allows utility companies to incorporate active (or real-time) control into their design of the stormwater detention ponds. This has
the potential to enable more efficient detention pond designs and reduce the negative effect of the two aforementioned main risks.

Fig. 2 shows a schematic overview of the wet stormwater detention pond. Rain water falls into an urban area, like a neighborhood,
university campus area, or a highway, and is transported to a nearby pond via under sewer system and overland flows. Rain water
enters the pond through inlet 𝑄𝑖𝑛 and exits it through outlet 𝑄𝑜𝑢𝑡 into a nearby receiving waterbody. A water brake in the outlet
limits the outflow. Due to the positioning of the outlet pipe, there is a permanent water level in the pond (indicated with the lower
horizontal dashed line in the figure). The variation of the water level above this permanent water level is indicated by 𝑤. When the
maximum water level, indicated by 𝑊 , is reached, there will be an emergency overflow from the pond.

1 See project webpage at https://www.danva.dk/viden/vudp/projektuddelinger/relevand/ (in Danish).
3
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We consider the evaporation and infiltration/exfiltration processes to be minor, thus excluding their representation from our
odel. At the same time, water leakage is assumed to be case specific with relative low likelihood, and will thus be neglected for

ur general cases. It is shown in [35] that these water flows are negligible compared to the storm water flow. Our control problem
s to synthesize a controller that maximizes particle sedimentation (by having a large amount of water in the pond) while also
inimizes (the probability of) emergency overflow. These are competing objectives, as the first one tends to fill the pond while the

atter one tends to empty it.

. Preliminaries

We apply the mathematical modeling framework of hybrid Markov decision process (HMDP), adapted from [29,36], for modeling
ur problem.

efinition 1. A hybrid Markov decision process (HMDP)  is a tuple (𝐶,𝑈,𝑋, 𝐹 , 𝛿) where:

• the controller 𝐶 is a finite set of (controllable) modes 𝐶 = {𝑐1,… , 𝑐𝑘},
• the uncontrollable environment 𝑈 is a finite set of (uncontrollable) modes 𝑈 = {𝑢1,… , 𝑢𝑙},
• 𝑋 = {𝑥1,… , 𝑥𝑛} is a finite set of continuous (real-valued) variables,
• for each 𝑐 ∈ 𝐶 and 𝑢 ∈ 𝑈 , the flow function 𝐹𝑐,𝑢 ∶ R>0 × R𝑋 → R𝑋 describes the evolution of the continuous variables over

time in the combined mode (𝑐, 𝑢), and
• 𝛿 is a family of density functions 𝛿𝛾 ∶ R≥0 × 𝑈 → [0, 1], where 𝛾 = (𝑐, 𝑢,𝒙) is a global configuration with 𝒙 ∶ 𝑋 → R being

a valuation. More precisely, 𝛿𝛾 (𝜏, 𝑢′) is the probability that in the global configuration (𝑐, 𝑢,𝒙) the uncontrollable mode 𝑢 will
change to mode 𝑢′ after a delay 𝜏. Note that 𝛴𝑢′ ∫𝜏 𝛿𝛾 (𝜏, 𝑢

′)d𝜏 = 1.

This notion of an HMDP describes an uncountable and infinite state Markov Decision Process, see [37], where the controller
mode switches periodically with interval 𝑃 ∈ R≥0 and the uncontrollable environment mode switches probabilistically according to
𝛿. In the rest of the paper, we denote by C the set of global configurations 𝐶 × 𝑈 × (𝑋 → R) of an HMDP.

The evolution of an HMDP over time is defined as follows. Let 𝛾 = (𝑐, 𝑢,𝒙) be the current configuration, 𝛾 ′ = (𝑐′, 𝑢′,𝒙′) the next
configuration, and 𝜏 a time delay. We write 𝛾

𝜏
←←←←←←→ 𝛾 ′ when 𝑐′ = 𝑐, 𝑢′ = 𝑢, and 𝒙′ = 𝐹𝑐,𝑢(𝜏,𝒙). We write 𝛾

𝜏
←←←←←←→𝑢 𝛾 ′ in case 𝑐′ = 𝑐,

𝒙′ = 𝐹𝑐,𝑢(𝜏,𝒙) and 𝛿𝛾 (𝜏, 𝑢′) > 0.
A run of an HMDP is an interleaved sequence 𝜋 ∈ C × (R≥0 × C)∗ of configurations and time-delays, starting with initial

configuration 𝛾0:

𝜋 = 𝛾0𝜏1𝛾1𝜏2𝛾2𝜏3 ⋯

where 𝛾𝑖 = (𝑐𝑖, 𝑢𝑖,𝒙𝑖), for all 𝑛 there exist 𝑖 such that 𝛴𝑗≤𝑖𝜏𝑗 = 𝑛 ⋅ 𝑃 , and for all 𝑖 either

1. the environment changes to a new mode, i.e., 𝛾𝑖
𝜏𝑖+1
←←←←←←←←←←←←←←←←→𝑢 𝛾𝑖+1, or

2. the controller changes to any possible new mode when it reaches the end of a period, i.e., 𝛴𝑗≤𝑖+1𝜏𝑗 is a multiple of 𝑃 and
𝛾𝑖

𝜏𝑖+1
←←←←←←←←←←←←←←←←→ (𝑐𝑖+1, 𝑢𝑖+1,𝒙𝑖+1) with 𝑐𝑖+1 ∈ 𝐶 and 𝑢𝑖+1 = 𝑢𝑖.

The control problem of a stormwater detention pond can be described as an HMDP as follows. The set of control modes 𝐶 contains
the different pond outlet water brake settings that can be chosen. For static control, 𝐶 becomes a singleton. The rain determines
the uncontrollable stochastic input to the system, which is modeled with two uncontrollable modes: dry and raining. The density
function 𝛿 captures the uncertainty in the duration of the dry and rain intervals, which is independent of 𝑐 and 𝒙. Finally, 𝑋 contains
the state variables, such as the current water level in the pond and the current rain intensity.

For the model of the detention pond, the flow function 𝐹𝑐,𝑢 is expressed as a combination of differential equations and timed
automata. A timed automaton [38] is a tuple 𝐴 = (𝐿𝑜𝑐, 𝑙0, 𝐶𝑙𝑘, 𝐸, 𝐴𝑐𝑡, 𝐼𝑛𝑣), where 𝐿𝑜𝑐 is a finite set of locations, 𝑙0 ∈ 𝐿𝑜𝑐 is the
initial location, 𝐶𝑙𝑘 is a finite set of clocks, 𝐸 ⊆ 𝐿𝑜𝑐 × 𝐴𝑐𝑡 × (𝐶𝑙𝑘) × 2𝐶𝑙𝑘 × 𝐿𝑜𝑐 is a set of edges, 𝐴𝑐𝑡 is a finite set of actions, and
𝐼𝑛𝑣 ∶ 𝐼𝑛𝑣 ↦ (𝐶𝑙𝑘). Here (𝐶𝑙𝑘) is the set of all predicates using the clocks, and for an edge 𝑒 = (𝑙𝑠, 𝑎, 𝑔, 𝑐, 𝑙𝑡) locations 𝑙𝑠 and 𝑙𝑡
represent the source location and target location, respectively, 𝑎 is the action, 𝑔 the guard, and 𝑐 a set of clocks to be reset. When
such a predicate is used on an edge, it is called a guard. Finally, 2𝐶𝑙𝑘 indicates on edges the set of clocks that are reset to 0.

Example 1. Fig. 3 shows a small HMDP example to illustrate the used modeling formalism; the shown values are hypothetical
and not based on real-life data. Rain can fall into a storage tank, from which water can be drained with a controlled valve.
The uncontrollable environment is modeled with the (stochastic) timed automaton Rain. The two locations, depicted with circles,
represent the two modes ‘Dry’ and ‘Raining’, and edges, depicted by arrows between locations, represent mode switches. The
clock variable 𝑥 keeps track of the duration of modes. The model indicates that the dry mode has a duration between 6 and 12 time
units, as the invariant 𝑥 ≤ 12 indicates that the system can only remain in ‘Dry’ for at most 12 time units and the guard 𝑥 ≥ 6 on
the outgoing edge indicates that the transition from ‘Dry’ to ‘Raining’ is only possible after 6 time units. The raining mode has a
duration of 𝑏 time units, which is sampled from an exponential distribution with mean 𝑖, a variable that increases with the number
of rain cycles. Once the uncontrollable edge is taken from ‘Dry’ (the source location of that edge) to ‘Raining’ (the target location
of that edge), the rain intensity 𝑟 is chosen from a bounded normal distribution with mean 8, standard deviation 1, upper bound 10,
and lower bound 6, all volume unit per time unit. In this paper, uncontrollable edges are indicated by dashed arrows. The initial
4
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Fig. 3. A small HMDP example.

ocation is indicated by the small incoming arrow at location ‘Dry’. The initial value of clock variables is assumed to be 0 when
ot depicted.

The timed automaton Controller models the controllable valve, which is either in control mode ‘Closed’ or ‘Open’. The solid
edges indicate controllable actions. Clock variable 𝑦 keeps track of the control period duration, where the control period is set to
1 (see guards 𝑦 = 1 on the edges). After each control period, the controller has the choice of switching to ‘Closed’ or to ‘Open’.
When switching to the ‘Closed’ mode, the output flow 𝑜 is set to 0 volume units per time unit, while switching to the ‘Open’ mode
it is set to 8 volume units per time units.

Finally, the Water model describes the evolution of the water volume 𝑉 over time with a differential equation: the volume
change is the difference between the water inflow 𝑟 and the water outflow 𝑜. For this example, the safety objective is to maintain
a minimal water level 𝑉𝑚𝑖𝑛, while the optimization objective is to minimize the expected average (accumulated) water level.

3.1. Strategies for HMDP

For a given HMDP, a memoryless and possibly nondeterministic strategy 𝜎 determines which of the control modes can be used
in the next period. Formally, a strategy is a function 𝜎 ∶ C → 2𝐶 that returns a nonempty set of allowed control modes in a
configuration. A strategy is called deterministic if exactly one control mode is permitted in each configuration.

The behavior of an HMDP  under supervision of a strategy 𝜎, denoted as the stochastic process ↾𝜎, is defined as follows.
A run 𝜋 is according to the strategy 𝜎 if the controller changes mode according to the strategy 𝜎, i.e., 𝛾𝑖

𝜏𝑖+1
←←←←←←←←←←←←←←←←→ (𝑐𝑖+1, 𝑢𝑖+1,𝒙𝑖+1) with

𝑐𝑖+1 ∈ 𝜎((𝑐𝑖, 𝑢𝑖,𝒙𝑖+1)) and 𝑢𝑖+1 = 𝑢𝑖. A strategy 𝜎 is called safe with respect to a set of configurations 𝑆 ⊆ C, called the safe set, if
5

for any run 𝜋 according to 𝜎 all configurations encountered are within the safe set 𝑆. Note that we require 𝛾𝑖 ∈ 𝑆 for all 𝑖 and also
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𝛾 ′𝑖 ∈ 𝑆 whenever 𝛾𝑖
𝜏
←←←←←←→ 𝛾 ′𝑖 with 𝜏 ≤ 𝑃 . A safe strategy is called maximally permissive if for each configuration it returns the largest set

of possible actions [26].
The optimality of a strategy can be evaluated for the stochastic process ↾𝜎 with a given optimization variable. Let 𝐻 ∈ R≥0

be a given time-horizon and 𝐷 a random variable on finite runs, then E,𝛾
𝜎,𝐻 (𝐷) ∈ R≥0 is the expected value of 𝐷 on the space of

uns of  ↾ 𝜎 of length 𝐻 starting in configuration 𝛾. For example, 𝐷 can be the integrated error (or deviation) of a continuous
ariable with respect to its desired target value.

The goal is to synthesize a safe and optimal strategy 𝜎𝑜𝑝𝑡 for a given HMDP , initial configuration 𝛾, safety set 𝑆, optimization
ariable 𝐷, and time-horizon 𝐻 . To obtain 𝜎𝑜𝑝𝑡, the tool Uppaal Stratego [26] can first synthesize a maximally permissive safe strategy
𝑠𝑎𝑓𝑒 with respect to 𝑆 when the HMDP  can be represented as a timed game with integer-valued bounds. Subsequently, 𝜎𝑜𝑝𝑡 is
sub-strategy of 𝜎𝑠𝑎𝑓𝑒 (i.e., ∀𝛾 ∈ C ∶ 𝜎𝑜𝑝𝑡(𝛾) ⊆ 𝜎𝑠𝑎𝑓𝑒(𝛾)) that optimizes (minimizes or maximizes) E,𝛾

𝜎,𝐻 (𝐷). For additive random
ariables, the optimal sub-strategy of the maximally permissive strategy is deterministic. Yet, when the system’s dynamics is more
omplicated, e.g. described by differential equations, an alternative for synthesizing a safe strategy is to incorporate violations of
he safety set 𝑆 as severe penalties in the optimization variable 𝐷.

.2. Uppaal Stratego

We use the modeling tool Uppaal Stratego [26] for control synthesis. It integrates Uppaal with the two branches Uppaal SMC [39]
statistical model checking for stochastic hybrid systems) and Uppaal Tiga [40] (synthesis for timed games). Therefore, Uppaal is able
o synthesize safe and optimal strategies. To synthesize a safe and optimal strategy 𝜎𝑜𝑝𝑡, Uppaal Stratego first needs the HMDP 
eing abstracted (if possible) into a 2-player timed game, ignoring all stochasticity. A safe strategy 𝜎𝑠𝑎𝑓𝑒 can then be synthesized for
his timed game. A simplified version of timed computational tree logic (TCTL) [40] is used to formulate the safety specification.
ubsequently, reinforcement learning is applied to obtain an optimal sub-strategy 𝜎𝑜𝑝𝑡 based on  ↾ 𝜎𝑠𝑎𝑓𝑒 and the given random
ptimization variable [26]. When the HMDP  is not abstracted into a 2-player timed game, reinforcement learning can still be used
o learn an optimal strategy that most likely is also safe, although no guarantees can be given. For this optimal strategy, statistical
odel checking can be applied to estimate the probability that the system under this strategy  ↾ 𝜎𝑜𝑝𝑡 leaves the set of safe states 𝑆.

Several learning algorithms are at the modelers disposal in Uppaal Stratego. Recently, in [31] Q-learning and M-learning were
ntroduced. With Q-learning, sample runs are drawn from the HMDP model and are used afterwards to calculate the so-called Q-
alues. These values are refined into a new strategy and the previous step is repeated with this new strategy until some termination
riteria are met. M-learning works similar to Q-learning, except that the HMDP model is now utilized to approximate the transition
nd cost functions, which are used to calculate the Q-values instead of sample runs. To efficiently cope with continuous state spaces,
ppaal Stratego deploys online partition refinement techniques.

.3. Off-line and on-line control

A strategy can be synthesized both off-line and on-line. With off-line control, a safe and optimal strategy is synthesized before it
s fully implemented on the system. The time-horizon 𝐻 has to be sufficiently large to capture all possible behaviors of the system
hat the strategy should handle. To illustrate the potential problems with small horizons 𝐻 , consider again Example 1 in which
he safety objective is to keep the water level always above the minimum level while the optimization objective is to minimize the
verage water level. One safe strategy is to keep the valve always closed such that the water level never drops below the minimum
ater level. If we keep 𝐻 < 6 for off-line control, no run with rainfall is generated, thus reinforcement learning concludes that this

afe strategy is also the optimal. Yet, when we deploy this strategy and let time run longer than this horizon, the strategy is no
onger optimal as rainfall will eventually increase the water level.

In on-line control, also called model-predictive control (MPC) [32], the control strategy is recalculated periodically, typically
fter a single control period 𝑃 , where the model is updated with the latest sensor readings. Fig. 4 illustrates the concept of MPC
sed in this paper. Up to time 𝑡 = 𝑘, the true state of the system 𝑥 has been observed and control input 𝑢 has been provided to
t. Using a model of the system, the future state 𝑥̂𝑘 trajectory within a control horizon 𝐻 is predicted. The evolution of the state
epends on the control sequence being applied 𝑢̂𝑘, where the applied control action can be switched after each control period. This
ontrol sequence can be the result of the safe and optimal strategy 𝜎𝑜𝑝𝑡 from Section 3.1. Once the optimal control sequence is
btained, the first control action of this sequence is applied. When the end of the control period is reached, the process mentioned
bove is repeated. At time 𝑡 = 𝑘 + 𝑃 the true value of the state of the system 𝑥(𝑘 + 𝑃 ) is observed, which is, most likely, different
rom the predicted state 𝑥̂𝑘(𝑘 + 𝑃 ), see the solid blue line in Fig. 4(b). Therefore, using the new true state 𝑥(𝑘 + 𝑃 ) might result in
different control sequence 𝑢̂𝑘+𝑃 than the one calculated before 𝑢̂𝑘.

. Modeling

Our model of a detention pond consists of the components Pond, Controller, Rain, and UrbanCatchment. The model can be
ownloaded from [41].
6
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Fig. 4. Conceptual overview of model predictive control. (a) shows the system at time 𝑡 = 𝑘. In solid blue and dashed blue is the continuous evolution of the
tate in the past 𝑥 and for the future 𝑥̂𝑘, respectively, while solid red and dashdotted red shows the periodically switched control signal in the past 𝑢 and for
he future 𝑢̂𝑘, respectively. Both future trajectories are predicted at time 𝑡 = 𝑘 using some model. (b) shows the system after a period 𝑃 at time 𝑡 = 𝑘 + 𝑃 . New
redictions 𝑥̂𝑘+𝑃 and 𝑢̂𝑘+𝑃 are made (dotted lines) based on the true state 𝑥 at time 𝑡 = 𝑘+𝑃 . (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 5. The model generating rainfall.

4.1. Rain

Fig. 5 shows the rain model including its uncertainty. It generates the uncontrollable input to the system and can be interpreted
as the weather forecast. The rain profile is modeled as alternating dry and raining intervals, each modeled with a location. For
each interval period, indicated with 𝑖, the duration of the dry (raining) period is bounded between 𝑑𝑟𝑦𝐿[𝑖] (𝑟𝑎𝑖𝑛𝐿[𝑖]) and 𝑑𝑟𝑦𝑈 [𝑖]
(𝑟𝑎𝑖𝑛𝑈 [𝑖]), all being positive integers. Clock 𝑑 tracks the duration of the current interval. The actual dry or rain duration is chosen
uniformly at random between 𝑑𝑟𝑦𝐿[𝑖] and 𝑑𝑟𝑦𝑈 [𝑖] or 𝑟𝑎𝑖𝑛𝐿[𝑖] and 𝑟𝑎𝑖𝑛𝑈 [𝑖], respectively.

When it is raining in the 𝑖th interval, the actual rain intensity 𝑟𝑎𝑖𝑛 ∈ R used as input for the UrbanCatchment model is chosen
uniformly random between 𝑟𝑎𝑖𝑛[𝑖] ⋅ (1 − 𝜀) and 𝑟𝑎𝑖𝑛[𝑖] ⋅ (1 + 𝜀), where 𝜀 is a fixed uncertainty factor. Within an interval, the rain
intensity is constant.

The concrete values for 𝑑𝑟𝑦𝐿[𝑖], 𝑑𝑟𝑦𝑈 [𝑖], 𝑟𝑎𝑖𝑛𝐿[𝑖], 𝑟𝑎𝑖𝑛𝑈 [𝑖], and 𝑟𝑎𝑖𝑛[𝑖] are derived from historical rain data from the [42], as
historical weather forecasts are not published.

4.2. Urban catchment

We model the urban catchment area as a one-layer linear reservoir model (the surface storage of the simplified ‘Nedbør
Afstrømnings Model’ (NAM)), see [43]. It is assumed that both the 𝑟𝑎𝑖𝑛 and the stored rain water 𝑆 ∈ R are uniformly distributed
along the urban area, so both become a height measure instead of volume. The time-dependent dynamics of 𝑆 is given by

d𝑆
d𝑡

= 𝑟𝑎𝑖𝑛 − 𝑘𝑆, (1)

where 𝑘 is the urban surface reaction factor. This expression simply states that the change in stored water 𝑆 depends on the difference
between the rain falling into the urban area and the storm water leaving it. The flow (expressed as a volume per time unit) from
the urban catchment to the pond 𝑄𝑖𝑛 is given with the rational method by

𝑄𝑖𝑛 = 𝑘𝑆𝐴𝑢𝑐 (2)
7

with 𝐴𝑢𝑐 being the urban catchment surface area.
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Fig. 6. The model of the controller. The select statement is a simplification of having a set of edges with one for each value in the select range.

4.3. Pond

The dynamics of the water level 𝑤 in the pond can be derived using the mass balance equation. Assuming constant density of
water, this translates into a volume balance equation. Using Fig. 2, we see that the difference in inflow and outflow contribute to
the change in water inside the pond. Therefore,

𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡 =
d𝑉
d𝑡

, (3)

where 𝑄𝑖𝑛 is the water inlet flow from the urban drainage system, 𝑄𝑜𝑢𝑡 is the water outlet flow into a nearby stream, and 𝑉 the
water volume of the pond above the permanent water level. The outlet flow is assumed to be more or less constant for any chosen
output mode (see Section 4.4), but in reality there is a non-linear relationship to the water level, especially when the outlet is not
fully submerged with low water levels. This is however simplified in this model to reduce computational effort for Q-learning.

The change in volume over time can also be expressed using the geometry of the pond:

d𝑉
d𝑡

=
d(𝑤𝐴𝑝(𝑤))

d𝑡
, (4)

where 𝐴𝑝(𝑤) is the pond surface area at height 𝑤. Eqs. (3) and (4) together describe the dynamics of the pond’s water level under
‘normal’ circumstances.

There are two boundary cases that need to be taken into account. The first case is when the outflow is larger than the inflow
and the water level reaches the permanent water level. The second case is when the inflow is larger than the outflow and the water
level reaches the maximum height 𝑊 of the pond, which results in an emergency overflow. In both cases, the water level 𝑤 remains
tationary. Now, Eq. (3) can be reformulated taking these boundary cases into account:

d𝑉
d𝑡

=

⎧

⎪

⎨

⎪

⎩

0 if 𝑄𝑜𝑢𝑡 ≥ 𝑄𝑖𝑛 ∧𝑤 = 0,
0 if 𝑄𝑖𝑛 ≥ 𝑄𝑜𝑢𝑡 ∧𝑤 = 𝑊 ,
𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡 otherwise.

(5)

Note that if one would time-discretize the above differential equations, the models from [20,22] can be obtained.

4.4. Controller

The controller is able to change the size of the pond’s outlet periodically. Fig. 6 shows the model of the controller. It starts in the
urgent location ‘choosing’ from where it chooses with a controllable action one of the 𝐶 control options. Location ‘choosing’
is urgent to force the periodic controller to make a choice without letting time pass in this location, so the controller is truly
periodically. The actual output 𝑄𝑜𝑢𝑡 is set to one of the predefined constant outputs for each mode 𝑄𝑜𝑝𝑡𝑖𝑜𝑛𝑠

𝑜𝑢𝑡 . The clock 𝑑, measuring
the duration of the current control period, is reset to 0. Note that 𝑑 is local to the controller and does not interfere with clock 𝑑
from the Rain model.

In location ‘waiting’ the controller waits until the period with duration 𝑃 is over, indicated with invariant 𝑑 ≤ 𝑃 . When the
controller has waited for 𝑃 time units, it goes to the right urgent location and above process is repeated for the next control period.

Note that in our model we require a discrete number of control options (a discrete action space) such that we can use
reinforcement learning as implemented in Uppaal Stratego. On the contrary, the works of [20,22] allow a continuous action space.
But since we allow the controller to switch periodically, could create new average outflows. For example, if the available outflows
to choose from are 1 L/s and 2 L/s while the optimal outflow would be 1.5 L/s, switching evenly between 1 L/s and 2 L/s creates
an average outflow over time of 1.5 L/s.

4.5. Control problem definition

The primary objective of the controller is to ensure a safe operation of the stormwater detention pond. In this context, safety is
defined as preventing the pond from overflowing. In case of an overflow event, the water discharge in the nearby stream or river is
temporarily much higher than normal. This excessive discharge might have environmental impacts or cause downstream flooding.
We measure overflow with a continuous variable 𝑜 that represents the accumulated overflow duration. Formally,

d𝑜
d𝑡

=

{

1 if 𝑤 = 𝑊 ,
(6)
8

0 if 𝑤 < 𝑊 .
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Table 1
The rain forecast data for September 5–September 7 2019.
𝐼 𝑑𝑟𝑦𝐿 [min] 𝑑𝑟𝑦𝑈 [min] 𝑟𝑎𝑖𝑛𝐿 [min] 𝑟𝑎𝑖𝑛𝑈 [min] 𝑟𝑎𝑖𝑛 [cm/min]

1 210 256 27 33 0.01333
2 64 78 21 25 0.03478
3 1376 1682 49 61 0.02545
4 168 206 23 29 0.02308
5 203 249 208 254 0.00952

The secondary objective is to capture as much urban area particles as possible from the storm water. This is done to prevent
ontamination of the nearby stream or river. Particles are captured through particle sedimentation onto the pond’s floor surface.
herefore, we want to maximize the retention time 𝑡𝑟, defined as 𝑡𝑟 =

𝑉
𝑄𝑜𝑢𝑡

. To maximize the retention time, we can maximize 𝑉 or
inimize 𝑄𝑜𝑢𝑡, or both. Since 𝑉 is proportional to 𝑤, maximizing 𝑉 implies maximizing 𝑤. From Eq. (3) it follows that minimizing
𝑜𝑢𝑡 results in a larger d𝑉

d𝑡 , i.e., over time a larger 𝑉 is encouraged. Therefore, penalizing a low water level encourages a larger
ater volume 𝑉 and a lower outflow 𝑄𝑜𝑢𝑡.

In the model, we associate a cost 𝑐 to the ability of particle sedimentation. A linear cost function is used such that higher water
evels, related to higher possibilities for particle sedimentation, result in lower cost. Formally,

d𝑐
d𝑡

= 1 − 𝑤
𝑊

. (7)

Therefore, 𝑐 represents the accumulated cost, where a cost of 1 per time unit is associated with 𝑤 being the permanent water level
and a cost of 0 with 𝑤 being at the maximum height 𝑊 .

Combining both objectives, the controller synthesis problem can now be formulated as follows. Synthesize a safe and optimal
strategy 𝜎𝑜𝑝𝑡 such that it minimizes overflow duration and particle sedimentation cost. The optimal strategy formulation becomes

𝜎𝑜𝑝𝑡 = argmin
𝜎

E,𝛾
𝜎,𝐻 (𝑐 + 𝛼𝑜), (8)

where 𝛼 ∈ R is the overflow penalty factor to balance the contribution of both 𝑜 and 𝑐 to the optimization. Uppaal Stratego is
applied to synthesize controllers for this problem, where the continuous variables 𝑜 and 𝑐 are implemented in a separate component
and Eq. (8) is the optimization query.

5. Off-line controller synthesis

For the off-line control simulation experiments, we calibrated our model to the Vilhelmsborg Skov pond south of Aarhus,
Denmark. It has an urban catchment area of 𝐴𝑢𝑐 = 0.59 ha, a maximally permitted discharge of 95 L/s, and an average pond
area 𝐴𝑝 = 5, 572 m2 (data from [35]). We estimated the urban surface reaction factor to 𝑘 = 0.25 and the maximum water level to
𝑊 = 300 cm.

Historical rain data for the period September 5–September 7 2019 are used, obtained from [42]. We artificially created a
weather forecast based on the actual historical rainfall. We performed the following steps to create a simple weather forecast
including prediction uncertainties. For each rain period (a continuous period of reported non-zero rain intensity), we average the
rain intensity2. Subsequently, an uncertainty of 𝜀 = 10% is added to the observed interval durations and rain intensities to mimic a
weather forecast. In this period, five rain periods occurred with varying rainfall durations and intensities.

Table 1 shows the obtained rain data implemented in the model, where September 5 starts dry (so the first rain starts falling
between 3.30 am and 4.16 am and has a duration between 27 and 33 min).

Fig. 7 shows the results of ten simulated runs in Uppaal Stratego with an initial water height 𝑤 = 100 cm and the current static
control strategy, i.e., the number of control modes 𝐶 for the water brake is 1. We set the static output flow to 2∕3 of the permitted
output flow. In blue and solid lines the water level is plotted, in black and dotted lines the rain. The discretization step for the
simulations is set to 0.5 min. We observe that several of the ten runs eventually result in an emergency overflow of the pond at
the time between 2600 and 2800 min (7-11 pm on September 6). This is also confirmed by analyzing the expected value of 𝑜:
E,𝑤=100
𝜎𝑠𝑡𝑎𝑡𝑖𝑐 ,3 days(𝑜) = 2.1 ± 0.5 (95% CI), i.e., the pond is expected to be overflowing for 2.1 min.

An actively controlled water brake can have three different modes: small, medium, and large. We set the medium setting to
the current static output flow capacity of 2∕3 ⋅ 95 L/s. The low setting is 0.25 times medium and high 1.5 times medium, thus the
high setting corresponds to the maximally permitted discharge of 95 L/s. Due to energy constraints (these stormwater ponds are
not connected to the normal electric energy grid), the water brake can only change once every hour, so 𝑃 = 60 min. We employ
Q-learning to synthesize strategies with the learning parameters set to 50 successful runs, a maximum of 100 runs, 20 good runs,
and 20 runs to evaluate (the first four learning parameters in Uppaal Stratego).

With these control modes, we synthesized an optimal controller using Eq. (8) with the overflow penalty factor 𝛼 = 10000. Fig. 8
shows ten runs in Uppaal Stratego of the model using the synthesized optimal controller. As can be seen from the figure, in order

2 By averaging the rain intensities, we also resolve the fixed first data-point of each rain period due to the tipping bucket rain gauge design.
9
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Fig. 7. Ten simulations of the model with the current static control. Blue and solid lines indicate the water level in the pond and black and dotted lines the
rainfall. The horizontal red line indicates the maximum water level. For one of the runs, overflow occurs around 𝑡 = 2750 min, as the maximum water level is

= 300 cm. As a quick reference, 1440 min is 1 day, and the total time scale is 3 days. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Fig. 8. Ten simulations of the model with optimal dynamic control. As a quick reference, 1440 min is 1 day, and the total time scale is 3 days.

to ensure safety, the controller keeps the water level in the pond lower than the static controller (see Fig. 7 for the static controller
results). For some runs the pond water level even reaches the permanent water level, i.e., it cannot go lower. While overflow is not
guaranteed to be avoided, including it in the controller’s cost function, see Eq. (8), reduces the probability of overflow significantly
to between 0% and 5% (95% CI). For static control the probability of overflow is between 10% and 19% (95% CI). Furthermore, the
expected overflow duration with the synthesized strategy is calculated as E,𝑤=100

𝜎𝑜𝑝𝑡 ,3 days(𝑜) ≈ 0 (95% CI), also indicating that overflow
is avoided with the synthesized strategy. Yet, having a safe strategy comes with higher cost for particle sedimentation. For static
control, the expected cost is E, 𝑤=100

𝜎𝑠𝑡𝑎𝑡𝑖𝑐 , 3 days(𝑐) = 2015 ± 8 (95% CI), while for the optimal control it is E, 𝑤=100
𝜎𝑜𝑝𝑡 , 3 days(𝑐) = 2157 ± 11 (95%

I). This is an increase of 7%, but accepted as our primary aim is to avoid flooding.
Fig. 9 shows simulation results for the case that the initial water level is set to 0 cm. We notice that the synthesized optimal

trategy now lowers the output water brake setting compared to the previous experiment, as the pond has sufficient capacity for
he upcoming rain. As no guaranteed safe strategy is synthesized, the probability of overflow is between 0% and 7.7% (95% CI). For
tatic control the probability of overflow is between 0% and 5% (95% CI). So there is a slight increase in the probability of overflow.
his can also be observed from the figure, as the optimal strategy tries to maintain a higher water level for particle sedimentation.
he cost for particle sedimentation also indicates this. Optimal control results in a particle sedimentation cost improvement of 26%
ompared to static control: E, 𝑤=0

𝜎𝑠𝑡𝑎𝑡𝑖𝑐 , 3 days(𝑐) = 2945 ± 6 (95% CI) for static control and E, 𝑤=0
𝜎𝑜𝑝𝑡 , 3 days(𝑐) = 2189 ± 8 (95% CI) for optimal

ynamic control.
Finally, using Uppaal SMC we can analyze statistically whether the controller might prevent overflow. For example, for the initial

ater level of 𝑤 = 100 cm, the probability of overflow after three days with a random controller that can switch between the three
ettings is between 30% and 40%. So this indicates that there are strategies that can prevent overflow. If we increase the initial
ater level to, for example, 𝑤 = 150 cm, this probability of overflow is between 95% and 100% (95% CI), i.e., no matter what the

trategy is, it is very likely that the pond overflows.
10
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Fig. 9. Results for initial water level 𝑤 = 0 cm. In blue and dashed lines are ten simulations of the model with static control and in red and solid lines ten
with optimal dynamic control. As a quick reference, 1440 min is 1 day, and the total time scale is 3 days. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

6. On-line controller synthesis

6.1. Experimental setup

For on-line control, we use the U.S. Environmental Protection Agency Stormwater Management Model (EPA-SWMM) [34] to
simulate the real world to provide updated sensor readings for the HMDP learning model. EPA-SWMM is an open-source physics-
based dynamic rainfall-runoff model that has been implemented for decades in the urban stormwater management with respect to
both hydrological and hydraulic simulations. EPA-SWMM can precisely trace the dynamics of flow conditions (e.g. stream flow and
stormwater pond water level) in any given position of the real physical systems. Running a full SWMM model simulation can be
computational expensive, which can be problematic in the context of reinforcement learning, which needs more than thousands
of runs. Therefore, reinforcement learning utilizes the simplified HMDP model. We use pySWMM [44] for the interfacing of EPA-
SWMM with Python. Finally, we combine pySWMM with Uppaal Stratego using the STOMPC framework [45]3, which facilitates
the setup of model-predictive control using Uppaal Stratego and an external simulator. To summarize, the simple HMDP model, as
implemented in Uppaal Stratego, is used to synthesize controllers, while the EPA-SWMM model is used to analyze the performance
of the synthesized controller as if it was applied in a real pond.

For online control, we calibrated the models to a pond with a surface area of 𝐴𝑝 = 2, 250 m2, a maximum water level of
= 200 cm, and a maximally permitted discharge of 100 L/s. Its urban catchment has an area of 𝐴𝑢𝑐 = 20 ha and a surface

eaction factor of 𝑘 = 0.25 (only used in the HMDP model in Uppaal Stratego for learning; EPA-SWMM deploys a more sophisticated
odel to simulate the flow from an urban catchment area).

In EPA-SWMM, an orifice is used as a link that can dynamically control the outflow of the pond by changing the diameter of the
pening of the orifice. We selected a circular opening of the orifice. Following the documentation of EPA-SWMM [46], the outflow
f the pond becomes

𝑄𝑜𝑢𝑡 = 𝐶 𝜋
4
𝑑2

√

2𝑔𝑤 (9)

with 𝐶 the discharge coefficient, 𝑑 the chosen diameter of the orifice, and 𝑔 the gravitational acceleration. Note that this relationship
is only valid if the orifice is fully submerged, i.e. 𝑤 ≥ 𝑑 (see Fig. 2 for a reference). In our Uppaal Stratego model we implement
this relationship ignoring the partially submerged state to keep it simple. This simplification accelerates the run generation with
acceptable accuracy for Q-learning.

The controller can again choose from three different settings: low, medium, and high. The medium setting is considered to be
the static control setting. As we now have to provide EPA-SWMM with a diameter setting of the orifice, we set the high diameter
setting to 𝑑ℎ = 17, 5 cm, medium to 𝑑𝑚 = 4∕7 ⋅ 𝑑ℎ, and low to 1∕7 ⋅ 𝑑ℎ. This results in maximum outflows of 98 L/s (which is just
below the maximum permitted discharge), 32 L/s, and 2 L/s, respectively. We set the control period to 𝑃 = 1 h and the control
horizon to 𝐻 = 12 h. This differs from [20], in which a control period of 5 min and a control horizon of 30 min are used, and [22],
in which a control period of 1 day and a control horizon of 7 days are used.

Weather forecasts are again derived from historical rain data from [42]. We apply the same method as in Section 5 for the
construction of the weather forecasts, but now we perform this construction at the beginning of each control period to update it.
We let our on-line simulations run from September 5, 2019 to September 23, 2019, spanning a period of 2.5 weeks. This period
includes some average rainfall, some heavy rainfall, and a long dry period. All other settings are the same as in Section 5.

3 See https://strategoutil.readthedocs.io/en/latest/
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Fig. 10. Simulation results of online control. The top plot shows the water level in the pond for on-line model-predictive control (blue, solid) compared to static
control (blue, dashed), where 200 cm is maximum water level. The black line shows the actual hour-average rainfall intensity, plotted with a reversed 𝑦-axis.

he bottom plot shows the chosen relative orifice diameter setting, where 1 corresponds to 𝑑ℎ. The control setting is only allowed to be changed once every
our.

.2. Simulation results

Fig. 10 shows the simulation results of using on-line control for the stormwater pond compared to a static control strategy. The
ater levels and rainfall are the outputs of and the inputs to the detailed EPA-SWMM model and not the simplified Uppaal Stratego
odel. For the periods with light or no rainfall (September 5–September 10 and September 12–23), the synthesized optimal

ontroller keeps much more water in the pond compared to static control, which benefits particle sedimentation. The controller
an do this, as the predicted rainfall over the next control horizon does not fill up the pond completely. This results in a total
article sedimentation cost reduction of 29% compared to the static control strategy.

During the heavy rainfall between September 10–September 12, both controllers have difficulties preventing the pond from
verflowing, albeit that the synthesized on-line controller reduces the overflow duration significantly. The static controller results
n an overflow duration of 24.1 h, while the optimal on-line controller results in an overflow duration of 1.2 h. This can also be
een in Fig. 10, where the blue solid line often is just below the maximum water level of 200 cm, and only overflows briefly at the
tarts of September 11 and September 12. Similar positive improvements of using online control, albeit for different scenarios, are
bserved in [20–23].

Fig. 10 also shows room for future improvement. There are several moments when the controller switches from low to medium
nd then back to low, see e.g. during the heavy rainfall and at September 15. At these instances, the pond has sufficient capacity
or the upcoming rain, yet the controller decides to increase the outflow. The suspected causes for this are the control horizon and
he learning budget assigned to Uppaal Stratego to be used for Q-learning. With a low control horizon, the synthesized controller
ight not be able to observe changes in the weather on time. With a low budget, the number of generated runs is low, thus not

llowing Q-learning to observe all possible behavior to determine what is optimal. For this paper, we lowered the learning budget
o simulate 2.5 weeks in reasonable time: each cycle of calculating an optimal controller with Uppaal Stratego and simulating the
ext hour with EPA-SWMM takes roughly 8.5 s. Another possible solution could be to include control mode switching explicitly in
he cost function [22].
12
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Fig. 11. Simulation results of online control with different control horizons while keeping the learning budget the same. Note that 𝐻 = 12 h is the same result
as in Fig. 10.

6.3. Changing the prediction horizon

Fig. 11 shows simulation results where three different control horizons 𝐻 are used: 6 h, 12 h, and 18 h. All other parameters,
including the learning budget, are kept the same. Intuitively, longer horizons are expected to achieve better results (as the learning
algorithm can ‘see’ longer into the future); yet this relationship is more complex as a longer control horizon also implies more
possible control strategies. After September 13, the results show that the pond’s water level with 𝐻 = 6 h is often higher than the
one with 𝐻 = 12 h, which in turn is higher than the water level with 𝐻 = 18 h, as 𝐻 = 6 h is ‘‘short sighted’’ to identify the coming
rainfall events. Thus the synthesized controller with 𝐻 = 6 h decided to reduce the valve opening accounting for ‘‘dry periods’’ in
order to maximize the sedimentation. As a consequence, the controlled behavior of the pond with 𝐻 = 6 h resulted in an immediate
overflow at the start of the heavy rain on September 10, thus having a worse performance with respect to emergency overflow
compared to the controllers obtained with longer control horizons.

The cause for these results also lies within the fixed budget for the generation of runs for Q-learning. For a certain control
horizon 𝐻 and control period 𝑃 , the number of possible strategies is 3𝐻∕𝑃 , as each control period the controller can choose from
three options. Ideally, for each possible strategy, at least one run should be generated by Uppaal Stratego so Q-learning can adjust
the Q-table accordingly. When fewer runs are generated, it may happen that the optimal behavior is not ‘observed’ by Q-learning. As
the number of possible strategies grows exponentially with the control horizon duration, having a long horizon can be detrimental
for the computation time.

Managing and balancing the performance of the synthesized controllers and computational resource demand is a challenge for
real-life applications. On the one hand there is sufficient computation time when the control period is set to 1 h or even 15 min:
in the experiments the calculation of each controller took roughly 8.5 s, which is well within the deadline dictated by the control
period. On the other hand, the computational power of a personal computer might not be a realistic representation of available
computational resources in practice, as ponds can be located remotely and are often not connected to the regular power grid.

7. Conclusion and future challenges

We applied formal controller synthesis to automatically derive controllers for stormwater detention ponds where the water
discharge into the nearby stream can be regulated. We showed that the problem can be modeled as a hybrid Markov decision
process, such that symbolic and reinforced learning techniques from Uppaal Stratego can be applied. Simulation results of both
off-line and on-line controls show that the synthesized near-optimal active controllers can outperform current static controllers.
With on-line control the ever changing weather forecasts can be used to update synthesized strategies periodically.

This first step opens several future research directions. First, while the synthesized controller reduce the expected overflow
duration significantly, no safety guarantee can be given. If the HMDP model of the pond can be transformed into a timed game with
integer bounds, Uppaal Tiga can synthesize a guaranteed safe controller. Second, to increase the explainability of the synthesized
strategies, it is to be investigated whether exporting strategies to decision trees, see [36], is possible. Third, it will be interesting
to validate the approach with real-life data, especially using actual historical weather forecasts once they are published by DMI.
We are currently in the process of doing this. Finally, only a single storm water detention pond is analyzed in isolation from the
discharge stream. It would be interesting to see whether collaborative strategies can be synthesized for a collection of detention
ponds all discharging into the same stream, as [21,23] show promising results for collaborative control.
13
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