
Lessons learned in the application of formal
methods to the design of a storm surge

barrier control system
∗

Martijn Goorden ∗,∗∗ Joanna van de Mortel-Fronczak ∗∗∗

Koen van Eldik ∗∗ Wan Fokkink ∗∗∗ Jacobus Rooda ∗∗∗

∗ Department of Computer Science, Aalborg University, Aalborg,
Denmark, (e-mail: mgoorden@cs.aau.dk).

∗∗ Rijkswaterstaat, Dutch Ministry of Infrastructure and Water
Management, Utrecht, the Netherlands, (e-mail:
martijn.goorden@rws.nl, koen.van.eldik@rws.nl)

∗∗∗ Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, the Netherlands, (e-mail:

j.m.v.d.mortel@tue.nl, w.j.fokkink@tue.nl, j.e.rooda@tue.nl)

Abstract: The Maeslantkering is a key flood defense infrastructural system in the Netherlands.
This movable barrier protects the city and harbor of Rotterdam, without impacting ship traffic
under normal circumstances. Its control system, which operates completely autonomously, must
be guaranteed to work correctly even under extreme weather conditions, although it closes only
sporadically. During its development in the 1990’s, the formal methods Z and Spin were used to
increase reliability. As the availability of industrial expert knowledge on these formal methods
declines, maintaining the specifications defined back then has become cumbersome. In the quest
for an alternative mathematically rigorous approach, this paper reports on an experience in
applying supervisory control synthesis. This formal method was recently applied successfully
to other types of infrastructural systems like waterway locks, bridges, and tunnels, with the
purpose to ensure safe behavior by coordinating hardware components. Here, we show that it
can also be used to coordinate several (controller) software systems. Additionally, we compare
the lessons learned from the originally used formal methods and link Z to supervisory control
synthesis.

1. INTRODUCTION

In the Netherlands, a large part of the country is situ-
ated below sea level. The country is protected by sev-
eral flood defense systems. One of them is the movable
storm surge barrier called the Maeslantkering, located
near Rotterdam, which was designed and constructed in
the 1990s. Under normal circumstances, the barrier is
open so that ships have access to the port of Rotterdam.
Only under extreme weather conditions the barrier will
close to protect the Rotterdam metropolitan area. The
Maeslantkering is being managed by Rijkswaterstaat, the
executive branch of the Dutch Ministry of Infrastructure
and Water Management that is responsible for commis-
sioning and maintaining major infrastructural systems in
the Netherlands. The Maeslantkering is considered to be
a major safety-critical system, as a failure to close (or
open) can result in devastating water damage. Therefore it
operates fully autonomously, thereby eliminating human
errors in decision making. Its control system, called the
‘Beslis en Ondersteunend Systeem’ (Decision and Support
System, abbreviated to BOS), decides when and how to

∗
This work is supported by Rijkswaterstaat, part of the Ministry

of Infrastructure and Water Management of the Government of the
Netherlands

close the barrier based on weather forecasts, water level
measurements, and results from flood simulations.
The BOS has been classified to the highest Safety Integrity
Level (SIL) 4 of IEC 61508 (IEC, 2010). For its design,
formal methods were employed (Kars, 1996, 1998). The
Z notation (Spivey, 1992) was used to formalize the func-
tional view of the BOS (which functions and data struc-
tures exist) and Promela (Holzmann, 1991) to formalize
the behavioral view (in which order should functions be ex-
ecuted). Promela models are verified using the Spin model
checker (Holzmann, 1997). In Tretmans et al. (2001), the
authors concluded that the use of formal methods helped
to improve the quality of the BOS.
While the current BOS implementation is still functioning
as intended, the availability of industrial expert knowledge
on the formal methods used for developing it declines.
Therefore it is questionable whether an existing software
company would be able to re-use existing specifications
in a renovatation of the current BOS implementation
or the development of a new control system. Therefore,
Rijkswaterstaat is exploring alternative formal methods
for the specification and design of the BOS.
Supervisory control theory of Ramadge and Wonham
(1987, 1989) provides means to synthesize supervisors from
a model of the uncontrolled plant and a model of the



Fig. 1. The Maeslantkering in its closed position. Image
from https://beeldbank.rws.nl, Rijkswaterstaat.

control requirements. Synthesis guarantees by construc-
tion that the closed-loop behavior of the supervisor and
the plant adheres to all requirements, is nonblocking, is
controllable, and is maximally permissive.
Recently, supervisor synthesis has been applied to design
supervisors of different infrastructural systems: waterway
locks (Reijnen et al., 2017), movable bridges (Reijnen
et al., 2020), and road tunnels (Moormann et al., 2020).
An overview of those case studies can be found in Goorden
et al. (2020). They show that supervisor synthesis is very
suitable to derive controllers that can be implemented on
Programmable Logic Controller (PLC) hardware. Com-
pared to those three case studies, the BOS is one level
higher in a typical control stack: it communicates with
and supervises local supervisory controllers at the Maes-
lantkering, the Hartelkering, and the Hartelsluis, where
the latter two are other systems part of the same flood
protection infrastructure near Rotterdam. Furthermore, it
interacts with several other software systems, such as the
aforementioned flood simulation environment.
In this paper, we discuss our experience with applying
supervisory control synthesis to the design of the BOS.
In this context, component models of the plant represent
underlying software systems. We describe the BOS in
some detail and identify which parts of it are suitable for
supervisor synthesis. The Z specifications of these parts
were translated into automata. A challenge was to cast
the high-level Z specifications into automata that represent
concrete system executions. To give an impression of the
translations, we show some examples of how plants and
requirements are modeled, and relate them to Z schemas
used in the original specification. Finally, we discuss the
lessons learned from applying supervisory control synthesis
in comparison to the originally used formal methods.
This paper is structured as follows. Section 2 provides a
description of the Maeslantkering and the BOS. Section 3
introduces theoretical preliminaries for this paper. In Sec-
tion 4, we discuss and illustrate the modeling of the BOS in
the context of supervisory control synthesis. Section 5 com-
pares the two approaches: supervisory control synthesis
versus formal methods using the Z notation and Promela
as specification languages. Section 6 concludes the paper.

2. SYSTEM DESCRIPTION

Fig. 1 shows a picture of the Maeslantkering in its closed
position, preventing the higher water coming from the

sea (at the bottom of the picture) from entering the
port of Rotterdam (at the top of the picture). Several
high-level requirements were formulated for this movable
storm surge barrier (Tretmans et al., 2001): Rotterdam
should be protected from flooding, the port should always
be reachable (except under extreme weather conditions),
water coming from the river Rhine should not cause a land-
side flooding, and aquatic life should not be disturbed.
The Maeslantkering consists of two movable and hollow
doors, each having a height of 22 meters and a length of
210 meters. These doors are connected by steel arms to
pivot points on the banks, making each arm as large as
the Eiffel Tower. During normal weather conditions, the
Maeslantkering is open and the doors rest in their docks.
Only when storms are expected with a danger of flooding,
the doors are closed. Closing the doors is performed in
several steps (Kars, 1998; Tretmans et al., 2001). First the
(dry) docks are filled with water to let the hollow arms
float. Subsequently, the doors are moved to the middle of
the rivers. Finally, the doors are partially filled with water,
making them sink to the bottom and closing the river.
Reliability of the system is key. The failure probabilities
of unjustified not closing and not opening should be below
10−5, see Kars (1998); Tretmans et al. (2001). Careful
analysis during its design has shown that human decision
making in critical situations undermines the reliability.
Therefore, the decision when to close the barrier and the
operation of the closure are fully automated with the
control system BOS. These decisions are sent to local
supervisory controllers at the Maeslantkering and two
other nearby infrastructural objects.
The BOS consists of several (software) subsystems, each
classified as core, critical, or non-critical, see Tretmans
et al. (2001). Some of these subsystems are the inter-
nal communications library, the external communications
library, the hydraulic flood simulation model interface,
the database, the graphical user interface, and the BOS
script. The last module contains all decision rules on when
and how to operate the Maeslantkering. To evaluate these
rules, the BOS collects data from different weather and
water sensor stations, monitors the current state of the
Maeslantkering, and uses flood simulations to obtain water
level forecasts.
Ensuring that the storm surge barrier meets the high
reliability requirements is challenging. It is rarely used:
each year there is a single test closure just before the
storm season, and the last time it closed due to an actual
storm was in January 2018. Still, when it is used, it should
execute flawlessly, including proper fault detection and
handling. This is fundamentally different from the other
case studies using supervisor synthesis where the systems
are more or less continuously in operation, thus exciting
all different parts of the system regularly.

3. PRELIMINARIES

This section provides a brief introduction of automata and
supervisory control synthesis. Moreover, a short explana-
tion of Z schemas is given.



3.1 Automata

In supervisory control theory, a distinction is made be-
tween the plant model and the requirements model. The
plant model describes the uncontrolled behavior of the
system, while the requirements model captures the desired
behavior.
In this paper, we model the plant with deterministic
extended finite automata (EFAs) (Sköldstam et al., 2007).
An EFA is a 7-tuple (L,X ,Σ,E ,Lm, l0, v0) where L is a
finite set of locations, X a finite set of bounded discrete
variables, Σ a finite set of events, E ⊆ L×G×Σ×U ×L a
finite set of edges with G the set of guard expressions over
variables in X and locations in L, and U the set of update
functions for variables in X , Lm ⊆ L a set of marked
locations, l0 ∈ L the initial location, and v0 the initial
valuation of the variables. We use T and F to denote the
Boolean values true and false, respectively.
In an EFA, an edge (l1, g, σ, u, l2) ∈ E is enabled if the
current location is l1 and the guard g evaluates to T for
the current valuation. After taking the edge, the current
location is l2 and the valuation is updated according to u.
For the purpose of supervisory control synthesis, the
event set σ is partitioned into controllable events Σc
and uncontrollable events Σu. A supervisor can disable
controllable events, such as an actuator switching on, while
it cannot disable uncontrollable events, such as a sensor
switching on.
Requirements can be modeled with either EFAs or event
conditions. An event condition is an expression of the form
σ needs c or c disables σ, where σ ∈ Σ and c ∈ G,
see Markovski et al. (2010). The first expression indicates
that an event σ is only allowed when the condition c
evaluates to T, while the latter indicates that σ is not
allowed when c evaluates to T. While always one event
condition form can be rewritten into the other, having
both helps to increase the understandability of the model.
For large-scale systems, the plant model is typically given
as a set of EFAs P = {P1, . . . ,Pm} and the requirements
model as a set of EFAs, event conditions, or a combination
of both R = {R1, . . . ,Rn}. An individual Pi ∈ P is called
a component model; an individual Rj ∈ R is called a
requirement model.

3.2 Supervisory control synthesis

The objective of supervisory control theory is to design an
automaton called a supervisor which dynamically disables
controllable events so that the closed-loop system of the
plant obeys the specified requirements, see Ramadge and
Wonham (1987, 1989); Cassandras and Lafortune (2008);
Wonham and Cai (2018). The following properties should
be satisfied.

• Safety: all possible behavior of the closed-loop system
should always satisfy the imposed requirements.

• Controllability: uncontrollable events may never be
disabled by the supervisor.

• Nonblockingness: the closed-loop system should be
able to reach a marked state from every reachable
state.

Name
Ξ buffer ;
input? : inputType;
output! : outputType;
conditions;
operation;

Fig. 2. Example Z schema.

• Maximal permissiveness: the supervisor does not re-
strict more behavior than strictly necessary to enforce
safety, controllability, and nonblockingness.

Several tools exist that can calculate a supervisor for a
given plant and requirements model. In this paper, CIF
toolset (van Beek et al., 2014) is used, which has imple-
mented monolithic synthesis of Ouedraogo et al. (2011)
combined with binary decision diagrams, see Miremadi
et al. (2011). Since 2020, CIF toolset is available and is
being developed further as Eclipse Supervisory Control
Engineering Toolkit (Eclipse ESCET™, ESCET (2022)).

3.3 Z schemas

Z (Spivey, 1992) is a formal specification language for
modeling distributed computer systems. Its notations are
based on set theory and predicate logic. A Z specifica-
tion is divided into components called schemas, which
specify both dynamic and static aspects of the system.
Dynamic aspects include the transitions between states,
while static aspects include allowed reachable states as
well as invariants that must be preserved by transitions.
In Fig. 2, a template of a typical Z schema is depicted.
The symbol Ξ indicates that in the specified operation, the
state of the buffer does not change. The question mark of
the input? variable of type inputType indicates this is an
input variable, while the exclamation mark of the output!
variable of type outputType indicates this is an output
variable. The conditions part is an abstract representation
of conditions on the two variables, for instance that the
input value must belong to a certain set. The operation
part is an abstract representation of the operation that is
performed, for instance which output value is returned.

4. MODELING FOR SUPERVISOR SYNTHESIS

As explained, the aim of supervisory control theory is to
synthesize a supervisor that disables (controllable) events.
Not all subsystems of the BOS are suitable for this theory
to be applied, like, e.g., the communication libraries and
the hydraulic flood simulation model interface. We only
modeled those parts of the BOS script subsystem that
are in line with the aim of supervisory control theory. In
this section, we illustrate several modeling challenges with
examples. Unfortunately, due to confidentiality, the full
model consisting of EFAs cannot be made public. We only
present some snippets in the form of finite automata.

4.1 Modeling the plant components

As mentioned in the system description in Sect. 2, the BOS
coordinates lower level supervisors. For example, the BOS



parked increase send

increase startedfloatingdecrease send

decrease started

c increase

c decrease

u increase s

u increase f

u decrease s

u decrease f

Fig. 3. The component model that captures the water
leveling inside the docks, called Barrier.

rest mobilized

alertblock

c rest

c mobilize

c mobilize c alert

c alert

c block

Fig. 4. The component model of the BOS script structure.

can request the local supervisor of the Maeslantkering to
start increasing or decreasing the water level inside the
docks. Subsequently, it gets a signal back when the lower
level supervisor receives or finishes the command.
A challenge was to determine how the relevant part of the
lower level supervisor should be abstracted for the BOS
model. Fig. 3 shows the component model that represents
the water leveling inside the docks. The BOS is able to send
a command to the Maeslantkering to start increasing the
water level inside the docks. After that, it will first receive
a signal back that the command has been received and
execution has been started, followed by a signal indicating
that the process has finished. Decreasing the water level
happens in a similar fashion.
From the documentation, it is unclear whether it is possi-
ble for the BOS to send a decrease water level command
before the increasing process has finished completely,
i.e., to allow transitions from locations increase send
and increase started to decrease send labeled with
c decrease. The model in Fig. 3 does not allow for this
behavior, while one could also argue to include those tran-
sitions and formulate requirements to prevent this from
happening.
To cope with the size of the BOS and the Maeslantkering,
the specification of closure proceedings and the derived
decision rules are structured into main phases, phases,
and sub-phases. Each sub-phase is manageable by an
engineer. Yet, supervisory control synthesis does not need
such a structure. Still we could not ignore it, as numerous
requirements are mentioning main phases, phases, or sub-
phases, see also Sect. 4.2.
We modeled the given structure as a component model,
albeit that it is not representing any physical or software
subsystem. Fig. 4 shows a small part of the complete struc-

rest warning

blockingclosing

c reset

u warning

u block

u close

c resetc reset

Fig. 5. The component model capturing the discretized
time progress.

ture. In this part, the actual barriers of the Maeslantkering
are moved from their docks into the middle of the river and
vice versa, which is a relatively sequential process. Since
this component is internal for the BOS script module, we
classified all events as controllable. While a main phase
can have several phases and a phase can have several sub-
phases, not all main phases and phases have phases and
sub-phases, respectively. Therefore, we decided to model
the lowest elements in this decomposition and refer to, for
example, ‘alert ∨ block’ if we need to refer to the phase
alert, which consists of the (modeled) sub-phases alert
and block.
The third example to show is the modeling of time progres-
sion, if it can be expressed in discrete steps. Several deci-
sions depend on the relative difference between the current
time and the forecasted moment at which the water level
limits will be exceeded. The period before a forecasted
flood is divided into several discrete phases. Therefore,
such timing aspects can be modeled with discrete intervals,
which can be captured by a finite automaton.
Fig. 5 shows the model of the discretized time. Three
specific time transitions are modeled with uncontrollable
events. For instance, the state warning indicates that the
current time is in between the time moments indicated by
events u warning and u block. The BOS script is also
able to reset the automaton when, for example, a new
weather forecast no longer predicts extreme high water
levels in the near future.

4.2 Modeling the requirements

While formal methods were used during the original de-
sign of the BOS, the BOS script was unfortunately not
formalized, see Sect. 5 for a more in-depth discussion.
Therefore, textual specifications of the decision rules have
been translated into requirement models.
The major issue with formulating the requirements model
is that a textual specification typically documents an
intended solution path (as a sequential list of steps) and
not a requirement that any solution path should satisfy.
For example, in order to go to the block phase in the script
structure model (see Fig. 4), a message has to be sent to
the harbor control center first, then the water level should
be increased, and then the dock doors should be opened.
While this sequence can be modeled as a requirement
expressed by the corresponding automaton, in general,
explicitly specifying the solution with a requirement model
is not the intention of supervisory control theory.



To translate a sequence of steps into a requirement model,
we had to find the underlying conditions restricting the
order of events, i.e., finding out why this is a desired order.
This often required detailed discussions with BOS experts.
Sometimes obtaining the underlying requirements was
straightforward: for example, we modeled the requirement
stating that the dock doors may only be opened when the
water level is fully increased as

Dock.c open needs Barrier.floating (1)
with Dock.c open the event representing the command
to open the dock doors (of which the model is not shown
here) and Barrier.floating the state floating in Fig. 3.
Yet, occasionally, identifying the underlying requirements
was more complicated: for example, we first modeled the
requirement stating that the water level inside the dock
can only increase once the harbor control center has
confirmed the message sent as

Barrier.c increase needs
MessageBlock.confirmed (2)

with Barrier.c increase being the event in Fig. 3 and
MessageBlock.confirmed the state in the (not shown
here) model, where the block phase message from the BOS
has been confirmed by the harbor control center. After
discussions with experts, it turned out that the BOS is
allowed to start increasing the water level even without
receiving the confirmation from the harbor control center.
When this confirmation is not received withing a certain
time limit, the BOS should generate a warning and just
continue. Therefore, the requirement in Equation 2 has
been adjusted into

Barrier.c increase needs
MessageBlock.confirmed ∨
MessageBlock.sent (3)

with MessageBlock.sent being the state where the block
phase message has been sent by the BOS.
In total, the system is described with 19 component
models and 95 requirement models. Using CIF toolset,
we were able to synthesize a monolithic supervisor in a
couple of seconds, where the supervisor is represented with
a single EFA alongside the provided component models
and requirement models, see Miremadi et al. (2008). The
resulting controlled state space consists of approximately
8 · 106 states and 4 · 107 transitions.

4.3 Documenting the model

Rijkswaterstaat is experiencing now that there is insuf-
ficient knowledge on Z and Promela available at their
industrial partners to fully understand the formal speci-
fications of BOS written 30 years ago. Moreover, although
automata modeling knowledge and experience in the con-
text of supervisor synthesis is present at academic partners
of Rijkswaterstaat, engineers in industry tend to lack this
too. To facilitate communication between academics and
industry, the automata model has been fully documented.
The format of this document is inspired by the Rosetta
stone. Each part of the model, be it a component model or
a requirement model, is described in three ways: plain text,
mathematical notation, and CIF specification. Therefore,
experts of the BOS that are not proficient in understanding

automata or the CIF modeling language are still able to
take part in discussing and evaluating the model.
The documentation also allows the modeler to report on
modeling decisions, such that this knowledge is recorded
and accessible for the future. This is an improvement
compared to earlier practices, as previously modeling
decisions typically remained undocumented.

5. FROM Z SCHEMAS TO AUTOMATA

When it comes to achieving safety guarantees for supervi-
sors or logic controllers, two options exist, both anchored
in formal methods. The first option, originating from the
software engineering domain, consists in defining a formal
model of the supervisor, which is then used to verify that
the requirements are satisfied. Usually, this is done using
model checkers which come with a specific modeling lan-
guage. Generally speaking, for verification also the speci-
fication needs to be formalized. Both formalization steps
are performed manually. The second option, originating
from the control engineering domain, consists in defining
a formal model of the system for which the supervisor
is to be built and a formal model of specifications (func-
tional and safety) that must be fulfilled. From these two
models, the supervisor conforming to the specifications
is synthesized, avoiding the need for verification. As in
the first option, the associated two formalization steps
are performed manually. Both options eventually result in
the supervisor model which satisfies the specifications and
from which control code can be generated.
At the time the control system of the Maeslantkering surge
barrier was being developed, the first option was applied.
As described in Tretmans et al. (2001), model checker Spin
with its input language Promela (Holzmann, 1991, 1997)
were used for verification of the design of three critical
subsystems:

• monitoring and controlling other subsystems
• obtaining measurement data
• controlling the surge barrier PLC

The deadlock-free design of the complete system was
achieved by following the rules of Martin and Welch
(1997).
Additionally, for specifying (a part of) data and operations
on them, the formal language Z was used. Using the ZTC
type checker (Jia, 1995), correctness of syntax and types as
well as completeness of the Z specifications were checked
for all subsystems. Subsequently, the pre-conditions and
post-conditions of the Z operation schemas were evaluated
manually for all subsystems. Checking completeness of
these schemas was also performed by manual inspection
for core and critical subsystems. For the highly critical
subsystems, the invariants were manually checked as well.
Back then, the control system code in a safe subset of C++

was not generated from the verified models but developed
manually in a systematic and structured way based on
them.
We performed a project with regard to the Maeslantkering
in which a proof of concept was delivered for the appli-
cability of the second option. To this end, two aspects
were investigated. First, as described in Sect. 4, for a part



SendCommand
Ξ dataTable;
recCom? : recComType;
sendCom! : sendComType;
recCom?.tn ∈ tnSet \ {valA};
¬(pre pred);
sendCom! = exp;

Fig. 6. The Z schema used to specify the function that
sends a command to the Maeslantkering.

of one of the core subsystems, called the BOS script, a
suitable model (without the controller) had to be derived.
As this system has no direct interaction with actuators
and sensors, the modeling experience from other infras-
tructural systems described in Reijnen et al. (2017, 2020);
Moormann et al. (2020) could not be applied. From the
available documentation, the associated specifications had
to be derived. Second, we were asked by Rijkswaterstaat
to construct automata models that are in line with the
original specifications from 30 years ago. For this pur-
pose, the relation between activities (events) present in
the derived model and Z schemas had to be determined.
Moreover, since Z schemas are at a high level of abstrac-
tion, we needed to make design decisions to turn abstract
Z schemas into automata that represent concrete system
behavior.
To illustrate the conversion from Z schemas to automata,
an example Z schema, shown in Fig. 6, is considered
which specifies sending commands to the PLC of the surge
barrier. In this schema the elements are as follows.

• Input recCom? : recComType which indicates that
the input type is recComType. Each element of this
type consists of three values (tn, tp, tt) represent-
ing task name, task parameter, and the time at which
the command was issued.

• Output sendCom! : sendComType which indicates
that the output type is sendComType. Each element
of this type contains data which should be sent to the
PLC.

• Buffer Ξ dataTable. The data present in the buffer
can be used, e.g., in pre-conditions.

• Pre-conditions
· recCom?.tn ∈ tnSet\{valA} expressing that the

first component of the input must belong to
tnSet but is not equal to valA (G1),

· ¬ (pre pred) expressing that predicate pred
must not hold for this schema to be effective (G2).

• Operation sendCom! = expr which assigns the value
resulting from the evaluation of expr to the output
variable (U ).

For each of the elements mentioned in this schema, except
the input and output variables, separate Z schemas are
defined as well.
In the Z schema from Fig. 6, two pre-conditions need
to be checked and one operation is executed. These pre-
conditions can serve as a guard and the operation as an
update on a transition in the automaton which can be
associated with sending commands to the PLC of the
surge barrier. For example, the command c increase

G1 ∧ G2

c reset
U

Fig. 7. The component model representing the Z schema
from Figure 6.

from Fig. 3 to start increasing the water level in the dock
would be represented by the transition with the guard
G1 ∧ G2, the update U , and event label c increase. This
transition can be part of a separate component model, see
Fig. 6, such that it synchronizes with all other component
models.
As said, a difference between modeling with automata and
with Z schemas is that automata are more specific. For
each control command, a transition in an automaton is
used to model it. This means that, when modeling certain
behavior, Z schemas are more compact. This does come
with the disadvantage that Z schemas are not executable:
for describing the sending of several control commands, Z
uses the same schema, while automata use a transition to
model each command.

6. CONCLUSION

This paper revisited a subset of the formal Z specifi-
cations used in the design of the BOS control system
operating the Maeslantkering storm surge barrier. Here
we employed automaton modeling and supervisory control
synthesis instead. Compared to previous case studies using
supervisory control synthesis for infrastructural systems,
there are several key differences with the design of the
BOS for the Maeslantkering. First, the BOS supervises
software systems and PLC controllers, while in those pre-
vious cases the synthesized supervisor directly interacts
with actuators and sensors. Second, the BOS is rarely
actively operating the Maeslantkering to close and to open
(even for testing purposes), which further amplifies the
need for first-time right controller software to meet the
high reliability criteria of the system in total.
Supervisory control synthesis has been successfully applied
to design a supervisor for part of the BOS script that con-
tains the operational logic of the storm surge barrier. Au-
tomata and event condition models have been constructed
for the components and the requirements. From these,
a concise supervisory controller can be synthesized and
controller software can be generated automatically. This
controller is guaranteed to meet all safety requirements.
We discussed several challenges related to this modeling
step. Furthermore, the same modeling language has been
used to rewrite Z schemas that were used to formalize
the functional view of the BOS. With an example, we
showed how a Z schema could be modeled as an extended
finite automaton. This work may play a pivotal role in the
intended redesign of the BOS, to ensure safe operation of
the Maeslantkering for decades to come.
The original specification captured the intended imple-
mented solution, the actual underlying requirements were
not (formally) captured in the documentation. These re-
quirements are vital for supervisory control synthesis. As
the possibility of testing on the actual system under ex-



treme weather conditions is effectively non-existent, the
usage of digital twins may provide value in facilitating
discussion with system experts. Recent work on developing
digital twins for tunnel supervisory controllers, see Moor-
mann et al. (2022), could also be applicable in the redesign
of the BOS.

ACKNOWLEDGMENT

The authors thank Han Vogel from Rijkswaterstaat for his
valuable feedback and support and Piotr Klimczak from
Rijkswaterstaat for numerous in-depth discussions about
the BOS and the Maeslantkering. Piotr Klimczak made us
aware of the analogy between our way of documenting and
the Rosetta stone.

REFERENCES
Cassandras, C.G. and Lafortune, S. (2008). Introduction

to Discrete Event Systems. Springer, 2nd edition.
ESCET (2022). Eclipse supervisory control engineer-

ing toolset. URL http://projects.eclipse.org/
projects/technology.escet. Last accessed 29 March
2022.

Goorden, M.A., Moormann, L., Reijnen, F.F.H., Verbakel,
J.J., van Beek, D.A., Hofkamp, A.T., van de Mortel-
Fronczak, J.M., Reniers, M.A., Fokkink, W.J., Rooda,
J.E., and Etman, L.F.P. (2020). The road ahead for
supervisor synthesis. In Dependable Software Engineer-
ing. Theories, Tools, and Applications, volume 12153
of Lecture Notes in Computer Science, 1–16. Springer.
doi:10.1007/978-3-030-62822-2_1.

Holzmann, G.J. (1991). Design and Validation of Com-
puter Protocols. Prentice Hall.

Holzmann, G.J. (1997). The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5), 279–295.

IEC (2010). Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems - parts 1 to
7. Standard IEC 61508:2010, International Electrotech-
nical Commission. URL https://webstore.iec.ch/
publication/22273.

Jia, X. (1995). ZTC: A type checker for Z user’s guide 2.0.
Technical report, DePaul University, Chicago, USA.

Kars, P. (1996). The application of Promela and Spin
in the BOS project. In The Spin Verification System,
Proceedings of a DIMACS Workshop, volume 32 of DI-
MACS Series in Discrete Mathematics and Theoretical
Computer Science, 51–63. DIMACS/AMS. doi:10.1090/
dimacs/032/05.

Kars, P. (1998). Formal methods in the design of a storm
surge barrier control system. In G. Rozenberg and F.W.
Vaandrager (eds.), Lectures on Embedded Systems. EEF
School 1996, volume 1494 of Lecture Notes in Computer
Science. Springer. doi:10.1007/3-540-65193-4_28.

Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers,
L.J.A.M., and Rooda, J.E. (2010). Coordination of
resources using generalized state-based requirements.
IFAC Proceedings Volumes, 43(12), 287–292. doi:10.
3182/20100830-3-DE-4013.00048.

Martin, J.M.R. and Welch, P.H. (1997). A design strat-
egy for deadlock-free concurrent systems. Transputer
Communications, 3(4), 215–232.

Miremadi, S., Åkesson, K., and Lennartson, B. (2008).
Extraction and representation of a supervisor using

guards in extended finite automata. In 9th International
Workshop on Discrete Event Systems, 193–199. doi:10.
1109/WODES.2008.4605944.

Miremadi, S., Lennartson, B., and Åkesson, K. (2011). A
BDD-based approach for modeling plant and supervisor
by extended finite automata. Transactions on Control
Systems Technology, 20(6), 1421–1435.

Moormann, L., Maessen, P., Goorden, M.A., van de
Mortel-Fronczak, J.M., and Rooda, J.E. (2020). Design
of a tunnel supervisory controller using synthesis-based
engineering. In ITA-AITES World Tunnel Congress,
573–578.

Moormann, L., van Hegelsom, J., Maessen, P., van de
Mortel-Fronczak, J.M., Fokkink, W.J., and Rooda, J.E.
(2022). Advantages of using digital twins in the vali-
dation of road tunnel supervisory controllers. In ITA-
AITES World Tunnel Congress.

Ouedraogo, L., Kumar, R., Malik, R., and Åkesson, K.
(2011). Nonblocking and safe control of discrete-event
systems modeled as extended finite automata. IEEE
Transactions on Automation Science and Engineering,
8(3), 560–569. doi:10.1109/TASE.2011.2124457.

Ramadge, P.J.G. and Wonham, W.M. (1987). Supervisory
control of a class of discrete event processes. SIAM
Journal on Control and Optimization, 25(1), 206–230.
doi:10.1137/0325013.

Ramadge, P.J.G. and Wonham, W.M. (1989). The control
of discrete event systems. Proceedings of the IEEE,
77(1), 81–98.

Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak,
J.M., and Rooda, J.E. (2017). Supervisory control
synthesis for a waterway lock. In IEEE Conference on
Control Technology and Applications, 1562–1568. doi:10.
1109/CCTA.2017.8062679.

Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak,
J.M., and Rooda, J.E. (2020). Modeling for supervisor
synthesis – a lock-bridge combination case study. Dis-
crete Event Dynamic Systems, 30(3), 499–532. doi:10.
1007/s10626-020-00314-0.

Sköldstam, M., Åkesson, K., and Fabian, M. (2007). Mod-
eling of discrete event systems using finite automata
with variables. In 46th IEEE Conference on Deci-
sion and Control, 3387–3392. doi:10.1109/CDC.2007.
4434894.

Spivey, J.M. (1992). The Z notation: A reference manual.
Prentice Hall.

Tretmans, J., Wijbrands, K., and Chaudron, M. (2001).
Software engineering with formal methods: The develop-
ment of a storm surge barrier control system; revisiting
seven myths of formal methods. Formal Methods in Sys-
tem Design, 19, 195–215. doi:10.1023/A:1011236117591.

van Beek, D.A., Fokkink, W.J., Hendriks, D., Hofkamp,
A., Markovski, J., van de Mortel-Fronczak, J.M., and
Reniers, M.A. (2014). CIF 3: Model-based engineering of
supervisory controllers. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 8413 of
Lecture Notes in Computer Science, 575–580. Springer.
doi:10.1007/978-3-642-54862-8_48.

Wonham, W.M. and Cai, K. (2018). Supervisory Control
of Discrete-Event Systems. Springer.


