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ABSTRACT: Nowadays, each tunnel is equipped with a supervisory controller that ensures correct cooperation between the tunnel subsystems, 

such as lighting, ventilation, and emergency detection sensors. Practice has shown that traditional design methods require a lot of manual effort, 

which is error-prone, time consuming, and costly. Therefore, an alternative design method is explored. In this paper, three methods for 

designing a supervisory controller are discussed: traditional engineering, model-based engineering, and synthesis-based engineering. They are 

assessed based on three criteria, being the quality of the controller, the variability of the time-to-market, and the evolvability. The synthesis-

based engineering method turns out to be the most appropriate design method. In a case study, a supervisory controller for a roadway tunnel 

in the Netherlands is designed using synthesis-based engineering and validated using simulation-based visualization. This case study shows 

that SBE is a suitable design method for designing a tunnel supervisory controller. 
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1. INTRODUCTION 

Over the years, the method of designing infrastructural systems has 

changed drastically. Where traditionally everything was designed 

using documents, the use of computer models has now taken over a 

majority of that work. Since the 1970s building information modeling 

(BIM), a concept explained by Hardin and McCool (2015) and 

Kensek (2014), has been used increasingly. In BIM, multiple facets 

of infrastructural design are incorporated into a single model. For 

instance, architectural, structural, electrical, and mechanical aspects 

of the design are included in the same model. One benefit of this is, 

for instance, collision detection. This helps finding discrepancies 

between the incorporated aspects, as is mentioned by Azhar (2011). 

One aspect that is often excluded from the design in BIM is the 

supervisory controller. In Figure 1, the positioning of the supervisory 

controller is schematically visualized. Figure 1 shows the control 

layers of an infrastructural system, as inspired by control structure 

visualizations in Lee et al. (2015) and in Melnyk (2016). Layer 1 

consists of the mechanical components in the system that need to be 

controlled. When considering a roadway tunnel, this includes, for 

instance, boom barriers, traffic lights, and ventilation. Each of these 

components is connected to actuators and sensors, as shown in Layer 

2, and its own resource controller, which constitutes the Layer 3. 

Layer 4 is the supervisory controller. This is the main controller that 

ensures correct cooperation between all these subsystems. Layer 5 is 

the man-machine interface. This is the interface through which the 

operator interacts with the system by sending commands and 

retrieving information. 

 
Figure 1 Schematic overview of an infrastructural system. 

Due to the many interactions between the structural design of the 

tunnel and its supervisory controller, it is important to design these 

aspects concurrently. The supervisory controller design depends on 

infrastructural features such as tunnel dimension, geological location, 

and escape concept. Vice versa, the infrastructural design depends on 

features related to the implementation of the supervisory controller, 

e.g., sensor positioning and cabling. 

One of the main challenges in designing a supervisory controller is 

proving its correctness. In traditional engineering methods, the 

supervisory controller is usually manually programmed based on 

documented controller specifications. The supervisory controller is 

then tested on the realized tunnel, and mistakes that are found are 

corrected. The correctness of the controller therefore depends on the 

quality of thetest, which is often limited. In more recent engineering 

methods, as surveyed in Estefan et al. (2007), computer models are 

used to perform tests in an earlier design stage using model 

simulations. This increases the testing possibilities of the supervisory 

controller and thus increases the chance that errors are found. The 

correctness is, however, still not proven. In the last decades, research 

advancements are made on the subject of automatically synthesizing 

supervisory controllers. This method is called synthesis-based 

engineering and it uses mathematical models to generate the 

supervisory controller through algorithms. The main advantage of 

using these algorithms is that the correctness of the synthesized 

controller is proven. 

The contribution of this paper is showing that the synthesis-based 

engineering method is suitable for designing a supervisory controller 

for a roadway tunnel. Synthesis-based engineering is explained in 

more detail and applied to a case study. This case study covers the 

process of modeling of the components and the requirements, 

synthesizing the supervisory controller, and validating the 

synthesized controller. 

The structure of the paper is as follows. First, Section 2 describes 

in detail three different engineering methods, being traditional 

engineering, model-based engineering, and synthesis-based 

engineering. In Section 3, a case study of a roadway tunnel is 

described where synthesis-based engineering is applied. Finally, in 

Section 4, the concluding remarks are presented and future work is 

addressed. 

 

2. CONTROLLER DESIGN METHODS 

This section discusses three methods for designing a supervisory 

controller, being traditional engineering, model-based engineering, 

and synthesis-based engineering. The methods are evaluated by 

looking at three criteria related to the controller: 

• Quality: to what degree does the controller meet its 

requirements? 

• Variability of the time-to-market: how large is the standard 

deviation of the estimated time-to-market of the controller? 

• Evolvability: how easily can the controller be extended with 

new functionalities or adapted to similar applications? 

Note that time-to-market and costs are not specifically considered 

here. They can be derived from the other criteria. 
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Firstly, when designing a controller for a new system, the time-to-

market depends on the quality of the controller as errors made in the 

controller design negatively impact the time-to-market. This is 

especially the case when controller testing is done after controller 

realization and implementation. Secondly, when designing a 

controller that resembles previously designed controllers, the 

evolvability of the design method influences the time-to-market. A 

design method with a high evolvability will in this case result in a 

shorter time-to-market. 

The costs of a controller design method mostly depend on the time-

to-market, as a shorter time-to-market results in lower costs. The 

variability of the time-to-market also affects the costs, as costs will 

increase when delays occur in a controller design process. 

 

2.1 Traditional engineering 

The traditional engineering method of designing a supervisory 

controller is schematically shown in Figure 2. Here, each step is 

denoted with an arrow and each symbol represents the product of that 

step. A document icon indicates a documented product, and a square 

indicates a realized product. 

 
Figure 2 Schematic overview of the traditional engineering method. 

First, a set of high-level requirements SR is defined for the system, 

which in this case is a roadway tunnel. Based on these requirements, 

an initial document-based design SD is created for the system. In the 

next step the system design is divided in two parts: plant P and 

controller C. The plant consists of the physical components in the 

tunnel that are relevant for the supervisory controller. These 

components mainly include actuators that need to be controlled, and 

sensors that provide information. The physical components that are 

not related to the supervisory controller are excluded here. For the 

design of both the plant and the controller, first requirements are 

defined (PR and CR), and a document-based design is created 

following these requirements (PD and CD). The final steps are 

building of tunnel, programming the controller, and implementing the 

realized controller in the tunnel. 

One of the most important steps is the verification and validation 

of the controller, as is discussed by Wallace and Fuijii (1989). In 

Boehm (1979) and Frey and Litz (2000), software verification is 

defined as answering the question “Are we building the product 

right?”, whereas software validation answers the question “Are we 

building the right product?”. Verification thus checks if the 

specifications are correctly implemented and validation checks if the 

software product satisfies the intended use. 

In the traditional engineering method only validation is possible. 

This is done through system testing, after the realization and 

implementation of the controller, as is indicated in Figure 2. In this 

step, the realized controller is tested in combination with the realized 

plant to validate if the controlled behavior is as intended. The correct 

implementation of the specifications cannot be guaranteed, unless all 

states and scenarios in the system are checked, which is not feasible 

for larger systems. 

As is shown in Figure 2, the system testing reflects on the initial 

system requirements and design. They are performed after the 

realization of the controller and the plant. The main disadvantage of 

this is that when an error is found during this step, the designer needs 

to go back to the document-based design steps of the system, 

controller, and plant to correct this mistake. This often costs more 

than correcting it during the design phase, as indicated in Boehm and 

Basili (2007). 

The controller is realized through manual programming. For large 

systems containing numerous components, such as a road tunnel, this 

is a cumbersome and error-prone task. Hence, the traditional 

engineering method has been assessed as follows: 

• Quality: Moderate for small systems. Low for large systems, 

as a large number of components results in a complex 

cooperation between these components, and as extensive 

testing is not well feasible. 

• Variability: Large, as errors are found at the end of the 

design process. 

• Evolvability: Low, due to manually written code. 

 

2.2 Model-based engineering 

In the last decades, it has become more common to use executable 

models when designing systems. A design method using such 

executable models is described in Braspenning et al. (2006). 

Furthermore, executable models enable testing of realized 

components with yet to realize, virtual, components, called hardware-

in-the-loop (HIL) testing, as detailed in Bullock et al. (2004). Figure 

3 shows the model-based engineering (MBE) method. The method is 

similar to the traditional engineering method with two extra steps, 

denoted by arrows, and two extra products, denoted with circles to 

indicate models. 

 

Figure 3 Schematic overview of the model-based engineering 

method. 

As shown in Figure 3, for both the controller and the plant a 

modeling step is added after documenting the design. Plant model P 

is a model of the possible system behavior based on documented plant 

design PD. Controller model C is a model of the controller based on 

documented controller design CD. 

Figure 3 also shows the validation steps that are possible in MBE. 

The first validation step shown is through simulation, as explained in 

Wallace and Fuijii (1989) and Pace (2004). In this step, the plant 

model is simulated along with the controller model to validate if the 

controlled behavior is the same as the desired behavior. Verification 

is not possible using simulations for the same reasons as mentioned 

for system testing in traditional engineering. Verification can, 

however, be performed using formal verification methods, such as the 

methods described in Baier and Katoen (2008). 

After the controller model is validated, it is realized in PLC code. 

The next step is controller testing. Here, the realized controller is 

tested on the plant model. The benefit of this is that the actual 

controller can be tested before plant realization. The final testing step 

is the same as the validation in traditional engineering, which is the 

integrated system test with the realized controller and realized plant. 

The main benefit of MBE is that most of the validation can be 

performed before controller realization and plant realization. This 

means that errors in the plant design and the controller design can be 

found earlier than in traditional engineering, which results in a more 

time- and cost-effective error reparation, as advocated in Boehm and 

Vasili (2007). Furthermore, Pace (2004) mentions the challenge of 

understanding the system behavior of systems with a large number of 

components. Simulations can help to tackle this challenge by giving 
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more insight in the system behavior. The MBE method has been 

assessed as follows: 

• Quality: Large for small systems. Moderate for large 

systems, as insight can be gained through simulations. 

• Variability: Moderate, since errors are found before the 

realization steps, resulting in more time-effective reparation. 

• Evolvability: Moderate, since the created models can be 

adapted and reused for similar systems. 

 

2.3 Synthesis-based engineering 

The MBE method enables early validation through simulation and 

controller testing, but the correctness of the controller still very much 

depends on the test engineer, as is also mentioned in Taipale et al. 

(2011). In the 1980s, research was started on the control of discrete-

event systems. The main results of this research are found in Ramadge 

and Wonham (1987) and Ramadge and Wonham (1989). The idea is 

to model the possible system behavior and the controller 

specifications using executable models. This enables the use of 

synthesis algorithms, described in works as Vahidi et al. (2006) and 

Ouedragogo et al. (2011), to automatically generate the supervisory 

controller. These synthesis algorithms are mathematically proven to 

generate a controller that adheres to the plant and controller 

requirement models. This means that verification is no longer 

necessary, since the synthesized controller is guaranteed to adhere to 

the specified requirements. Figure 4 shows the synthesis-based 

engineering (SBE) method. In SBE, the controller design step has 

been removed and instead a requirements model CR is created directly 

from the documented controller requirements. Furthermore, the 

controller model is no longer manually created, but now synthesized 

from the controller requirements model and the plant model. 

 
Figure 4 Schematic overview of the synthesis-based engineering 

method. 

As can be seen in Figure 4, the same validation steps are possible 

as in model-based engineering. This means that the benefits described 

in Section 2.2 still hold for SBE. The SBE method has been assessed 

as follows: 

• Quality: High, since the controller is proven correct. 

• Variability: Low, because errors are found early in the 

design process, and requirements are guaranteed to be 

satisfied so there is no variability in verification time. 

• Evolvability: High, since the models created for the plant 

and requirement models allow for easy reuse and adaptation. 

The method used to create plant model P and requirements model 

CR are now explained in Section 2.3.1 and 2.3.2, respectively. 

 

2.3.1 Plant 

The first set of models to be created is the plant. As mentioned earlier, 

mathematical models are required to synthesize a supervisory 

controller. Automata, as described by Cassandras and Lafortune 

(2009), are used to describe the system behavior using states and 

transitions. Figure 5 shows an example of an automaton definition for 

an actuator. The circles indicate the states of the actuator. They 

represent the modes the actuator can be in, i.e., the on or off mode. 

The arrows between the states indicate the transitions. They are 

transitions that can change the state of the actuator, i.e., turning it on 

or off. The initial state of the component is indicated by the inward 

arrow on the left of the off state. Marked states are indicated by 

concentric circles. A marked state of a component represents a rest 

state or a state where a task is finished. For the actuator in Figure 5, 

the off state is the marked state. 

 
Figure 5 Example of an automaton for an actuator. 

A second example of an automaton definition is shown in Figure 6. 

Here, the behavior of a sensor is modeled. The difference between an 

actuator and a sensor is the type of the transitions. When looking from 

the supervisory controller's perspective, it has control over turning the 

actuator on and off, yet the supervisory controller has no control over 

turning the sensor on and off. This is modeled in automata using so-

called uncontrollable events. These are indicated using dashed 

arrows, as shown in Figure 6. 

 
Figure 6 Example of an automaton for a sensor. 

Automaton definitions such as the ones shown in Figure 5 and 6 

can be instantiated for each component in the tunnel that contains this 

behavior, in this case for each actuator and sensor. 

 

2.3.2 Requirements 

The second set of models contains the controller requirements. These 

requirements are the specification, i.e., rules, that the controller must 

follow to ensure safe and correct controlled behavior. The 

requirements are modeled with state-based expressions, as introduced 

in Markovski et al. (2010). A requirement always specifies the desired 

behavior for an instantiated plant model. An example of a 

requirement is shown in Equation (1). In this example, actuator_X 

is an instantiation of the actuator definition and sensor_Y is an 

instantiation of the sensor definition. The requirement expresses that 

actuator_X is only allowed to turn on when sensor_Y is on. 

 

actuator_X.𝑐_𝑜𝑛 needs sensor_Y.on  (1) 

 

3. CASE STUDY 

In this section, a case study of the design of the supervisory controller 

for a roadway tunnel is described. The goal of this case study is to 

show that the synthesis-based design method is suitable to design a 

tunnel supervisory controller. 

 

3.1 System description 

The tunnel chosen for this case study is the Eerste Heinenoordtunnel 

(EHT, First Heinenoordtunnel in English), which is located south of 

Rotterdam, the Netherlands. Figure 7 shows two tunnels, being the 

EHT on the right, and the Tweede Heinenoordtunnel (THT, Second 

Heinenoordtunnel in English) on the left. The EHT is a two-tube 

roadway tunnel that was initially opened in 1969. It is maintained by 

Rijkswaterstaat, which is an executive body of the Dutch ministry of 

infrastructure and water-management. The EHT is an immersed tube 

tunnel in the river the Oude Maas. It was built with the main purpose 

to improve the connection between Rotterdam and the area south of 

the river. The THT was added later in 1999 and is only accessible for 

slow traffic such as cyclists and agricultural traffic. Only the EHT is 

included in this case study. The EHT is chosen for this case study 

because Rijkswaterstaat is currently in the preparation and planning 

phase of renovating this tunnel. In this renovation project both the 
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physical tunnel components and the tunnel supervisory controller are 

renewed. 

In this case study, two models have been created: a basic model and 

the EHT model. The basic model contains all relevant components of 

a roadway tunnel with two traffic tubes and a middle-tunnel-channel. 

However, for each component that exists multiple times in a traffic 

 
Figure 7 Birds-eye view of the Eerste Heinenoordtunnel (right) and 

the Tweede Heinenoordtunnel (left). Image from 

https://beeldbank.rws.nl, Rijkswaterstaat. 

tube, e.g. the escape doors, only one is included. This means that the 

basic model does not represent all possible behavior of the EHT, 

though is does contain all the relevant requirements and interactions 

between the different component types. The second model, being the 

EHT model, is the instantiated version of the basic model containing 

the actual number of components in the EHT. 

 

3.2 Modeling 

In this section, some examples of the plant models and the 

requirement models created for the basic model1 and the EHT model 

are shown. Specifically, the components used to close a traffic tube 

are described in detail. These components include the actuators and 

the sensors of the boom barrier and the traffic light. 

 

3.2.1 Plant 

First, the models of these components are created. In the plant model 

all possible behavior is captured. The possible behavior of the boom 

barrier is modeled by modeling the movement and the position of the 

boom barrier. The movement can be modeled using two actuators: 

one to move up and one to move down. The behavior of these 

actuators is the same, so the automata are also the same. Figure 8 

shows this automaton. This automaton is instantiated twice, once for 

the upward actuator of the boom barrier (actuator_up) and once 

for the downward actuator of the boom barrier (actuator_down). 

The automata of the two actuators have an identical initial and marked 

state: when the boom barrier is idle. The initial and marked state of 

both automata is thus of the off state. 

 
Figure 8 Automaton of a definition of an actuator. 

The position of the boom barrier can be modeled using two sensors: 

one to detect when the boom barrier is fully closed 

(sensor_closed) and one to detect when the boom barrier is fully 

opened (sensor_open). The initial and marked state of the boom 

barrier is when the boom barrier is fully opened, so the two sensors 

have different initial and marked states. 

                                                                 
1 The complete set of component models and requirement models for the basic model is available at: https://github.com/LMoormann/Basic_Model 

 
Figure 9 Automata of the sensor detecting when the boom barrier is 

open (left) and the sensor detecting when the boom barrier is closed 

(right). 

The traffic light that is used to be able to close the traffic tube has 

a yellow and a red aspect. The aspects of a traffic light are the lights 

that can turn on and off. These aspects are used in the modes of the 

traffic light. The possible modes of the traffic light are off, flashing 

yellow, full yellow, and red. Figure 10 shows the automaton for this 

traffic light. The transitions between the states are the possible 

transitions as specified by Rijkswaterstaat. 

 
Figure 10 Automaton of the traffic light. 

3.2.2 Requirements 

The requirement model consists of state-based expressions that define 

when a component is allowed or not allowed to do something. 

Combining the requirement model with the plant model restricts the 

possible behavior to the desired behavior. In this section, several 

requirements are shown related to the boom barrier and traffic light 

models shown in the previous section. For each requirement, the 

textual description is given as well as the state-based expression. 

1. The upward actuator of the boom barrier is only allowed to 

turn on if the downward actuator is turned off. 

 

actuator_up.𝑐_𝑜𝑛 needs actuator_down.off 

 

2. The upward actuator of the boom barrier is only allowed to 

turn on if the position of the boom barrier is not open. 

 

actuator_up.𝑐_𝑜𝑛 needs ¬ sensor_open.on 

 

3. The upward actuator of the boom barrier is only allowed to 

turn off if the position of the boom barrier is open. 

 

actuator_up.𝑐_off needs sensor_open.on 

 

4. The downward actuator of the boom barrier is only allowed 

to turn on if the traffic light is showing a red light. 

 

actuator_down.𝑐_𝑜𝑛 needs traffic_light.red 

 

5. The traffic light is only to start showing a flashing yellow 

aspect if it not showing a red light or if the boom barrier is 

not closed. 

 

traffic_light.𝑐_flashing needs  

¬ traffic_light.red ˅  ¬ sensor_closed.on 

 

The set of requirements shown here is a representative set of 

requirements for this case study. Note that this is not the complete set 

of requirements1. 

 

3.3 Synthesis results 

As described in Section 2.3, the next step in SBE is synthesizing the 

supervisory controller from the plant model and the requirement 

model. The synthesis results for the basic model and the EHT model 
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are shown in Table 1. First, the number of component definitions, 

component models, and requirement models are given. Furthermore, 

the number of states in the uncontrolled system is shown. The 

synthesis algorithm that is used is multilevel synthesis, as introduced 

in Komenda et al. (2016). For this algorithm, the control problem is 

divided into smaller sub-problems. The algorithm then synthesizes a 

supervisor for each sub-problem, as opposed to synthesizing a single 

supervisor as is done in monolithic synthesis. Table 1 shows the 

number of supervisors that are synthesized for the basic model and 

for the EHT model. The advantage of using multilevel synthesis is 

that supervisors can be synthesized for systems with a number of 

states in the uncontrolled system that is too large for monolithic 

synthesis. Finally, Table 1 shows the sum of the number of states in 

each supervisor. 

Table 1 Results for the basic model and the EHT model. 

 Basic model EHT model 

Component definitions 19 19 

Component models 149 540 

Requirement models 355 1668 

Number of states in the 

uncontrolled system 
1.47 ∙1048 1.87 ∙10226 

Supervisors 43 48 

Sum of the number of states 

in each supervisor 
1.74 ∙1012 1.99 ∙1056 

 

When looking at the results shown in Table 1 one can see that the 

number of component models, the number of requirement models, 

and the number of states of the EHT model are considerably higher 

than the basic model, as can be expected. It does, however, stand out 

that the number of supervisors of the EHT model is not much higher 

compared to the basic model. Further investigation showed that often 

one supervisor is synthesized for components of the same type. For 

instance, in the basic model one supervisor controls the ventilation 

unit of one traffic tube, and in the EHT model all fourteen ventilation 

units are also controlled by one supervisor. The small increase in the 

number of supervisors results from a few exceptions on the previous 

statement, e.g., a second supervisor is synthesized for an extra water 

pump that is added in the EHT model compared to the basic model. 

 

3.4 Validation 

The synthesized supervisory controller is validated using simulations. 

In these simulations, inputs are given by the user to the supervisory 

controller and the response behavior of the supervisory controller is 

analyzed by the user. Incorrect behavior is detected and corrected in 

the component models or the requirement models. The supervisory 

controller is then synthesized using the corrected plant model and 

requirement model, after which the simulations can be used to check 

whether the corrections made are correct or whether there is more 

incorrect behavior. 

One of the most intuitive simulation methods is simulation-based 

visualization, as advocated in Rohrer (2000). In this method, a 

visualization is created of the relevant components of a system and its 

control interface. In the simulation, this visualization is both used as 

an input interface, e.g., pressing a button, and as an output interface, 

e.g., showing the traffic light mode. The visualization for the basic 

model is shown in Figure 11. In the center of this figure, a simplified 

version of the basic model of the tunnel is shown containing the 

tunnel components used to detect an emergency and the components 

used to close a traffic tube. At the top and at the bottom of the figure 

the interfaces are shown that can be used to interact with the tunnel. 

For instance, these interfaces contain buttons to place an obstacle 

beneath the boom barrier to test the obstacle detection sensor of that 

boom barrier. 

Simulation-based visualization has been used to validate the 

controlled behavior of the basic model. The EHT model does not need 

to be validated separately as the only difference between the EHT 

model and the basic model is the number of components of the same 

type and no new functionalities or requirements are added. 

 

4. CONCLUDING REMARKS AND FUTURE WORK 

This paper describes a method in which the supervisory controller of 

an infrastructural system is designed concurrently to the civil design. 

Three engineering methods, traditional engineering, MBE, and SBE, 

are evaluated by estimating the quality of the controller, the 

variability of the time-to-market of the controller, and the evolvability 

of the controller. SBE shows to be the most appropriate design 

method, mainly due to the proven correctness of the controller, the 

possibilities for testing at an early design stage, and the high 

evolvability of the models. 

 
Figure 11 Visualization of the basic model used to perform 

simulations. 

The SBE design method is applied in a case study for the design of 

a supervisory controller of the EHT. In this paper, the modeling steps 

of both the plant model and the requirement model are shown for a 

part of the system. The synthesis procedure is described along with 

numerical results, and the validation method using simulation-based 

visualization is explained. 

This case study showed that it is possible to synthesize a 

supervisory controller for the EHT using SBE. As can be concluded 

from the synthesis results in Table 1, all component models can be 

efficiently modeled using a set of component definitions. These 

definitions also facilitate an easy extension of the basic model to the 

EHT model, as the same definitions can be used. The number of states 

in the uncontrolled system of both the basic model and the EHT 

model showed to be too large to synthesize a monolithic supervisor. 

Instead, multilevel synthesis has been used to synthesize a set of 

supervisors. The final step of this case study consisted of validation 

of the synthesized supervisors. Since simulation-based visualization 

has been used, the behavior of the controlled system was intuitively 

validated by running through various test scenarios and analyzing the 

controlled behavior. 

Future work related to this case study includes the extension of the 

EHT model with manual control. Currently, only the automatic 

behavior of the EHT is modeled, yet many of the components in the 

actual tunnel should be controlled manually as well. Furthermore, the 

addition of fault-tolerant control is part of future work. With this 

addition the controlled behavior is also guaranteed to be correct when 

certain faults in the system are diagnosed. Finally, this case study only 

describes the method of synthesizing the supervisory controller and 
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its validation. The subsequent step is to generate PLC code from this 

supervisory controller, perform controller tests, and eventually 

system tests. 
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