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Abstract— The increased frequency and severity of ex-
treme weather events are challenging traditional static control
strategies for stormwater detention ponds, which are critical
components in urban water management infrastructures. This
paper introduces a compositional control methodology, rooted
in formal verification and reinforcement learning, and tailored
for the synthesis of a joint optimal control strategy for
the management of distributed but interconnected ponds.
Combining hybrid Markov Decision Processes (HMDPs) and
reinforcement learning via Uppaal Stratego, the compositional
control strategy provides a balance between fully centralized
and decentralized control strategies, both in terms of quality
and computational complexity. Based on a real-world case
study we analyze and compare the proposed methodology and
show how the synthesized strategies can control the timing
and volume of water discharge, reducing the risk of overflow
caused by the simultaneous discharge of rainwater collected
in multiple ponds.

I. INTRODUCTION

Complex Cyber-Physical Systems (CPSs) integrate com-
putational and physical processes, making their manage-
ment and control intricate [1]. For hybrid systems, controller
synthesis is further complicated by the coexistence of con-
tinuous and discrete dynamics [2]. Traditional centralized
controllers are becoming increasingly complex and ineffi-
cient for such advanced CPS architectures. This underscores
the pressing need for innovative approaches that address
the nuanced challenges posed by CPSs and hybrid system’s
controller design while bypassing the inefficiencies inherent
in centralized control methods.

In recent times, compositional control has emerged as
an effective solution for complex system management.
Central to this approach are concepts like assume-guarantee
reasoning and contract-based design [3]. By defining in-
teractions between subsystems through formal assumptions
and guarantees, these methodologies offer a modular per-
spective to control synthesis [4]. The exact nature of these
formalisms varies, depending on the overarching system
specifications [5]. Such interactions can often be represented
using automata or temporal logic formulas. An example
of this method is in an online compositional synthesis for
a multi-room floor-heating system, significantly reducing
control complexity [6]. Advancements in this domain in-
clude the development of safety controllers for systems with
linear dynamics and interdependent parameters, enhancing

*This research is funded by the Digital Research Centre Denmark
(DIREC), Innovation Fund Denmark and the Villum Investigator Grant
S4OS.

1Esther H. Kim, Kim G. Larsen, Martijn A. Goorden, and Thomas
D. Nielsen are with the Department of Computer Science, Aalborg
University, 9220 Aalborg East, Denmark {hki, kgl, mgoorden,
tdn}@cs.aau.dk

robustness through the formulation of controlled invariant
sets, with demonstrated effectiveness in vehicular safety
applications [7].

Applying the principles of compositional control within
the realm of environmental engineering reveals a promis-
ing avenue for improving the management of stormwater
detention ponds [8]. These stormwater detention ponds are
pivotal in reducing flood risks and enhancing water quality.
Yet, the prevailing control mechanisms for managing the
discharge of water, largely dependent on static hydraulic
structures, are proving inadequate in the face of shifting
weather patterns and varying flow conditions brought about
by climate change. The imperative for dynamic and flexible
control systems is thus magnified, particularly in the case
of interlinked detention pond networks that converge into a
single watercourse. In these systems, the control strategy
must be sufficiently advanced to reduce the ecological
impact on the stream and prevent overflow from stormwater
detention ponds. Given their integral role in urban in-
frastructure, these systems can significantly benefit from
the modularity and adaptive capabilities of such control
strategies, positioning them as exemplary applications of
responsive control mechanisms.

Real-time control (RTC) enhances the efficiency and
performance of urban water management systems by incor-
porating current sensor readings into both traditional rule-
based frameworks and more dynamic control strategies. By
enabling rapid and adaptive control decisions, RTC ensures
the optimal use of storage and transport capacities within
urban water infrastructures, adjusting to varying conditions
in real time [9]. Furthermore, RTC combined with machine
learning has surfaced as a pivotal asset, especially in
stormwater control. It provides an efficient computational
alternative to the popular model predictive control in real-
time settings [10].

Recent advancements in stormwater control strategies
have brought attention to the application of reinforcement
learning (RL) for flood mitigation and sediment treatment
for reducing water pollution caused by surface run-off [11].
When contrasted with traditional local rule-based controls,
RL aims to find a balance between flood mitigation and
sediment treatment. The local controls may unintentionally
elevate the risk of flooding. RL holds promise for providing
a solution that prioritizes equilibrium and can address
multiple objectives simultaneously [12].

Multi-Agent Reinforcement Learning (MARL) provides
another solution for decentralized control. MARL studies,
such as those applied in wastewater treatment [13] and
robotic controls [14], adhere to a centralized training yet de-



centralized execution framework. While centralized setups
have demonstrated efficacy in reducing urban flooding [15],
[16], their reliance on expansive real-time data transfers
might expose them to communication setbacks [17]. On
the other hand, decentralized systems avoid a central com-
mand structure, enabling agents to operate local actuators
independently. While this reduces disruptions related to
communication, it may introduce coordination challenges
among subsystems in areas such as catchments [18].

In this paper, we present a novel framework for
the management of interconnected stormwater detention
ponds, modeled by a hybrid Markov Decision Process
(HMDP) [19]. Our focus is on a system that integrates three
detention ponds and a connecting stream within a com-
positional control scheme. Compositional control ensures
the individual and collective management of interconnected
systems, while at the same time reducing the computational
complexity when compared to a fully centralized strategy.
The interconnected control strategy not only facilitates
independent response actions by each pond to its immediate
conditions but also aligns these actions with the collective
goal of optimal water system management. Based on a real-
world use case we compare centralized, decentralized, and
compositional control strategies. The results from the anal-
ysis show that the compositional approach represents the
best of both worlds, in the sense of being significantly more
computationally efficient than a fully centralized approach
while at the same time retaining the control qualities of
this approach. The principles underlying the compositional
learning approach are not specific to the water management
domain and would therefore also be applicable in other
domains that can be expressed as a compositional system.

This paper is structured as follows. Section II introduces
stormwater detention ponds in more detail. Section III
provides the preliminaries for this paper. Then, Section IV
introduces our new compositional control framework, which
is compared to the centralized and decentralized control
frameworks. In Section VI experimental results are pre-
sented that showcase the performance of the proposed
compositional control framework, and in Section V details
the implementation specifics of ou experiments. Finally,
Section VII concludes the paper.

II. CASE STUDY: MANAGING MULTIPLE STORMWATER
DETENTION PONDS

In this case study, we elucidate the challenges posed by
the current static management of water streams and high-
light the need for more dynamic and integrated approaches.
Our focus is on the Giber Å stream, a significant 12-
kilometer long waterway that gracefully meanders through
the suburban regions of Aarhus, Denmark (see Figure 1).
Along this stream, several stormwater detention ponds have
been placed to capture rain runoff originating from the
neighboring urban areas (see Figure 2 for an overview). Our
focus is on three such ponds located in the Vilhelmsborg
vicinity of Giber Å. Especially during periods of heavy pre-
cipitation, these stormwater detention ponds play a crucial

Fig. 1: Satellite representation of the Giber Å stream and
adjacent stormwater detention ponds in Aarhus, Denmark.
The blue line delineates the trajectory of the stream, and the
yellow markers indicate the positions of the ponds. Image
sourced from Google Earth.
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Fig. 2: Simplified overview of a stormwater detention pond.

role in delaying the direct discharge of rain runoff that could
potentially cause flooding in the stream, thereby preventing
such overflow.

A. Static Management of Giber Å Stream

Currently, these stormwater detention ponds operate un-
der a fixed control framework, where the discharge rates
remain constant [20]. Furthermore, the ponds operate inde-
pendently, not taking into account the discharge rates of the
other ponds nor the condition of the stream into which the
water from the ponds is being discharged. Such segregated
and static modes of operation cannot dynamically manage
outflows in response to actual and predicted rainfall.

B. Control Objectives and Modeling Background

Excessive discharge from these ponds not only causes
overflow in the stream but also results in rapid fluctuations
in biological indicators such as temperature, acidity, and
oxygen levels, thereby disrupting the ecological balance.

The primary goal of this research is to prevent overflows
from the stream and the ponds and minimize the discharge
of pollutants to the stream. This entails controlling the water
released from the detention ponds, with the objective of
maintaining a high water level (to ensure sedimentation of
pollutants) while at the same time avoiding overflow in the
ponds and the stream.

In the use case, each pond has an average pond area of
Ap = 706.9 m2 and is designed to withstand a maximum
water level of W = 2 m. A circular orifice, situated at the
base of the ponds with a diameter of 30 cm, is employed
with three controller settings — fully open, half open,



and fully closed — chosen on an hourly basis, resulting
in outflow Qi

out , where i denotes the pond. The inflow
to each stormwater detention pond (Qi

in ) consists of rain
runoff from its connected urban catchment (UC i). Each
of these catchments consists of a 40-hectare area with an
impervious rate of 25%, indicating that a quarter of the
catchment area is covered with impervious surfaces such
as pavement and buildings. Impervious surfaces prevent
water from infiltrating into the ground, leading to increased
surface runoff and reduced groundwater recharge.

For modeling the use case, we adopt the Hybrid Markov
Decision Process (HMDP) framework, based on which con-
trol strategies will be synthesized. The following sections
will elaborate on the HMDP model and its application in
achieving our ecological preservation goals for the Giber Å
stream.

III. PRELIMINARIES

A. Hybrid Markov Decision Process

We utilize the mathematical framework of the Hybrid
Markov Decision Process (HMDP) to model compositional
interactions between models [19].

Definition 1: A Hybrid Markov Decision Process M is
a tuple (C,U,X, F, δ), where:

• The controller C is a finite set of (controllable) modes
C = {c1, . . . , ck}.

• The uncontrollable environment U is a finite set of
(uncontrollable) modes U = {u1, . . . , ul}.

• X = {x1, . . . , xn} is a finite set of continuous (real-
valued) variables with x : X → R being a valuation.

• For each c ∈ C and u ∈ U , Fc,u : R>0 × RX → RX

describes the flow-function, which is the evolution of
the continuous variables over time in the combined
mode (c, u).

• δ is a family of probability functions δγ : R≥0 ×U →
[0, 1], where γ = (c, u, x) is a global configuration.
δγ(τ, u

′) is the probability that in the global configura-
tion γ = (c, u, x) uncontrollable mode u will change to
u′ after a time delay τ . Note that

∑
u′

∫
τ
δγ(τ, u

′)dτ =
1. This ensures that the probabilities across all possible
u′ sum up to 1 for any given time delay τ .

The set of global configurations C×U ×RX is denoted by
C.

Conceptually, the uncontrollable modes, such as the dura-
tion and intensity of rain events, are encapsulated within the
uncontrollable environment variable U . The flow function F
models the dynamics of the water level in the pond, which
is represented by the continuous real-valued state variables
X . The stochastic behavior of weather patterns is embedded
within the probability function δ. The specific orifice set-
ting, which determines how water is released, is represented
by the controller C. While this controller can potentially
have various modes of operation, in this paper, we focus on
a specific scenario. We limit the controller’s functionality
to switch modes only at a predetermined frequency. This is
characterized by a switching period P ∈ R≥0.

Note that Definition 1 above supports several HMDP
modeling formalisms, abstracting away any domain struc-
ture. For instance, the uncontrollable modes can be seen as
an enumeration of the state space defined by a collection of
random variables modeling rain events. Domain structure is
instead given implicitly in the specification of the flow and
probability functions.

The composition of two HMDPs M1 and M2, denoted
by M = M1 ∥ M2, is also an HMDP. The structure of
the resulting model M, as reflected by the composition, is
again captured by the flow and probability functions of M,
which should be consistent with the corresponding functions
in M1 and M2 (e.g., the models should define the same
probability distribution over any shared modes).

B. HMDP strategies

A strategy for an HMDP M is a function σ : C → 2C

that, given a configuration γ = (c, u, x), returns a set of
controllable modes.

For a given strategy σ and HMDP M, the model is again
an HMDP, denoted by M ↾ σ; if σ defines a singleton set
for any configuration γ of M, then M ↾ σ reduces to a
hybrid Markov process. For a compositional model M =
Mi ∥ Mj , a strategy σi for Mi can vacuously be extended
to a strategy for M. In this case, σi is said to be a partial
strategy for M and defines an HMDP M ↾ σ

i
, where the

controllable modes of M1 are constrained according to σi.
A run of an HMDP M under strategy σ is a sequence

of transitions between configurations γi, where the control
modes change according to σ.

We use an objective function f to assess the effectiveness
of this strategy σ. The function f takes a global configu-
ration from C and returns a real number. To evaluate σ,
we calculate its expected value over all possible runs of
M ↾ σ. We start from an initial configuration γ and consider
a time horizon H , which is any non-negative real number.
Mathematically, this is captured by EM,γ

σ,H (f).

C. UPPAAL STRATEGO

We employ the modeling tool UPPAAL STRATEGO [21]
for synthesizing optimal control strategies within a speci-
fied environment. Notably, learning algorithms, such as Q-
learning, have been integrated into UPPAAL STRATEGO, as
previously described [22].

For Q-learning, UPPAAL STRATEGO performs sample
runs from the HMDP model M to compute Q-values. These
calculated values are subsequently employed to refine the
strategy. This iterative process is executed with the updated
strategy until there is a convergence in performance.

For continuous state spaces UPPAAL STRATEGO resort
to an online partition refinement techniques for discretizing
the state space [22]. This technique enables the tool to
dynamically refine its representation of the state space
during exploration. Consequently, it becomes feasible to
derive effective strategies without the need for exhaustive
state analysis.



In the model M each mode in the controller corresponds
to a particular strategy or set of operations applied across
the ponds. The uncontrollable environment (U ) encapsulate
factors like weather forecasts, which are inherently unpre-
dictable and uncontrollable. The continuous (real-valued)
variables (X) represent sensor-based obervations, like the
observed water level in the ponds and stream. The flow-
function (F ) models the dynamics of the water level in
the ponds and stream over time, given a specific mode of
operation for the controller and a specific uncontrollable en-
vironmental condition. The probability function (δ) captures
the inherent uncertainty in predicting the change in weather
conditions after a specific duration. A full specification of
the model can be found in [15].

IV. COMPOSITIONAL CONTROL SYNTHESIS

A. Control problem definition

The primary objective of the controller is to ensure the
safety of both the stream and the ponds by effectively
regulating the discharge from the pond. In this context,
the safety of the stream is defined as preventing overflow
and minimizing the sudden influx of discharge from the
stormwater detention ponds. The junctions, where water
discharges from each pond, are located at different positions
along the stream. The observation point for the stream’s
water level ws is downstream from the ponds. Without
overflowing, we aim to follow a desired target level wtarget

s .
The constant variable α has been used to penalize overflow
(e.g., 10,000). Formally,

dcosts
dt

=

α× (Qs
in −Qs

out) if (ws ≥ Ws),(
1− ws

wtarget
s

)2

otherwise.

For our purposes, the safe operation of stormwater de-
tention ponds is defined as preventing overflow. An uncon-
trolled overflow can have cascading consequences, affecting
the stream and the surrounding environment. Beyond the
safety objective, the secondary goal for stormwater deten-
tion ponds is to maximize the sedimentation of pollutants
originating from urban catchment runoff. The sedimentation
rate is directly proportional to the volume of water in the
pond: the more water it contains, the higher the sedimenta-
tion of particles.

We quantify the overflow amount by assessing the water
level wi of pond i, a continuous variable ranging between
0 and Wi, which denotes the maximum depth of the
pond. Without overflowing, we aim to maximize particle
sedimentation. Formally,

dcost i
dt

=

{
αi × (Qi

in −Qi
out) if (wi ≥ Wi),(

1− wi

Wi

)
otherwise.

TABLE I: Notations for Variables Used in Controller Syn-
thesis.

Variable Description
Orain

t observation of rain intensity at time step t

Ost
t observed water level of the stream at time step t

Oi
t observed water level of pond i at time step t

Ci
t control decision of pond i at time step t

σi
t control strategy of pond i at time step t

Fig. 3: Overview of centralized control synthesis. Central-
ized control synthesis observes the water levels of all ponds,
the water level of the stream, and the rain forecast.

B. Methodology

In our study, we delve into three primary control architec-
tures: a centralized control system, a decentralized control
system, and our proposed compositional control system.
Each architecture offers a distinct approach to managing
and controlling systems modeled as HMDPs, considering
optimization objectives. The notations used in the figures
in this section are described in Table I.

In centralized control, a single control unit can control the
outflow of the three ponds of our case study, see Figure 3.
Therefore, we use one HMDP Mcen that captures the
uncontrollable inputs U as well as the controllable outputs
C of all ponds. Furthermore, everything (water levels of
all ponds and the stream water level) is observable to the
centralized controller. Therefore, a single control strategy
is obtained with reinforcement learning. Centralized control
corresponds to our previous work [15].

To learn a centralized controller, we formulated the
following cost function Costcen as the control objective
to be minimized:

Costcen = costs +Σn
i=1 cost i

In this equation, the cost function of the centralized con-
troller is the combination of the cost of the stream costs
and the cost of each pond cost i.

In decentralized control, a single controller is synthesized
for each pond individually without taking the presence of
the other ponds into account, see Figure 4. So a controller
for pond i is synthesized based on just the observations of
pond i and the stream, together with the weather forecast.



Fig. 4: Overview of decentralized control synthesis. Each
pond observes the water level of only that pond, the water
level of the stream, and the rain forecast. Utilizing this data,
a controller is synthesized for each pond separately.

Fig. 5: Overview of compositional control synthesis. Each
pond observes the water level of only that pond, the water
level of the stream, and the rain forecast. Furthermore, the
control strategies of the other ponds are available during
learning.

No information from other ponds or their controllers is used.
Therefore, we use three HMDPs Mdecen,i , one for each
pond.

To learn a decentralized controller for pond i, we for-
mulated the following cost function Costdecen,i as control
objective to be minimized:

Costdecen,i = costs + cost i

This cost function reflects that each controller only takes
its own pond into account as well as the shared stream.
Therefore, ponds share water level information indirectly
via the shared stream. For example, if a pond discharges
a large volume of water, the increasing water level in the
stream will eventually be detected by the other controllers.

Operating within this decentralized architecture, agents
or subsystems function autonomously, relying solely on
localized observations for decision processes. This design
inherently fosters scalability, but decentralized choices,
which might be locally optimal, might not align with global
optimal strategies. Moreover, the intrinsic independence
of each agent can occasionally cause conflicts, potentially
instigating inefficiencies in the overarching system.

In compositional control, a single controller is synthe-

sized for each pond individually, similar to decentralized
control, but now taking the initial water levels and the
control strategies of the other ponds into account, see
Figure 5. For example, while learning a control strategy
for pond 1, the control strategy of pond 2 is considered to
be an uncontrollable input such that the future discharge of
pond 2 into the shared stream can be taken into account.
Therefore, we use three HMDPs Mcomp,i , one for each
pond, that all include all ponds and the stream, but for
Mcomp,i only the output setting of the orifice of pond i
is marked as controllable, while those of the other ponds
are marked as uncontrollable.

To learn a compositional controller for pond i, we for-
mulated the following cost function Costcomp,i as control
objective to be minimized:

Costcomp,i = costs + costi

Note that Costcomp,i = Costdecen,i .
Initially, when synthesizing a compositional strategy for

pond i, the strategies of the other ponds may not yet be
synthesized. Therefore, some temporarily initial strategy
needs to be assumed, which could be, e.g., a fixed strategy
or a purely random strategy. After synthesizing composi-
tional controllers for each stormwater pond, the process
could be repeated using the just synthesized controllers as
input. This should provide reinforcement learning a more
accurate view of how the other controllers might make
decisions in the near future. In general, this process might
not terminate, as there is no guarantee that a fixed-point is
reached. Therefore, we currently only repeat this process a
fixed number of times every controller switching period P .

C. Online control

To address swift environmental fluctuations, we incor-
porated model-predictive control [23]. With this approach,
every hour the controller is re-synthesized using the latest
sensor measurements of the true water levels in the system
as well as a new 6-hour weather forecast.

For compositional control, we bootstrap the first synthesis
iteration by using the controllers obtained from the previous
control period. These previously synthesized controllers
might provide a better initial control strategy for the un-
controllable ponds than a static or random control strategy.

V. IMPLEMENTATION

In our experiment, the decentralized control system is
composed of three individual UPPAAL system models
Mi

decen , each modeling a single pond and the shared
stream. For each system model, we synthesize an optimal
control strategy σi

t,H for each pond i and time horizon
H , considering only observations of the specific pond and
stream as well as the weather forecast.

The compositional control system is composed of three
individual UPPAAL system models Mi

compo . Compared to
the decentralized model, each Mi

compo model represents
all three ponds and the shared stream (see Figure 6). For



Fig. 6: Illustration depicting the process of compositional
control synthesis from a time step perspective.

each system model Mi
compo , an optimal control strategy

σi
t,H of each pond i is synthesized, considering observations

of the specific pond and stream, weather forecast, and the
previously synthesized startegies for the other ponds (a fixed
control strategy is assumed for the initial time step).

We implemented this as an online control method using
the STOMPC framework [24], which integrates synthesis
and co-simulation based on the MPC scheme. For our
work, UPPAAL STRATEGO is utilized for synthesis, while
PySWMM [25] is employed for co-simulation.

VI. EXPERIMENTAL RESULTS

The primary objective is to synthesize a control strategy
that minimizes the expected cost, as delineated by the cost
function detailed in Section IV. Specifically, our analysis
focuses on the performance of controller synthesis under
varying synthesis conditions. We take into account the
effects of

• the overflowing quantity from both ponds and the
stream,

• the sedimentation in each pond, and
• deviations in the desired water level of the stream.
For modeling the rainfall in the use case, we utilized

historical rain data from September 10, 2019, from 00:00
to 12:00 (for 12 hours). Additionally, we incorporated an
uncertainty factor, ε = 10%, to the observed interval
durations and rain intensities to simulate a weather forecast.
This data was sourced from the Danish Meteorological
Institute (2020). Particularly, this period was marked by
intense and concentrated rainfall, making it challenging for
both ponds and a stream to avoid overflow.

Figure 7 shows qualitative experimental results of com-
positional control synthesis. The rain and urban catchment
both appear at the top of the plot because the rain that enters
the urban catchments eventually flows into the stormwater
detention ponds. It depicts the water level fluctuations and
orifice settings for each pond. Notably, none of the three
ponds experienced overflow, and the stream, indicated by
the red line, also remained below overflow thresholds. For
example, results related to pond3 are indicated in brown.
The water level fluctuations of pond3 are represented by the
thin brown solid line, while the control decision is depicted
by the thicker brown solid line.

TABLE II: Overflow quantity comparison of different con-
trol syntheses.

Overflow [m3] Ponds Stream
Centralized control 0.0 0.0
Compositional control 0.0 0.0
Decentralized control 6,019.2 0.0
Static (full-open) 0 12,690.0
Static (half-open) 3,826.2 9,442.8

Figure 8 presents qualitative experimental results of cen-
tralized control synthesis. The graphical analysis illustrates
that both the ponds and the stream successfully avoided
overflow events while maintaining elevated water levels in
the ponds.

Figure 9 shows qualitative results of decentralized control
synthesis. The stream remained free from overflow events,
however, the ponds encountered prolonged and significant
overflow incidents. In our model, the water overflowing
from the ponds is redirected into the stream, thereby affect-
ing the rise in the stream’s water level. Each of the three
ponds underwent independent controller synthesis, with a
uniform application of the cost function used for learning
across all ponds. This cost function considered both the
individual water level of each pond and that of the stream.

Table II summarizes the quantitative results of the analy-
sis in terms of overflow quantity (measured in m3). It shows
that both Centralized and Compositional control synthesis
methods successfully prevented overflow. In contrast, the
Decentralized control synthesis resulted in an overflow
of 6,019.2 m3 from the ponds. Further analysis, using a
static controller as a baseline for our learning-based control
synthesis, indicates that a fully open orifice setting led to
a stream overflow of 12,690 m3. Additionally, a half-open
orifice resulted in overflow in both the ponds and the stream.

Table III provides a summary of the quantitative results
from the analysis, focusing on the sedimentation rates. It
is important to note that the results are dimensionless, as
they represent relative rates rather than absolute quantities
with units. In our experiments, the lower costs indicate
better performance. The experimental results show that
the centralized control yields the lowest cost, followed by
the compositional controller. The low cost associated with
decentralized control is attributed to the water level being at
its maximum when overflow occurs, resulting in a minimum
cost value of zero for that period. Furthermore, while
sedimentation costs under conditions where no overflow
occurs are comparable, it cannot be conclusively stated
that the decentralized controller performs better than the
centralized or compositional controllers. This is because,
as observed in Table II, the occurrence of overflow under-
mines the apparent low sedimentation cost advantage of the
decentralized approach.

In the field of learning-based control synthesis, which is
known for its high computational demands, time efficiency
stands out as a crucial evaluation metric [26]. Our current
experiments are aimed at synthesizing controllers for ponds,



Fig. 7: Result of compositional synthesis control. There is no overflow from any of the ponds or the stream.

Fig. 8: Result of centralized synthesis control. There is no overflow from the stream nor any of the ponds.

Fig. 9: Result of decentralized synthesis control. There is no overflow of the stream, but all three ponds experienced the
same amount of overflow (2, 006.4m3).

TABLE III: Sedimentation rate of different control synthe-
ses.

Sedimentation Cost [-] Pond 1 Pond 2 Pond 3
Centralized control 388.62 358.56 426.97
Compositional control 426.97 458.15 425.74
Decentralized control 208.46 208.46 208.46

showing that although feasible, the scalability of central-
ized control synthesis presents significant challenges. As

outlined in Table IV, the synthesis time for decentralized
control is 379 min for a 1,000 runs [21], where the run
refers to a configurable parameter that determines the max-
imum number of iterations in the learning process within
UPPAAL STRATEGO. The compositional control synthesis
consumes 503 minutes, whereas the centralized control
synthesis demands 955 minutes, rendering it the most time-
intensive approach among those under evaluation. With
3,000 and 10,000 runs, the computational time behavior for



TABLE IV: Time consumption comparison of different
control syntheses.

Time consumption [min] 1,000 runs 3,000 runs 10,000 runs
Centralized control 955 1,897 5,450
Compositional control 503 1,002 2,985
Decentralized control 379 996 2,561

each control synthesis remains consistent compared to what
we observe with 1,000 runs.

VII. CONCLUSION AND DISCUSSION

In this paper, we present a method for synthesizing
compositional controllers for hybrid systems modeled using
HMDP (Hybrid Markov Decision Processes). Our approach
involves: (i) evaluating the impact of the system under
both centralized and decentralized controllers, using the
latter as a baseline for comparison; and (ii) analyzing the
computational time associated with each controller type,
thereby providing a clear comparative assessment. The
compositional nature of our controller harmonizes the ad-
vantages of centralized proficiency with the computational
merits of decentralized approaches. We observed potential
stream overflows when multiple detention ponds discharged
simultaneously in decentralized. Consequently, our model,
emphasizing discharge timing and volume, becomes instru-
mental in averting such events. Furthermore, the application
of reinforcement learning ensures the system’s capability
to sustain optimal water levels and reduce overflow risks.
In subsequent studies, we plan to increase the number of
ponds and expand the geographical scope to measure the
continued efficiency of compositional control as the system
becomes more complex. Through this, we could validate the
scalability and adaptability of the framework we provided.
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