
Supervisor Synthesis: Bridging
Theory and Practice

W. J. Fokkink
Vrije Universiteit Amsterdam

M. A. Goorden
Aalborg University

J. M. van de Mortel-Fronczak
Eindhoven University of Technology

F. F. H. Reijnen
Rijkswaterstaat

J. E. Rooda
Eindhoven University of Technology

Abstract—Supervisor synthesis is a classical approach from the eighties to automatically
generate a controller for a discrete-event system, ensuring its safe operation. In recent years,
owing to important improvements, the applicability of supervisor synthesis has increased
significantly. We discuss some notable new developments that were pivotal in the application of
supervisor synthesis to large infrastructural systems.

A PIECE OF SOFTWARE tends to create
new functional behavior. By contrast, controller
software limits the behavior of a cyber-physical
system by blocking possible behavior of its com-
ponents. For example, in a movable bridge, the
bridge deck, barriers, and traffic lights can in
principle operate independently. A supervisory
controller, supervisor for short, makes sure the
bridge deck only opens when the barriers are
closed and the traffic lights are red. Assembly
lines in factories are filled to the brim with
controller software. Supervisory control is also
omnipresent in our daily lives, e.g., in printers,
elevators, and traffic.

The main purpose of a supervisor is compli-
ance: It guarantees that system behavior satisfies
all safety requirements formulated by the system
engineer. Safety requirements express which bad
situations need to be avoided during operation
of the physical system, called the plant. A su-

pervisor should also be minimally restrictive: It
blocks the minimal amount of behavior to achieve
compliance. A human operator can then further
guide the plant in its operation. For example, a
bridge is typically operated by a human, ever
more often remotely, to stop traffic and open the
bridge deck when ships need to pass through. The
supervisor safeguards this operation, preventing
various human errors, for instance by blocking
an event (i.e., action) that would open the bridge
deck while the barriers are not yet closed.

Figure 1 depicts the general layout of such
a control structure. At the top a human op-
erator regulates the plant through a graphical
user interface, at the bottom are the mechanical
plant components. Sensors inform the operator
of the plant’s status, whereas actuators drive the
operation of plant components. Resource control,
not shown in the picture, is needed to regulate
electromechanical actuators based on information

IEEE Computer Published by the IEEE Computer Society © 2021 IEEE 1



Supervisor Synthesis: Bridging Theory and Practice

from associated sensors. The supervisor in the
middle makes sure actuator signals that would
violate safety requirements are disabled.

Human operator

Graphical user interface

Supervisor

Actuators Sensors

Mechanical plant components

Figure 1: Schematic view of a control structure.

The SCADA (supervisory control and data
acquisition) framework, widely used in industry,
ranges from high-level process management such
as graphical user interfaces and networked data
communication all the way down to controllers
that interface with the plant and programmable
logic controllers at the hardware level.

The state space of a plant, representing its
potential behavior, tends to be huge, growing ex-
ponentially with the number of plant components.
The controller needs to work correctly on the
entire state space, also in corner cases that rarely
occur. A human developer of controller software
needs to have deep insight into the plant’s behav-
ior as well as its safety requirements to decide
which events of the different plant components
need to be blocked and in which situations.
Therefore, there is a need for automatically and
efficiently constructing controller software.

SUPERVISOR SYNTHESIS
In 1987, Ramadge and Wonham [1] put for-

ward an ingenious idea to automatically generate
controller software for a discrete-event system,
given precise descriptions of the behavior of the
plant components as well as the safety require-
ments for the overall plant behavior.

Both plant components and safety require-
ments can be specified conveniently in the clas-

sical formalism of finite automata, consisting of
a finite number of states and transitions between
these states. Each transition carries an event: A
transition from state s to state s′ with event e
means that from state s one can move to state
s′ by performing event e. Decorating the states
and events in a finite automaton with variables
and allowing Boolean guards on transitions, spec-
ifying under which conditions the transitions can
take place, facilitates the specification of real-
life systems. This is called an extended finite
automaton, abbeviated to EFA.

Basically, the plant components together with
the requirements perform a perfect choreogra-
phy, called their synchronous product. Each event
leads to an update in the local states of the plant
components and requirements that are sensitive to
this event. If an event is missing in the local states
of one or more of these plant components, then
it is physically absent from the overall system
state. If on the other hand an event is missing
only in the local states of one or more of these
requirements, then it is physically possible but
must be blocked by the supervisor.

Not all events are under the control of the
supervisor. Typically, output events such as sig-
nals to actuators can be prevented but input
events such as signals from sensors cannot. The
first category of events is called controllable, the
second category uncontrollable. A synthesized
supervisor must be controllable: It blocks only
controllable events. If an uncontrollable event
must be prevented by the supervisor, the system
state where it occurs is made unreachable by
the supervisor, by blocking all controllable events
leading to it. Moreover, if an uncontrollable event
leads to this state, the origin state of this event
must be made unreachable too, since the event
cannot be blocked by the supervisor.

The top part of Figure 2 depicts EFAs of
two plant components that are part of a waterway
lock: (a) an actuator of a motor for a lock gate and
(b) an equal water level sensor. Circles are loca-
tions; a state consists of a location together with
a valuation of variables. Each EFA has one initial
state, indicated by a short horizontal incoming ar-
row. In state On the lock gate can be moved, while
in state Off this is not possible. In state Yes the
sensor detects an equal water level, while in state
No it does not. Controllable events c on and c off

2 IEEE Computer



Off Onc on

c off

(a) lock gate actuator

No Yesu on

u off

(b) water level sensor

c on if
Equal Level

(c) requirement

Off,No On,No

Off,Yes On,Yes

c off

c on

c off

u onu off u onu off

(d) supervisor

Figure 2: Part of a waterway lock.

of the lock gate actuator are represented by solid
arrows and uncontrollable events u on and u off
at the sensor by dashed arrows. Requirement (c)
expresses that the actuator can only move the lock
gate when the sensor measures an equal water
level. The if condition in this requirement refers
to a Boolean variable Equal Level that is true
only in state Yes of the sensor component. We
note that the EFA for the actuator in (a) is not
sensitive to (i.e., does not contain events) u on
and u off, so that it does not block these events
in the synchronous product. Likewise, the sensor
in (b) is not sensitive to c on and c off, and
the requirement in (c) is only sensitive to c on.
Finally, (d) depicts the automatically generated
supervisor. Note that event c on from the left top
to the right top state, present in the synchronous
product of the two plant components, is disabled
by the supervisor because it is not allowed by the
requirement.

Next to safety requirements, it is important
to guarantee liveness properties for the plant,
expressing that something good can always even-
tually happen. Consider once again the example
of a bridge. If the bridge deck remains open
forever, with the barriers closed and the traf-
fic lights displaying red, all safety requirements
are nicely satisfied. But for correct operation of
the bridge, the human operator must be able to
close the bridge, so that traffic over it can be
resumed. Such liveness properties are captured by
the notion of marked states in EFAs. A supervisor

must be nonblocking: The plant can always return
to a system state consisting of marked local
states of the plant components and of the safety
requirements. In the bridge example, marked local
states of plant components would typically be
“closed” for the bridge deck, “open” for the
barriers, and “green” for the traffic lights. The
controller has the difficult task of recognizing that
from a reachable system state s one cannot reach
a marked system state anymore. If so, it must
make s unreachable.

Automatically generating a compliant, mini-
mally restrictive, controllable, and nonblocking
supervisor from specifications of the plant com-
ponents and the safety requirements is referred to
as supervisor synthesis [2]. Its main bottleneck
is the dreaded state space explosion problem.
Supervisor synthesis in principle needs to chart
out the entire state space to determine which
controllable events need to be blocked when.
But this is unfeasible for real-life plants, as their
number of states tends to dwarf the number of
atoms in the universe.

We discuss recently developed methods that
help supervisor synthesis cope with such large
state spaces. We also touch upon fault-tolerant
supervisors and tool support. Applications of su-
pervisor synthesis to large infrastructural systems,
notably waterway locks and bridges, highlight the
strength of the approach.

MULTILEVEL SYNTHESIS
In multilevel synthesis [3], plant components

and requirements are grouped together in a node
of a tree. The tree structure tends to resemble
closely a system decomposition, often favored by
engineers to cope with the sheer size of cyber-
physical systems. Requirements with many events
in common are clustered in the same node, and
each plant component that is sensitive to one
or more events present in these requirements is
added to this node. A localized supervisor is gen-
erated for each node separately. If a requirement
is imposed on one cluster in the tree, then the
synchronous product of all nodes assures it is
imposed on the entire operation of the plant. This
means the overall supervisor can be composed
of the localized supervisors. By making sure
each cluster concerns only few plant components,
the localized supervisors remain relatively small,

August 2021 3



Supervisor Synthesis: Bridging Theory and Practice

compared to one monolithic supervisor.
In [4] it was shown how an efficient tree struc-

ture can be obtained through a design structure
matrix (DSM) [5] that registers the number of
shared requirements between each pair of plant
components. An algorithm from [6] reorders the
plant components in such a way that shared
requirements tend to move close to the diago-
nal of the DSM, so that tightly coupled plant
components are placed side by side. Based on
this DSM, different requirements that tend to
relate to the same plant components are grouped
together. Requirements and plant components can
be clustered effectively based on this grouping.
Experimental results on real-life systems pre-
sented in [4] show substantial reductions in the
size and generation time of multilevel supervi-
sors, compared to their monolithic counterparts.

Although the localized supervisors are non-
blocking, the overall supervisor may not be. It
needs to be guaranteed that all localized super-
visors can always reach a marked state at the
same moment in time. This can be verified by
performing a sequence of transformations on the
localized supervisors to obtain a simplified mono-
lithic EFA, which is blocking if and only if the
overall supervisor induced by the initial localized
supervisors is blocking [7]. In case it is blocking,
the simplified monolithic EFA contains precisely
enough information on how to prevent blocking.
Reversals of those transformation steps can be
employed to obtain a coordinator that ensures the
localized supervisors can always reach a marked
state simultaneously [8].

Multilevel synthesis based on a DSM has two
vulnerabilities. First, real-life plants often contain
so-called bus components with many connections
across the system, leading to a top-heavy tree.
This can be resolved by excluding bus com-
ponents from the DSM and adding one extra
branch to the tree, dedicated to requirements that
relate only to bus components [9]. Second, system
engineers tend to blend related requirements or
plant components into one. Splitting them leads
to much more efficient multilevel synthesis [10].

A case study on a waterway lock in the
Wilhelmina canal at the city of Tilburg, raising
and lowering vessels between two water levels,
shows the strength of multilevel synthesis and its
optimizations. The monolithic supervisor has 6.0·

1024 states, its multilevel counterpart 1.8 · 1023
states. Splitting the 142 requirements into 358
requirements and the 35 plant components into
51 smaller components leads to a significantly
reduced multilevel supervisor of 2.9 · 1010 states.
Finally, treating stop buttons as special bus com-
ponents reduces it further to only 7.7 ·108 states.

FAULT-TOLERANT SUPERVISORS
A supervisor should continue to operate, with

degraded service, when a fault occurs, such as
a broken wire, defect sensor, or blocking actua-
tor. One option is to activate another supervisor,
designed specifically for the type of fault that
occurred [11]. Alternatively, the plant compo-
nents and requirements can be divided into fault-
free and post-fault behavior, depending on the
type of fault. The latter approach was used in
[12] to synthesize a fault-tolerant supervisor for
the Algera bascule bridge over the river IJssel,
depicted in Figure 3, with two vehicle roadways
as well as lanes for cyclists and pedestrians.

Figure 3: The Algera complex consisting of a
lock, a bridge, and two storm surge barriers
[https://beeldbank.rws.nl, Rijkswaterstaat / Joop
van Houdt].

Supervisory controllers are often implemented
using programmable logic controllers (PLCs). In
industry, supervisors must adhere to strict safety
standards. Therefore, safety PLCs are widely
used, containing diagnostic functions to detect
internal faults in the hardware and avoid unsafe
situations that could be caused by such faults. A
safety PLC implementation can be generated au-
tomatically from a (synthesized) supervisor [13].
This method was used to generate controller code
for the Oisterwijksebaanbrug, a rotating bridge

4 IEEE Computer



in the Wilhelmina canal, which was successfully
employed for real-life operation of the bridge
[14]. This application indicates that supervisor
synthesis is a viable engineering approach to
transform a requirements specification into effi-
cient PLC code for controlling a real-life system.

After a system failure, reconstructing and an-
alyzing the behavior that led to this undesired
situation provides insight into the cause. Incident
analysis for PLCs usually consists of plotting
actuator and sensor signals, which is laborious
and yields data that may be difficult to interpret.
In [15], a method was proposed in which an EFA
that captures the actual system behavior is con-
structed via simulation. By comparing this EFA
with the EFAs that specify the supervised plant
behavior, faults can be identified more easily.
This approach was successfully applied to the
aforementioned rotating bridge.

TOOLS
Two well-established tools for supervisor syn-

thesis are Supremica [16] and CIF 3 [17]. They
both use the synthesis algorithm from [18], based
on iterative strengthening of guards on transitions
so that forbidden states become unreachable in
the controlled plant. Guards are represented and
manipulated symbolically in the form of binary
decision diagrams [19].

The reported case studies were carried out
using CIF 3. Large-scale systems can be modeled
conveniently owing to parametrized plant compo-
nent definitions. A simulator enables interactive
visualization-based simulation of the behavior of
the controlled plant. Efficient PLC code can be
generated automatically [20]; this code conforms
to the IEC 61131-3 standard.

From 2020 on, development of the CIF 3
toolset continues within Eclipse Supervisory Con-
trol Engineering Toolset (ESCET™), offering an
open environment in which interested academic
and industrial partners can collaborate on and
profit from the further development of tool sup-
port for supervisor synthesis.1

CONCLUSION
Supervisory control synthesis has risen to a

level where it can be successfully applied in

1https://projects.eclipse.org/projects/technology.escet

the engineering process of real-life discrete-event
systems. Multi-level synthesis based on DSMs
makes it possible to automatically synthesize su-
pervisors and generate control software for large
infrastructural systems. Important optimizations
to increase its effectiveness are treating bus com-
ponents separately and splitting requirements as
well as plant components. Fault-tolerance can be
taken into account both at supervisor and at PLC
level.

Next to bridges and waterway locks, supervi-
sor synthesis is within Rijkswaterstaat also being
applied in the development of controller software
for road tunnels. The potential application domain
is not limited to infrastructural systems but cov-
ers discrete-event systems at large. For example,
supervisor synthesis was successfully applied to
advanced driver assistance systems, theme park
vehicles, and MRI scanners.

Future directions for research are the devel-
opment of further optimizations for supervisor
synthesis as well as validation techniques for
generated controller software, and supporting in-
dustry with integrating the supervisor synthesis
method into their discrete-event system engineer-
ing methods.

ACKNOWLEDGMENTS
Rijkswaterstaat, part of the Dutch Ministry of

Infrastructure and Water Management, provided
financial and technical support over the years.
Special thanks go to Han Vogel and Maria An-
genent. We gratefully acknowledge Pascal Etman,
Martin Fabian, and Michel Reniers for their re-
search contributions.

REFERENCES
1. P. J. Ramadge and W. M. Wonham, “Supervisory con-

trol of a class of discrete event processes,” SIAM J.

Control Optim., vol. 25, no. 1, pp. 206–230, 1987.

2. W. M. Wonham and K. Cai, Supervisory Control of

Discrete-Event Systems, Springer, 2018.

3. J. Komenda, T. Masopust, and J. H. van Schup-

pen, “Control of an engineering-structured multilevel

discrete-event system,” Proc. 13th Workshop Discrete

Event Systems, pp. 103–108, IEEE, 2016.

4. M. A. Goorden, J. M. van de Mortel-Fronczak, M. A.

Reniers, W. J. Fokkink, and J. E. Rooda, “Structur-

ing multilevel discrete-event systems with dependency

August 2021 5

https://projects.eclipse.org/projects/technology.escet


Supervisor Synthesis: Bridging Theory and Practice

structure matrices,” IEEE T. Automat. Contr., vol. 65, no.

4, pp. 1625–1639, 2020.

5. S. D. Eppinger and T. R. Browning, Design Structure

Matrix Methods and Applications, MIT Press, 2012.

6. T. Wilschut, L. F. P. Etman, J. E. Rooda, and I. J. B.

F. Adan, “Multilevel flow-based Markov clustering for

design structure matrices,” J. Mech. Des., vol. 139, no.

2, 121402, 2017.

7. S. Mohajerani S, R. Malik, and M. Fabian, “A framework

for compositional nonblocking verification of extended

finite-state machines,” Discrete Event Dyn. Syst., vol.

26, no. 1, pp. 33-–84, 2016.

8. M. A. Goorden, M. Fabian, J. M. van de Mortel-

Fronczak, M. A. Reniers, W. J. Fokkink, and J. E.

Rooda, “ Compositional coordinator synthesis of ex-

tended finite automata,” Discrete Event Dyn. Syst., vol.

31, no. 3, 2021.

9. M. A. Goorden, C. Dingemans, M. A. Reniers, J. M. van

de Mortel-Fronczak, W. J. Fokkink, and J. E. Rooda,

“Supervisory control of multilevel discrete-event sys-

tems with a bus structure,” Proc. 18th European Control

Conf., pp. 3204–3211, IEEE, 2019.

10. M. A. Goorden, J. M. van de Mortel-Fronczak, M. A.

Reniers, W. J. Fokkink, and J. E. Rooda, “The impact

of requirement splitting on the efficiency of supervisory

control synthesis,” Proc. 24th Conf. Formal Methods for

Industrial Critical System, pp. 76–92, Springer, 2019.

11. A. Paoli, M. Sartini, and S. Lafortune, “Active fault

tolerant control of discrete event systems using online

diagnostics,” Automatica, vol. 47, no. 4, pp. 639–649,

2011.

12. F. F. H. Reijnen, M. A. Reniers, J. M. van de Mortel-

Fronczak, and J. E. Rooda, “Structured synthesis of

fault-tolerant supervisory controllers,” Proc. 10th Symp.

Fault Detection, Supervision and Safety of Technical

Processes, pp. 894–901, IFAC, 2018.

13. F. F. H. Reijnen, T. Erens, J. M. van de Mortel-Fronczak,

and J. E. Rooda, “Supervisory control synthesis for

safety PLCs,” Proc. 17th Workshop Discrete Event Sys-

tems, pp. 151–158, IFAC, 2020.

14. F. F. H. Reijnen, E.-B. Leliveld, J. M. van de Mortel-

Fronczak, J. van Dinther, J. E. Rooda, and W. J.

Fokkink, “Synthesized fault-tolerant supervisory con-

trollers, with an application to a rotating bridge,” Com-

put. Ind., vol. 130, 103473, 2021.

15. F. F. H. Reijnen, J. M. van de Mortel-Fronczak, and J.

E. Rooda, “Data logging and reconstruction of discrete-

event system behavior,” Proc. 16th Conf. Control, Au-

tomation, Robotics and Vision, pp. 1020–1026, IEEE,

2020.

16. R. Malik, K. Åkesson, H. Flordal, and M. Fabian,

“Supremica–An efficient tool for large-scale discrete

event systems,” Proc. 20th IFAC World Congr., pp.

5794–5799, IFAC, 2017.

17. D. A. van Beek et al., “CIF 3: Model-based engineering

of supervisory controllers,” Proc. 20th Conf. Tools and

Algorithms for the Construction and Analysis of Sys-

tems, pp. 575–580, Springer, 2014.

18. L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson,

“Nonblocking and safe control of discrete-event systems

modeled as extended finite automata,” IEEE T. Autom.

Sci. Eng., vol. 8, no. 3, pp. 560–569, 2011.

19. K. L. McMillan, Symbolic Model Checking, Springer,

1993.

20. F. F. H. Reijnen, T. R. Erens, J. M. van de Mortel-

Fronczak, and J. E. Rooda, “Supervisory controller

synthesis and implementation for safety PLCs,” Discrete

Event Dyn. Syst., 2022.

Wan Fokkink received a Ph.D. degree from the
University of Amsterdam. He is professor of The-
oretical Computer Science at the Vrije Universiteit
and professor of Model-Based System Engineering
at Eindhoven University of Technology. His research
concerns the analysis of distributed computer sys-
tems. Contact him at w.j.fokkink@vu.nl.

Martijn Goorden received a Ph.D. degree from
Eindhoven University of Technology. He is postdoc-
toral researcher at Aalborg University. His research
concerns model-based engineering. Contact him at
mgoorden@cs.aau.dk.

Joanna van de Mortel-Fronczak received a Ph.D.
degree from Eindhoven University of Technology,
where she currently is assistent professor at the
Faculty of Mechanical Engineering. Her research
concerns model-based engineering. Contact her at
j.m.v.d.mortel@tue.nl.

Ferdie Reijnen received a Ph.D. degree from Eind-
hoven University of Technology. He is industrial au-
tomation consultant at Rijkswaterstaat. His research
concerns model-based system design. Contact him
at ferdie.reijnen@rws.nl.

Jacobus Rooda received a Ph.D. degree from the
University of Twente. He was Professor of (Manu-
facturing) Systems Engineering at Eindhoven Univer-
sity of Technology since 1985. As Professor Emeri-
tus since 2010 he still actively researches engineer-
ing design for industrial systems. Contact him at

6 IEEE Computer



j.e.rooda@tue.nl.

August 2021 7


	SUPERVISOR SYNTHESIS
	MULTILEVEL SYNTHESIS
	FAULT-TOLERANT SUPERVISORS
	TOOLS
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	Biographies
	Wan Fokkink
	Martijn Goorden
	Joanna van de Mortel-Fronczak
	Ferdie Reijnen
	Jacobus Rooda


