
STOMPC: Stochastic Model-Predictive Control
with Uppaal Stratego ?

Martijn A. Goorden1[0000−0002−0641−7240], Peter G.
Jensen1[0000−0002−9320−9991], Kim G. Larsen1, Mihhail Samusev1,2, Jiří Srba1,

and Guohan Zhao2

1 Deparment of Computer Science, Aalborg University, Aalborg, Denmark
{mgoorden,pgj,kgl,srba}@cs.aau.dk

2 Deparment of the Built Environment, Aalborg University, Aalborg, Denmark
{msam,guohanz}@build.aau.dk

Abstract. We present the new co-simulation and synthesis integrated-
framework STOMPC for stochastic model-predictive control (MPC) with
Uppaal Stratego. The framework allows users to easily set up MPC
designs, a widely accepted method for designing software controllers in
industry, with Uppaal Stratego as the controller synthesis engine,
which provides a powerful tool to synthesize safe and optimal strate-
gies for hybrid stochastic systems. STOMPC provides the user freedom
to connect it to external simulators, making the framework applicable
across multiple domains.

1 Introduction

Controller software has become increasingly dominant in cyber-physical systems.
Functionality that previously was implemented by hardware is now being shifted
towards software. Often cyber-physical systems are safety-critical, hence strong
safety-related requirements are formulated for them. At the same time, quality
objectives need to be considered, such as being as fast as possible or minimizing
resource usage. Designing safe and optimal controller software manually is a chal-
lenge, and several formal methods have been developed to synthesize controller
strategies automatically [1, 14,15].

For stochastic hybrid systems, the tool Uppaal Stratego [5,10] is the newly
emerged branch of the leading tool Uppaal that can automatically synthesize
safe and near-optimal controller strategies. It combines statistical model check-
ing, synthesis for timed games, and reinforcement learning. Uppaal Stratego
has been applied successfully to several case studies [3, 6, 8, 11,12].

Within industry, model predictive control (MPC) is a widely adopted method
for designing controllers [7]. MPC schemes are popular as they yield high-
performing control systems without expert intervention over long periods of
time. This is achieved by periodically using a model to predict the system’s
? This work is partly supported by the Villum Synergy project CLAIRE and the ERC

Advanced Grant LASSO.



2 M. Goorden et al.

future behavior and calculate an optimal control strategy for the next time-
bounded period [4]. Therefore, MPC schemes are also called online control, as
they can adapt control strategies while the system is running.

Uppaal Stratego conceptually fits well within MPC designs. Yet it lacks
the ability to periodically update the model’s state and synthesize a new strat-
egy. In previous work [11], bash scripts are created utilizing the command line
interface of Uppaal Stratego to do all the calculations periodically. Unfortu-
nately, these bash scripts are very case specific and not well adaptable to other
case studies. Furthermore, we noticed that for each new case study, researchers
were repeatedly rediscovering MPC schemes for Uppaal Stratego.

We present the co-simulation and synthesis integrated-framework STOMPC,
which implements a basic MPC scheme using Uppaal Stratego as the core
engine for synthesizing the strategies. With this framework, we aim to greatly
simplify the setup for different case studies by implementing standard functional-
ities for MPC schemes with Uppaal Stratego in Python classes. Furthermore,
STOMPC can be connected to external, domain specific, simulators (or in fact
again Uppaal Stratego) that represent the real world. This makes the frame-
work applicable to cases from different domains. Our framework is accessible on
GitHub3, can be installed through pip, and its documentation is available4. An
artifact for evaluation can be downloaded from Zenodo5.

2 Framework Overview

MPC captures a particular way of designing controllers for a broad range of
systems and processes. It has the following three characteristics [4]: a model,
which is used to predict the future of the system within a certain horizon, the
calculation of a control sequence (or strategy) that optimizes some objective, and
a receding approach, where all calculations are repeated after executing the first
control action from the sequence and observing the true state as a consequence
of that.

Fig. 1 provides a conceptual overview of the key ingredients of MPC that are
implemented by STOMPC. Up to time t = k, we have observed the true state
of the system x and provided control input u to it. Using a model of the system,
we can predict the future state x̂k within the control horizon. The evolution of
the state depends on the control sequence being applied ûk, where the applied
control action can be switched after each control period. To determine which
control sequence to choose, the objective is optimized. Often the objective is to
minimize the difference between the state of the system and a reference signal.

Once the optimal control sequence is obtained, the first control action of this
sequence is applied. When the end of the control period is reached, the process
mentioned above is repeated. At time t = k + p, where p is the duration of the
control period, the true value of the state of the system x(k + p) is observed,
3 https://github.com/DEIS-Tools/strategoutil
4 https://strategoutil.readthedocs.io/en/latest/
5 https://doi.org/10.5281/zenodo.6519909



The STOMPC framework 3

k − 2p k − p k k + p k + 2p k + 3p k + 4p k + 5p k + 6p

Past Future

x
x̂

u

ûPeriod
Horizon

Fig. 1. Conceptual overview of model predictive control. In blue (dashed line) is the
continuous evolution of the state in the past x and for the future x̂, while red (dotted
line) shows the periodically switched control signal in the past u and for the future û.

MPC setupUppaal Stratego Simulator

x(k), ûk(k)

x(k + p)x(k)

ûk(k)

Fig. 2. Global architecture of STOMPC, where the MPC setup starts a new step at
time t = k. After each step, k is replaced by k + p and everything is repeated.

which, most likely, is different from the predicted state x̂k(k+ p). Repeating the
calculation with the new true state x(k + p) might result in a different control
sequence ûk+p than the one calculated before ûk.

STOMPC implements this MPC scheme using Python, hiding as much details
as possible, such that a user can focus more on the application itself. Fig. 2
shows the architecture of STOMPC. It provides the component MPC setup,
which orchestrates the MPC scheme. At time t = k for some k, it supplies the
current true state of the system x(k) to Uppaal Stratego. It does this by
inserting the state values into the Uppaal Stratego model. Subsequently, the
MPC setup runs Uppaal Stratego with this model to calculate the optimal
control strategy. From the report generated by Uppaal Stratego, the MPC
setup identifies the calculated control action ûk(k) for the next control period.

After this, the MPC setup switches to the simulator. This simulator can be
again Uppaal Stratego or an external, domain specific one (see Section 3 for
examples), or the actual physical system. The MPC setup supplies the simulator
with the calculated control action ûk(k) for the next control period and, for
memory-less simulators, also the last recorded true state x(k) from which the
simulator should continue. Subsequently, the simulator returns the true state
x(k+p) at the end of the control period. After that, the above procedure repeats
until the end of the experiment.

More information on the setup of the tool, including a detailed example, can
be found in the tool’s documentation6.

6 https://strategoutil.readthedocs.io



4 M. Goorden et al.

3 Use Cases

An advantage of STOMPC is its general applicability across different application
domains. We now discuss three use cases from different application domains:
floorheating in a family house, storm water detention ponds, and traffic light
control.

3.1 Floorheating in a Family House

The MPC scheme from Section 2 is in collaboration with the company Seluxit
applied to controlling floor heating in a family house located in Northern Jutland,
Denmark. Fig. 3 shows a screenshot of a digital twin of the house, displaying all
its 10 rooms and the water pipes supplying heat to the rooms. Each room has
its individually controlled target temperature (the upper digits in the rooms)
and the thermodynamic equations used in the model consider the heat exchange
between the rooms, between the rooms and their outside envelope, as well as the
heat exchange from the water pipes passing under rooms.

Fig. 3. Digital twin of a floor heating system

In each 15 minute period, tem-
perature sensors in each room report
the current readings to the central
control unit. During the following 15
minutes, the server gathers a 24-hour
weather forecast and computes an
optimal control strategy for the next
75 minutes using Uppaal Strat-
ego. The computed strategy opti-
mizes the comfort in each room.

Simulations on the digital twin
using the Uppaal Stratego online
controller (where the real house behavior is replaced by a Simulink model) show
an average 40% improvement in comfort, compared to the controller that was
used in the house before. As a side effect of the predictive control, the new Upp-
aal Stratego control saves about 10% of energy. Further details about this
concrete application of MPC can be found in [2, 11].

3.2 Stormwater Detention Ponds

Stormwater Detention Ponds are critical real-time control assets in urban
stormwater management systems. They reduce the considerable hydraulic im-
pact towards the natural stream, as well as avoid significant pollutant loads
being discharged. However, only passive control of the stormwater pond outlet
valves is currently used in Danish engineering practice.

We implement a co-simulation by combining Uppaal Stratego with the
domain specific simulator EPA-SWMM [9], as shown in Fig. 4. EPA-SWMM
is an open-source physical-based dynamic rainfall-runoff model that has been
implemented for decades in the urban stormwater management [9].



The STOMPC framework 5

Fig. 4. Digital twin of an urban
stormwater management system

Pyswmm [13], a python interface
wrapper, is used for the interfacing of
EPA-SWMM with STOMPC. In each 15
minute control period, EPA-SWMM ex-
tracts the current water level in stormwa-
ter ponds, and feeds it towards Upp-
aal Stratego. From thereon until the
end of the upcoming control horizon
(48 hours), Uppaal Stratego synthe-
sizes the optimal control strategy for the
outlet valves taking weather forecasting
data into account. Two objectives are in-
volved: guarantee the safe operation of
the stormwater pond without any over-
flow and maximize the sedimentation pro-
cess to improve the water quality. Our ap-
proach increased the control performance by 22%. Further details can be found
in [8].

3.3 Traffic Light Control

The application of MPC is widespread in the domain of traffic control. Recently
Uppaal Stratego has been successfully used to minimize the delays, queue
lengths, number of stops, and fuel consumption of vehicles traveling on the ar-
terial street Hobrovej in Aalborg simulated in VISSIM [6]. The street consists of
4 signalized intersections as shown in Fig. 5. The original traffic light controllers
are pre-timed or detector time-gap based.

Fig. 5. Intersections optimized by Upp-
aal Stratego at Hobrovej, Aalborg

Every second Uppaal Strat-
ego is called to solve a traffic
light configuration sequence plan-
ning problem that minimizes the
total intersection delay. The vehi-
cle information communicated to
Uppaal Stratego are the esti-
mated times of arrival extracted
from VISSIM’s area sensors for
each vehicle within 200m of the in-
tersection. The first step in the re-
sulting optimal control sequence is then sent back to VISSIM. Compared to the
original control, and considering an intersection with smallest improvements, the
described MPC approach manages to reduce the delays by 27%, queue lengths
by 42%, number of stops by 20% and fuel consumption by 19%.

In the original paper the data exchange between Uppaal Stratego and
VISSIM was established using a Python script. STOMPC can with minimal
adjustments wrap the complexity of the communication between those two pieces



6 M. Goorden et al.

of software and let the user focus on the more high-level problems such as the
definition of input data, objective function, and MPC parameters.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: ICALP. pp. 1–17. Springer (1989)

2. Agesen, M., Larsen, K., Mikucionis, M., Muniz, M., Olsen, P., Ped-
ersen, T., Srba, J., Skou, A.: Toolchain for user-centered intelligent
floor heating control. In: IECON. pp. 5296–5301. IEEE (2016). https://-
doi.org/10.1109/IECON.2016.7794040

3. Ashok, P., Křetínský, J., Larsen, K.G., Le Coënt, A., Taankvist, J.H., Weininger,
M.: SOS: Safe, optimal and small strategies for hybrid markov decision pro-
cesses. In: Parker, D., Wolf, V. (eds.) QEST. pp. 147–164. LNCS (2019). https://-
doi.org/10.1007/978-3-030-30281-8_9

4. Camacho, E.F., Alba, C.B.: Model predictive control. Springer (2013)
5. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal

stratego. In: Baier, C., Tinelli, C. (eds.) TACAS. pp. 206–211. LNCS (2015).
https://doi.org/10.1007/978-3-662-46681-0_16

6. Eriksen, A., Lahrmann, H., Larsen, K., Taankvist, J.: Controlling signalized inter-
sections using machine learning. Transportation Research Procedia 48, 987–997
(2020). https://doi.org/10.1016/j.trpro.2020.08.127

7. García, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and prac-
tice – a survey. Automatica 25(3), 335–348 (1989). https://doi.org/10.1016/0005-
1098(89)90002-2

8. Goorden, M.A., Larsen, K.G., Nielsen, J.E., Nielsen, T.D., Rasmussen, M.R.,
Srba, J.: Learning safe and optimal control strategies for storm water detention
ponds. IFAC-PapersOnLine 54(5), 13–18 (2021). https://doi.org/10.1016/j.ifa-
col.2021.08.467

9. Huber, W.C., Rossman, L.A., Dickinson, R.E.: Epa storm water management
model, swmm5. Watershed models 338, 359 (2005)

10. Jaeger, M., Jensen, P.G., Larsen, K.G., Legay, A., Sedwards, S., Taankvist, J.H.:
Teaching stratego to play ball: Optimal synthesis for continuous space MDPs.
In: Chen, Y.F., Cheng, C.H., Esparza, J. (eds.) ATVA. pp. 81–97. LNCS (2019).
https://doi.org/10.1007/978-3-030-31784-3_5

11. Larsen, K.G., Mikučioni, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online
and compositional learning of controllers with application to floor heating. In:
Chechik, M., Raskin, J.F. (eds.) TACAS. pp. 244–259. LNCS (2016). https://-
doi.org/10.1007/978-3-662-49674-9_14

12. Larsen, K.G., Mikučioni, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Olderog-Festschrift, pp.
260–277. LNCS, Springer (2015). https://doi.org/10.1007/978-3-319-23506-6_17

13. McDonnell, B.E., Ratliff, K., Tryby, M.E., Wu, J.J.X., Mullapudi, A.: Pyswmm:
The python interface to stormwater management model (swmm). Journal of Open
Source Software 5(52), 2292 (2020). https://doi.org/10.21105/joss.02292

14. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
ICALP. pp. 652–671. Springer (1989)

15. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM journal on control and optimization 25(1), 206–230 (1987)


