
Online Resource 1 - Proofs of theorems in
“Compositional coordinator synthesis of
extended finite automata”

Martijn A. Goorden, Martin Fabian,
Joanna M. van de Mortel-Fronczak, Michel A. Reniers,
Wan J. Fokkink, and Jacobus E. Rooda

This supplementary document provides a description of all ten abstraction-
refinement pairs and the proofs of the theorems mentioned in manuscript Mar-
tijn A. Goorden1, Martin Fabian, Joanna M. van de Mortel-Fronczak, Michel A.
Reniers, Wan J. Fokkink, and Jacobus E. Rooda, “Compositional coordinator
synthesis of extended finite automata”, submitted to Journal of Discrete Event
Dynamical Systems. This supplementary material should be read in conjunction
with the paper, as mathematical preliminaries are presented in the paper.

Below an overview is given of the abstraction-refinement pairs. The numbers
refer to the sections in this document.

Normalization

1. Local normalization

2. Global normalization

CE abstractions

3. FA-based abstractions

4. Partial composition

5. Update simplification

6. Variable unfolding

7. False removal

8. Self-loop removal

9. Event merging

10. Update merging

Remarks The maximally permissive supervisor supCN (G) can be calcu-
lated by the fixed-point algorithm SSEFA as presented in Ouedraogo et al.
[2011]. For convenience, this algorithm is shown in Algorithm 1. It is proven in
that paper that SSEFA(G) = supCN (G).

This algorithm uses nonblocking predicates and bad state predicates. Pred-
icates are, like guards, Boolean expressions that evaluate to true or false for a

1 Corresponding author: Eindhoven University of Technology, m.a.goorden@tue.nl

1

2

given valuation, i.e., v̂ � p or v̂ 2 p. In Algorithm 1 we use a standard nota-
tion for each edge: e = (oe, σe, ge, ue, te) ∈ E, where oe represents the origin
location of edge e, σe the event label, ge the guard, ue the update, and te the
terminal location. Furthermore, N [ue] and B[ue] represents the substitution of
the update expressions in the nonblocking and bad location predicates, respec-
tively. This can be best explained with an example. Let N ≡ v1 > v2 + 2
be a nonblocking predicate expressing that variable v1 should be larger than
v2 + 2, and u = {v1 7→ v1 + 1, v2 7→ v2 − v1} the update that increases the
value of v1 by 1 and sets the new value of v2 as the difference between the cur-
rent values of v2 and v1. Substituting this update in the predicate N results in
N [u] ≡ v1 +1 > v2−v1 +2 (which may be simplified into N [u] ≡ 2 ·v1 > v2 +1).

3

Algorithm 1 Supervisory Synthesis for EFA (SSEFA)

Require: EFA G = (L, V,Σ, E, l0, v0, Lm)
Ensure: SSEFA(G) is the supremal controllable and nonblocking subautoma-

ton of G, if SSEFA(G) is nonblocking and controllable
1: Initialize iterators: i := 0, j := 0, k := 0
2: Initialize guards: ∀e ∈ E : g0

e = ge
3: Initialize the nonblocking predicate of every location l ∈ L:

N j,0
l =

{
T, if l ∈ Lm
F, if l /∈ Lm

4: Update the nonblocking predicate of every location l ∈ L:

N j,k+1
l = N j,k

l ∨
∨

{e|oe=l}

[
gje ∧N

j,k
te [ue]

]
5: if there exists an l ∈ L such that N j,k

l 6= N j,k+1
l then

6: k := k + 1
7: Go to 4
8: else
9: for all l ∈ L: N j

l = N j,k
l

10: k := 0
11: end if
12: Initialize the bad location predicate of every location l ∈ L:

Bj,0l =


T, if l ∈ Lf
¬N j

l , if l /∈ Lf and j = 0

¬N j
l ∨B

j−1
l , if l /∈ Lf and j > 0

13: Update the bad location predicate of every location l ∈ L:

Bj,i+1
l = Bj,il ∨

∨
{e|oe=l,σe∈Σu}

[
gje ∧B

j,i
te [ue]

]
14: if there exists an l ∈ L such that Bj,il 6= Bj,i+1

l then
15: i := i+ 1
16: Go to 13
17: else
18: for all l ∈ L: Bjl = Bj,il
19: i := 0
20: end if
21: Update the guard of every edge e ∈ E:

gj+1
e =

{
gje ∧ ¬B

j
te [ue], if σ ∈ Σc

gje, if σ ∈ Σu

22: if there exists an l ∈ L such that gj+1
e 6= gje then

23: j := j + 1
24: Go to 3
25: else
26: Stop
27: end if

1 Local normalization 4

1 Local normalization

Local normalization makes sure that within a single automaton, transitions
labeled with the same event have the same effect on the valuations of variables,
i.e., each event can be associated with a guard and update. When an automaton
is locally normalized, guards and updates are no longer solely associated with
transitions, but are also associated with the event.

Lemma 1. Let E be a deterministic EFA and let ρ : Σ′ → Σ be a renaming
function. Create F such that ρ(F) = E. Then SSEFA(E) = ρ(SSEFA(F)).

Proof. From the definition of renaming, it follows that E and F have the same
location set, same set of variables, same initial location, same initial valuation,
and same set of marked locations. Furthermore, as ρ(F) = E, for each edge
eE = (l1, σ, g, u, l2) ∈ EE there exists an edge eF ∈ EF in F such that eF =
(l1, µ, g, u, l2) and ρ(µ) = σ, and for each edge eF = (l1, µ, g, u, l2) ∈ EF there
exists an edge eE ∈ EE in E such that eE = (l1, σ, g, u, l2) and σ = ρ(µ).

Now, consider SSEFA, Algorithm 1. First, for any EFA A, A and SSEFA(A)
only differ in the set of edges; all other elements of the EFA tuple are the same.
Second, as renaming preserves by definition the controllability status of an event,
for each iteration j, the nonblocking predicates and the bad location predicates
do not depend on the event name of edges. Therefore, these predicates are
the same for E and F . This shows us that, eventually, for every pair of edges
eE = (l1, σ, g, u, l2) ∈ EE and eF = (l1, µ, g, u, l2) ∈ EF with σ = ρ(µ), the
fixed-point guard g∗ for eE and eF are the same, i.e., (l1, σ, g

∗, u, l2) is an edge
in SSEFA(E) if and only if (l1, µ, g

∗, u, l2) is an edge in SSEFA(F).
Finally, when we apply renaming on SSEFA(F) it follows from the definition

that (l1, µ, g
∗, u, l2) is an edge in SSEFA(F) if and only if (l1, ρ(µ), g∗, u, l2) =

(l1, σ, g
∗, u, l2) is an edge in ρ(SSEFA(F)). Furthermore, the alphabet of E is

the same as ρ(SSEFA(F)). Combining this with the conclusion of the previous
paragraph, we can conclude that (l1, σ, g

∗, u, l2) is an edge in SSEFA(E) if and
only if (l1, σ, g

∗, u, l2) is an edge in ρ(SSEFA(F)). This concludes the proof.

Lemma 2. Let E = {E1, . . . , En} be a deterministic EFA system, and let ρ :
Σ′ → ΣE be a renaming function such that F = {F 1, ρ−1(E2), . . . , ρ−1(En)},
ρ(F 1) = E1, and F 1 is a normalized EFA. Then E = ρ(F).

Proof. From the definition of renaming and inverse renaming it follows that for
any EFA G it holds that ρ(ρ−1(G)) = G. As renaming applied on an EFA
system is defined as applying renaming on the individual EFAs, it follows that
ρ(F) = {ρ(F 1), ρ(ρ−1(E2)), . . . , ρ(ρ−1(En))} = {E1, E2, . . . , En} = E . This
concludes the proof.

Theorem 1. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a de-
terministic EFA system, and let ρ : Σ′ → ΣE be a renaming function such
that F = {F 1, ρ−1(E2), . . . , ρ−1(En)}, ρ(F 1) = E1, and F 1 is a normal-
ized EFA. Then refinement function ξ(G) = ρ(G) for any EFA G ensures that
(E , ξ1) 'co (F , ξ1 ◦ ξ).

2 Global normalization 5

Proof. From the definition of Ξ and the construction of ξ, it follows directly
that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (F , ξ1 ◦ ξ) is a coordinator tuple.

Now we show that the two coordinator tuples are coordinator equivalent.
From Lemma 2 it follows that E = ρ(F). Therefore, from Lemma 1 it follows
that supCN (E) = SSEFA(E) = ρ(SSEFA(F)) = ρ(supCN (F)). Therefore,
L(ξ1(supCN (E))) = L(ξ1(ρ(supCN (F)))) = L(ξ1(ξ(supCN (F)))).

2 Global normalization

Definition 1. Let A = (LA,ΣA, VA, EA, l0,A, v̂0,A, Lm,A) and B = (LB ,ΣB , VB ,
EB , l0,B , v̂0,B , Lm,B) be two EFAs. A and B are said to be logically equivalent
with respect to variable set V , written A ⇔V B, if LA = LB, ΣA = ΣB, VA =
VB, l0,A = l0,B, v̂0,A = v̂0,B, and Lm,A = Lm,B, and eA = (l1, σ, gA, u, l2) ∈ EA
is an edge in A if and only if eB = (l1, σ, gB , u, l2) ∈ EB is an edge in B such
that gA ⇔V gB.

Lemma 3. Let E and F be two deterministic EFAs such that E ⇔V F . Then
SSEFA(E)⇔V SSEFA(F).

Proof. As E and F are logically equivalent, and Algorithm 1 only alters guards
on edges, it follows that SSEFA(E) and SSEFA(F) have the same location set,
alphabet, variables, initial location, initial valuation, and set of marked loca-
tions, and (l1, σ, gE , u, l2) is an edge in SSEFA(E) if and only if (l1, σ, gF , u, l2)
is an edge in SSEFA(F). It remains to be proven that gE ⇔V gF .

In the remainder of this proof, we use the notation xE to refer to usage of
some symbol x in EFA E, while xF refers to the usage of some symbol x in EFA
F .

Consider the first iteration of Algorithm 1, i.e., j = 0. From Line 2 we
can observe that for all edges e = (l1, σ, ∗, u, l2) with (l1, σ, gE , u, l2) ∈ E and
(l1, σ, gF , u, l2) ∈ F it holds that gE 0

e = gE and gF 0
e = gF . Therefore, gE 0

e ⇔V

gF 0
e.
Continuing with the nonblocking predicates, we observe that the initial non-

blocking predicate for each location as defined in Line 3 does not depend on any
guard. Therefore, for all locations l ∈ L it holds that NE 0,0

l = NF 0,0
l . It then

follows from Line 4 that for all locations l ∈ L: NE 0,k+1
l ⇔V NF 0,k+1

l . Thus,

for all locations l ∈ L we can conclude that NE 0
l ⇔V NF 0

l .
Continuing with the bad location predicates, we observe from Line 12 that

for all locations l ∈ L it holds that initially BE 0,0
l ⇔V BF 0,0

l . It then follows

from Line 13 that for all locations l ∈ L: BE 0,k+1
l ⇔V BF 0,k+1

l . Thus, for all

locations l ∈ L we can conclude that BE 0
l ⇔V BF 0

l .
Finally, continuing with the update of the guards in Line 21, we can conclude

that for all edges e it holds that gE 1
e ⇔V gF 1

e.
When the algorithm goes back to Line 3 for the next iteration, we can

repeat the argumentation above for j > 0 to conclude after each iteration that
gE j
e ⇔V gF j

e. Therefore, when the fixed-point is reached after n iterations,

2 Global normalization 6

it follows that for all edges e it holds that gE n
e ⇔V gF n

e . This concludes the
proof.

Lemma 4. Let E and F be two deterministic EFAs such that E ⇔V F . Then,
for any EFA T it holds that U(E ‖ T) = U(F ‖ T).

Proof. Clearly, U(E ‖ T) and U(F ‖ T) have the same state set, alphabet,
initial location, and marked locations. It remains to be proven that they have
the same transitions. Because of symmetry of E and F in the lemma it is enough
to show that, if ((lE1 , l

T
1), v̂1)

σ−→ ((lE2 , l
T
2), v̂2) is a transition in U(E ‖ T), then

((lE1 , l
T
1), v̂1)

σ−→ ((lE2 , l
T
2), v̂2) is a transition in U(F ‖ T).

Assume that ((lE1 , l
T
1), v̂1)

σ−→ ((lE2 , l
T
2), v̂2) in U(E ‖ T). By the definition of

state space this means that (lE1 , l
T
1)

σ,g,u−−−→ (lE2 , l
T
2) in E ‖ T such that g[v̂1] = T

and v̂2(v) = v̂1(u(v))). Consider three cases for σ.

• σ ∈ Σ∪ΣT . Then by the definition of synchronous composition it follows

that lE1
σ,gE ,uE−−−−−→ lE2 in E, lT1

σ,gT ,uT−−−−−→ lT2 in T , g = gE∧gT , and u = uE⊕uT .

As F is logically equivalent to E, it follows that lF1
σ,gF ,uF−−−−−→ lF2 in F where

lF1 = lE1 , l
F
2 = lE2 , u

F = uE , and gF ⇔V gE . Finally, as g[v̂1] = T and
g = gE ∧ gT , it follows that gE [v̂1] = T and gT [v̂1] = T. Together with
gF ⇔V gE it holds that gF [v̂1] = T.

• σ ∈ Σ \ΣT . Then by the definition of synchronous composition it follows

that lE1
σ,gE ,uE−−−−−→ lE2 in E, lT1 = lT2 , g = gE , and u = uE . As F is

logically equivalent to E, it follows that lF1
σ,gF ,uF−−−−−→ lF2 in F where lF1 =

lE1 , l
F
2 = lE2 , u

F = uE , and gF ⇔V gE . Finally, as g[v̂1] = T, g = gE , and
gF ⇔V gE it holds that gF [v̂1] = T.

• σ ∈ ΣT \Σ. Then by the definition of synchronous composition it follows

that lT1
σ,gT ,uT−−−−−→ lT2 in T , lE1 = lE2 , g = gT , and u = uT . As F is logically

equivalent to E, it follows that there is no transition in F , i.e., lF1 = lE1
and lF2 = lE2 .

Using the definition of the synchronous product on the situations described

above, it follows that (lF1 , l
T
1)

σ,g,u−−−→ (lF2 , l
T
2) in F ‖ T such that g[v̂1] = T

and v̂2(v) = v̂1(u(v)). Therefore, ((lF1 , l
T
1), v̂1)

σ−→ ((lF2 , l
T
2), v̂2) is a transition

in U(F ‖ T), which can be rewritten as ((lE1 , l
T
1), v̂1)

σ−→ ((lE2 , l
T
2), v̂2) with the

observations above.

Lemma 5. Let E and F be two deterministic EFAs with shared alphabet Σ such
that E ⇔V F , and ρ : Σ→ Σ′ a renaming function. Then ρ(E)⇔V ρ(F).

Proof. From the definition of renaming and that E ⇔V F , it follows that ρ(E)
and ρ(F) have the same location set, alphabet, variables, initial location, initial
valuation, and set of marked locations.

2 Global normalization 7

As E ⇔V F , it follows that (l1, σ, g
E , u, l2) is an edge in E if and only if

(l1, σ, g
F , u, l2) is an edge in F and gE ⇔V gF . Therefore, after applying the

renaming function ρ, we know that (l1, ρ(σ), gE , u, l2) is an edge in ρ(E) if and
only if (l1, ρ(σ), gF , u, l2) is an edge in ρ(F) and gE ⇔V gF . This concludes the
proof.

Lemma 6. Let E and F be two deterministic EFAs with shared alphabet Σ
such that E ⇔V F , and ρ : Σ′ → Σ a renaming function. Then, it holds that
ρ−1(E)⇔V ρ−1(F).

Proof. From the definition of inverse renaming and that E ⇔V F , it follows
that ρ−1(E) and ρ−1(F) have the same location set, alphabet, variables, initial
location, initial valuation, and set of marked locations.

As E ⇔V F it follows that (l1, σ, g
E , u, l2) is an edge in E if and only if

(l1, σ, g
F , u, l2) is an edge in F and gE ⇔V gF . Therefore, after applying the

inverse renaming function ρ−1, we know for all µ ∈ ρ−1(σ) that (l1, µ, g
E , u, l2) is

an edge in ρ(E) if and only if (l1, µ, g
F , u, l2) is an edge in ρ(F) and gE ⇔V gF .

This concludes the proof.

Lemma 7. Let E and F be two deterministic EFAs with shared alphabet Σ such
that E ⇔V F . Then, for any EFA T it holds that E ‖ T ⇔V F ‖ T .

Proof. From the definition of E ⇔V F , it follows that E and F have the same
location set, alphabet, variables, initial location, initial valuation, and set of
marked locations. Furthermore, from the definition of synchronous product it
follows that E ‖ T and F ‖ T have the same location set, alphabet, variables,
initial location, initial valuation, and set of marked locations.

As E ⇔V F it follows that (l1, σ, g
E , u, l2) is an edge in E if and only if

(l1, σ, g
F , u, l2) is an edge in F and gE ⇔V gF . Consider three cases for event

σ.

• σ ∈ Σ∪ΣT . In this case ((l1, x1), σ, gE ∧ gT , u⊕ uT , (l2, x2)) is an edge in
E ‖ T if and only if (l1, σ, g

E , u, l2) is an edge in E and (x1, σ, g
T , uT , x2)

is an edge in T . Similarly, ((l1, x1), σ, gF ∧gT , u⊕uT , (l2, x2)) is an edge in
F ‖ T if and only if (l1, σ, g

F , u, l2) is an edge in F and (x1, σ, g
T , uT , x2)

is an edge in T . Observe that gE ∧ gT ⇔V gF ∧ gT ,

• σ ∈ Σ \ ΣT . In this case ((l1, x1), σ, gE , u, (l2, x2)) is an edge in E ‖ T
if and only if (l1, σ, g

E , u, l2) is an edge in E and x1 = x2. Similarly,
((l1, x1), σ, gF , u, (l2, x2)) is an edge in F ‖ T if and only if (l1, σ, g

F , u, l2)
is an edge in F and x1 = x2

• σ ∈ ΣT \ Σ. In this case ((l1, x1), σ, gT , uT , (l2, x2)) is an edge in E ‖ T
if and only if (x1, σ, g

T , uT , x2) is an edge in T and l1 = l2. Similarly,
((l1, x1), σ, gT , uT , (l2, x2)) is an edge in F ‖ T if and only if (x1, σ, g

T , uT ,
x2) is an edge in T and l1 = l2.

Combining the observations above, we can conclude that ((l1, x1), σ, gET , u ⊕
uT , (l2, x2)) is an edge in E ‖ T if and only if ((l1, x1), σ, gFT , u ⊕ uT , (l2, x2))
is an edge in F ‖ T and gET ⇔V gFT . This concludes the proof.

2 Global normalization 8

Lemma 8. Let E and F be two deterministic EFAs with shared alphabet Σ such
that E ⇔V F , and ξ ∈ Ξ an abstraction function. Then ξ(E)⇔V ξ(F).

Proof. This lemma is proven by induction on the structure of ξ. Denote ξ =
ξm◦ . . .◦ξ1. Assume that ξi◦ . . .◦ξ1(E)⇔V (ξi◦ . . .◦ξ1)(F) with i ∈ [0 . . .m−1]
and ξ0 = id. Consider the following four cases for ξi+1.

• ξi+1 is the identity function. It follows immediately that ξi+1 ◦ ξi ◦ . . . ◦
ξ1(E)⇔V ξi+1 ◦ ξi ◦ . . . ◦ ξ1(F).

• ξi+1 is a renaming. From Lemma 5 it follows that ξi+1 ◦ ξi ◦ . . . ◦ ξ1(E)
⇔V ξi+1 ◦ ξi ◦ . . . ◦ ξ1(F).

• ξi+1 is a renaming in synchronous composition with the original EFA
system. From Lemma 5 and 7 it follows that ξi+1 ◦ ξi ◦ . . . ◦ ξ1(E) ⇔V

ξi+1 ◦ ξi ◦ . . . ◦ ξ1(F).

• ξi+1 is an inverse renaming in synchronous composition with the original
EFA system. From Lemma 6 and 7 it follows that ξi+1 ◦ξi ◦ . . .◦ξ1(E)⇔V

ξi+1 ◦ ξi ◦ . . . ◦ ξ1(F).

This concludes the proof.

Lemma 9. Let E = {E1, . . . , En} be a deterministic EFA system, where each
individual EFA Ei ∈ E is locally normalized. Construct the normalized form of
E as F = N (E) = {N (E1), . . . ,N (En)}. Then ‖ E ⇔V ‖ F .

Proof. From the definition of the globally normalization function N , it follows
for each index i that Ei and F i have the same set of locations, same alphabet,
same variable set, same initial location, same initial valuation, and same set
of marked locations. Therefore, the synchronous products ‖ E and ‖ F also
have the same set of locations, same alphabet, same variable set, same initial
location, same initial valuation, and same set of marked locations.

Furthermore, it holds that there is an edge (li1, σ, g
i
σ, u, l

i
2) in Ei if and only

if there is an edge (li1, σ, gσ, u, l
i
2) in F i where gσ =

∧
i:σ∈Σi g

i
σ and giσ the guard

associated with event σ in normalized EFA Ei. Therefore, in the synchronous
product we have an edge ((l11, . . . , l

n
1), σ,

∧
i:σ∈Σi g

i
σ, u, (l

1
2, . . . , l

n
2)) in ‖ E if and

only if ((l11, . . . , l
n
1), σ,

∧
i:σ∈Σi gσ, u, (l

1
2, . . . , l

n
2)) is an edge in ‖ F . Now it follows

immediately that
∧
i:σ∈Σi g

i
σ ⇔V

∧
i:σ∈Σi gσ. This concludes the proof.

Theorem 2. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a de-
terministic EFA system, where each individual EFA Ei ∈ E locally normalized.
Construct the normalized form of E as F = N (E) = {N (E1), . . . ,N (En)}.
Then refinement function ξ = id ensures that (E , ξ1) 'co (F , ξ1 ◦ ξ).

Proof. From the definition of Ξ and the construction of ξ, it follows directly
that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (F , ξ1 ◦ ξ) is a coordinator tuple.

Now we show that the two coordinator tuples are coordinator equivalent.
Again, from Lemma 9 it follows that ‖ E ⇔V ‖ F . From Lemma 3 it follows that

3 FA-based abstractions 9

supCN (E) = SSEFA(E) ⇔V SSEFA(F) = supCN (F). And from Lemma 8 it
follows that ξ1(supCN (E))⇔V ξ1(supCN (F)). Thus, from Lemma 4 it follows
that U(ξ1(supCN (E))) = U(ξ1(supCN (F))). We can now observe that

L(ξ1(supCN (E))) = L(U(ξ1(supCN (E))))

= L(U(ξ1(supCN (F))))

= L(ξ1(supCN (F)))

= L(ξ1(ξ(supCN (F))))

This concludes the proof.

3 FA-based abstractions

3.1 Description of the abstraction

For FA-based abstractions, we use the following notions of conflict equivalence
and synthesis abstraction. The notion of conflict equivalence is from Flordal
and Malik [2009], while the notion of synthesis abstraction is from Mohajerani
et al. [2011].

Definition 2 (FA conflict equivalence). Two FAs E and F are called conflict
equivalent with respect to a set of local events Γ, denoted with E 'conf,Γ F , if for
any FA T with alphabet ΣT and Γ ∩ ΣT = ∅ it holds that E ‖ T is nonblocking
if and only if F ‖ T is nonblocking.

Definition 3 (FA synthesis abstraction). FA F is called a synthesis abstraction
of FA E with respect to a set of local events Γ, denoted with E .synth,Γ F , if
for any FA T with alphabet ΣT and Γ∩ΣT = ∅ it holds that L(E ‖ T ‖ sup CN
(E ‖ T)) = L(E ‖ T ‖ sup CN (F ‖ T)).

Let E = (L,Σ,→, l0, Lm) be an FA and ∼⊆ L× L an equivalence relation.
Given an equivalence relation ∼ on L, the equivalence class of a location l ∈ L
is [l] = {l′ | (l, l′) ∈∼}, and L /∼= {[l] | l ∈ L} is the set of all equivalence
classes modulo ∼. The quotient automaton of E, denoted with E /∼, is given by
E /∼= (L /∼,Σ,→/∼, [l0], Lm /∼) where→/∼= {([l1], σ, [l2]) | (l1, σ, l2) ∈→}.

Furthermore, to apply FA-based abstractions, we need the notion of local
events (as several FA-based abstractions heavily rely on local events) and a
mechanism to transform an EFA to an FA.

In an FA system, an event is considered to be local in A if it only appears
in the alphabet of A and not in the alphabet of other FAs. In the context of
EFA systems, considering the alphabets is insufficient to determine local events.
An EFA may influence (or be influenced by) another EFA through variables.
In the work of Mohajerani et al. [2016], an event is considered to be local in

3 FA-based abstractions 10

an EFA system if it only appears in the alphabet of a single EFA and it has
no dependencies and effect on variables, i.e., on transitions labeled with a local
event the guards are true and the updates do not alter the valuation of variables.

An FA may be obtained from an EFA by calculating its state space, see
Definition 2 of the paper. Unfortunately, this operation suffers from the state-
space explosion problem. For a normalized EFA, it is also possible to create
an FA by simply disregarding all guards and updates, called the FA-form of
an EFA, as in a normalized system all transitions labeled with the same event
have the same guard and update. Note that the FA form of an EFA may be
different from its state space. More information can be found in Mohajerani
et al. [2016]. The following definition introduces the FA form of an EFA.

Definition 4 (FA form). Let E = (L, V,Σ,→, l0, v̂0, Lm) be an EFA. The
FA form of E is the FA φ(E) = (L,Σ,→φ, l0, Lm), where →φ= {(x, σ, y) |
(x, σ, g, u, y) ∈→}.

The conversion from an EFA to its FA form does not suffer from the state-
space explosion problem, and at the same time makes it possible to perform
FA-based abstractions.

The following theorem shows the result for FA-based abstractions. The proof
of this theorem can be found in Section 3.2 of this supplementary material.

Theorem 3 (FA-based abstractions). Let (E , ξ1) be a coordinator tuple with
E = {E1, E2, . . . , En} a normalized EFA system, ∼⊆ L1 × L1 an equivalence
relation, and Γ ⊆ Σ1 such that (Σ2 ∪ . . . ∪ Σn) ∩ Γ = ∅ and gσ ≡ T and v̂(v) =
v̂(uσ(v)) for all σ ∈ Γ, v ∈ V , and v̂ ∈ Val(V). Let F = {F 1, E2, . . . , En} be
a normalized EFA system such that φ(F 1) = φ(E1) /∼, φ(E1) 'conf,Γ φ(F 1),
and φ(E1) .synth,Γ φ(F 1). Then refinement function ξ(G) = id(G) ‖ E for any
EFA system G ensures that (E , ξ1) 'co (F , ξ1 ◦ ξ).

Compared to compositional nonblocking verification, Theorem 3 requires
that the FA-based abstraction is not only conflict equivalent, but also a syn-
thesis abstraction. Furthermore, this theorem requires that the abstraction can
be performed by creating an equivalence relation on the location set and then
calculating the quotient automaton. Several FA-based abstractions fit this re-
quirement, see Flordal and Malik [2009], Mohajerani et al. [2011, 2014a]. In
general, quotient automata allow for more behavior than the original automa-
ton. Therefore, the coordinator synthesized for the quotient automaton may
contain more behavior than the coordinator for the original automaton. This
difference can be taken away by synchronizing the abstracted coordinator with
the original automaton.

Example. EFA A as shown in Figure 1 is abstracted into Ã, also shown
in Figure 1, with the FA-based abstraction called weak synthesis observation
equivalence. The coordinators synthesized from A and Ã are shown in Figure 2.
Observe that the language of L(SA) ⊂ L(SÃ): in the quotient automaton SÃ,

3 FA-based abstractions 11

Ã

l21
l21

p1

p2

s1

s2

l10 l11

A

l21

s1

s2

l21

l21

p1

p2

l10 l11

l11

l11

Event
Guard and

update

l10
v1 < 2; v1 :=
v1 + 1

l11
v1 < 1; v1 :=
v1 + 1

l21
0 < v1; v1 :=
v1 − 1

l22
0 < v1; v1 :=
v1 − 1

p1 T
p2 T
s1 T
s2 T

Fig. 1: EFA A and abstracted EFA Ã obtained with the FA-based abstraction
called weak synthesis observation equivalence.

SÃ

l21
l21; F

p1

p2

s1

s2

l10 l11

SA

l21

s1

s2

l21; F

l21; F

p1

p2

l10 l11

l11

l11

Event
Guard and

update

l10
v1 < 2; v1 :=
v1 + 1

l11
v1 < 1; v1 :=
v1 + 1

l21
0 < v1; v1 :=
v1 − 1

p1 T
p2 T
s1 T
s2 T

Fig. 2: The coordinators SA and SÃ calculated from A and Ã, respectively, both
shown in Figure 1. In the table the original normalized guards and updates are
displayed, while the guards strengthened by supervisor synthesis are displayed
in the automaton itself.

3 FA-based abstractions 12

for example, a sequence of consecutive p1 events is possible after string l21,
which is not possible in the original automaton SA. Nevertheless, it holds that
L(SA) = L(SÃ ‖ A), i.e., the language of the original coordinator is the same
as the language of the abstracted coordinator in synchronous composition with
the original EFA.

3.2 Proof

Definition 5. Two FAs E and F are said to be bisimilar, denoted with E↔F ,
if there exists a bisimulation relation R ⊆ LE × LF such that (lE0 , l

F
0) ∈ R.

Furthermore, a relation R ⊆ LE × LF is called a bisimulation relation if the
following holds for any tuple (lE1 , l

F
1) ∈ R:

• if lE1
σ−→ lE2 in E, then lF1

σ−→ lF2 in F with (lE2 , l
F
2) ∈ R,

• if lF1
σ−→ lF2 in F , then lE1

σ−→ lE2 in E with (lE2 , l
F
2) ∈ R,

• if lE1 ∈ LEm, then lF1 ∈ LFm, and

• if lF1 ∈ LFm, then lE1 ∈ LEm.

Definition 6. Two EFAs E and F with same variable set V are said to be
valuation bisimilar, denoted with E↔V F , if there exists a valuation bisimulation
relation R ⊆ LE × LF × Val(V) such that (lE0 , l

F
0 , v̂0) ∈ R. Furthermore, a

relation R ⊆ LE ×LF ×Val(V) is called a valuation bisimulation relation if the
following holds for any triple (lE1 , l

F
1 , v̂) ∈ R:

• if (lE1 , v̂)
σ−→ (lE2 , ŵ) in U(E), then (lF1 , v̂)

σ−→ (lF2 , ŵ) in U(F) with (lE2 , l
F
2 ,

ŵ) ∈ R,

• if (lF1 , v̂)
σ−→ (lF2 , ŵ) in U(F), then (lE1 , v̂)

σ−→ (lE2 , ŵ) in U(E) with (lE2 , l
F
2 ,

ŵ) ∈ R,

• if lE1 ∈ LEm, then lF1 ∈ LFm, and

• if lF1 ∈ LFm, then lE1 ∈ LEm.

For EFA E we denote with supCN (E) the nonblocking, controllable, and
maximally permissive EFA supervisor. For FA E we denote with supCN F (E)
the nonblocking, controllable, and maximally permissive FA supervisor.

Lemma 10. Let E be an FA and ∼ an equivalence relation on E such that
E 'conf,Γ E /∼ and E .synth,Γ E /∼. Then for any FA T it holds that
supCN F (E ‖ T)↔ supCN F (E /∼‖ T) ‖ E ‖ T .

Proof. Let E = (LE ,ΣE ,→E , lE0 , L
E
m) and T = (LT ,ΣT ,→T , lT0 , L

T
m). First,

observe that the initial location of E ‖ T and supCN F (E ‖ T) is (lE0 , l
T
0). From

the construction of E /∼ it follows that the initial location of E /∼‖ T and
supCN F (E /∼‖ T) is ([lE0], lT0). Therefore, the initial location of supCN F (E /∼
‖ T) ‖ E /∼‖ T is ([lE0], lT0 , l

E
0 , l

T
0).

3 FA-based abstractions 13

Construct R ⊆ (LE × LT)× (LE /∼, LT , LE , LT) as

R = {((e, t), ([e], t, e, t)) | l ∈ LE , t ∈ LT , (e, t) ∈ Reach(supCN F (E ‖ T))},

where Reach(F) denotes the reachable states of FA F . We will show that R is
a bisimulation relation.

Let ((e, t), ([e], t, e, t)) ∈ R.

• Let (e, t)
σ−→ (e′, t′) in supCN F (E ‖ T). As (e, t) ∈ Reach(supCN F (E ‖

T)), it holds that there exists a string s such that (lE0 , l
T
0)

s−→ (e, t),
i.e., s ∈ L(supCN F (E ‖ T)). As E .synth E /∼, it follows that s ∈
L(supCN F (E /∼‖ T) ‖ E ‖ T). Furthermore, s ∈ L(E ‖ T). Combin-

ing this with the construction of E /∼, it follows that ([lE0], lT0 , l
E
0 , l

T
0)

s−→
([e], t, e, t). As (e, t)

σ−→ (e′, t′) in supCN F (E ‖ T), it follows that (e, t)
σ−→

(e′, t′) in E ‖ T . Consider three cases for σ.

– σ ∈ ΣE ∩ ΣT . From the definition of synchronous product it follows
that e

σ−→ e′ in E and t
σ−→ t′ in T . From the construction of E /∼ it

follows that [e]
σ−→ [e′] in E /∼.

– σ ∈ ΣE \ ΣT . From the definition of synchronous product it follows

that e
σ−→ e′ in E and t = t′. From the construction of E /∼ it follows

that [e]
σ−→ [e′] in E /∼.

– σ ∈ ΣT \ ΣE . From the definition of synchronous product it follows

that t
σ−→ t′ in T and e = e′. From the construction of E /∼ it follows

that [e] = [e′] in E /∼.

In all three cases it follows using synchronous product again that ([e], t)
σ−→

([e′], t′) in E /∼‖ T . Furthermore, as (e, t)
σ−→ (e′, t′) in supCN F (E ‖ T),

it also follows that sσ ∈ L(supCN (E ‖ T)) = L(supCN F (E /∼‖ T) ‖ E ‖
T). This implies that ([e], t, e, t)

σ−→ ([e′′], t′′, e′′, t′′) in supCN F (E /∼‖
T) ‖ E ‖ T for some e′′ ∈ LE and t′′ ∈ LT . Combining above observa-

tions it must hold that e′′ = e′ and t′′ = t′. Therefore, ([e], t, e, t)
σ−→

([e′], t′, e′, t′) in supCN F (E /∼‖ T) ‖ E ‖ T . Finally, observe that
((e′, t′), ([e′], t′, e′, t′)) ∈ R by the construction of R.

• Let ([e], t, e, t)
σ−→ ([e′], t′, e′, t′) in supCN F (E /∼‖ T) ‖ E ‖ T . Consider

three cases for σ.

– σ ∈ ΣE ∩ ΣT . From the definition of synchronous product it follows
that ([e], t)

σ−→ ([e′], t) in supCN F (E /∼‖ T), e
σ−→ e′ in E, and t

σ−→ t′

in T .

– σ ∈ ΣE \ ΣT . From the definition of synchronous product it follows

that ([e], t)
σ−→ ([e′], t) in supCN F (E /∼‖ T), e

σ−→ e′ in E, and t = t′.

– σ ∈ ΣT \ ΣE . From the definition of synchronous product it follows

that ([e], t)
σ−→ ([e′], t) in supCN F (E /∼‖ T), e = e′ in E, and t

σ−→ t′

in T .

3 FA-based abstractions 14

In all three cases it follows that (e, t)
σ−→ (e′, t′) in E ‖ T . As sσ ∈

L(supCN F (E /∼‖ T) ‖ E ‖ T) = L(supCN F (E ‖ T)), it follows that

(e, t)
σ−→ (e′, t′) in supCN F (E ‖ T). Finally, observe that ((e′, t′), ([e′], t′,

e′, t′)) ∈ R by the construction of R.

• Let (e, t) ∈ LEm × LTm in supCN F (E ‖ T). As both supervisor synthesis
and quotient automaton do not alter the marking of locations, it follows
that (e, t) ∈ LEm × LTm in E ‖ T and in E /∼‖ T . Therefore, ([e], t, e, t) ∈
LEm /∼ ×LTm × LEm × LTm in supCN F (E /∼‖ T) ‖ E ‖ T .

• Let ([e], t, e, t) ∈ LEm /∼ ×LTm × LEm × LTm in supCN F (E /∼‖ T) ‖ E ‖ T .
As both supervisor synthesis and quotient automaton do not alter the
marking of locations, it follows that (e, t) ∈ LEm × LTm in E ‖ T , and thus
(e, t) ∈ LEm × LTm in supCN F (E ‖ T).

This shows that R is a bisimulation relation. Finally, as the initial locations
are in this bisimulation relation (by the construction of it), it follows that
supCN F (E ‖ T)↔ supCN F (E /∼‖ T) ‖ E ‖ T . This concludes the proof.

Lemma 11. Let E = {E1, E2, . . . , En} be a normalized EFA system. Then

(l11, . . . , l
n
1 , v̂)

σ−→ (l12, . . . , l
n
2 , ŵ) is an edge in supCN F (φ(E1) ‖ . . . ‖ φ(En) ‖ VE)

if and only if (l11, . . . , l
n
1)

σ,g∗,u−−−−→ (l12, . . . , l
n
2) is an edge in supCN (E1 ‖ . . . ‖ En)

with g∗[v̂] = T and ŵ(v) = v̂(u(v)), where (l11, . . . , l
n
1 , v̂) is a reachable location

in supCN F (φ(E1) ‖ . . . ‖ φ(En) ‖ VE) and (l11, . . . , l
n
1) a reachable location in

supCN (E1 ‖ . . . ‖ En).

Proof. First, Lemma 13 of Mohajerani et al. [2016] states that U(E) = φ(E1) ‖
. . . ‖ φ(En). Therefore, it follows that L(supCN (E)) = L(supCN F (U(E))) =
L(supCN F (φ(E1) ‖ . . . ‖ φ(En))).

If L(supCN (E)) = ∅, then trivially no edge is enabled in supCN (E) and
supCN F (φ(E1) ‖ . . . ‖ φ(En)). In the case that L(supCN (E)) 6= ∅, we will
prove the lemma by induction on the length i = [0, k] of string s = σ1 . . . σk ∈
L(supCN (E)).

Base case. Let i = 0. As both supCN (E) and supCN F (φ(E1) ‖ . . . ‖ φ(En))
are automata, it holds that the empty string is included in their languages.
Furthermore, the state reached after performing the empty string is the initial
state. For supCN (E) the initial state is the same as E , which is initial location
(l10, . . . , l

n
0) together with initial valuation v̂0; for supCN F (φ(E1) ‖ . . . ‖ φ(En))

the initial state is the same as φ(E1) ‖ . . . ‖ φ(En), which is (l10, . . . , l
n
0 , v̂0) by

following the definitions of φ and VE .
Inductive step. Assume as induction hypothesis that string si = σ1 . . . σi ∈

L(supCN (E)) and supCN (E) reached location (l11, . . . , l
n
1) together with valu-

ation v̂ while supCN F (φ(E1) ‖ . . . ‖ φ(En)) reached location (l11, . . . , l
n
1 , v̂).

As s ∈ L(supCN (E)), it follows that si+1 = σi . . . σiσi+1 ∈ L(supCN (E)).

Therefore, there exists an edge (l11, . . . , l
n
1)

σ,g∗,u−−−−→ (l12′ , . . . , l
n
2′) in supCN (E)

with g∗[v̂] = T and ŵ′(v) = v̂(u(v)), and there exists an edge (l11, . . . , l
n
1 , v̂)

σ−→
(l12′′ , . . . , l

n
2′′ , ŵ

′′) in supCN F (φ(E1) ‖ . . . ‖ φ(En) ‖ VE). From the construction

3 FA-based abstractions 15

of the supervisors, it follows that (l11, . . . , l
n
1)

σ,g,u−−−→ (l12′ , . . . , l
n
2′) is an edge in

E with g[v̂] = T and ŵ′(v) = v̂(u(v)), and (l11, . . . , l
n
1 , v̂)

σ−→ (l12′′ , . . . , l
n
2′′ , ŵ

′′)
is an edge in φ(E1) ‖ . . . ‖ φ(En) ‖ VE . Following the definitions of φ and
VE and that E is deterministic, we can conclude that li2′ = li2′′ = li2 for all

i ∈ [1, n] and ŵ′ = ŵ′′ = ŵ. Therefore, (l11, . . . , l
n
1 , v̂)

σ−→ (l12, . . . , l
n
2 , ŵ) is an

edge in supCN F (φ(E1) ‖ . . . ‖ φ(En) ‖ VE) and (l11, . . . , l
n
1)

σ,g∗,u−−−−→ (l12, . . . , l
n
2)

is an edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)),
and supCN (E) reached location (l12, . . . , l

n
2) together with valuation ŵ while

supCN F (φ(E1) ‖ . . . ‖ φ(En)) reached location (l12, . . . , l
n
2 , ŵ).

As string s is chosen arbitrarily, it follows that (l11, . . . , l
n
1 , v̂)

σ−→ (l12, . . . , l
n
2 , ŵ)

is an edge in supCN F (φ(E1) ‖ . . . ‖ φ(En) ‖ VE) if and only if (l11, . . . , l
n
1)

σ,g∗,u−−−−→
(l12, . . . , l

n
2) is an edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) =

v̂(u(v)). This concludes the proof.

Lemma 12. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F . Then for any
renaming function ρ : Σ→ Σ′ it holds that ρ(E) ↔V ρ(F).

Proof. As E ↔V F , there exists a valuation bisimulation relation R ⊆ QE ×
QF×Val(V) such that (lE0 , l

F
0 , v̂0) ∈ R. We show that R is also a valuation bisim-

ulation relation for ρ(E) and ρ(F). Observe that renaming does not change the
location set, variable set, initial location, initial valuation, and marked states.

Given a triple (lE1 , l
F
1 , v̂) ∈ R, consider the following four cases.

• If (lE1 , v̂)
µ−→ (lE2 , ŵ) in U(ρ(E)), then there exists an event σ ∈ ρ−1(µ)

such that (lE1 , v̂)
σ−→ (lE2 , ŵ) in U(E). As E ↔V F , it follows that

(lF1 , v̂)
σ−→ (lF2 , ŵ) in U(F) and (lE2 , l

F
2 , ŵ) ∈ R. Applying renaming re-

sults in (lF1 , v̂)
µ−→ (lF2 , ŵ) in U(F) as ρ(σ) = µ.

• If (lF1 , v̂)
µ−→ (lF2 , ŵ) in U(ρ(F)), then there exists an event σ ∈ ρ−1(µ) such

that (lF1 , v̂)
σ−→ (lF2 , ŵ) in U(F). As E ↔V F , it follows that (lE1 , v̂)

σ−→
(lE2 , ŵ) in U(E) and (lE2 , l

F
2 , ŵ) ∈ R. Applying renaming results in (lE1 , v̂)

µ−→ (lE2 , ŵ) in U(E) as ρ(σ) = µ.

• If lE1 ∈ L
ρ(E)
m , then lE1 ∈ LEm as renaming does not alter the marking of

states. As E ↔V F , it follows that lF1 ∈ LFm and, therefore, lF1 ∈ L
ρ(F)
m .

• If lF1 ∈ L
ρ(F)
m , then lF1 ∈ LFm as renaming does not alter the marking of

states. As E ↔V F , it follows that lE1 ∈ LEm and, therefore, lE1 ∈ L
ρ(E)
m .

Therefore, we can conclude that ρ(E)↔V ρ(F) as (l
ρ(E)
0 , l

ρ(F)
0 , v̂0) = (lE0 , l

F
0 , v̂0)

∈ R.

Lemma 13. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F . Then for any
renaming function ρ : Σ′ → Σ it holds that ρ−1(E) ↔V ρ−1(F).

3 FA-based abstractions 16

Proof. As E ↔V F , there exists a valuation bisimulation relation R ⊆ QE ×
QF × Val(V) such that (lE0 , l

F
0 , v̂0) ∈ R. We show that R is also a valua-

tion bisimulation relation for ρ−1(E) and ρ−1(F). Observe that renaming does
not change the location set, variable set, initial location, initial valuation, and
marked states.

Given a triple (lE1 , l
F
1 , v̂) ∈ R, consider the following four cases.

• If (lE1 , v̂)
µ−→ (lE2 , ŵ) in U(ρ−1(E)), then (lE1 , v̂)

σ−→ (lE2 , ŵ) in U(E) where

ρ(µ) = σ. As E ↔V F , it follows that (lF1 , v̂)
σ−→ (lF2 , ŵ) in U(F) and

(lE2 , l
F
2 , ŵ) ∈ R. Applying inverse renaming results in (lF1 , v̂)

µ−→ (lF2 , ŵ) in
U(F) as µ ∈ ρ−1(σ) = ρ−1(ρ(µ)).

• If (lF1 , v̂)
µ−→ (lF2 , ŵ) in U(ρ−1(F)), then (lF1 , v̂)

σ−→ (lF2 , ŵ) in U(F) where

ρ(µ) = σ. As E ↔V F , it follows that (lE1 , v̂)
σ−→ (lE2 , ŵ) in U(E) and

(lE2 , l
F
2 , ŵ) ∈ R. Applying inverse renaming results in (lE1 , v̂)

µ−→ (lE2 , ŵ) in
U(E) as µ ∈ ρ−1(σ) = ρ−1(ρ(µ)).

• If lE1 ∈ L
ρ−1(E)
m , then lE1 ∈ LEm as renaming does not alter the marking of

states. As E ↔V F , it follows that lF1 ∈ LFm and, therefore, lF1 ∈ L
ρ−1(F)
m .

• If lF1 ∈ L
ρ−1(F)
m , then lF1 ∈ LFm as renaming does not alter the marking of

states. As E ↔V F , it follows that lE1 ∈ LEm and, therefore, lE1 ∈ L
ρ−1(E)
m .

Therefore, we can conclude that ρ−1(E) ↔V ρ−1(F) as (l
ρ−1(E)
0 , l

ρ−1(F)
0 , v̂0) =

(lE0 , l
F
0 , v̂0) ∈ R.

Lemma 14. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F . Then for any
deterministic EFA T it holds that E ‖ T ↔V F ‖ T .

Proof. As E ↔V F , there exists a valuation relation R ⊆ LE × LF × Val(V)
such that (lE0 , l

F
0 , v̂0) ∈ R. We construct a new valuation relation RT ⊆ (LE ×

LT)× (LF × LT)×Val(V) inductively such that ((lE0 , l
T
0), (lF0 , l

T
0)), v̂0) ∈ RT .

Start with adding ((lE0 , l
T
0), (lF0 , l

T
0)), v̂0) ∈ RT . Given a triple ((lE1 , l

T
1),

(lF1 , l
T
1)), v̂) ∈ RT , consider the following four cases.

• If ((lE1 , l
T
1), v̂)

σ−→ ((lE2 , l
T
2), ŵ) in U(E ‖ T), then (lE1 , l

T
1)

σ,g,u−−−→ (lE2 , l
T
2) in

E ‖ T with g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Consider three cases for σ.

– If σ ∈ ΣE ∩ ΣT , then from the definition of synchronous product it

follows that lE1
σ,gE ,uE−−−−−→ lE2 in E, lT1

σ,gT ,uT−−−−−→ lT2 in T , g = gE ∧ gT ,
u = uE ⊕ uT . As g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)), it follows that

gE [v̂, ŵ] = T and ŵ(v) = v̂(uE(v)) and thus (lE1 , v̂)
σ−→ (lE2 , ŵ) in

U(E). As E ↔V F , it follows that (lF1 , v̂)
σ−→ (lF2 , ŵ) in U(F). This

implies that lF1
σ,gF ,uF−−−−−→ lF2 in F with gF [v̂, ŵ] = T and ŵ(v) =

v̂(u(v)). Using the definition of synchronous product again we can

conclude that (lF1 , l
T
1)

σ,g,u−−−→ (lF2 , l
T
2) in F ‖ T .

3 FA-based abstractions 17

– If σ ∈ ΣE \ ΣT , then from the definition of synchronous product it

follows that lE1
σ,g,u−−−→ lE2 in E and lT1 = lT2 in T . Thus, (lE1 , v̂)

σ−→
(lE2 , ŵ) in U(ρ(E)) and, as E ↔V F , it follows that (lF1 , v̂)

σ−→ (lF2 , ŵ)

in U(F). This implies that lF1
σ,g,u−−−→ lF2 in F with g[v̂, ŵ] = T and

ŵ(v) = v̂(u(v)). Using the definition of synchronous product again

we can conclude that (lF1 , l
T
1)

σ,g,u−−−→ (lF2 , l
T
2) in F ‖ T .

– If σ ∈ ΣT \ ΣE , then from the definition of synchronous product it

follows that lE1 = lE2 in E and lT1
σ,g,u−−−→ lT2 in T . As E ↔V F , it

follows that σ /∈ ΣF . Using the definition of synchronous product

again we can conclude that (lF1 , l
T
1)

σ,g,u−−−→ (lF2 , l
T
2) in F ‖ T .

In all three cases we have established that (lF1 , l
T
1)

σ,g,u−−−→ (lF2 , l
T
2) in F ‖

T with g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Therefore, ((lF1 , l
T
1), v̂)

σ−→
((lF2 , l

T
2), ŵ) in U(F ‖ T) and we add ((lE2 , l

T
2), (lF2 , l

T
2)), ŵ) ∈ RT .

• Because of symmetry in E and F , we can show with the same reasoning as
above that if ((lF1 , l

T
1), v̂)

σ−→ ((lF2 , l
T
2), ŵ) in U(F ‖ T), then ((lE1 , l

T
1), v̂)

σ−→
((lE2 , l

T
2), ŵ) in U(E ‖ T). Therefore, we add ((lE2 , l

T
2), (lF2 , l

T
2)), ŵ) ∈ RT .

• If (lE1 , l
T
1) ∈ L

E‖T
m , then from the definition of synchronous product it

follows that lE1 ∈ LEm and lT1 ∈ LTm. As E ↔V F , it follows that lF1 ∈ LFm.
Using the definition of synchronous product again, we have that (lF1 , l

T
1) ∈

L
F‖T
m .

• Because of symmetry in E and F , we can show with the same reasoning

as above that if (lF1 , l
T
1) ∈ LF‖Tm , then (lE1 , l

T
1) ∈ LE‖Tm .

This concludes the proof.

Lemma 15. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F . Then L(E) =
L(F).

Proof. As E ↔V F , there exists a valuation bisimulation relation R ⊆ LE ×
LF ×Val(V) such that (lE0 , l

F
0 , v̂0) ∈ R. We will show by induction on the length

i of string s = σ1 · · ·σn with n ∈ N that s ∈ L(E) if and only if s ∈ L(F).
Base case. For i = 0, it holds that s0 = ε ∈ L(E) and s0 ∈ L(F) as both

E and F are automata. Furthermore, (lE0 , v̂0) = δE((lE0 , v̂0), s0) in U(E) and
(lF0 , v̂0) = δF ((lF0 , v̂0), s0) in U(F).

Inductive step. Assume that si = σ1 · · ·σi ∈ L(E) if and only if si ∈ L(F),
and that (lEi , l

F
i , v̂i) ∈ R where (lEi , v̂i) = δE((lE0 , v̂0), si) in U(E) and (lFi , v̂i) =

δE((lF0 , v̂0), si) in U(F). As (lEi , l
F
i , v̂i) ∈ R, it follows directly that (lEi , v̂i)

σi+1−−−→
(lEi+1, v̂i+1) if and only if (lFi , v̂i)

σi+1−−−→ (lFi+1, v̂i+1). Therefore, siσi+1 ∈ L(E)

if and only if siσi+1 ∈ L(F). Furthermore, (lEi , v̂i)
σi+1−−−→ (lEi+1, v̂i+1) if and

only if (lEi+1, l
F
i+1, v̂i+1) ∈ R where (lEi+1, v̂i+1) = δE((lE0 , v̂0), si+1) in U(E) and

(lFi+1, v̂i+1) = δE((lF0 , v̂0), si+1) in U(F).

3 FA-based abstractions 18

Finally, as string s is chosen arbitrarily, it follows that L(E) = L(F). This
concludes the proof.

Lemma 16. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F and ξ ∈ Ξ a
refinement function. Then L(ξ(E)) = L(ξ(F)).

Proof. This lemma is proven by induction on the structure of ξ. Denote ξ =
ξm ◦ . . . ◦ ξ1. First, we show that ξ(E) ↔V ξ(F).

Base case. It follows from the assumption of the lemma that E ↔V F .
Inductive step. Assume that ξi ◦ . . . ◦ ξ1(E) ↔V ξi ◦ . . . ◦ ξ1(F). Consider

the following cases for ξi+1.

• ξi+1 is the identity function. It follows immediately that ξi+1 ◦ ξi ◦ . . . ◦
ξ1(E) ↔V ξi+1 ◦ ξi ◦ . . . ◦ ξ1(F).

• ξi+1 is a renaming. From Lemma 12 it follows that ξi+1 ◦ ξi ◦ . . . ◦ ξ1
(E) ↔V ξi+1 ◦ ξi ◦ . . . ◦ ξ1(F).

• ξi+1 is a renaming in synchronous composition with the original EFA
system. From Lemmas 12 and 14 it follows that ξi+1 ◦ ξi ◦ . . . ◦ ξ1(E)
↔V ξi+1 ◦ ξi ◦ . . . ◦ ξ1(F).

• ξi+1 is an inverse renaming in synchronous composition with the original
EFA system. From Lemmas 13 and 14 it follows that ξi+1 ◦ ξi ◦ . . . ◦
ξ1(E) ↔V ξi+1 ◦ ξi ◦ . . . ◦ ξ1(F).

We can conclude that ξ(E) ↔V ξ(F). Finally, from Lemma 15 it follows
that L(ξ(E)) = L(ξ(F)). This concludes the proof.

Lemma 17. Let E = {E1, E2, . . . , En} be a normalized EFA system and Γ ⊆ Σ1

such that (Σ2 ∪ . . . ∪ Σn) ∩ Γ = ∅ and gσ ≡ T and v̂(v) = v̂(uσ(v)) for all
σ ∈ Γ, v ∈ V , and v̂ ∈ Val(V). Let F = {F 1, E2, . . . , En} be a normalized EFA
system such that ∼⊆ L1 × L1 is an equivalence relation, φ(F 1) = φ(E1) /∼,
φ(E1) 'conf,Γ φ(F 1), and φ(E1) .synth,Γ φ(F 1). Then supCN (E)↔V supCN (F)
‖ E.

Proof. Events from Γ can be considered to be local in the FA-based abstractions,
as the proof of Proposition 5 from Mohajerani et al. [2016] shows that U(E) =
φ(E1) ‖ . . . ‖ φ(En) ‖ VE = φ(E1) ‖ . . . ‖ φ(En) ‖ VE|Σ\Γ.

In order to show the valuation bisimarity, we first observe from Lemma 10 it
follows that supCN F (φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE)↔ supCN F (φ(E1) /∼‖
φ(E2) ‖ . . . ‖ φ(En) ‖ VE) ‖ φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE . Furthermore,

we know from Lemma 11 that (l11, . . . , l
n
1 , v̂)

σ−→ (l12, . . . , l
n
2 , ŵ) is an edge in

supCN F (φ(E1) ‖ . . . ‖ φ(En) ‖ VE) if and only if (l11, . . . , l
n
1)

σ,g∗,u−−−−→ (l12, . . . , l
n
2)

is an edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)).

Finally, from the construction of the supervisor it follows that if (l11, . . . , l
n
1 , v̂)

σ−→
(l12, . . . , l

n
2 , ŵ) is an edge in supCN F (φ(E1) ‖ . . . ‖ φ(En) ‖ VE), then (l11, . . . , l

n
1 ,

v̂)
σ−→ (l12, . . . , l

n
2 , ŵ) is also an edge in φ(E1) ‖ . . . ‖ φ(En) ‖ VE .

3 FA-based abstractions 19

Combining the above observations we know that (l11, . . . , l
n
1)

σ,g∗,u−−−−→ (l12, . . . ,
ln2) is an edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)), if

and only if (l11, . . . , l
n
1 , v̂)

σ−→ (l12, . . . , l
n
2 , ŵ) is an edge in supCN F (φ(E1) ‖ . . . ‖

φ(En) ‖ VE), if and only if ([l11], l21, . . . , l
n
1 , v̂, l

1
1, . . . , l

n
1 , v̂)

σ−→ ([l12], l22, . . . , l
n
2 , ŵ, l

1
2,

. . . , ln2 , ŵ) is an edge in supCN F (φ(E1) /∼‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE) ‖
φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE .

In order to show valuation bisimilarity, we construct a valuation bisimulation
which includes the initial states of both systems. LetR ⊆ (L1×. . .×Ln)×(L1 /∼
×L2 × . . .× Ln, L1 × . . .× Ln)×Val(V) be constructed by

R = {((l1, . . . , ln), ([l1], l2, . . . , ln, l1, . . . , ln), v̂) |
(l1, . . . , ln) ∈ Reach(supCN (E))}.

Consider the triple ((l11, . . . , l
n
1), ([l11], l21, . . . , l

n
1 , l

1
1, . . . , l

n
1), v̂) ∈ R.

• If (l11, . . . , l
n
1 , v̂)

σ−→ (l12, . . . , l
n
2 , ŵ) is an edge in U(supCN (E1 ‖ . . . ‖ En)),

it follows that (l11, . . . , l
n
1)

σ,g∗,u−−−−→ (l12, . . . , l
n
2) is an edge in supCN (E1 ‖

. . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)). With the previous observa-

tion we have that ([l11], l21, . . . , l
n
1 , v̂, l

1
1, . . . , l

n
1 , v̂)

σ−→ ([l12], l22, . . . , l
n
2 , ŵ, l

1
2,

. . . , ln2 , ŵ) is an edge in supCN F (φ(E1) /∼‖ φ(E2) ‖ . . . ‖ φ(En) ‖
VE) ‖ φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE . As the construction of
E1 /∼ does not alter the alphabet, it follows from the definition of syn-

chronous product that ([l11], l21, . . . , l
n
1 , v̂)

σ−→ ([l12], l22, . . . , l
n
2 , ŵ) is an edge

in supCN F (φ(E1) /∼‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE) and (l11, . . . , l
n
1 , v̂)

σ−→
(l12, . . . , l

n
2 , ŵ) is an edge in φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE . If

we denote φ(F 1) = φ(E1) /∼, we can apply Lemma 11 to find that

([l11], l21, . . . , l
n
1)

σ,g∗,u−−−−→ ([l12], l22, . . . , l
n
2) is an edge in supCN (F 1 ‖ E2 ‖

. . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)). From the fact that

U(E) = φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE , it follows that (l11, . . . , l
n
1)

σ,g,u−−−→
(l12, . . . , l

n
2) is an edge in E1 ‖ . . . ‖ En with g[v̂] = T and ŵ(v) =

v̂(u(v)). Using the definition of synchronous product, we conclude that

([l11], l21, . . . , l
n
1 , l

1
1, . . . , l

n
1)

σ,g∗∧g,u−−−−−−→ ([l12], l22, . . . , l
n
2 , l

1
2, . . . , l

n
2) is an edge in

supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖ E1 ‖ E2 ‖ . . . ‖ En with (g∗ ∧ g)[v̂] = T

and ŵ(v) = v̂(u(v)). This implies that ([l11], l21, . . . , l
n
1 , l

1
1, . . . , l

n
1 , v̂)

σ−→
([l12], l22, . . . , l

n
2 , l

1
2, . . . , l

n
2 , ŵ) is an edge in U(supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖

E1 ‖ E2 ‖ . . . ‖ En). Finally, from the construction of R it follows that
((l12, . . . , l

n
2), ([l12], l22, . . . , l

n
2 , l

1
2, . . . , l

n
2), ŵ) ∈ R.

• If ([l11], l21, . . . , l
n
1 , l

1
1, . . . , l

n
1 , v̂)

σ−→ ([l12], l22, . . . , l
n
2 , l

1
2, . . . , l

n
2 , ŵ) is an edge in

U(supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖ E1 ‖ . . . ‖ En), then ([l11], l21, . . . , l
n
1 ,

l11, . . . , l
n
1)

σ,g,u−−−→ ([l12], l22, . . . , l
n
2 , l

1
2, . . . , l

n
2) is an edge in supCN (F 1 ‖ E2 ‖

. . . ‖ En) ‖ E1 ‖ . . . ‖ En with g[v̂] = T and ŵ(v) = v̂(u(v)). As
both the construction of E1 /∼ and supervisor synthesis do not alter the
alphabet and updates, it follows from the definition of synchronous prod-

uct that ([l11], l21, . . . , l
n
1)

σ,g′,u−−−−→ ([l12], l22, . . . , l
n
2) is an edge in supCN (F 1 ‖

3 FA-based abstractions 20

E2 ‖ . . . ‖ En), (l11, . . . , l
n
1)

σ,g′′,u−−−−→ (l12, . . . , l
n
2) is an edge in E1 ‖ . . . ‖

En, and g = g′ ∧ g′′. Therefore, g′[v̂] = T and g′′[v̂] = T. From

Lemma 11 it follows that ([l11], l21, . . . , l
n
1 , v̂)

σ−→ ([l12], l22, . . . , l
n
2 , ŵ) is an edge

in supCN F (φ(F 1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE), and from the fact that

U(E) = φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE , it follows that (l11, . . . , l
n
1 , v̂)

σ−→
(l12, . . . , l

n
2 , ŵ) is an edge in φ(E1) ‖ . . . ‖ φ(En) ‖ VE . Using the definition

of synchronous composition we get that ([l11], l21, . . . , l
n
1 , v̂, l

1
1, . . . , l

n
1 , v̂)

σ−→
([l12], l22, . . . , l

n
2 , ŵ, l

1
2, . . . , l

n
2 , ŵ) is an edge in supCN F (φ(E1) /∼‖ φ(E2) ‖

. . . ‖ φ(En) ‖ VE) ‖ φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE where we
used φ(F 1) = φ(E1) /∼. With the previous observation it follows that

(l11, . . . , l
n
1)

σ,g∗,u−−−−→ (l12, . . . , l
n
2) is an edge in supCN (E1 ‖ . . . ‖ En) with

g∗[v̂] = T and ŵ(v) = v̂(u(v)). Now it follows from the definition of un-

folding that (l11, . . . , l
n
1 , v̂)

σ−→ (l12, . . . , l
n
2 , ŵ) is an edge in U(supCN (E1 ‖

. . . ‖ En)). Finally, from the construction of R it follows that ((l12, . . . , l
n
2),

([l12], l22, . . . , l
n
2 , l

1
2, . . . , l

n
2), ŵ) ∈ R.

• Let (l11, . . . , l
n
1) be a marked location in supCN (E1 ‖ . . . ‖ En). As both

the construction of F 1 and supervisor synthesis do not alter the marking
of locations, it follows directly that (l11, . . . , l

n
1) is a marked location of

E1 ‖ . . . ‖ En, ([l11], . . . , ln1) is a marked location of F 1 ‖ . . . ‖ En, and
([l11], . . . , ln1) is a marked location of supCN (F 1 ‖ . . . ‖ En). Therefore, it
follows that ([l11], l21, . . . , l

n
1 , l

1
1, . . . , l

n
1) is a marked location in supCN (F 1 ‖

E2 ‖ . . . ‖ En) ‖ E1 ‖ . . . ‖ En.

• If ([l11], l21, . . . , l
n
1 , l

1
1, . . . , l

n
1) is a marked location in supCN (F 1 ‖ E2 ‖

. . . ‖ En) ‖ E1 ‖ . . . ‖ En, then ([l11], l21, . . . , l
n
1) is a marked location in

supCN (F 1 ‖ E2 ‖ . . . ‖ En) and (l11, . . . , l
n
1) is a marked location in E1 ‖

. . . ‖ En. As supervisor synthesis does not alter the marking of locations,
it follows that (l11, . . . , l

n
1) is a marked location in supCN (E1 ‖ . . . ‖ En).

This shows that R is a valuation bisimulation relation. Finally, as the initial
locations are in this bisimulation relation (by construction of it), it follows that
supCN (E) ↔V supCN (F) ‖ E . This concludes the proof.

Proof of Theorem 3. From the definition of Ξ and the construction of ξ, it fol-
lows directly that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (F , ξ1 ◦ ξ) is a coordinator
tuple.

Now we show that the two coordinator tuples are coordinator equivalent.

L(ξ1(supCN (E))) = L(ξ1(supCN (F) ‖ E)) by Lemmas 17 and 16

= L(ξ1(ξ(supCN (F)))).

This concludes the proof.

4 Partial composition 21

4 Partial composition

Theorem 4. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deter-
ministic normalized EFA system. Construct F = {E1 ‖ E2, E3, . . . , En}. Then
refinement function ξ = id ensures that (E , ξ1) 'co (F , ξ1 ◦ ξ).

Proof. From the definition of Ξ and the construction of ξ, it follows directly
that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (F , ξ1 ◦ ξ) is a coordinator tuple.

Now we show that the two coordinator tuples are coordinator equivalent.
We can derive that

L(ξ1(supCN (E))) = L(ξ1(supCN (E1 ‖ E2 ‖ . . . ‖ En)))

= L(ξ1(supCN ((E1 ‖ E2) ‖ . . . ‖ En)))

= L(ξ1(supCN (F))

= L(ξ1(ξ(supCN (F))).

This concludes the proof.

5 Update simplification

In an EFA, guards may be simplified into equivalent ones without changing the
behavior of that EFA. For example, the guard T ∧ F is equivalent to F. This
rewriting operation is called update simplification in the framework of com-
positional nonblocking verification of Mohajerani et al. [2016]. In simplifying
updates, the notion of logical equivalence is used (taken from Mohajerani et al.
[2016]).

Definition 7 (Logical equivalence). Two predicates p, q ∈ ΠV are said to be
logically equivalent with respect to variable set V , denoted by p⇔ q, if p[v̂] = q[v̂]
for all valuations v̂ ∈ val(V).

The following theorem shows that nothing has to be changed in the coor-
dinator to refine an update simplification abstraction, as the behavior of the
system is the same before and after the abstraction.

Theorem 5 (Update simplification). Let (E , ξ1) be a coordinator tuple with
E = {E1, . . . , En} a deterministic normalized EFA system. Construct F = {F 1,
. . . , Fn} with F i = (Li,Σi, V,→i

F , l
i
0, v̂0, L

i
m) such that V = vars(E) = vars(F),

gEσ ⇔ gFσ for all σ ∈ ΣE = ΣF , and→i
F= {(x, σ, gFσ , u, y) | (x, σ, gEσ , u, y) ∈→i

E}.
Then refinement function ξ = id ensures that (E , ξ1) 'co (F , ξ1 ◦ ξ).

Proof. From the definition of Ξ and the construction of ξ, it follows directly
that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (F , ξ1 ◦ ξ) is a coordinator tuple.

By construction of F it follows that ‖ E ⇔‖ F . Therefore, from Lemma 3 it
follows that supCN (E) = SSEFA(‖ E)⇔ SSEFA(‖ F) = supCN (F). And from

6 Variable unfolding 22

Lemma 8 it follows that ξ1(supCN (E))⇔ ξ1(supCN (F)). Thus, from Lemma 4
it follows that U(ξ1(supCN (E))) = U(ξ1(supCN (F))).

Then, by rewriting, we can show the following.

L(ξ1(supCN (E))) = L(U(ξ1(supCN (E))))

= L(U(ξ1(supCN (F))))

= L(ξ1(supCN (F)))

= L(ξ1(ξ(supCN (F))))

This concludes the proof.

6 Variable unfolding

Lemma 18. Let E be a deterministic normalized EFA with variable set V
and z ∈ V . Then for each edge e = (l1, σ, gσ, uσ, l2) in E there exists in
ρz(SSEFA(E)\z) ‖ E a set of edges {((a, l1, l1), σ, g∗σ[z 7→ a, z′ 7→ b] ∧ b =
uσ(z)[z 7→ a] ∧ gσ, uσ, (b, l2, l2)) | a, b ∈ dom(z)} if σ ∈ Σz, or a single edge
((a, l1, l1), σ, g∗σ ∧ gσ, uσ, (a, l2, l2)) with a ∈ dom(z) if σ /∈ Σz.

Proof. From Algorithm 1 we have that if e = (l1, σ, gσ, uσ, l2) is an edge in
E, then (l1, σ, g

∗
σ, uσ, l2) is an edge in SSEFA(E). From the definition of vari-

able unfolding, it follows that SSEFA(E)\z = {USSEFA(E)(z), Uz(SSEFA(E))}.
This results for edge e in the set of edges {((a, l1), (σ, a, b), g∗σ[z 7→ a, z′ 7→
b] ∧ b = uσ(z)[z 7→ a], uσ\z, (b, l2)) | a, b ∈ dom(z)} if σ ∈ Σz or in the edge
((a, l1), (σ, a, a), g∗σ, uσ\z, (a, l2)) with a ∈ dom(z) if σ /∈ Σz. After applying re-
naming ρz, it follows that for edge e we have the set of edges {((a, l1), σ, g∗σ[z 7→
a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a], uσ\z, (b, l2)) | a, b ∈ dom(z)} if σ ∈ Σz or in
the edge ((a, l1), σ, g∗σ, uσ\z, (a, l2)) with a ∈ dom(z) if σ /∈ Σz. Finally, in
the system ρz(SSEFA(E)\z) ‖ E we have for edge e in E the set of edges
{((a, l1, l1), σ, g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a] ∧ gσ, uσ, (b, l2, l2)) | a, b ∈
dom(z)} if σ ∈ Σz, or a single edge ((a, l1, l1), σ, g∗σ ∧ gσ, uσ, (a, l2, l2)) with
a ∈ dom(z) if σ /∈ Σz.

Lemma 19. Let E be a deterministic normalized EFA system with variable set
V and z ∈ V . Then SSEFA(E) ↔V ρz(SSEFA(E)\z) ‖ E.

Proof. Observe that the initial location of SSEFA(E) is l0 and the initial val-
uation v̂0. Thus, the initial location of ρz(SSEFA(E)\z) is (v̂0(z), l0) and ini-
tial valuation is v̂0\z. Therefore, the initial location of ρz(SSEFA(E)\z) ‖ E is
(v̂0(z), l0, l0) and initial valuation is v̂0.

Let the relationR be defined asR = {(x, (a, x, x), v̂) |x ∈ LE , v̂ ∈ Val(V), a =
v̂(z)}. We will show that this is a valuation bisimulation relation.

Consider the triple (x, (a, x, x), v̂) ∈ R.

• Let (x, v̂)
σ−→ (y, ŵ) be an edge in U(SSEFA(E)) for some y and ŵ. It then

holds that x
σ,g∗σ,u−−−−→ y is an edge in SSEFA(E) with g∗σ[v̂] = T and ŵ(v) =

6 Variable unfolding 23

v̂(u(v)). From the construction of SSEFA(E) it follows that x
σ,gσ,u−−−−→ y

is an edge in E with g∗σ � gσ, i.e., gσ[v̂] = T, and ŵ(v) = v̂(u(v)). Now
consider two cases for σ.

– If σ ∈ Σz, then from Lemma 18 it follows that there exists a set
of edges {((a, x, x), σ, g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a] ∧
gσ, u, (b, y, y)) | a, b ∈ dom(z)} in ρz(SSEFA(E)\z) ‖ E . As E is
deterministic, there exists at most one pair of values for a, b such
that (g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a] ∧ gσ)[v̂, ŵ] = T. From
the construction of R it follows that v̂(z) = a and, with an un-
changed update ŵ(v) = v̂(u(v)), it follows that ŵ(z) = b, resulting
in (g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a])[v̂, ŵ] = T. We can

conclude that (a, x, x)
σ,g∗σ[z 7→a,z′ 7→b]∧b=uσ(z)[z 7→a]∧gσ,u−−−−−−−−−−−−−−−−−−−−−−−−→ (b, y, y) is an

edge in ρz(SSEFA(E)\z) ‖ E with (g∗σ[z 7→ a, z′ 7→ b]∧ b = uσ(z)[z 7→
a] ∧ gσ)[v̂, ŵ] = T and ŵ(v) = v̂(u(v)).

– If σ /∈ Σz, then from Lemma 18 it follows that there exists an edge

(a, x, x)
σ,g∗σ∧gσ,u−−−−−−→ (a, y, y)) for some a ∈ dom(z) in ρz(SSEFA(E)\z ‖

E . From the construction of R it follows that v̂(z) = a. Furthermore,
as g∗σ[v̂] = T and gσ[v̂] = T, it follows that (g∗σ ∧ gσ)[v̂, ŵ] = T.
Finally, as u is unchanged, it follows that ŵ(v) = v̂(u(v)) still holds.

In both cases, it has been shown that (a, x, x)
σ,g′,u−−−−→ (b, y, y) is an edge in

ρz(SSEFA(E)\z) ‖ E with g′[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Calculating

the state space, it follows that (a, x, x, v̂)
σ−→ (b, y, y, ŵ) is an edge in

U(ρz(SSEFA(E)\z) ‖ E) with v̂(z) = a and ŵ(z) = b. Finally, observe
by construction of R that (y, (b, y, y), ŵ) ∈ R.

• Let (a, x, x, v̂)
σ−→ (b, y, y, ŵ) be an edge in U(ρz(SSEFA(E)\z) ‖ E) with

v̂(z) = a and some b, y, and ŵ. It then holds that (a, x, x)
σ,g,u−−−→ (b, y, y)

is an edge in ρz(SSEFA(E)\z) ‖ E with g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)).
Consider two cases for σ.

– If σ ∈ Σz, it follows from the definition of synchronous product and
variable unfolding that g = g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→

a] ∧ gσ, (a, x)
σ,g∗σ [z 7→a,z′ 7→b]∧b=uσ(z)[z 7→a],u\z [z 7→a]
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (b, y) is an edge

in ρz(SSEFA(E)\z), and x
σ,gσ,u−−−−→ y is an edge in E . Furthermore,

from the construction of the normalized variable EFA, it follows that
b = ŵ(z) = v̂(u(z)). Combining this with the fact that g[v̂, ŵ] = T
and a = v̂(z), it follows that (g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→
a])[v̂, ŵ] = g∗σ[v̂, ŵ] = T.

– If σ /∈ Σz, it follows from the definition of synchronous product and

variable unfolding that g = g∗σ ∧ gσ, (a, x)
σ,g∗σ,u−−−−→ (b, y) is an edge

in ρz(SSEFA(E)\z), and x
σ,gσ,u−−−−→ y is an edge in E . Furthermore,

from the construction of the normalized variable EFA, it follows that

6 Variable unfolding 24

b = a = ŵ(z). Combining this with the fact that g[v̂, ŵ] = T, it
follows that g∗σ[v̂, ŵ] = T.

As x
σ,gσ,u−−−−→ y is an edge in E in both cases above, it follows by construction

that x
σ,g∗σ,u−−−−→ y is an edge in SSEFA(E). Furthermore, in both cases

we have that g∗σ[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Finally, it follows that

(x, v̂)
σ−→ (y, ŵ) is an edge in U(SSEFA(E)), and from the construction of

R that (y, (b, y, y), ŵ) ∈ R.

• Let x ∈ Lm in SSEFA(E). As SSEFA(E) is a subautomaton of E , it
follows that x ∈ Lm in E . Furthermore, since renaming and variable
unfolding do not change the marking of locations, and it is assumed that
all valuations are marked, it follows that (a, x) ∈ Lm in ρz(SSEFA(E)\z).
From the definition of synchronous product it follows that (a, x, x) ∈ Lm
in ρz(SSEFA(E)\z) ‖ E .

• Let (a, x, x) ∈ Lm in ρz(SSEFA(E)\z) ‖ E . It follows from the definition
of synchronous product that (a, x) ∈ Lm in ρz(SSEFA(E)\z) and x ∈ Lm
in E . As SSEFA(E) is a subautomaton of E , it follows that x ∈ Lm in
SSEFA(E).

This shows that R is a valuation bisimulation relation. As the initial loca-
tions and valuation are related, i.e., (l0, (v̂0(z), l0, l0), v̂0) ∈ R, it follows that
SSEFA(E) ↔V ρz(SSEFA(E)\z) ‖ E . This concludes the proof.

Lemma 20. Let E be a deterministic normalized EFA system with variable set
V and z ∈ V . Then E ↔V ρz(E\z) ‖ E.

Proof. We can follow the proof of Lemma 19, where we replace instances of
SSEFA(E) with E and g∗σ with gσ to prove this lemma. The reason we can
follow the proof exactly is that SSEFA(E) is a subautomaton of E according to
the definition of a supervisor.

Lemma 21. Let E = (L, V,Σ,→, l0, v0, Lm) be an EFA and ρ : Σ → Σ′ a
renaming. Then L(ρ(E)) = ρ(L(E)).

Proof. In case that L = ∅, i.e., E is an empty automaton, the claim holds
trivially as the language of an empty automaton is by definition the empty set.

Observe that L(ρ(E)) = L(U(ρ(E))) and ρ(L(E)) = ρ(L(U(E))) from the
definition of L for EFAs. This lemma is proven by showing that L(ρ(E)) ⊆
ρ(L(E)) and ρ(L(E)) ⊆ L(ρ(E)).

First, we show that L(ρ(E)) ⊆ ρ(L(E)). Let s = σ1σ2 . . . σn ∈ L(ρ(E)).

This implies that (l0, v̂0)
σ1−→ (l1, v̂1)

σ2−→ . . .
σn−−→ (ln, v̂n) in U(ρ(E)). By induc-

tion on the length i of the prefix si = σ1σ2 . . . σi we show that s ∈ ρ(L(E)).
Base case. Let i = 0 and s0 = ε. As ρ(ε) = ε and ε is in the language of any

nonempty automaton, it follows directly that s0 ∈ ρ(L(E)).
Inductive step. Let si ∈ ρ(L(E)) be the induction hypothesis, i.e., there

exists a string mi = µ1µ2 . . . µi ∈ L(E) such that ρ(mi) = si.

6 Variable unfolding 25

The transition (li, v̂i)
σi+1−−−→ (li+1, v̂i+1) in U(ρ(E)) implies that there exists

a transition li
σi+1,gi+1,ui+1−−−−−−−−−→ li+1 in ρ(E) such that gi+1[v̂i] = T and v̂i+1(v) =

v̂i(ui+1(v)). From the definition of the renaming ρ it follows that there exists

a µi+1 ∈ Σ such that ρ(µi+1) = σi+1 and li
µi+1,gi+1,ui+1−−−−−−−−−→ li+1 in E. Thus,

(li, v̂i)
µi+1−−−→ (li+1, v̂i+1) is a transition in U(E). With the induction hypothesis

it follows that µ1µ2 . . . µiµi+1 ∈ L(U(E)) and ρ(µ1µ2 . . . µiµi+1) = siσi+1 ∈
ρ(L(U(E))).

As string s is chosen arbitrarily, it follows that L(ρ(E)) ⊆ ρ(L(E)).
Secondly, we show that ρ(L(E)) ⊆ L(ρ(E)). Let s = σ1σ2 . . . σn ∈ ρ(L(E)).

From the definition of renaming ρ it follows that there exists a string m =
µ1µ2 . . . µn ∈ L(E) such that ρ(m) = s. As m ∈ L(E), it implies that path

(l0, v̂0)
µ1−→ (l1, v̂1)

µ2−→ . . .
µn−−→ (ln, v̂n) is in U(E). From the definition of state

space, it follows that path l0
µ1,g1,u1−−−−−→ l1

µ2,g2,u2−−−−−→ . . .
µn,gn,un−−−−−−→ ln is in E, where

for each transition i it holds that gi[v̂i−1] = T and v̂i(v) = v̂i+1(ui(v)). Applying

renaming ρ on this path results in l0
ρ(µ1),g1,u1−−−−−−−→ l1

ρ(µ2),g2,u2−−−−−−−→ . . .
ρ(µn),gn,un−−−−−−−−→

ln in ρ(E), where for each transition i it still holds that gi[v̂i−1] = T and

v̂i(v) = v̂i+1(ui(v)). Therefore, (l0, v̂0)
ρ(µ1)−−−→ (l1, v̂1)

ρ(µ2)−−−→ . . .
ρ(µn)−−−→ (ln, v̂n)

is a path in U(ρ(E)) and ρ(µ1)ρ(µ2) . . . ρ(µn) = ρ(µ1µ2 . . . µn) = ρ(m) =
s ∈ L(U(ρ(E))) = L(ρ(E)). As string s is chosen arbitrarily, it follows that
ρ(L(E)) ⊆ L(ρ(E)).

Lemma 22. Let E be a deterministic normalized EFA with variable set V . Let
z ∈ V . Then (supCN (E))\z ⇔V \{z} supCN (E\z).

Proof. Let E = (L,Σ, V →, l0, v̌0, Lm). After unfolding variable z it follows that
the initial location of E\z =‖ {UE(z), Uz(E)} is (v̌0(z), l0). Combining this with

Lemma 15 of Mohajerani et al. [2016], which states that (a, x, v̂)
σ−→ (b, y, ŵ) in

ρz(U(E\z)) if and only if (x, v̂ ⊕ {z 7→ a}) σ−→ (y, ŵ ⊕ {z 7→ b}) in U(E), it
follows that for any EFA T L(T) = ρz(L(T\z)). Therefore, it follows that

L(supCN (E)) = ρz(L((supCN (E))\z))

As supCN (E) results in the maximally permissive supervisor for E, we can
replace E by its state-space finite automata or even by its language and then
calculate the maximally permissive supervisor based on the finite automata or
language, respectively, rather than the EFA representation: L(supCN (E)) =
L(supCN F (U(E))) = supCNL(L(E)) where supCN F and supCNL are based
on finite automata and languages, respectively. Furthermore, Lemma 13 of Mo-
hajerani et al. [2014b] shows that renaming and supCN F can be changed, i.e.,
for any finite automata T and renaming ρ it holds that ρ(supCN F (T)) =

6 Variable unfolding 26

supCN F (ρ(T)). Therefore, we can show the following.

L(supCN (E)) = supCNL(L(E))

= supCNL(ρz(L(E\z)))

= supCNL(ρz(L(U(E\z))))

= supCNL(L(ρz(U(E\z)))) by Lemma 21

= L(supCN F (ρz(U(E\z))))

= L(ρz(supCN F (U(E\z)))) by Lemma 21

= ρz(L(supCN F (U(E\z))))

= ρz(supCNL(L(U(E\z))))

= ρz(supCNL(L(E\z)))

= ρz(L(supCN (E\z)))

Therefore, we can conclude that ρz(L((supCN (E))\z)) = ρz(L(supCN (E\z)))
and thus L((supCN (E))\z) = L(supCN (E\z)).

Combining the definitions of supervisor and variable unfolding, it follows that
(supCN (E))\z and supCN (E\z) have the same location set, alphabet, variable
set, initial location, initial valuation, and marked states. Furthermore, the sets
of edges are similar: there is an edge ((a, x), σ, g1, u, (b, y)) in (supCN (E))\z
if and only if there is an edge ((a, x), σ, g2, u, (b, y)) in supCN (E\z). Notice
that the only difference is the guards on these edges. Furthermore, as E is
deterministic, both (supCN (E))\z and supCN (E\z) are also deterministic.

Combining the above observations, it follows that location (a, x, v̂) is reached
in U((supCN (E))\z) if and only if the same state is reached in U(supCN (E\z)).
In other words, supCN (E))\z and supCN (E\z) are synchronized with their lo-
cations and valuations. Now assume that some location (a, x) is reached in
both supCN (E))\z and supCN (E\z). Consider each valuation v̂ and each
edge e∗ = ((a, x), σ, g∗, u, (b, y)) where ∗ = 1 for supCN (E))\z and ∗ = 2
for supCN (E\z). As their languages are the same, it holds that edge e1 is
enabled if and only if e2 is enabled. Therefore, g1[v̂] = T if and only if
g2[v̂] = T. As we have chosen valuation v̂ arbitrarily, it follows that g1 ⇔V \z g2.
Furthermore, as the location and edge is chosen arbitrarily, it follows that
supCN (E))\z ⇔V \z supCN (E\z). This concludes the proof.

Theorem 6. Let (E , ξ1) be a coordinator tuple with E a deterministic normalized
EFA system with variable set V and z ∈ V . Then refinement function ξ(G) =
ρz(G) ‖ E for any EFA system G ensures that (E , ξ1) 'co (E\z, ξ1 ◦ ξ).

Proof. From the definition of Ξ and the construction of ξ, it follows directly
that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (E\z, ξ1 ◦ ξ) is a coordinator tuple.

Now we show that the two coordinator tuples are coordinator equivalent.

7 False removal 27

By rewriting, we can show the following.

L(ξ1(ξ(supCN (E\z)))) = L(ξ1(ξ(SSEFA(E\z))))
= L(U(ξ1(ξ(SSEFA(E\z))))) by definition of language

= L(U(ξ1(ξ(SSEFA(E)\z)))) by Lemmas 22 and 4

= L(ξ1(ξ(SSEFA(E)\z)))

= L(ξ1(ρz(SSEFA(E)\z) ‖ E))

= L(ξ1(SSEFA(E))) by Lemmas 16 and 19

= L(ξ1(supCN (E)))

This concludes the proof.

7 False removal

7.1 Description of the abstraction

It may happen that after variable unfolding and update simplification, several
events have a false guard, i.e., transitions labeled with these events are never
enabled. Furthermore, it could be that the synchronous composition of two
EFAs may result in having an event in the alphabet, but no transition in the
synchronous composition is labeled with this event. In this case, the event is
also never executed. These events can be safely removed from the EFA system
without altering the behavior of the system.

Events (and transitions labeled with these events) can be removed from an
EFA by restricting it to an alphabet Σ′ ⊆ Σ (see Mohajerani et al. [2016]).

Definition 8 (Restriction). Let E = (L, V,Σ,→, l0, v0, Lm) be an EFA. The
restriction of E with respect to Σ′ is E|Σ′ = (L, V,Σ′∩Σ,→|Σ′ , l0, v0, Lm) where
→|Σ′= {(l1, σ, g, u, l2) | (l1, σ, g, u, l2) ∈→, σ ∈ Σ′}. The restriction of EFA sys-
tem E = {E1, . . . , En} with respect to Σ′, denoted with E|Σ′ , is E|Σ′ = {E1

|Σ′ , . . . ,

En|Σ′}.

Theorem 7 (False removal). Let (E , ξ1) be a coordinator tuple with E a deter-
ministic normalized EFA system, and let ΣE = Ω ∪̇ Λ such that for all λ ∈ Λ
at least one of the following conditions holds:

1. gλ ≡ F, or

2. there exists an Ei ∈ E such that λ ∈ Σi, but there does not exist any

transition x
λ,gλ,uλ−−−−−→ y in Ei.

Then refinement function ξ = id ensures that (E , ξ1) 'co (E|Ω, ξ1 ◦ ξ).

Theorem 7 shows that when events are removed from the EFA system be-
cause they are never enabled, the abstracted coordinator does not need to be

7 False removal 28

E

β
γ

α

SE

β
γ; F

α

E|Ω

γ

α

SE|Ω

γ; F

α

Event
Guard and
update

α T

β F
γ T

Fig. 3: Example of false removal and coordinator refinement.

changed. The proof of this theorem can be found in Section 7.2 of this supple-
mentary material.

Example. Figure 3 shows an example of false removal. Event β in E has
a false guard and is therefore never enabled. Therefore, this event is removed,
resulting in E|Ω. The coordinator for E, automaton SE in Figure 3, only has
to strengthen the guard of γ to prevent the system from reaching the blocking
location. The same holds for the abstracted coordinator SE|Ω . The languages
of the original and the abstracted coordinators are the same, so no refinement
is needed.

7.2 Proof

Lemma 23. Let E be a deterministic normalized EFA system, and let ΣE =
Ω ∪̇ Λ such that for all λ ∈ Λ at least one of the following conditions holds:

1. gλ ≡ F, or

2. there exists an Ei ∈ E such that λ ∈ Σi, but there does not exist any

transition x
λ,gλ,uλ−−−−−→ y in Ei.

Then L(U(E)) = L(U(E|Ω)).

Proof. From Lemma 16 of Mohajerani et al. [2016] it follows that (x1, . . . , xn, v̂)
σ−→ (y1, . . . , yn, ŵ) in U(E|Ω) implies (x1, . . . , xn, v̂ ⊕ û)

σ−→ (y1, . . . , yn, ŵ ⊕ û) in
U(E) where û ∈ dom(vars(E) \ vars(E|Ω)).

From Lemma 17 of Mohajerani et al. [2016] it follows that (x1, . . . , xn, v̂)
σ−→

(y1, . . . , yn, ŵ) in U(E) implies (x1, . . . , xn, v̂|W)
σ−→ (y1, . . . , yn, ŵ|W) in U(E|Ω)

where W = vars(E|Ω)).
Therefore, each transition in one system can be matched with a transition

in the other system. As the initial locations of U(E) and U(E|Ω) are the same,
it follows that L(U(E)) = L(U(E|Ω)). This concludes the proof.

Lemma 24. Let E,F be two EFA and Ω ⊆ ΣE ∪ΣF . Then (E ‖ F)|Ω = E|Ω ‖
F|Ω.

7 False removal 29

Proof. It is clear that (E ‖ F)|Ω and E|Ω ‖ F|Ω have the same location set,
variable set, alphabet, initial location, initial valuation, and marked locations.
It remains to be proven that they have the same transitions.

Assume that (lE1 , l
F
1)

σ,g,u−−−→ (lE2 , l
F
2) is a transition in (E ‖ F)|Ω. Clearly, as

σ ∈ Ω it follows that (lE1 , l
F
1)

σ,g,u−−−→ (lE2 , l
F
2) in E ‖ F . Consider three cases for

σ.

• σ ∈ ΣE∩ΣF . Then by the definition of synchronous composition it follows

that lE1
σ,gE ,uE−−−−−→ lE2 in E, lF1

σ,gF ,uF−−−−−→ lF2 in F , g = gE ∧ gF , and u = uE ⊕
uF . Applying the restriction on E and F , it follows that lE1

σ,gE ,uE−−−−−→ lE2

in E|Ω, lF1
σ,gF ,uF−−−−−→ lF2 in F|Ω, and the rest remains unchanged.

• σ ∈ ΣE \ΣF . Then by the definition of synchronous composition it follows

that lE1
σ,gE ,uE−−−−−→ lE2 in E, lF1 = lF2 , g = gE , and u = uE . Applying the

restriction on E and F , it follows that lE1
σ,gE ,uE−−−−−→ lE2 in E|Ω, and the rest

remains unchanged.

• σ ∈ ΣF \ΣE . Then by the definition of synchronous composition it follows

that lF1
σ,gF ,uF−−−−−→ lF2 in F , lE1 = lE2 , g = gF , and u = uF . Applying the

restriction on F and E, it follows that lF1
σ,gF ,uF−−−−−→ lF2 in F|Ω, and the rest

remains unchanged.

Applying the definition of synchronous composition on the three cases above, it

follows that (lE1 , l
F
1)

σ,g,u−−−→ (lE2 , l
F
2) is a transition in E|Ω ‖ F|Ω.

Conversely, assume that (lE1 , l
F
1)

σ,g,u−−−→ (lE2 , l
F
2) is a transition in E|Ω ‖ F|Ω.

Clearly, σ ∈ Ω. Consider three cases for σ.

• σ ∈ ΣE ∩ ΣF . Then by the definition of synchronous composition it

follows that lE1
σ,gE ,uE−−−−−→ lE2 in E|Ω, lF1

σ,gF ,uF−−−−−→ lF2 in F|Ω, g = gE ∧gF , and

u = uE⊕uF . As σ ∈ Ω, it follows that lE1
σ,gE ,uE−−−−−→ lE2 in E, lF1

σ,gF ,uF−−−−−→ lF2
in F , and the rest remains unchanged.

• σ ∈ ΣE \ΣF . Then by the definition of synchronous composition it follows

that lE1
σ,gE ,uE−−−−−→ lE2 in E|Ω, lF1 = lF2 , g = gE , and u = uE . As σ ∈ Ω, it

follows that lE1
σ,gE ,uE−−−−−→ lE2 in E, and the rest remains unchanged.

• σ ∈ ΣF \ΣE . Then by the definition of synchronous composition it follows

that lF1
σ,gF ,uF−−−−−→ lF2 in F|Ω, lE1 = lE2 , g = gF , and u = uF . As σ ∈ Ω, it

follows that lF1
σ,gF ,uF−−−−−→ lF2 in F , and the rest remains unchanged.

Applying the definition of synchronous composition on the three cases above,

it follows that (lE1 , l
F
1)

σ,g,u−−−→ (lE2 , l
F
2) is a transition in E ‖ F . Applying the

7 False removal 30

restriction on E ‖ F , it follows that (lE1 , l
F
1)

σ,g,u−−−→ (lE2 , l
F
2) is a transition in

(E ‖ F)|Ω. This concludes the proof.

Lemma 25. Let E be a deterministic normalized EFA system, and let ΣE =
Ω ∪̇ Λ such that for all λ ∈ Λ at least one of the following conditions holds:

1. gλ ≡ F, or

2. there exists an Ei ∈ E such that λ ∈ Σi, but there does not exist any

transition x
λ,gλ,uλ−−−−−→ y in Ei.

Then SSEFA(E)|Ω = SSEFA(E|Ω).

Proof. Observe that the SSEFA algorithm may only change the guards on edges
in E, while the restriction operator may only change the alphabet Σ and remove
edges from E. As the restriction operator is the only operator that may change
the alphabet, the alphabets of SSEFA(E)|Ω and SSEFA(E|Ω) are trivially the
same. It remains to be proven that the sets of edges are the same. This is

proven by showing that for all edges e ∈ E with σe ∈ Ω it holds that g
SSEFA(E)
e =

g
SSEFA(E|Ω)
e and that for all edges e ∈ E with σe ∈ Λ it holds that g

SSEFA(E)
e = F.

Consider the first iteration of Algorithm 1, i.e., j = 0. Observe that the
initial nonblocking predicate for each location as defined in Line 3 does not
depend on any guard. Therefore, these initial nonblocking predicates are the
same for SSEFA(E) and SSEFA(E|Ω). The equation on Line 4 can be rewritten
as

N0,k+1
l = N0,k

l ∨
∨

{e|oe=l,σe∈Ω}

[
g0
e ∧N

0,k
te [ue]

]
∨

∨
{e|oe=l,σe∈Λ}

[
g0
e ∧N

0,k
te [ue]

]
.

Now, using that g0
e = F for all edges e ∈ {e|oe = l, σe ∈ Λ}, we can rewrite the

above equation into

N0,k+1
l = N0,k

l ∨
∨

{e|oe=l,σe∈Ω}

[
g0
e ∧N

0,k
te [ue]

]
.

Therefore, we can conclude that the nonblocking predicates N0,k+1
l and even-

tually N0
l are the same for SSEFA(E) and SSEFA(E|Ω).

Moving to Line 12, we observe that the initial bad location predicates do
not depend on any guard. Therefore, the initial bad location predicates are the
same for SSEFA(E) and SSEFA(E|Ω). The equation on Line 13 can be rewritten
as

B0,i+1
l = B0,i

l ∨
∨

{e|oe=l,σe∈Ω∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
∨

∨
{e|oe=l,σe∈Λ∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
.

Now, using that g0
e = F for all edges e ∈ {e|oe = l, σe ∈ Λ}, we can rewrite the

above equation into

B0,i+1
l = B0,i

l ∨
∨

{e|oe=l,σe∈Ω∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
.

8 Selfloop removal 31

Therefore, we can conclude that the bad location predicates B0,k+1
l and even-

tually B0
l are the same for SSEFA(E) and SSEFA(E|Ω).

Moving to Line 21, we can now conclude that for all edges e ∈ E with σe ∈ Ω
it holds that g1

e is the same for SSEFA(E) and SSEFA(E|Ω), and for all edges
e ∈ E with σe ∈ Λ it holds that g1

e = F.
When the algorithm goes back to Line 3 for the next iteration, we can repeat

the argumentation above for j > 0 to conclude after each iteration that both
the nonblocking predicates N j

l and bad location predicates Bjl are the same for
SSEFA(E) and SSEFA(E|Ω), and that for all edges e ∈ E with σe ∈ Ω it holds
that gj+1

e is the same for SSEFA(E) and SSEFA(E|Ω), and for all edges e ∈ E
with σe ∈ Λ it holds that gj+1

e = F.

Proof of Theorem 7. From the definition of Ξ and the construction of ξ, it fol-
lows directly that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (E|Ω, ξ1 ◦ ξ) is a coordinator
tuple.

Now we show that the two coordinator tuples are coordinator equivalent.
By rewriting, we can show the following.

L(ξ1(ξ(supCN (E|Ω)))) = L(ξ1(supCN (E|Ω)))

= L(ξ1(supCN (E)|Ω)) from Lemma 25

= L(ξ1(supCN (E))) from Lemma 23

This concludes the proof.

8 Selfloop removal

8.1 Description of the abstraction

In FAs, selfloops can be safely removed in compositional synthesis, as these
selfloops do not change the state of the system, see Mohajerani et al. [2014a].
In EFAs, selfloops do not alter the location, but they may change the valuation
and therefore the state of the system. Therefore, events are considered to be
selfloop only in EFAs if all transitions labeled with these events cause no location
change and no valuation change.

The coordinator obtained from the EFA system before selfloop removal and
the coordinator obtained from the EFA system after selfloop removal are not
entirely the same. The difference is that by removing selfloops, these events
are no longer included in the language of the abstracted coordinator, while
these events are included in the original coordinator. To refine the abstracted
coordinator, i.e., to have the same language as the original coordinator, these
removed selfloops need to be placed back at the right locations. This can be
achieved by performing the synchronous composition of the abstracted coordi-
nator with the EFA system before selfloop removal. This is summarized in the
following theorem. The proof of this theorem can be found in Section 8.2 of this
supplementary material.

8 Selfloop removal 32

E

γ

α
β

SE

γ; F

α
β

E|Σ\Λ

γ

α

SE|Σ\Λ

γ; F

α

Event
Guard and

update

α x = 0;x := x+ 1

β x = 1
γ x < 1

Fig. 4: Example of selfloop removal and coordinator refinement.

Theorem 8 (Selfloop removal). Let (E , ξ1) be a coordinator tuple with E a
deterministic normalized EFA system and let Λ ⊆ ΣE , where for each λ ∈ Λ,
any transition (l1, λ, g, u, l2) ∈→E implies l1 = l2 and v̂2(v) = v̂1(u(v)) = v̂1(v)
for all v ∈ V and v̂1, v̂2 ∈ Val(V). Then refinement function ξ(G) = ρ(G) ‖ E
where ρ = id is the identity renaming function for any EFA system G ensures
that (E , ξ1) 'co (E|Σ\Λ, ξ1 ◦ ξ).

Example. Figure 4 shows an example of EFA E with selfloops. While both
events α and β appear on selfloop transitions, the update of α results in a
change in valuation. Therefore, this event cannot be considered to be a selfloop
in the EFA setting. Event β does not change the valuation and can thus be
considered as a selfloop. The abstracted EFA E|Σ\Λ is also shown in Figure 4.
Both coordinators obtained from the original system and the abstracted system
are included in Figure 4, where the guards strengthened by supervisor synthesis
are displayed in the automata themselves. As can be seen, both coordinators
prevent event γ from happening. Unfortunately, L(SE|Σ\Λ) ⊂ L(SE), as event β
is no longer possible in the abstracted EFA. However, by taking the synchronous
composition of the coordinator and the EFA system before selfloop removal, this
language inclusion can be transformed into a language equality, i.e., L(SE|Σ\Λ ‖
E) = L(SE).

8.2 Proof

Lemma 26. Let E a deterministic normalized EFA and let Λ ⊆ ΣE , where
for each λ ∈ Λ, any transition (l1, λ, g, u, l2) ∈→E implies l1 = l2 and v̂2(v) =
v̂1(u(v)) = v̂1(v) for all v ∈ V and v̂1, v̂2 ∈ Val(V). Then SSEFA(E)|ΣE\Λ =
SSEFA(E|ΣE\Λ).

Proof. First, for notational simplicity, we denote Ω = Σ \ Λ and F = E|ΣE\Λ =
E|Ω. Furthermore, in this proof, we use the notation xE to refer to usage of some
symbol x in EFA E , while xF refers to the usage of some symbol x in EFA F .

Observe that the SSEFA algorithm may only change the guards on edges in
E, while the restriction operator may only change the alphabet Σ and remove
edges from E. As the restriction operator is the only operator that may change
the alphabet, the alphabets of SSEFA(E)|Ω and SSEFA(E|Ω) are trivially the
same. It remains to be proven that the sets of edges are the same. This is

8 Selfloop removal 33

proven by showing that for all edges e ∈ E with σe ∈ Ω it holds that the
fixed-point guard gE n

e = gF n
e .

Consider the first iteration of Algorithm 1, i.e., j = 0. Observe that the
initial nonblocking predicate for each location as defined in Line 3 does not
depend on any guard. Therefore, these initial nonblocking predicates are the
same for SSEFA(E) and SSEFA(E|Ω). The equation on Line 4 can be rewritten
as

N0,k+1
l = N0,k

l ∨
∨

{e|oe=l,σe∈Ω}

[
g0
e ∧N

0,k
te [ue]

]
∨

∨
{e|oe=l,σe∈Λ}

[
g0
e ∧N

0,k
te [ue]

]
.

Now, using that te = l and v̂(ue(v)) = v̂(v) for all edges e ∈ {e|oe = l, σe ∈ Λ},
we have N0,k

te [ue] = N0,k
l . By using the fact that for any two predicates p and

q it holds that q ∨ [p ∧ q] = q, we can rewrite the above equation into

N0,k+1
l = N0,k

l ∨
∨

{e|oe=l,σe∈Ω}

[
g0
e ∧N

0,k
te [ue]

]
.

Therefore, we can conclude that the nonblocking predicate NE 0,k+1
l = NF 0,k+1

l

and eventually NE 0
l = NF 0

l .
Moving to Line 12, we observe that the initial bad location predicates do

not depend directly on any guard. Therefore, the initial bad location predicates
are the same for SSEFA(E) and SSEFA(E|Ω). The equation on Line 13 can be
rewritten as

B0,i+1
l = B0,i

l ∨
∨

{e|oe=l,σe∈Ω∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
∨

∨
{e|oe=l,σe∈Λ∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
.

Now, using again that te = l and v̂(ue(v)) = v̂(v) for all edges e ∈ {e|oe = l, σe ∈
Λ}, we have B0,k

te [ue] = B0,k
l . Therefore, we can rewrite the above equation into

B0,i+1
l = B0,i

l ∨
∨

{e|oe=l,σe∈Ω∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
.

Therefore, we can conclude that the bad location predicate BE 0,k+1
l = BF 0,k+1

l

and eventually BE 0
l = BF 0

l .
Moving to Line 21, we can now conclude that for all edges e ∈ E with σe ∈ Ω

it holds that gE 1
e = gF 1

e.
When the algorithm goes back to Line 3 for the next iteration, we can repeat

the argumentation above for j > 0 to conclude after each iteration that both
the nonblocking predicates N j

l and bad location predicates Bjl are the same for
SSEFA(E) and SSEFA(E|Ω), and that for all edges e ∈ E with σe ∈ Ω it holds
that gj+1

e is the same for SSEFA(E) and SSEFA(E|Ω).

Lemma 27. Let E a deterministic normalized EFA and let Λ ⊆ ΣE , where
for each λ ∈ Λ any transition (l1, λ, g, u, l2) ∈→E implies l1 = l2 and v̂2(v) =
v̂1(u(v)) = v̂1(v) for all v ∈ V and v̂1, v̂2 ∈ Val(V). Then ((l1, l1, v̂), σ, (l2, l2, ŵ))
is an edge in U(SSEFA(E)|Σ\Λ ‖ E) if and only if ((l1, l1, v̂), σ, (l2, l2, ŵ)) is an
edge in U(SSEFA(E) ‖ E).

8 Selfloop removal 34

Proof. Observe that the only difference between SSEFA(E)|Σ\Λ and SSEFA(E)
is the absence of the selfloops in the first one. Therefore, we only have to show
for σ ∈ Λ that ((l1, l1, v̂), σ, (l2, l2, ŵ)) is an edge in U(SSEFA(E)|Σ\Λ ‖ E) if and
only if ((l1, l1, v̂), σ, (l2, l2, ŵ)) is an edge in U(SSEFA(E) ‖ E).

By taking the synchronous product of SSEFA(E)|Σ\Λ and E , these selfloops
are placed back. Observe now that the difference between SSEFA(E)|Σ\Λ ‖ E
and SSEFA(E) ‖ E is the guards on the selfloops: in SSEFA(E)|Σ\Λ ‖ E each
edge e labeled with λ ∈ Λ has its original guard gλ, while in SSEFA(E) it is the
fixed-point guard g∗e (where we used the fact that p∗e � pλ and p∗e ∧ pλ = p∗e).
Consider two cases for λ ∈ Λ.

• If λ ∈ Σu, it follows from Line 21 of Algorithm 1 that g∗e = gλ.

• If λ ∈ Σc, it follows from Line 21 of Algorithm 1 that g∗e = gλ ∧ ¬B∗te [ue].
As λ ∈ Λ, we know that te = oe and v̂2(v) = v̂1(u(v)) = v̂1(v). Therefore,
g∗e = gλ ∧ ¬B∗oe . According to Lemma 1 of Ouedraogo et al. [2011] it
follows that either every state (l, v̂) for which B∗l [v̂] = T is unreachable
in SSEFA(E) or there exists an initial state (l0, v̂0) for which B∗l0 [v̂0] =
T. Applying this lemma, either for each reachable state (eo, ŵ) it holds
that B∗eo [ŵ] = F and thus g∗e [ŵ] = gλ[ŵ], or from Theorems 2 and 3
of Ouedraogo et al. [2011] we know that SSEFA(E) is an empty supervisor,
and thus SSEFA(E)|Σ\Λ is also an empty supervisor.

For both cases we can conclude that for all λ ∈ Λ : ((l, l, v̂), λ, (l, l, v̂)) is an
edge in U(SSEFA(E)|Σ\Λ ‖ E) if and only if ((l, l, v̂), λ, (l, l, v̂)) is an edge in
U(SSEFA(E)). This concludes the proof.

Lemma 28. Let E and F be two deterministic EFAs with shared alphabet Σ
and variable set V such that ((l1, v̂), σ, (l2, ŵ)) is an edge in U(E) if and only
if ((l1, v̂), σ, (l2, ŵ)) is an edge in U(F), and ρ : Σ′ → Σ a renaming function.
Then, for any EFA T it holds that ((l1, t1, p̂), σ, (l2, t2, q̂)) is an edge in U(E ‖ T)
if and only if ((l1, t1, p̂), σ, (l2, t2, q̂)) is an edge in U(F ‖ T).

Proof. If ((l1, v̂), σ, (l2, ŵ)) is an edge in U(E), then (l1, σ, g
E , uE , l2) is an edge

in E with gE [v̂] = T and ŵ(v) = v̂(uE(v)); similarly, if ((l1, v̂), σ, (l2, ŵ)) is
an edge in U(F), then (l1, σ, g

F , uF , l2) is an edge in F with gF [v̂] = T and
ŵ(v) = v̂(uF (v)). From the assumption that each update in an EFA is well
defined for all variables, we can replace uE and uF by u with v̂(u(v)) = ŵ(v).
Consider three cases for event σ.

• σ ∈ Σ∪ΣT . In this case ((l1, x1), σ, gE ∧ gT , u⊕ uT , (l1, x2)) is an edge in
E ‖ T if and only if (l1, σ, g

E , u, l2) is an edge in E and (x1, σ, g
T , uT , x2)

is an edge in T . Similarly, ((l1, x1), σ, gF ∧gT , u⊕uT , (l1, x2)) is an edge in
F ‖ T if and only if (l1, σ, g

F , u, l2) is an edge in E and (x1, σ, g
T , uT , x2)

is an edge in T . Furthermore, denote with v̂′ the valuation of variables
from E (or F) extended with new variables introduced with T . As gE [v̂] =
T = gF [v̂], it follows that (gE ∧ gT)[v̂′] = T = (gF ∧ gT)[v̂′] if and only if
gT [v̂′] = T.

8 Selfloop removal 35

• σ ∈ Σ ∩ ΣT . In this case ((l1, x1), σ, gE , u, (l1, x2)) is an edge in E ‖ T
if and only if (l1, σ, g

E , u, l2) is an edge in E and x1 = x2. Similarly,
((l1, x1), σ, gF , u, (l1, x2)) is an edge in F ‖ T if and only if (l1, σ, g

F , u, l2)
is an edge in F and x1 = x2.

• σ ∈ ΣT ∩ Σ. In this case ((l1, x1), σ, gT , uT , (l1, x2)) is an edge in E ‖ T
if and only if (l1, σ, g

T , uT , l2) is an edge in T and x1 = x2. Similarly,
((l1, x1), σ, gT , uT , (l1, x2)) is an edge in F ‖ T if and only if (l1, σ, g

T , uT ,
l2) is an edge in T and x1 = x2.

Combining the observations above, we can conclude that ((l1, x1), σ, gET , u ⊕
uT , (l2, x2)) is an edge in E ‖ T if and only if ((l1, x1), σ, gFT , u⊕uT , (l2, x2)) is
an edge in F ‖ T , and that ((l1, x1, v̂

′), σ, (l2, x2, ŵ
′)) is an edge in U(E ‖ T) if

and only if ((l1, x1, v̂), σ, (l2, x2, ŵ)) is an edge in U(F ‖ T). This concludes the
proof.

Lemma 29. Let E be a deterministic normalized EFA and let Λ ⊆ ΣE , where
for each λ ∈ Λ, any transition (l1, λ, g, u, l2) ∈→E implies l1 = l2 and v̂2(v) =
v̂1(u(v)) = v̂1(v) for all v ∈ V and v̂1, v̂2 ∈ Val(V). Furthermore, let ξ ∈ Ξ be an
refinement function. Then L(ξ(SSEFA(E)|ΣE\Λ ‖ E)) = L(ξ(SSEFA(E) ‖ E)).

Proof. This lemma is proven by induction on the structure of ξ. Denote ξ =
ξm ◦ . . . ◦ ξ1. From Lemma 27 it follows that ((l1, v̂), σ, (l2, ŵ)) is an edge in
U(SSEFA(E)|ΣE\Λ ‖ E) if and only if ((l1, v̂), σ, (l2, ŵ)) is an edge in U(SSEFA(E) ‖
E). Now assume that ((l1, v̂), σ, (l2, ŵ)) is an edge in U(ξi◦. . .◦ξ1(SSEFA(E)|ΣE\Λ ‖
E)) if and only if ((l1, v̂), σ, (l2, ŵ)) is an edge in U(ξi ◦ . . . ◦ ξ1(SSEFA(E) ‖ E))
with i ∈ [0 . . .m− 1]. Consider the following four cases for ξi+1.

• ξi+1 is the identity function. It follows immediately that ((l1, v̂), σ, (l2, ŵ))
is an edge in U(ξx+1 ◦ ξi ◦ . . . ◦ ξ1(SSEFA(E)|ΣE\Λ ‖ E)) if and only if
((l1, v̂), σ, (l2, ŵ)) is an edge in U(ξx+1 ◦ ξi ◦ . . . ◦ ξ1(SSEFA(E) ‖ E))

• ξi+1 is a renaming. From the definition of renaming it follows directly that
((l1, v̂), ξi+1(σ), (l2, ŵ)) is an edge in U(ξx+1 ◦ ξi ◦ . . . ◦ ξ1(SSEFA(E)|ΣE\Λ
‖ E)) if and only if ((l1, v̂), ξi+1(σ), (l2, ŵ)) is an edge in U(ξx+1 ◦ ξi ◦ . . . ◦
ξ1(SSEFA(E) ‖ E)).

• ξi+1 is a renaming ρ in synchronous composition with the previous orig-
inal system. From the definition of renaming it follows directly that
((l1, v̂), ρ(σ), (l2, ŵ)) is an edge in U(ρ(ξi ◦ . . .◦ξ1(SSEFA(E)|ΣE\Λ ‖ E))) if
and only if ((l1, v̂), ρ(σ), (l2, ŵ)) is an edge in U(ρ(ξi ◦ . . . ◦ ξ1(SSEFA(E) ‖
E))). Combining this with Lemma 28, it follows that ((l1, v̂), ρ(σ), (l2, ŵ))
is an edge in U(ξx+1 ◦ ξi ◦ . . . ◦ ξ1(SSEFA(E)|ΣE\Λ ‖ E)) if and only if
((l1, v̂), ρ(σ), (l2, ŵ)) is an edge in U(ξx+1 ◦ ξi ◦ . . . ◦ ξ1(SSEFA(E) ‖ E)).

• ξi+1 is an inverse renaming ρ−1 in synchronous composition with the pre-
vious original system. From the definition of inverse renaming it follows
for every µ ∈ ρ−1 that ((l1, v̂), µ, (l2, ŵ)) is an edge in U(ρ−1(ξi ◦ . . . ◦
ξ1(SSEFA(E)|ΣE\Λ ‖ E))) if and only if ((l1, v̂), µ, (l2, ŵ)) is an edge in

8 Selfloop removal 36

U(ρ−1(ξi ◦ . . . ◦ ξ1(SSEFA(E) ‖ E))). Combining this with Lemma 28,
it follows that ((l1, v̂), ρ−1σ), (l2, ŵ)) is an edge in U(ξx+1 ◦ ξi ◦ . . . ◦
ξ1(SSEFA(E)|ΣE\Λ ‖ E)) if and only if ((l1, v̂), ρ−1(σ), (l2, ŵ)) is an edge
in U(ξx+1 ◦ ξi ◦ . . . ◦ ξ1(SSEFA(E) ‖ E)).

Therefore, we can conclude that ((l1, v̂), σ, (l2, ŵ)) is an edge in U(ξm ◦ . . . ◦
ξ1(SSEFA(E)|ΣE\Λ ‖ E)) = U(ξ(SSEFA(E)|ΣE\Λ ‖ E)) if and only if ((l1, v̂), σ,
(l2, ŵ)) is an edge in U(ξm ◦ . . . ◦ ξ1(SSEFA(E) ‖ E)) = U(ξ(SSEFA(E) ‖ E)).
As the initial location and valuation of SSEFA(E) ‖ E and SSEFA(E) ‖ E
are the same and that each refinement function ξ does not alter the initial
location and initial valuation, it follows from the definition of languages that
L(ξ(SSEFA(E)|ΣE\Λ ‖ E)) = L(ξ(SSEFA(E) ‖ E)). This concludes the proof.

Lemma 30. Let E and E′ be two EFAs such that E′ � E. Then E′ ‖ E ↔V E′.

Proof. Denote E = (L,Σ, V,→, l0, v̂0, Lm) and E′ = (L,Σ, V,→′, l0, v̂0, Lm).
From the definitions of subautomaton and synchronous product it follows that
the initial location of E′ ‖ E is (l0, l0) and of E′ is (l0), and that ((x, x), σ, g′ ∧
g, u, (y, y)) is an edge in E′ ‖ E if and only if (x, σ, g′, u, y) is an edge in E′.

Let the relation R be defined as R = {((x, x), x, v̂) | x ∈ L, v̂ ∈ Val(V)}. We
will show that this is a valuation bisimulation relation.

Consider the triple ((x, x), x, v̂) ∈ R.

• Let ((x, x), v̂)
σ−→ ((y, y), ŵ) be an edge in U(E′ ‖ E) for some y and

ŵ. It holds then that (x, x)
σ,g′∧g,u−−−−−→ (y, y) is an edge in E′ ‖ E with

(g′ ∧ g)[ŵ] = T and ŵ(v) = v̂(u(v)). As (g′ ∧ g)[ŵ] = T, it holds that

g′[ŵ] = T and g[ŵ] = T. Furthermore, as x
σ,g′,u−−−−→ y is an edge in E′, it

follows that (x, v̂)
σ−→ (y, ŵ) is an edge in U(E′). By construction of R it

follows that ((y, y), y, ŵ) ∈ R.

• Let (x, v̂)
σ−→ (y, ŵ) be an edge in U(E′) for some y and ŵ. It holds that

x
σ,g′,u−−−−→ y is an edge in E′ with g′[v̂] = T and ŵ(v) = v̂(u(v)). As g′ � g,

it holds that g[v̂] = T. Furthermore, as (x, x)
σ,g′∧g,u−−−−−→ (y, y) is an edge

in E′ ‖ E, it follows that ((x, x), v̂)
σ−→ ((y, y), ŵ) is an edge in U(E′ ‖ E).

By construction of R it follows that ((y, y), y, ŵ) ∈ R.

• Let (x, x) ∈ Lm × Lm in E′ ‖ E. From the definition of synchronous
product it follows that x ∈ Lm in E′.

• Let x ∈ Lm in E′. As E′ is a subautomaton of E, it follows that x ∈ Lm
in E. Therefore, (x, x) ∈ Lm × Lm in E′ ‖ E.

This shows that R is a valuation bisimulation relation. As the initial locations
and valuations are related, i.e., ((l0, l0), l0, v̂0) ∈ R, it follows that E′ ‖ E↔V E

′.
This concludes the proof.

9 Event merging 37

Lemma 31. Let E and E′ be two EFAs such that E′ � E, and let ξ ∈ Ξ be an
refinement function. Then L(ξ(E′ ‖ E)) = L(ξ(E′)).

Proof. It follows from Lemma 30 that E′ ‖ E ↔V E′. It then follows from
Lemma 16 that L(ξ(E′ ‖ E)) = L(ξ(E′)).

Proof of Theorem 8. From the definition of Ξ and the construction of ξ, it fol-
lows directly that ξ ∈ Ξ. Therefore, ξ1 ◦ξ ∈ Ξ and (E|Σ\Λ, ξ1 ◦ξ) is a coordinator
tuple.

Now we show that the two coordinator tuples are coordinator equivalent.
By rewriting, we can show the following.

L(ξ1(ξ(supCN (E|Σ\Λ)))) = L(ξ1(supCN (E|Σ\Λ) ‖ E))

= L(ξ1(SSEFA(E|Σ\Λ) ‖ E))

= L(ξ1(SSEFA(E)|Σ\Λ ‖ E)) from Lemma 26

= L(ξ1(SSEFA(E) ‖ E)) from Lemma 29

= L(ξ1(SSEFA(E))) from Lemma 31

= L(ξ1(supCN (E))).

This concludes the proof.

9 Event merging

Lemma 32. Let E be a deterministic normalized EFA and let ρ : ΣE → Σ′

be a renaming. For each edge eE = (l1, σ, g, u, l2) ∈→E in E, let eρ(E) =
(l1, ρ(σ), g, u, l2) ∈→ρ(E) denote the edge in ρ(E). Then the fixed point guards
of SSEFA g∗eE = g∗eρ(E)

, in other words, ρ(SSEFA(E)) = SSEFA(ρ(E)).

Proof. Clearly, ρ(SSEFA(E)) and SSEFA(ρ(E)) have the same location set,
same alphabet, same set of variables, same initial location, same initial valua-
tion, and same set of marked locations. It only remains to be proven that they
have the same set of edges.

Assume (l1, σ, g
∗, u, l2) is an edge in ρ(SSEFA(E)). From the definition of

renaming, it follows that there exists an event µ ∈ ΣE such that ρ(µ) = σ and
(l1, µ, g

∗, u, l2) is an edge in SSEFA(E). As the algorithm SSEFA only adjusts
the guards of edges, it follows that e = (l1, µ, g, u, l2) with g∗ � g is an edge
in E. This means that f = (l1, σ, g, u, l2) is an edge in ρ(E). Observe that the
only difference between edges e and f is the event name.

Now, consider SSEFA, Algorithm 1. As renaming by definition preserves
the controllability status of an event, it holds for each iteration j that the
nonblocking predicates and the bad location predicates are the same, as the
only difference between E and ρ(E), the event labels on the edges, is never used
to calculate the fixed points. Therefore, the guards and updates of edges e and
f are the same. As g∗ is the fixed point guard of edge e, it must hold that g∗

is also the fixed point guard of edge f . Therefore, (l1, σ, g
∗, u, l2) is an edge in

SSEFA(ρ(E)).

9 Event merging 38

Secondly, assume that (l1, σ, g
∗, u, l2) is an edge in SSEFA(ρ(E)). As the

algorithm SSEFA only adjusts the guards of edges, it follows that e = (l1, σ, g, u,
l2) with g∗ � g is an edge in ρ(E). From the definition of renaming it follows
directly that f = (l1, µ, g, u, l2) with ρ(µ) = σ is an edge in E. Observe that
the only difference between edges e and f is the event name.

As before, we can conclude that if g∗ is the fixed-point guard of edge
e, it must hold that g∗ is also the fixed-point guard of edge f . Therefore,
(l1, µ, g

∗, u, l2) is an edge in SSEFA(E). After applying renaming we obtain
that (l1, σ, g

∗, u, l2) is an edge in ρ(SSEFA(E)). This concludes the proof.

Lemma 33. Let E = {E1, . . . , En} a deterministic normalized EFA system. Let
Ek ∈ E and let ρ : ΣE → Σ′ be a renaming such that the following conditions
hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. gσ1
= gσ2

and uσ1
= uσ2

,

2. for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then ρ−1(ρ(E)) ‖ E = E ‖ E if and only if ρ(Ek) is deterministic.

Proof. As E = {E1, . . . , En}, we can rewrite E ‖ E = (E1 ‖ . . . ‖ En) ‖ (E1 ‖
. . . ‖ En) = (E1 ‖ E1) ‖ . . . ‖ (En ‖ En), and ρ−1(ρ(E)) ‖ E = (ρ−1(ρ(E1)) ‖
. . . ‖ ρ−1(ρ(En))) ‖ (E1 ‖ . . . ‖ En) = (ρ−1(ρ(E1)) ‖ E1) ‖ . . . ‖ (ρ−1(ρ(En)) ‖
En). We now show for each i ∈ [1 . . . n] that Ei ‖ Ei = ρ−1(ρ(Ei)) ‖ Ei.

From the definition of renaming and inverse renaming, it follows for each i
that Ei ‖ Ei and ρ−1(ρ(Ei)) ‖ Ei have the same location set, same alphabet,
same variable set, same initial location, same initial valuation, and same marked
location set. It only remains to be proven that they have the same set of edges.
In order to do that, we need to make a distinction between i = k and i 6= k.

First, let i = k. Consider edge e = (l1, σ, g, u, l2) in Ek. Therefore, in
the synchronous product Ek ‖ Ek we have the edge ((l1, l1), σ, g, u, (l2, l2)).
Furthermore, after applying renaming on Ek, we know that there exists an
edge (l1, ρ(σ), g, u, l2) in ρ(Ek). Continuing with applying inverse renaming,
we obtain in ρ−1(ρ(Ek)) a set of edges {(l1, σ, g, u, lj) | (l1, σ

′, g, u, lj) is an
edge in Ek, σ′ ∈ ρ−1(ρ(σ))} that have the same event σ as edge e and also
originate from the same location. If we now consider the synchronous product
ρ−1(ρ(Ek)) ‖ Ek, we get the set of edges A(e) = {((l1, l1), σ, g, u, (lj , l2)) | (l1, σ′,
g, u, lj) is an edge in Ek, σ′ ∈ ρ−1(ρ(σ)))} that are associated with edge e. Ob-
serve that in Ek ‖ Ek we only have one edge labeled with σ from location
l1, while in ρ−1(ρ(Ek)) ‖ Ek we may have multiple edges labeled with σ from
location l1.

We will now show that ρ−1(ρ(Ek)) ‖ Ek only has a single edge labeled with
σ from location l1 if and only if ρ(Ek) is deterministic. From the definition
of determinism, it follows that ρ(Ek) is deterministic if and only if for each

9 Event merging 39

location in U(ρ(Ek)) and event µ there is at most one outgoing edge labeled
with event µ. This implies that ρ(Ek) is deterministic if and only if for each
location in ρ(Ek), event µ and valuation v̂ there is at most one edge labeled
with event µ such that the guard of that edge evaluates to true for valuation
v̂. From condition 1 it follows that for each location in ρ(Ek) and event µ it
holds that all outgoing edges labeled with µ have the same guard. Therefore, it
holds that for each location in ρ(Ek) and event µ only a single outgoing edge is
labeled with event µ if and only if ρ(Ek) is deterministic. Subsequently, for each
location in Ek and event µ there is only one outgoing edge labeled with one of
the events from ρ−1(µ) if and only if ρ(Ek) is deterministic. This is enough to
show that when we consider edge e in Ek, the set A(e) reduced to the single
edge ((l1, l1), σ, g, u, (l2, l2)) if and only if ρ(Ek) is deterministic.

Finally, as edge e is chosen arbitrarily, it follows that Ek ‖ Ek and ρ−1(ρ(Ek))
‖ Ek have the same set of edges if and only if ρ(Ek) is deterministic.

Second, let i 6= k. Consider edge e = (l1, σ, g, u, l2) in Ei. From the sec-
ond condition it follows that for all σ′ such that ρ(σ) = ρ(σ′) = µ it holds
that (l1, σ

′, g, u, l2) is also an edge in Ei. Or stated slightly different, we have
a set of edges B(e) = {(l1, σ′, g, u, l2) | e = (l1, σ, g, u, l2) is an edge in Ei, σ′ ∈
ρ−1(ρ(σ))} that are associated with edge e. Therefore, in the synchronous prod-
uct Ei ‖ Ei we have the set of edges {((l1, l1), σ′, g, u, (l2, l2)) | e is an edge in Ei,
σ′ ∈ ρ−1(ρ(σ))}.

Furthermore, if e is an edge in Ei, then (l1, ρ(σ), g, u, l2) is an edge in ρ(Ei).
After applying the inverse renaming on ρ(Ei), we know that in ρ−1(ρ(Ei)) there
is a set of edges {(l1, σ′, g, u, l2) | e is an edge in Ei, σ′ ∈ ρ−1(ρ(σ))} associated
with edge e. If we now perform the synchronous product to obtain ρ−1(ρ(Ei)) ‖
Ei, we get the set of edges {((l1, l1), σ′, g, u, (l2, l2)) | e is an edge in Ei, σ′ ∈
ρ−1(ρ(σ))}, where we used the previous observation that in Ei we have the set
of edges B(e) associated with e. We now have established that Ei ‖ Ei and
ρ−1(ρ(Ei)) ‖ Ei have the same set of edges associated with edge e. As edge e
is chosen arbitrarily, it follows that Ei ‖ Ei and ρ−1(ρ(Ei)) ‖ Ei have the same
set of edges.

Lemma 34. Let E = {E1, . . . , En} be a deterministic normalized EFA system.
Let Ek ∈ E and let ρ : ΣE → Σ′ be a renaming such that the following conditions
hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. gσ1
= gσ2

and uσ1
= uσ2

,

2. for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then ρ−1(ρ(SSEFA(E))) ‖ E = SSEFA(E) ‖ E if and only if ρ(Ek) is determin-
istic.

9 Event merging 40

Proof. As E = {E1, . . . , En}, we can rewrite SSEFA(E). Let e = ((x1, . . . , xn),
σ, g, u, (y1, . . . , yn)) be an edge in E1 ‖ . . . ‖ En, and ei = (xi, σ, g, u, yi) the
edge in Ei if σ ∈ Σi or xi = yi if σ /∈ Σi. After applying Algorithm 1, we get for
each edge e the edge e∗ = ((x1, . . . , xn), σ, g∗, u, (y1, . . . , yn)) in SSEFA(E) where
g∗ is the fixed-point guard. Now we can rewrite SSEFA(E) = E1∗ ‖ . . . ‖ En∗
where each edge ei in Ei is replaced by e∗i = (xi, σ, g

∗, u, yi).
Rewrite SSEFA(E) ‖ E = (E1∗ ‖ . . . ‖ En∗) ‖ (E1 ‖ . . . ‖ En) = (E1∗ ‖

E1) ‖ . . . ‖ (En∗ ‖ En) and ρ−1(ρ(SSEFA(E)) ‖ E = (ρ−1(ρ(E1∗)) ‖ . . . ‖
ρ−1(ρ(En∗))) ‖ (E1 ‖ . . . ‖ En) = (ρ−1(ρ(E1∗)) ‖ E1) ‖ . . . ‖ (ρ−1(ρ(En∗)) ‖
En). Following the same reasoning as the proof in Lemma 33 and knowing
that for edge e we have now guards g∗ and g instead of g and g, we can show
for each i ∈ [1 . . . n] that Ei∗ ‖ Ei = ρ−1(ρ(Ei∗) ‖ Ei if and only if ρ(Ek) is
deterministic. This concludes the proof.

Theorem 9. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deter-
ministic normalized EFA system. Let Ek ∈ E and let ρ : ΣE → Σ′ be a renaming
such that the following conditions hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. gσ1 = gσ2 and uσ1 = uσ2 ,

2. for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then refinement function ξ(G) = ρ−1(G) ‖ E for any EFA system G with alpha-
bet Σ′ ensures that (E , ξ1) 'co (ρ(E), ξ1 ◦ ξ).

Proof. From the definition of Ξ and the construction of ξ, it follows directly
that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (ρ(E), ξ1 ◦ ξ) is a coordinator tuple.

Now we show that the two coordinator tuples are coordinator equivalent.
By rewriting, we can show the following.

L(ξ1(ξ(supCN (F)))) = L(ξ1(ξ(SSEFA(F))))

= L(ξ1(ξ(SSEFA(ρ(E)))))

= L(ξ1(ξ(ρ(SSEFA(E))))) by Lemma 32

= L(ξ1(ρ(ρ(SSEFA(E))) ‖ E))

= L(ξ1(SSEFA(E) ‖ E)) by Lemma 34

= L(ξ1(SSEFA(E))) by Lemma 31

= L(ξ1(supCN (E))).

This concludes the proof.

10 Update merging 41

10 Update merging

10.1 Description of the abstraction

The final abstraction considered in this paper is called update merging. In the
context of separate guards and updates, a more appropriate terminology may
be guard merging. As introduced by Mohajerani et al. [2016], update merging
merges events together if they always appear together on the same transitions
in the EFA system and they have the same set of updated variables. This for-
mulation allows events to be merged if they both update a variable, but update
it to different valuations. In this case, the abstracted system becomes nonde-
terministic, which we avoid. For update merging, the general strategy of non-
determinism avoidance by first applying a renaming would not help. Therefore,
we need to strengthen the conditions when update merging may be applied: be-
sides appearing always together on the same transitions, the updates should be
the same. Requiring that the updates are the same ensures that a deterministic
system remains deterministic after update merging.

Similar to event merging, update merging applies a renaming function to get
from multiple events to a single event. Refining update merging would require
to apply the inverse renaming to get from a single event to multiple events.
Unfortunately, this may introduce too many possible events in the coordinator.
Therefore, the same solution as event merging may be applied: perform the
synchronous composition of the inverse renamed abstracted coordinator with
the original system. Theorem 10 expresses this formally. The proof of this
theorem can be found in Section 10 of the supplementary material.

Theorem 10 (Update merging). Let (E , ξ1) be a coordinator tuple with E =
{E1, . . . , En} a deterministic normalized EFA system. Let ρ : ΣE → Σ′ be
a renaming such that the following conditions hold for all σ1, σ2 ∈ ΣE with
ρ(σ1) = ρ(σ2):

1. uσ1
= uσ2

,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , Fn} such that each F i = (Li, V i, ρ(Σi),
→i,F , li0, v̂

i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E}

and gFρ(σ) =
∨
σ′∈ρ−1(ρ(σ)) g

E
σ′ . Then refinement function ξ(G) = ρ−1(G) ‖ E

for any EFA system G with alphabet Σ′ ensures that (E , ξ1) 'co (F , ξ1 ◦ ξ).

Example. Figure 5 shows an example where update merging is applied. In
the original EFA system, events β1 and β2 have the same update and they
always appear on the same transitions. Therefore, these events can be merged

10 Update merging 42

E

β1

β2

γ
α

γ

β1

β2

ρ(E)

β

γ
α

γ

β

SE

β1;x = 1
β2

γ
α

γ

β1

β2

Sρ(E)

β;x = 1

γ
α

γ

β

Event Guard and update

α x := 1

β1 x = 0;x := x

β2 x = 1;x := x
γ x = 1
α x := 1

β
x = 0 ∨ x = 1;x :=
x

γ x = 1

Fig. 5: Example of update merging and coordinator refinement. Initially,
v̂0(x) = 0. In the table, the top for events constitute the original alphabet,
while the bottom three the one after event merging.

into, for example, β, which results in EFA ρ(E). For the original and the
abstracted system a coordinator is synthesized. The strengthened guards are
shown directly in the automaton representation of the coordinators. If we would
just apply inverse renaming, too much behavior is possible in ρ−1(Sρ(E)). In
Sρ(E), the left transition labeled with β has guard (x = 0 ∨ x = 1) ∧ x = 1,
where x = 1 is added by the coordinator. Inverse renaming would result in
two transitions, one labeled with β1 and one labeled with β2, and both having
guard (x = 0∨x = 1)∧x = 1. Therefore, after performing event α, both β1 and
β2 are possible in ρ−1(Sρ(E)), while only β2 would be possible in SE . Taking
the synchronous composition of ρ−1(Sρ(E)) with E resolves this problem and
ensures that L(ρ−1(Sρ(E)) ‖ E) = L(SE).

10.2 Proof

Lemma 35. Let E = {E1, . . . , En} a be deterministic normalized EFA system.
Let ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all
σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. uσ1
= uσ2

,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then for all σ1, σ2 ∈ Σ such that ρ(σ1) = ρ(σ2) it holds that (x, σ1, gσ1
, uσ1

, y)
is an edge in ‖ E if and only if (x, σ2, gσ2

, uσ2
, y) is an edge in ‖ E.

10 Update merging 43

Proof. Consider two cases for each Ei.

• σ1 ∈ Σi if and only if σ2 ∈ Σi. Furthermore, it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2

if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2.

• σ1 /∈ Σi if and only if σ2 /∈ Σi.

Combining the above observations with the definition of the synchronous prod-
uct, it follows that (x, σ1, gσ1 , uσ1 , y) is an edge in ‖ E if and only if (x, σ2, gσ2 ,
uσ2 , y) is an edge in ‖ E .

Lemma 36. Let E = {E1, . . . , En} a be deterministic normalized EFA system.
Let ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all
σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. uσ1
= uσ2

,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , Fn} such that each F i = (Li, V i, ρ(Σi),
→i,F , li0, v̂

i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E}

and gFρ(σ) =
∨
σ′∈ρ−1(ρ(σ)) g

E
σ′ . Then for each σ ∈ Σ it holds that (x, σ, gσ, uσ, y)

is an edge in ‖ E if and only if (x, ρ(σ), gρ(σ), uσ, y) is an edge in ‖ F .

Proof. Consider two cases for each Ei.

• σ ∈ Σi if and only if ρ(σ) ∈ ρ(Σi) = Σi,F . Furthermore, it holds that

l1
σ,gσ,uσ−−−−−→ l2 in Ei if and only if l1

ρ(σ),gρ(σ),uσ−−−−−−−−→ l2 in F i.

• σ /∈ Σi if and only if ρ(σ) /∈ ρ(Σi) = Σi,F .

Combining the above observations with the definition of the synchronous prod-
uct, it follows that (x, σ, gσ, uσ, y) is an edge in ‖ E if and only if (x, ρ(σ), gρ(σ),
uσ, y) is an edge in ‖ F .

Lemma 37. Let E = {E1, . . . , E
n} a be deterministic normalized EFA system.

Let ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all
σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. uσ1
= uσ2

,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1 ,uσ1−−−−−−−→ l2 in Ei if and only if l1

σ2,gσ2 ,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

10 Update merging 44

Create the EFA system F = {F 1, . . . , Fn} such that each F i = (Li, V i, ρ(Σi),
→i,F , li0, v̂

i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E}

and gFρ(σ) =
∨
σ′∈ρ−1(ρ(σ)) g

E
σ′ . Then for each edge e = (x, µ, g∗µ, uµ, y) in SSEFA(F)

there exists a set of edges Ae = {(x, σ, g∗σ, uσ, y) | σ ∈ ρ−1(µ)} in SSEFA(E) such
that g∗µ ⇔

∨
e∈A g

∗
σ and uσ = uµ.

Proof. From the construction of F it follows that ‖ E and ‖ E have the same
set of locations, variables, initial location, initial valuation, and marked states.
Furthermore, ΣF = ρ(ΣE) and →F can be constructed from →E according to
Lemma 36. From Algorithm 1 it follows that SSEFA(E) and SSEFA(F) have the
same set of locations, variables, initial location, initial valuation, and marked
states. Furthermore, ΣSSEFA(F) = ΣF = ρ(ΣE) = ρ(ΣSSEFA(F)).

Combining Lemmas 35 and 36 we can construct the set of edges A′e =
{(x, σ, gσ, uσ, y) | σ ∈ ρ−1(µ)} in E for each edge e = (x, µ, gµ, uµ, y) in F and
uσ = uµ. As Algorithm 1 does not change the updates, it holds uσ = uµ after
applying SSEFA on both E and F . It remains to be proven that g∗µ ⇔

∨
e∈A g

∗
σ.

In the remainder of the proof, we use the notation xE to refer to usage of some
symbol x in EFA E , while xF refers to the usage of some symbol x in EFA F .

Consider the first iteration of Algorithm 1, i.e., j = 0. After initializing the
guards, it follows that g0

e =
∨
e′∈A′ g

0
e′ . Observe that the initial nonblocking

predicate for each location as defined in Line 3 does not depend on any guard.
Therefore, these initial nonblocking predicates are the same for SSEFA(E) and

SSEFA(F), i.e., NE 0,0
l = NF 0,0

l . The equation on Line 4 can be rewritten as

NE 0,k+1
l = NE 0,k

l ∨
∨

µ∈ρ(Σ)

 ∨
{e′|ρ(σe′)=µ}

(
g0
e′ ∧ NE 0,k

te′
[ue′]

)
Now, from Lemmas 35 and 36 it follows that for each µ ∈ ρ(Σ) and associated
edge e in F with σe = µ and oe = l it holds for all edges e′ in E with ρ(σe′) = µ
and oe′ that te = te′ and ue = ue′ . Therefore, we can rewrite the above equation
into

NE 0,k+1
l = NE 0,k

l ∨
∨

{e∈→F |oe=l}

[
NE 0,k
te [ue] ∧

∨
e′∈Ae

g0
e′

]

= NE 0,k
l ∨

∨
{e∈→F |oe=l}

[
NE 0,k
te [ue] ∧ g0

e

]
.

As initially NE 0,0
l = NF 0,0

l and using the above equation, we can show by

induction on k that NE 0,k
l = NF 0,k

l . Therefore, we can conclude in Line 9 that

NE 0
l = NF 0

l .
Moving to Line 12, we observe that the initial bad location predicates do

not depend directly on any guard. Therefore, the initial bad location predicates
are the same for SSEFA(E) and SSEFA(F), i.e., BE 0,0

l = BF 0,0
l . The equation

10 Update merging 45

on Line 13 can be rewritten as

BE 0,k+1
l = BE 0,k

l ∨
∨

µ∈ρ(Σ)

 ∨
{e′|ρ(σe′)=µ,σe′∈Σu}

(
g0
e′ ∧ BE 0,k

te′
[ue′]

)
Now, using again that for each µ ∈ ρ(Σ) and associated edge e in F with σe = µ
and oe = l it holds for all edges e′ in E with ρ(σe′) = µ and oe′ that te = te′ ,
ue = ue′ , and σe′ ∈ Σu if and only if µ ∈ ρ(Σu). Therefore, we can rewrite the
above equation into

BE 0,k+1
l = BE 0,k

l ∨
∨

{e∈→F |oe=l,σe∈ρ(Σu)}

[
BE 0,k
te [ue] ∧

∨
e′∈Ae

g0
e′

]

= BE 0,k
l ∨

∨
{e∈→F |oe=l,σe∈ρ(Σu)}

[
BE 0,k
te [ue] ∧ g0

e

]
.

As initially BE 0,0
l = BF 0,0

l and using the above equation, we can show by

induction on k that BE 0,k
l = BF 0,k

l . Therefore, we can conclude in Line 18 that

BE 0
l = BF 0

l .
Moving to Line 21, we can now conclude that for each µ ∈ ρ(Σ) and associ-

ated edge e in F with σe = µ and for all e′ ∈ A′e it holds that g1
e = g0

e ∧ ¬ BE 0
l

and g1
e′ = g0

e′ ∧ ¬ BE 0
l if µ ∈ ρ(Σc) and that g1

e = g0
e and g1

e′ = g0
e′ if µ ∈ ρ(Σu).

Using the fact that g0
e =

∧
e′∈A′e

g0
e′ , we can conclude that g1

e ⇔
∧
e′∈A′e

g1
e′ .

When the algorithm goes back to Line 3 for the next iteration, we can
repeat the argumentation above for j > 0 to conclude after each iteration that
NE j
l ⇔ NF j

l and BE j
l ⇔ BF j

l . Therefore, for each µ ∈ ρ(Σ) and associated edge

e in F with σe = µ and for all e′ ∈ A′e it holds that gje ⇔
∧
e′∈A′e

gje′ .
Finally, when we reach the fixed-point, i.e., j = ∗, we can conclude that for

each edge e = (x, µ, g∗µ, uµ, y) in SSEFA(F) there exists a set of edges Ae =
{(x, σ, g∗σ, uσ, y) | σ ∈ ρ−1(µ)} in SSEFA(E) such that g∗µ ⇔

∨
e∈A g

∗
σ and uσ =

uµ.

Lemma 38. Let E = {E1, . . . , En} a be deterministic normalized EFA system.
Let ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all
σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. uσ1
= uσ2

,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , Fn} such that each F i = (Li, V i, ρ(Σi),
→i,F , li0, v̂

i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E}

and gFρ(σ) =
∨
σ′∈ρ−1(ρ(σ)) g

E
σ′ . For each edge e = (x, µ, g∗µ, uµ, y) in SSEFA(F),

10 Update merging 46

create the set of edges Ae = {(x, σ, g∗σ, uσ, y) | σ ∈ ρ−1(µ)} in SSEFA(E) and
denote each guard g∗f = gf ∧ Sf where f is an edge, gf the original guard of
edge f before applying SSEFA, and Sf the final predicate added by SSEFA. Then
Se ⇔ Se′ for any e′ ∈ Ae.

Proof. From Line 21 of Algorithm 1 it follows for any edge f that g∗f = g0
f ∧∧

j=0...(∗−1) ¬B
j
tf

if σf ∈ Σc, or g∗f = g0
f if σf ∈ Σu. Therefore, Sf =

∧
j=0...(∗−1)

¬Bjtf if σf ∈ Σc, or Sf = T if σf ∈ Σu.
As renaming preserves controllability, we know that µ ∈ ρ(Σc) if and only

if for all σ ∈ ρ−1 it holds that σ ∈ Σc. Therefore, if µ ∈ ρ(Σu), it follows that
Se = T and for all e′ ∈ Ae that Se′ = T. Thus Se ⇔ Se′ .

Now consider that µ ∈ ρ(Σc). Therefore, Se =
∧
j=0...(∗−1) ¬B

j
te and for all

e′ ∈ A it holds that Se′ =
∧
j=0...(∗−1) ¬B

j
te′

. Observe that te = te′ . Now, using

the proof of Lemma 37 we know at each iteration j that BE j
l ⇔ BF j

l for each
location l. Therefore, it follows immediately that Se ⇔ Se′ . This concludes the
proof.

Lemma 39. Let E = {E1, . . . , En} a be deterministic normalized EFA system.
Let ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all
σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. uσ1
= uσ2

,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all

l1, l2 ∈ Li it holds that l1
σ1,gσ1

,uσ1−−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2

,uσ2−−−−−−−→ l2
in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , Fn} such that each F i = (Li, V i, ρ(Σi),
→i,F , li0, v̂

i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E}

and gFρ(σ) =
∨
σ′∈ρ−1(ρ(σ)) g

E
σ′ . Then SSEFA(E) ‖ E ⇔ ρ−1(SSEFA(F)) ‖ E.

Proof. From Lemma 37 we know that SSEFA(E) and SSEFA(F) have the same
set of locations, variables, initial location, initial valuation, and marked states.
Therefore, SSEFA(E) ‖ E and SSEFA(F) ‖ F also have the same set of locations,
variables, initial location, initial valuation, and marked states. It remains to be
proven that if a = (l1, σ, ga, u, l2) is an edge in SSEFA(E) ‖ E if and only if
b = (l1, σ, gb, u, l2) is an edge in SSEFA(F) ‖ F and ga ⇔ gb.

Consider an edge e = (x, µ, g∗µ, uµ, y) in SSEFA(F). From Lemma 37 it
follows that there exists a set of edges Ae = {(x, σ, g∗σ, uµ, y) | σ ∈ ρ−1(µ)} in
SSEFA(E).

If we now apply reverse renaming on SSEFA(E), we get for edge e the
set of edges Ee = {(x, σ, g∗µ, uµ, y) | σ ∈ ρ−1(µ)}. If we now perform the
synchronous composition with the original plant model, the set Ee is trans-
formed into E′e = {((x, l1), σ, gσ ∧ g∗µ, uµ, (y, l1)) | (x, σ, g∗µ, uµ, y) ∈ Ee} and
the set Ae into A′e = {((x, l1), σ, gσ ∧ g∗σ, uµ, (y, l2)) | (x, σ, g∗σ, uµ, y) ∈ Ae}

10 Update merging 47

for some l1, l2 ∈ LE . Therefore, ((x, l1), σ, gσ ∧ g∗µ, uµ, (y, l1)) is an edge in
ρ−1(SSEFA(F)) ‖ E if and only if ((x, l1), σ, gσ ∧ g∗σ, uµ, (y, l2)) is an edge in
SSEFA(E) ‖ E . It remains to be proven that the guards of these edges are
logically equivalent.

From Algorithm 1 we can write g∗µ = gµ ∧ Se and for each edge e′ ∈ A
g∗σ = gσ ∧ Se′ . Furthermore, from the construction of F it follows that gµ =∨
σ′∈ρ−1(µ) gσ′ and from Lemma 38 it follows that Se ⇔ Se′ . Now we can state

the following.

gσ ∧ g∗µ = gσ ∧ gµ ∧ Se
= gσ ∧ (

∨
σ′∈ρ−1(ρ(σ))

gσ′) ∧ Se

⇔ gσ ∧ Se as p ∧ (p ∨ q)⇔ p for any predicates p and q

⇔ gσ ∧ Se′
⇔ gσ ∧ gσ ∧ Se′
= gσ ∧ g∗σ.

This concludes the proof.

Proof of Theorem 10. From the definition of Ξ and the construction of ξ, it
follows directly that ξ ∈ Ξ. Therefore, ξ1 ◦ ξ ∈ Ξ and (F , ξ1 ◦ ξ) is a coordinator
tuple.

Now we show that the two coordinator tuples are coordinator equivalent.
By rewriting, we can show the following.

L(ξ1(ξ(supCN (F)))) = L(ξ1(ξ(SSEFA(F))))

= L(ξ1(ρ(SSEFA(F)) ‖ E))

= L(ξ1(SSEFA(E) ‖ E)) from Lemmas 8 and 39

= L(ξ1(SSEFA(E))) from Lemma 31

= L(ξ1(supCN (E))).

This concludes the proof.

References

H. Flordal and R. Malik. Compositional Verification in Supervisory Control.
SIAM Journal on Control and Optimization, 48(3):1914–1938, January 2009.
ISSN 0363-0129.

S. Mohajerani, R. Malik, S. Ware, and M. Fabian. Compositional synthesis
of discrete event systems using synthesis abstraction. In 2011 Chinese Con-
trol and Decision Conference (CCDC), pages 1549–1554, May 2011. doi:
10.1109/CCDC.2011.5968439.

10 Update merging 48

S. Mohajerani, R. Malik, and M. Fabian. A Framework for Compositional Syn-
thesis of Modular Nonblocking Supervisors. IEEE Transactions on Automatic
Control, 59(1):150–162, January 2014a. ISSN 0018-9286.

Sahar Mohajerani, Robi Malik, and Martin Fabian. Synthesis
Equivalence of Triples. Technical Report R004/2013, Chalmers
University of Technology, Göteborg, January 2014b. URL
http://publications.lib.chalmers.se/records/fulltext/192916/local 192916.pdf.

Sahar Mohajerani, Robi Malik, and Martin Fabian. A framework for compo-
sitional nonblocking verification of extended finite-state machines. Discrete
Event Dynamic Systems, 26(1):33–84, March 2016. ISSN 0924-6703, 1573-
7594.

L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson. Nonblocking and safe
control of discrete-event systems modeled as extended finite automata. IEEE
Trans. on Automat. Sci. and Eng., 8(3):560–569, July 2011. ISSN 1545-5955.
doi: 10.1109/TASE.2011.2124457.

