
ITA-AITES World Tunnel Congress, WTC2020 and 46th General Assembly Kuala Lumpur Convention Centre, Malaysia 15-21 May 2020

Design of a Tunnel Supervisory Controller using Synthesis-Based Engineering

L. Moormann1, P. Maessen2, M.A. Goorden1, J.M. van de Mortel-Fronczak1, and J.E. Rooda1
1Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

2Department of Grote Projecten en Onderhoud, Rijkswaterstaat, Utrecht, The Netherlands

E-mail: l.moormann@tue.nl

ABSTRACT: Nowadays, each tunnel is equipped with a supervisory controller that ensures correct cooperation between the tunnel subsystems,

such as lighting, ventilation, and emergency detection sensors. Practice has shown that traditional design methods require a lot of manual effort,

which is error-prone, time consuming, and costly. Therefore, an alternative design method is explored. In this paper, three methods for

designing a supervisory controller are discussed: traditional engineering, model-based engineering, and synthesis-based engineering. They are

assessed based on three criteria, being the quality of the controller, the variability of the time-to-market, and the evolvability. The synthesis-

based engineering method turns out to be the most appropriate design method. In a case study, a supervisory controller for a roadway tunnel

in the Netherlands is designed using synthesis-based engineering and validated using simulation-based visualization. This case study shows

that SBE is a suitable design method for designing a tunnel supervisory controller.

KEYWORDS: Controller Design, Supervisory Controller, Synthesis, Simulation, Validation, Verification

1. INTRODUCTION

Over the years, the method of designing infrastructural systems has

changed drastically. Where traditionally everything was designed

using documents, the use of computer models has now taken over a

majority of that work. Since the 1970s building information modeling

(BIM), a concept explained by Hardin and McCool (2015) and

Kensek (2014), has been used increasingly. In BIM, multiple facets

of infrastructural design are incorporated into a single model. For

instance, architectural, structural, electrical, and mechanical aspects

of the design are included in the same model. One benefit of this is,

for instance, collision detection. This helps finding discrepancies

between the incorporated aspects, as is mentioned by Azhar (2011).

One aspect that is often excluded from the design in BIM is the

supervisory controller. In Figure 1, the positioning of the supervisory

controller is schematically visualized. Figure 1 shows the control

layers of an infrastructural system, as inspired by control structure

visualizations in Lee et al. (2015) and in Melnyk (2016). Layer 1

consists of the mechanical components in the system that need to be

controlled. When considering a roadway tunnel, this includes, for

instance, boom barriers, traffic lights, and ventilation. Each of these

components is connected to actuators and sensors, as shown in Layer

2, and its own resource controller, which constitutes the Layer 3.

Layer 4 is the supervisory controller. This is the main controller that

ensures correct cooperation between all these subsystems. Layer 5 is

the man-machine interface. This is the interface through which the

operator interacts with the system by sending commands and

retrieving information.

Figure 1 Schematic overview of an infrastructural system.

Due to the many interactions between the structural design of the

tunnel and its supervisory controller, it is important to design these

aspects concurrently. The supervisory controller design depends on

infrastructural features such as tunnel dimension, geological location,

and escape concept. Vice versa, the infrastructural design depends on

features related to the implementation of the supervisory controller,

e.g., sensor positioning and cabling.

One of the main challenges in designing a supervisory controller is

proving its correctness. In traditional engineering methods, the

supervisory controller is usually manually programmed based on

documented controller specifications. The supervisory controller is

then tested on the realized tunnel, and mistakes that are found are

corrected. The correctness of the controller therefore depends on the

quality of thetest, which is often limited. In more recent engineering

methods, as surveyed in Estefan et al. (2007), computer models are

used to perform tests in an earlier design stage using model

simulations. This increases the testing possibilities of the supervisory

controller and thus increases the chance that errors are found. The

correctness is, however, still not proven. In the last decades, research

advancements are made on the subject of automatically synthesizing

supervisory controllers. This method is called synthesis-based

engineering and it uses mathematical models to generate the

supervisory controller through algorithms. The main advantage of

using these algorithms is that the correctness of the synthesized

controller is proven.

The contribution of this paper is showing that the synthesis-based

engineering method is suitable for designing a supervisory controller

for a roadway tunnel. Synthesis-based engineering is explained in

more detail and applied to a case study. This case study covers the

process of modeling of the components and the requirements,

synthesizing the supervisory controller, and validating the

synthesized controller.

The structure of the paper is as follows. First, Section 2 describes

in detail three different engineering methods, being traditional

engineering, model-based engineering, and synthesis-based

engineering. In Section 3, a case study of a roadway tunnel is

described where synthesis-based engineering is applied. Finally, in

Section 4, the concluding remarks are presented and future work is

addressed.

2. CONTROLLER DESIGN METHODS

This section discusses three methods for designing a supervisory

controller, being traditional engineering, model-based engineering,

and synthesis-based engineering. The methods are evaluated by

looking at three criteria related to the controller:

• Quality: to what degree does the controller meet its

requirements?

• Variability of the time-to-market: how large is the standard

deviation of the estimated time-to-market of the controller?

• Evolvability: how easily can the controller be extended with

new functionalities or adapted to similar applications?

Note that time-to-market and costs are not specifically considered

here. They can be derived from the other criteria.

ITA-AITES World Tunnel Congress, WTC2020 and 46th General Assembly Kuala Lumpur Convention Centre, Malaysia 15-21 May 2020

Firstly, when designing a controller for a new system, the time-to-

market depends on the quality of the controller as errors made in the

controller design negatively impact the time-to-market. This is

especially the case when controller testing is done after controller

realization and implementation. Secondly, when designing a

controller that resembles previously designed controllers, the

evolvability of the design method influences the time-to-market. A

design method with a high evolvability will in this case result in a

shorter time-to-market.

The costs of a controller design method mostly depend on the time-

to-market, as a shorter time-to-market results in lower costs. The

variability of the time-to-market also affects the costs, as costs will

increase when delays occur in a controller design process.

2.1 Traditional engineering

The traditional engineering method of designing a supervisory

controller is schematically shown in Figure 2. Here, each step is

denoted with an arrow and each symbol represents the product of that

step. A document icon indicates a documented product, and a square

indicates a realized product.

Figure 2 Schematic overview of the traditional engineering method.

First, a set of high-level requirements SR is defined for the system,

which in this case is a roadway tunnel. Based on these requirements,

an initial document-based design SD is created for the system. In the

next step the system design is divided in two parts: plant P and

controller C. The plant consists of the physical components in the

tunnel that are relevant for the supervisory controller. These

components mainly include actuators that need to be controlled, and

sensors that provide information. The physical components that are

not related to the supervisory controller are excluded here. For the

design of both the plant and the controller, first requirements are

defined (PR and CR), and a document-based design is created

following these requirements (PD and CD). The final steps are

building of tunnel, programming the controller, and implementing the

realized controller in the tunnel.

One of the most important steps is the verification and validation

of the controller, as is discussed by Wallace and Fuijii (1989). In

Boehm (1979) and Frey and Litz (2000), software verification is

defined as answering the question “Are we building the product

right?”, whereas software validation answers the question “Are we

building the right product?”. Verification thus checks if the

specifications are correctly implemented and validation checks if the

software product satisfies the intended use.

In the traditional engineering method only validation is possible.

This is done through system testing, after the realization and

implementation of the controller, as is indicated in Figure 2. In this

step, the realized controller is tested in combination with the realized

plant to validate if the controlled behavior is as intended. The correct

implementation of the specifications cannot be guaranteed, unless all

states and scenarios in the system are checked, which is not feasible

for larger systems.

As is shown in Figure 2, the system testing reflects on the initial

system requirements and design. They are performed after the

realization of the controller and the plant. The main disadvantage of

this is that when an error is found during this step, the designer needs

to go back to the document-based design steps of the system,

controller, and plant to correct this mistake. This often costs more

than correcting it during the design phase, as indicated in Boehm and

Basili (2007).

The controller is realized through manual programming. For large

systems containing numerous components, such as a road tunnel, this

is a cumbersome and error-prone task. Hence, the traditional

engineering method has been assessed as follows:

• Quality: Moderate for small systems. Low for large systems,

as a large number of components results in a complex

cooperation between these components, and as extensive

testing is not well feasible.

• Variability: Large, as errors are found at the end of the

design process.

• Evolvability: Low, due to manually written code.

2.2 Model-based engineering

In the last decades, it has become more common to use executable

models when designing systems. A design method using such

executable models is described in Braspenning et al. (2006).

Furthermore, executable models enable testing of realized

components with yet to realize, virtual, components, called hardware-

in-the-loop (HIL) testing, as detailed in Bullock et al. (2004). Figure

3 shows the model-based engineering (MBE) method. The method is

similar to the traditional engineering method with two extra steps,

denoted by arrows, and two extra products, denoted with circles to

indicate models.

Figure 3 Schematic overview of the model-based engineering

method.

As shown in Figure 3, for both the controller and the plant a

modeling step is added after documenting the design. Plant model P

is a model of the possible system behavior based on documented plant

design PD. Controller model C is a model of the controller based on

documented controller design CD.

Figure 3 also shows the validation steps that are possible in MBE.

The first validation step shown is through simulation, as explained in

Wallace and Fuijii (1989) and Pace (2004). In this step, the plant

model is simulated along with the controller model to validate if the

controlled behavior is the same as the desired behavior. Verification

is not possible using simulations for the same reasons as mentioned

for system testing in traditional engineering. Verification can,

however, be performed using formal verification methods, such as the

methods described in Baier and Katoen (2008).

After the controller model is validated, it is realized in PLC code.

The next step is controller testing. Here, the realized controller is

tested on the plant model. The benefit of this is that the actual

controller can be tested before plant realization. The final testing step

is the same as the validation in traditional engineering, which is the

integrated system test with the realized controller and realized plant.

The main benefit of MBE is that most of the validation can be

performed before controller realization and plant realization. This

means that errors in the plant design and the controller design can be

found earlier than in traditional engineering, which results in a more

time- and cost-effective error reparation, as advocated in Boehm and

Vasili (2007). Furthermore, Pace (2004) mentions the challenge of

understanding the system behavior of systems with a large number of

components. Simulations can help to tackle this challenge by giving

ITA-AITES World Tunnel Congress, WTC2020 and 46th General Assembly Kuala Lumpur Convention Centre, Malaysia 15-21 May 2020

more insight in the system behavior. The MBE method has been

assessed as follows:

• Quality: Large for small systems. Moderate for large

systems, as insight can be gained through simulations.

• Variability: Moderate, since errors are found before the

realization steps, resulting in more time-effective reparation.

• Evolvability: Moderate, since the created models can be

adapted and reused for similar systems.

2.3 Synthesis-based engineering

The MBE method enables early validation through simulation and

controller testing, but the correctness of the controller still very much

depends on the test engineer, as is also mentioned in Taipale et al.

(2011). In the 1980s, research was started on the control of discrete-

event systems. The main results of this research are found in Ramadge

and Wonham (1987) and Ramadge and Wonham (1989). The idea is

to model the possible system behavior and the controller

specifications using executable models. This enables the use of

synthesis algorithms, described in works as Vahidi et al. (2006) and

Ouedragogo et al. (2011), to automatically generate the supervisory

controller. These synthesis algorithms are mathematically proven to

generate a controller that adheres to the plant and controller

requirement models. This means that verification is no longer

necessary, since the synthesized controller is guaranteed to adhere to

the specified requirements. Figure 4 shows the synthesis-based

engineering (SBE) method. In SBE, the controller design step has

been removed and instead a requirements model CR is created directly

from the documented controller requirements. Furthermore, the

controller model is no longer manually created, but now synthesized

from the controller requirements model and the plant model.

Figure 4 Schematic overview of the synthesis-based engineering

method.

As can be seen in Figure 4, the same validation steps are possible

as in model-based engineering. This means that the benefits described

in Section 2.2 still hold for SBE. The SBE method has been assessed

as follows:

• Quality: High, since the controller is proven correct.

• Variability: Low, because errors are found early in the

design process, and requirements are guaranteed to be

satisfied so there is no variability in verification time.

• Evolvability: High, since the models created for the plant

and requirement models allow for easy reuse and adaptation.

The method used to create plant model P and requirements model

CR are now explained in Section 2.3.1 and 2.3.2, respectively.

2.3.1 Plant

The first set of models to be created is the plant. As mentioned earlier,

mathematical models are required to synthesize a supervisory

controller. Automata, as described by Cassandras and Lafortune

(2009), are used to describe the system behavior using states and

transitions. Figure 5 shows an example of an automaton definition for

an actuator. The circles indicate the states of the actuator. They

represent the modes the actuator can be in, i.e., the on or off mode.

The arrows between the states indicate the transitions. They are

transitions that can change the state of the actuator, i.e., turning it on

or off. The initial state of the component is indicated by the inward

arrow on the left of the off state. Marked states are indicated by

concentric circles. A marked state of a component represents a rest

state or a state where a task is finished. For the actuator in Figure 5,

the off state is the marked state.

Figure 5 Example of an automaton for an actuator.

A second example of an automaton definition is shown in Figure 6.

Here, the behavior of a sensor is modeled. The difference between an

actuator and a sensor is the type of the transitions. When looking from

the supervisory controller's perspective, it has control over turning the

actuator on and off, yet the supervisory controller has no control over

turning the sensor on and off. This is modeled in automata using so-

called uncontrollable events. These are indicated using dashed

arrows, as shown in Figure 6.

Figure 6 Example of an automaton for a sensor.

Automaton definitions such as the ones shown in Figure 5 and 6

can be instantiated for each component in the tunnel that contains this

behavior, in this case for each actuator and sensor.

2.3.2 Requirements

The second set of models contains the controller requirements. These

requirements are the specification, i.e., rules, that the controller must

follow to ensure safe and correct controlled behavior. The

requirements are modeled with state-based expressions, as introduced

in Markovski et al. (2010). A requirement always specifies the desired

behavior for an instantiated plant model. An example of a

requirement is shown in Equation (1). In this example, actuator_X

is an instantiation of the actuator definition and sensor_Y is an

instantiation of the sensor definition. The requirement expresses that

actuator_X is only allowed to turn on when sensor_Y is on.

actuator_X.𝑐_𝑜𝑛 needs sensor_Y.on (1)

3. CASE STUDY

In this section, a case study of the design of the supervisory controller

for a roadway tunnel is described. The goal of this case study is to

show that the synthesis-based design method is suitable to design a

tunnel supervisory controller.

3.1 System description

The tunnel chosen for this case study is the Eerste Heinenoordtunnel

(EHT, First Heinenoordtunnel in English), which is located south of

Rotterdam, the Netherlands. Figure 7 shows two tunnels, being the

EHT on the right, and the Tweede Heinenoordtunnel (THT, Second

Heinenoordtunnel in English) on the left. The EHT is a two-tube

roadway tunnel that was initially opened in 1969. It is maintained by

Rijkswaterstaat, which is an executive body of the Dutch ministry of

infrastructure and water-management. The EHT is an immersed tube

tunnel in the river the Oude Maas. It was built with the main purpose

to improve the connection between Rotterdam and the area south of

the river. The THT was added later in 1999 and is only accessible for

slow traffic such as cyclists and agricultural traffic. Only the EHT is

included in this case study. The EHT is chosen for this case study

because Rijkswaterstaat is currently in the preparation and planning

phase of renovating this tunnel. In this renovation project both the

ITA-AITES World Tunnel Congress, WTC2020 and 46th General Assembly Kuala Lumpur Convention Centre, Malaysia 15-21 May 2020

physical tunnel components and the tunnel supervisory controller are

renewed.

In this case study, two models have been created: a basic model and

the EHT model. The basic model contains all relevant components of

a roadway tunnel with two traffic tubes and a middle-tunnel-channel.

However, for each component that exists multiple times in a traffic

Figure 7 Birds-eye view of the Eerste Heinenoordtunnel (right) and

the Tweede Heinenoordtunnel (left). Image from

https://beeldbank.rws.nl, Rijkswaterstaat.

tube, e.g. the escape doors, only one is included. This means that the

basic model does not represent all possible behavior of the EHT,

though is does contain all the relevant requirements and interactions

between the different component types. The second model, being the

EHT model, is the instantiated version of the basic model containing

the actual number of components in the EHT.

3.2 Modeling

In this section, some examples of the plant models and the

requirement models created for the basic model1 and the EHT model

are shown. Specifically, the components used to close a traffic tube

are described in detail. These components include the actuators and

the sensors of the boom barrier and the traffic light.

3.2.1 Plant

First, the models of these components are created. In the plant model

all possible behavior is captured. The possible behavior of the boom

barrier is modeled by modeling the movement and the position of the

boom barrier. The movement can be modeled using two actuators:

one to move up and one to move down. The behavior of these

actuators is the same, so the automata are also the same. Figure 8

shows this automaton. This automaton is instantiated twice, once for

the upward actuator of the boom barrier (actuator_up) and once

for the downward actuator of the boom barrier (actuator_down).

The automata of the two actuators have an identical initial and marked

state: when the boom barrier is idle. The initial and marked state of

both automata is thus of the off state.

Figure 8 Automaton of a definition of an actuator.

The position of the boom barrier can be modeled using two sensors:

one to detect when the boom barrier is fully closed

(sensor_closed) and one to detect when the boom barrier is fully

opened (sensor_open). The initial and marked state of the boom

barrier is when the boom barrier is fully opened, so the two sensors

have different initial and marked states.

1 The complete set of component models and requirement models for the basic model is available at: https://github.com/LMoormann/Basic_Model

Figure 9 Automata of the sensor detecting when the boom barrier is

open (left) and the sensor detecting when the boom barrier is closed

(right).

The traffic light that is used to be able to close the traffic tube has

a yellow and a red aspect. The aspects of a traffic light are the lights

that can turn on and off. These aspects are used in the modes of the

traffic light. The possible modes of the traffic light are off, flashing

yellow, full yellow, and red. Figure 10 shows the automaton for this

traffic light. The transitions between the states are the possible

transitions as specified by Rijkswaterstaat.

Figure 10 Automaton of the traffic light.

3.2.2 Requirements

The requirement model consists of state-based expressions that define

when a component is allowed or not allowed to do something.

Combining the requirement model with the plant model restricts the

possible behavior to the desired behavior. In this section, several

requirements are shown related to the boom barrier and traffic light

models shown in the previous section. For each requirement, the

textual description is given as well as the state-based expression.

1. The upward actuator of the boom barrier is only allowed to

turn on if the downward actuator is turned off.

actuator_up.𝑐_𝑜𝑛 needs actuator_down.off

2. The upward actuator of the boom barrier is only allowed to

turn on if the position of the boom barrier is not open.

actuator_up.𝑐_𝑜𝑛 needs ¬ sensor_open.on

3. The upward actuator of the boom barrier is only allowed to

turn off if the position of the boom barrier is open.

actuator_up.𝑐_off needs sensor_open.on

4. The downward actuator of the boom barrier is only allowed

to turn on if the traffic light is showing a red light.

actuator_down.𝑐_𝑜𝑛 needs traffic_light.red

5. The traffic light is only to start showing a flashing yellow

aspect if it not showing a red light or if the boom barrier is

not closed.

traffic_light.𝑐_flashing needs

¬ traffic_light.red ˅ ¬ sensor_closed.on

The set of requirements shown here is a representative set of

requirements for this case study. Note that this is not the complete set

of requirements1.

3.3 Synthesis results

As described in Section 2.3, the next step in SBE is synthesizing the

supervisory controller from the plant model and the requirement

model. The synthesis results for the basic model and the EHT model

ITA-AITES World Tunnel Congress, WTC2020 and 46th General Assembly Kuala Lumpur Convention Centre, Malaysia 15-21 May 2020

are shown in Table 1. First, the number of component definitions,

component models, and requirement models are given. Furthermore,

the number of states in the uncontrolled system is shown. The

synthesis algorithm that is used is multilevel synthesis, as introduced

in Komenda et al. (2016). For this algorithm, the control problem is

divided into smaller sub-problems. The algorithm then synthesizes a

supervisor for each sub-problem, as opposed to synthesizing a single

supervisor as is done in monolithic synthesis. Table 1 shows the

number of supervisors that are synthesized for the basic model and

for the EHT model. The advantage of using multilevel synthesis is

that supervisors can be synthesized for systems with a number of

states in the uncontrolled system that is too large for monolithic

synthesis. Finally, Table 1 shows the sum of the number of states in

each supervisor.

Table 1 Results for the basic model and the EHT model.

 Basic model EHT model

Component definitions 19 19

Component models 149 540

Requirement models 355 1668

Number of states in the

uncontrolled system
1.47 ∙1048 1.87 ∙10226

Supervisors 43 48

Sum of the number of states

in each supervisor
1.74 ∙1012 1.99 ∙1056

When looking at the results shown in Table 1 one can see that the

number of component models, the number of requirement models,

and the number of states of the EHT model are considerably higher

than the basic model, as can be expected. It does, however, stand out

that the number of supervisors of the EHT model is not much higher

compared to the basic model. Further investigation showed that often

one supervisor is synthesized for components of the same type. For

instance, in the basic model one supervisor controls the ventilation

unit of one traffic tube, and in the EHT model all fourteen ventilation

units are also controlled by one supervisor. The small increase in the

number of supervisors results from a few exceptions on the previous

statement, e.g., a second supervisor is synthesized for an extra water

pump that is added in the EHT model compared to the basic model.

3.4 Validation

The synthesized supervisory controller is validated using simulations.

In these simulations, inputs are given by the user to the supervisory

controller and the response behavior of the supervisory controller is

analyzed by the user. Incorrect behavior is detected and corrected in

the component models or the requirement models. The supervisory

controller is then synthesized using the corrected plant model and

requirement model, after which the simulations can be used to check

whether the corrections made are correct or whether there is more

incorrect behavior.

One of the most intuitive simulation methods is simulation-based

visualization, as advocated in Rohrer (2000). In this method, a

visualization is created of the relevant components of a system and its

control interface. In the simulation, this visualization is both used as

an input interface, e.g., pressing a button, and as an output interface,

e.g., showing the traffic light mode. The visualization for the basic

model is shown in Figure 11. In the center of this figure, a simplified

version of the basic model of the tunnel is shown containing the

tunnel components used to detect an emergency and the components

used to close a traffic tube. At the top and at the bottom of the figure

the interfaces are shown that can be used to interact with the tunnel.

For instance, these interfaces contain buttons to place an obstacle

beneath the boom barrier to test the obstacle detection sensor of that

boom barrier.

Simulation-based visualization has been used to validate the

controlled behavior of the basic model. The EHT model does not need

to be validated separately as the only difference between the EHT

model and the basic model is the number of components of the same

type and no new functionalities or requirements are added.

4. CONCLUDING REMARKS AND FUTURE WORK

This paper describes a method in which the supervisory controller of

an infrastructural system is designed concurrently to the civil design.

Three engineering methods, traditional engineering, MBE, and SBE,

are evaluated by estimating the quality of the controller, the

variability of the time-to-market of the controller, and the evolvability

of the controller. SBE shows to be the most appropriate design

method, mainly due to the proven correctness of the controller, the

possibilities for testing at an early design stage, and the high

evolvability of the models.

Figure 11 Visualization of the basic model used to perform

simulations.

The SBE design method is applied in a case study for the design of

a supervisory controller of the EHT. In this paper, the modeling steps

of both the plant model and the requirement model are shown for a

part of the system. The synthesis procedure is described along with

numerical results, and the validation method using simulation-based

visualization is explained.

This case study showed that it is possible to synthesize a

supervisory controller for the EHT using SBE. As can be concluded

from the synthesis results in Table 1, all component models can be

efficiently modeled using a set of component definitions. These

definitions also facilitate an easy extension of the basic model to the

EHT model, as the same definitions can be used. The number of states

in the uncontrolled system of both the basic model and the EHT

model showed to be too large to synthesize a monolithic supervisor.

Instead, multilevel synthesis has been used to synthesize a set of

supervisors. The final step of this case study consisted of validation

of the synthesized supervisors. Since simulation-based visualization

has been used, the behavior of the controlled system was intuitively

validated by running through various test scenarios and analyzing the

controlled behavior.

Future work related to this case study includes the extension of the

EHT model with manual control. Currently, only the automatic

behavior of the EHT is modeled, yet many of the components in the

actual tunnel should be controlled manually as well. Furthermore, the

addition of fault-tolerant control is part of future work. With this

addition the controlled behavior is also guaranteed to be correct when

certain faults in the system are diagnosed. Finally, this case study only

describes the method of synthesizing the supervisory controller and

ITA-AITES World Tunnel Congress, WTC2020 and 46th General Assembly Kuala Lumpur Convention Centre, Malaysia 15-21 May 2020

its validation. The subsequent step is to generate PLC code from this

supervisory controller, perform controller tests, and eventually

system tests.

5. ACKNOWLEDGEMENTS

The authors are grateful to Rijkswaterstaat for funding this research,

and to Han Vogel for his support in the MultiWaterWerk project.

Furthermore, we thank Pascal Etman for the stimulating discussions

and his guidance throughout this research project.

6. REFERENCES

Azhar, S. (2011) “Building information modeling (BIM): Trends,

benefits, risks, and challenges for the AEC industry,”

Leadership and management in engineering, vol. 11, no. 3,

pp241-252.

Baier, C, and Katoen, J. P. (2008) Principles of model checking. MIT

press.

Boehm, B. W. (1979) “Software engineering: R&D trends and

defense needs,” Research directions in software technology.

Boehm, B. W., and Basili, V. R. (2007) “Software defect reduction

top 10 list,” Software engineering: Barry W. Boehm’s lifetime

contributions to software development, management, and

research, vol. 34, no. 1, p75.

Braspenning, N. C. W. M., Van de Mortel-Fronczak, J. M., and

Rooda, J. E. (2006) “A model-based integration and testing

method to reduce system development effort,” Electronic

Notes in Theoretical Computer Science, vol. 164, no. 4, pp13-

28.

Bullock, D., Johnson, B., Wells, R. B., Kyte, M., and Li, Z. (2004)

“Hardware-in-the-loop simulation,” Transportation Research

Part C: Emerging Technologies, vol. 12, no. 1, pp73-89.

Cassandras, C. G., and Lafortune, S. (2009) Introduction to discrete

event systems. Springer Science & Business Media.

Estefan, J. A. (2007) “Survey of model-based systems engineering

(MBSE) methodologies,” Incose MBSE Focus Group, vol. 25,

no. 8, pp1-12.

Frey, G., and Litz, L. (2000) “Formal methods in PLC programming,”

in Cybernetics evolving to systems, humans, organizations,

and their complex interactions, vol. 4. IEEE, pp2431-2436.

Hardin, B. and McCool, D. (2015), BIM and construction

management: proven tools, methods, and workflows. John

Wiley & Sons.

Kensek, K.M. (2014) Building information modeling. Routledge.

Komenda, J., Masopust, T., and Van Schuppen, J. H. (2016) “Control

of an engineering-structured multilevel discrete-event

system,” in 13th International Workshop on Discrete Event

Systems. IEEE, pp103-108.

Lee, L., Bagheri, B., and Kao, H. (2015) “A cyber-physical systems

architecture for industry 4.0-based manufacturing systems,”

Manufacturing letters, vol. 3, pp18-23.

Markovski, J., Van Beek, D. A., Theunissen, R. J. M., Jacobs, K. G.

M., and Rooda, J. E. (2010) “A state-based framework for

supervisory control synthesis and verification,” in 49th IEEE

Conference on Decision and Control (CDC). IEEE, pp3481-

3486.

Melnyk, A. (2016) “Cyber-physical systems multilayer platform and

research framework,” Advances in cyber-physical systems, no.

1, pp1-6.

Ouedraogo, L., Kumar, R., Malik, R., and Åkesson, K. (2011)

“Nonblocking and safe control of discrete-event systems

modeled as extended finite automata,” IEEE Transactions on

Automation Science and Engineering, vol. 8, no. 3, pp560-569.

Pace, D. K. (2004) “Modeling and simulation verification and

validation challenges,” Johns Hopkins APL Technical Digest,

vol. 25, no. 2, pp163-172.

Ramadge, P. J. G., and Wonham, W. M. (1987) “Supervisory control

of a class of discrete event processes,” SIAM journal on

control and optimization, vol. 25, no. 1, pp206-230.

Ramadge, P. J. G., and Wonham, W. M. (1989) “The control of

discrete event systems,” Proceedings of the IEEE, vol. 77, no.

1, pp81-98.

Rohrer, M. W. (2000) “Seeing is believing: the importance of

visualization in manufacturing simulation,” in 32nd

conference on Winter simulation. Society for Computer

Simulation International, pp1211-1216.

Taipale, O., Kasurinen, J., Karhu, K., and Smolander, K. (2011)

“Tradeoff between automated and manual software testing,”

International Journal of System Assurance Engineering and

Management, vol. 2, no. 2, pp114-125.

Vahidi, A., Fabian, M., and Lennartson, B. (2006) “Efficient

supervisory synthesis of large systems,” Control Engineering

Practice, vol. 14, no. 10, pp1157-1167.

Wallace, D. R., and Fujii, R. U. (1989) “Software verification and

validation: an overview,” IEEE Software, vol. 6, no. 3, pp10-

17.

