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Abstract: Supervisory control synthesis is a method to automatically generate a correct-by-
construction supervisory controller. Validation of the synthesized controller is an important step
to guarantee correct and safe system behavior. Especially requirement validation for systems
with numerous components can be a difficult and time-consuming task. This paper proposes
a method that reduces the required validation time and effort of systems through symmetry
reduction, and is based on the concept of isomorphism. Isomorphism of component models and
requirement models means that these models are equivalent in behavior, and therefore only part
of the system needs to be validated. This method is used in an industrial case study, in which
a supervisory controller is synthesized for a road tunnel (the Koning Willem-Alexandertunnel,
the Netherlands). In this case study, the modeling of the plant and the requirements, supervisor
synthesis, simulation, and validation are described.

Keywords: Automata theory, supervisory control, control system synthesis, system reduction,
validation.

1. INTRODUCTION

Over the years, cyber-physical systems (CPSs) have in-
creased in size and complexity due to increasing market-
demands for quality, efficiency, functionality, and safety.
Consequently, the control systems of these CPSs have
become more complex as well, while costs and time-to-
market are desired to decrease. Formal methods, such
as model-based engineering, can help tackling these chal-
lenges. Previous applications for which a control system
was successfully designed using model-based engineering
include an MRI support system in Theunissen et al.
(2014), a waterway lock in Reijnen et al. (2017), trans-
portation systems in Scott et al. (2016), and an automotive
manufacturing line in Albers et al. (2015). Furthermore,
by creating models of the system behavior and system
requirements, formal verification and early validation be-
come possible, as described in Baier and Katoen (2008)
and Braspenning et al. (2006). This way, fewer errors are
made during the design phase, resulting in a reduction in
the time-to-market and in the repair costs.

The schematic overview of a CPS is shown in Fig. 1, in-
spired by the CPS architecture representations in Melnyk
(2016) and Hu et al. (2012). Fig. 1 shows five layers.
Layer 1 includes the mechanical components. Actuators
and sensors in layer 2 are meant to actuate the mechanical
components and monitor their current state, respectively.
Often a third layer of resource controllers is present to
control the low-level dynamic behavior of the mechanical

components. The supervisory controller, in layer 4, is re-
sponsible for correctly coordinating all lower subsystems.
Layer 5 of a CPS consists of the man-machine interface,
through which an operator can monitor the CPS and send
commands to it.

Man-Machine Interface5

Supervisory Controller(s)4

Resource Controller(s)3

2 Actuators Sensors

Mechanical Components1

Fig. 1. Schematic overview of a CPS.

Designing a safe and correct supervisory controller can
be challenging when many individual subsystems need to
cooperate in a CPS. One of the biggest challenges when
designing a supervisory controller is defining the controller
requirements, as discussed in Kotonya and Sommerville
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(1998), and validating the correctness of the resulting
system behavior, as demonstrated in a case study in Liang
et al. (2012). Defining a clear set of requirements is an im-
portant step in controller design. Using supervisory control
theory can help in defining this clear set of requirements.
Supervisory control theory is a formal method in which
two types of models are created. First, all possible behavior
of the discrete-event system (DES) is modeled using au-
tomata. These models are called the component models.
Secondly, requirement models are defined to specify the
desired system behavior. These models can be automata
or state-based expressions. Supervisor synthesis, explained
in Ramadge and Wonham (1987), can then be applied to
automatically generate a supervisor, which by construc-
tion adheres to the defined requirements. Validation of the
component and requirement models is still an important
step as the resulting controlled system behavior can differ
from the intended behavior due to errors in the component
models or the requirement models. This validation can be
a difficult and time-consuming task, especially for large
CPSs.

This paper proposes a method to more efficiently validate
supervisory controllers by reducing the number of compo-
nent and requirement models that need to be validated.
It is thus a step that can be taken before the validation,
so the validation process itself (e.g., through simulations
or hardware-in-the-loop tests) can still be chosen freely.
The method, called symmetry reduction, is based on sym-
metry in the component models of a CPS. More formally,
symmetry in component models is determined using iso-
morphism. Component models are isomorphic when their
behavior is equivalent, thus indicating that validation of
one of these component models is sufficient. Practice shows
that symmetry occurs frequently in real-world systems,
mainly due to the inherent desire of system engineers to
decompose systems into smaller components. Modeling
such components is often done using templates, described
in Grigorov et al. (2011), which inherently introduces sym-
metry in the system. Symmetry reduction can significantly
reduce the complexity of system models, as is shown in a
case study in Section 4.

The idea to use symmetry reduction for verification and
validation is not new. In Ip and Dill (1996), a state-space
reduction method based on symmetry is introduced for the
purpose of verification. Huber et al. (1985) and Schmidt
(2000) use symmetry in the reachability analysis of Petri
nets, and in Miller et al. (2006) symmetry reduction is
used in temporal model checking.

This paper is structured as follows. In Section 2 the con-
cepts and notations of DESs, isomorphism, and supervisor
synthesis are explained. Section 3 focuses on describing the
proposed method of symmetry reduction. The application
of this method to a case study is discussed in Section 4,
including the case description, modeling steps taken, and
results. Finally, Section 5 concludes this paper.

2. PRELIMINARIES

2.1 Discrete-event systems

Discrete-event systems (DESs), explained in Cassandras
and Lafortune (2009), are systems of which the state space

is described by a discrete set and in which state transitions
purely depend on events. One way to model DESs is using
finite-state automata. An automaton P is denoted as a
five-tuple:

P = (Q,E, f, q0, Qm) (1)

with the finite state set Q, the finite event set E, the
partial transition function f : Q × E → Q, the initial
state q0 ∈ Q, and the marked state set Qm ⊆ Q. For the
partial transition function, f(x, e) = y means that in state
x there is an eligible transition labeled with event e to
state y. The event set E can be partitioned into the set of
controllable events Ec and the set of uncontrollable events
Eu. Controllable events are events that can be enabled
by the supervisor, e.g., to turn an actuator on or off,
whereas uncontrollable events cannot be influenced but
only observed, e.g., a sensor turning on or off.

1 2α

β

α

Fig. 2. Graphical representation of an automaton.

The graphical representation of an automaton is shown
in Fig. 2. Circles in this automaton represent states, and
transitions are represented by arrows that are labeled with
an event. Solid arrows indicate controllable events and
dashed arrows indicate uncontrollable events. The inward
arrow on the left of state 1 denotes the initial state and
the double circle at state 2 indicates a marked state.

In the context of supervisory control theory, introduced
in Ramadge and Wonham (1987), two sets of models are
created to describe the behavior of a system. The first set
contains the component models and forms the model of
the plant. The plant describes the possible behavior of the
system and is modeled using automata. The second set
contains the models of the control specifications, called
the requirements. Requirements can be modeled either
using automata or using state-based expressions, which
are described in Markovski et al. (2010). There are two
ways to model a state-based expression, being e needs

q and q disables e. The first describes that event e is
only allowed to occur in state q. The second means the
opposite, thus that e is allowed to occur in all states but
state q.

2.2 Isomorphism

There are multiple concepts of equivalence of finite-state
automata. One of these concepts is the concept of isomor-
phism, described in Glushkov (1961). Two automata are
said to be isomorphic if there exists a bijective mapping
from the first to the second automaton, where the second
automaton preserves the transition function, the output
function, and the initial state. A bijective mapping be-
tween two sets pairs each element of one set with exactly
one element of the other set, and pairs each element of the
other set with exactly one element of the first set.

In Glushkov (1961), isomorphism is formally defined for
Mealy machines. The main difference between Mealy ma-
chines, explained in Mealy (1955), and finite state au-
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tomata, as defined in Section 2.1, is how the output is
determined. In a Mealy machine, the output is determined
based on the input and the current state using a certain
output function. In a finite-state automaton, the only
notion of an output is the set of marker states Qm. In
this paper, the notion of isomorphism for Mealy machines
is transposed to finite-state automata. This involves the
omission of the mapping between the output alphabets of
the two Mealy automata. Furthermore, an additional con-
dition is added for isomorphism of finite state automata,
as is given in equation (6), that defines that marked states
of the first automaton must be mapped to marked states of
the second automaton. The definition of isomorphism for
a finite-state automaton is described below. In the sequel,
a finite state automaton is called an automaton.

An isomorphism h between plant automata P1 = (Q1 ,E1 ,
f1 , q0,1 , Qm,1) and P2 = (Q2 , E2 , f2 , q0,2 , Qm,2), with
controllable event sets Ec,1 and Ec,2, consists of bijective
mappings

h1 : E1 → E2, h2 : Q1 → Q2 (2)

such that, for every q ∈ Q1, e ∈ E1:

h2(f1(q, e)) = f2(h2(q), h1(e)) (3)

h2(q0,1) = q0,2 (4)

e ∈ Ec,1⇔ h1(e) ∈ Ec,2 (5)

q ∈ Qm,1⇔ h2(q) ∈ Qm,2 (6)

Furthermore, if P1 and P2 share events, meaning E1 ∩
E2 6= ∅, condition (7) must also be met for every e ∈ E1 ∩
E2:

h1(e) = e (7)

The definition of isomorphism between plant automata
P1 and P2 can be extended to isomorphism between sets
of automata. Isomorphism between sets of automata is
defined using the following lines.

(1) Let P1 = {P1,1 , P1,2 , .. , P1,n} and P2 = {P2,1 , P2,2 ,
.. , P2,n} be two sets of automata.

(2) Let ΣP1 =
n⋃

i=1

P1,i and ΣP2 =
n⋃

i=1

P2,i be the event

sets of P1 and P2.
(3) P1 and P2 are isomorphic if

(a) There exists a 1-to-1 correspondence between P1

and P2, such that for each automaton in P1

there exists an isomorphism h = {h1, h2} with
the corresponding automaton in P2.

(b) For every h ∈ H, e ∈ ΣP1 ∩ ΣP2 : h1(e) = e,
where H is the set of isomorphisms between P1

and P2.

Isomorphism can also be defined for requirement models.
In the case of automaton requirements, the same formula-
tions can be used as above.

For state-based requirements, a similar reasoning can be
applied. Isomorphism between requirements R1 : e1 needs
q1 and R2 : e2 needs q2 can be determined using the
following steps:

(1) Determine P1, being the automaton containing state
q1, and P2, being the automaton containing state q2.

(2) Determine P1, being the set of automata containing
a transition labeled by event e1, and P2, being the set

of automata containing a transition labeled by event
e2.

(3) Determine if P1 and P2 are isomorphic, with H being
the set of isomorphisms between P1 and P2.

(4) If P1 or P2 is part of P1 or P2, the additional
requirement is that in the 1-to-1 correspondence
between P1 and P2, P1 must be mapped to P2.

(5) Requirements R1 and R2 are isomorphic, if for every
h ∈ H it holds that h1(e1) = e2 and h2(q1) = q2.

The statements above are based on requirements where
q1 and q2 consist of one state. They can, however, easily
be extended for requirements that refer to multiple states,
such as e needs q1 and q2. The additional condition is that
the logical operators (e.g., and, or, not) are the same for
both requirements.

Isomorphism of requirements of the form q1 disables e1
can be defined following the same lines.

2.3 Supervisor synthesis

Supervisor synthesis is a method to generate a supervisor
from a set of component models and a set of requirement
models. Supervisor synthesis guarantees that the supervi-
sor by construction satisfies the following properties:

• Safe: the supervisor prevents all behavior that con-
flicts with the specified requirements.

• Non-blocking: from every reachable state, there exists
a path to reach a marked state.

• Controllable: the supervisor never disables uncontrol-
lable events.

• Maximally permissive: the supervisor disables as few
events as possible, while guaranteeing the three pre-
viously mentioned properties.

A synthesis algorithm that generates supervisory con-
trollers that satisfy these properties is explained in Oue-
draogo et al. (2011). In the sequel, this algorithm is re-
ferred to as monolithic synthesis.

The main challenge of supervisor synthesis is dealing with
the state-space size that grows exponentially with the
number of automata. This exponential growth is called
state-space explosion and is described in Lin et al. (1987).
A possible method to synthesize supervisors for larger
state-spaces than monolithic synthesis can handle is mul-
tilevel synthesis, described in Komenda et al. (2016). In
this method, the uncontrolled plant is divided into mul-
tiple subsystems. This uncontrolled plant has a tree-like
structure, where each node of the tree-structure consists
of a subset of component and a subset of requirement
models. A supervisor can then be synthesized for each
node in this tree. Multilevel synthesis has been used in
case studies that are presented in Komenda et al. (2016);
Goorden et al. (2017); Reijnen et al. (2018), and has shown
to significantly reduce computation time and controlled
state-space sizes.

3. METHOD

A synthesized supervisor is guaranteed to be compliant
to the requirements, so verification of these requirements
is not needed. Validation is still required, as incorrectly
defined requirements may result in incorrect controlled
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behavior. Requirements can be defined too relaxed or too
strict, resulting in undesired or over-restricted behavior,
respectively. Furthermore, errors can be made in the
component models, leading to undesired functionality.

Requirements can be validated at an early design stage
by performing simulations of the supervisory controller.
In these simulations, a hybrid plant can be used instead
of the discrete plant. The hybrid plant contains the same
components as the discrete plant, though extended with
continuous-time behavior to allow for easier and more
intuitive simulations.

Even though simulations are a useful tool to validate
requirements at an early stage, the validation process can
still be an extensive and cumbersome task if it concerns
a large set of component models and requirement models.
Here, a method is proposed that can be used to reduce the
number of components and requirement models that need
to be validated.

The proposed method is as follows. When two systems
are isomorphic, only the behavior of one system needs
to be validated. Let us define a control problem as a
two-tuple, S = (P,R), where P = {P1, P2, .., Pm} is a
set of automata, and R = {R1, R2, .., Rn} is a set of
requirements. Furthermore, let us define the event set, also
called the alphabet, of control problem S as

ΣS =

m⋃
i=1

Ei (8)

and the state set of control problem S as

ΦS =

m⋃
i=1

Qi. (9)

Two control problems S1 and S2 are isomorphic if

(1) the set of automata P1 is isomorphic to the set of
automata P2 with isomorphism set H, and

(2) there exists a 1-to-1 correspondence between R1 and
R2, such that for every requirement inR1 there exists
an isomorphic requirement in R2 using H.

S4

S1 S2

S3

P1

R1

P2

R2

R3

P3

R7

R5 R6

R4

Fig. 3. Schematic overview of two isomorphic control
problems S1 and S2 and a third control problem S3.

Fig. 3 shows a schematic overview of the general case,
where two isomorphic control problems S1 and S2 are
identified that are connected by requirement set R4. A
third control problem S3 is connected to S1 and S2 via
requirement sets R5, R6, and R7. The arrows indicate
to which plant sets a certain requirement set refers. Five
principles are now defined that can be used to reduce the
number of component and requirement models that need
to be validated.

(1) If the components in P1 are validated, the compo-
nents in P2 do not need to be validated.

(2) If the requirements in R1 are validated, the require-
ments in R2 do not need to be validated.

(3) If R4 contains the requirements

e1 needs q2 (10)

e2 needs q1 (11)

with e1 ∈ ΣS1 , e2 ∈ ΣS2 , q1 ∈ ΦS1 , q2 ∈ ΦS2 , and the
automata containing e1 and e2 are isomorphic, with
h1(e1) = e2, and the automata containing q1 and q2
are isomorphic, with h2(q1) = q2, then only one of
the two requirements needs to be validated.

(4) If R5 and R6 contain the requirements

e1 needs q3 (12)

e2 needs q3 (13)

respectively, with e1 ∈ ΣS1 , e2 ∈ ΣS2 , q3 ∈ ΦS3 , and
the automata containing e1 and e2 are isomorphic,
with h1(e1) = e2, then only one of the two require-
ments needs to be validated.

(5) If R7 contains the requirements

e1 needs q2 ∧ q3 (14)

e2 needs q1 ∧ q3 (15)

with e1 ∈ ΣS1 , e2 ∈ ΣS2 , q1 ∈ ΦS1 , q2 ∈ ΦS2 , q3 ∈
ΦS3 , and the automata containing e1 and e2 are
isomorphic, and the automata containing q1 and q2
are isomorphic, then only one of the two requirements
needs to be validated.

Isomorphic systems are equivalent in behavior. If, accord-
ing to the systems engineer, these systems are required to
have the same behavior, validation time can be reduced,
since only the behavior of one of the systems needs to be
validated. Isomorphic systems that, according to the sys-
tems engineer, should have different behavior may indicate
modeling errors in the plant or requirements.

Determining if a system contains isomorphic subsystems
can both be an intuitive task and a difficult task, depend-
ing on the state size and complexity of the component
models and requirement models in these subsystems. In
this paper, the component models and requirement mod-
els have a sufficiently small number of states and events
so that this isomorphism can be determined manually.
Furthermore, most models are created using templates
so isomorphism can be verified even more easily, since
component models that are instantiated from the same
template tend to be isomorphic by construction.
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4. CASE STUDY

4.1 System description

Road tunnels are integrated in road networks to overcome
infrastructural challenges such as bypassing geological
obstacles (e.g., rivers or mountain ranges) or improving
traffic flow in dense urban areas. In Bouwmeester (2018),
a tunnel is defined as “an enclosed part of the road,
separated from the surrounding environment, with the aim
of crossing other infrastructure, often waterways, and/or
increasing the quality of life of the surrounding area.” In
this case study, a supervisory controller is created for the
Koning Willem-Alexandertunnel (KWA-tunnel), shown in
Fig. 4. The KWA-tunnel is located in Maastricht, the
Netherlands. It is the first two-layered road tunnel in the
Netherlands, and has two traffic tubes in each layer.

Fig. 4. Northern entrance of the KWA-tunnel.

The complete tunnel system consists of two sets of two
traffic tubes, and one safe space between the two tubes
in both sets. Within nominal behavior, the tunnel super-
visory controller only monitors the sensors in the tunnel
and does not intervene by driving the actuators. After
an emergency detection a co-operation of multiple tunnel
subsystems is required to correctly handle the emergency.
In this phase, the supervisory controller both monitors the
sensors and drives the actuators. The process of the tunnel
behavior during an emergency is shown in Fig. 5.

Operating

Emergency 

 detection

Traffic tube 

   closure
Evacuation

Recovery

Fig. 5. Tunnel process during an emergency.

In the operating phase, the lighting and ventilation are
active, and emergency detection systems survey the cur-
rent traffic tube state. These emergency detection systems
include sensors to detect standstills, smoke, and opening of
emergency cabinets. When an emergency is detected, the
traffic tube is closed using boom barriers, traffic lights,

and matrix signs. During the evacuation phase, escape
route indication is activated, emergency doors are opened,
and the lighting and air pressure in the safe space are
activated and regulated. The final phase is the recovery
phase, during which all previously mentioned subsystems
are manually reset to the initial settings.

The tunnel is controlled remotely by a tunnel operator.
This operator monitors the current tunnel state using a
man-machine-interface, as well as closed circuit television
images. The tunnel is usually in automatic control mode,
though the tunnel operator is always able to take action
by switching the control mode of a specific system to a
manual mode.

4.2 Modeling

In this section, several examples are given of compo-
nent models and requirement models in the KWA-tunnel
model, to show how isomorphism is determined intuitively
for automata and state-based requirements. Specifically,
models of the traffic tube barrier (TTB) are shown in this
paper. The TTB is a subsystem of the tunnel with the
function of closing a traffic tube, e.g., during an emergency.
Fig. 6 shows an overview of the most relevant TTB com-
ponents, which are the traffic lights and the boom barriers.

The component models described in this section are the
mode of the traffic light, the movement of both boom
barriers, the position of both boom barriers, and the
obstacle detection sensor of both boom barriers. When
modeling the components, all physically possible behavior
is considered. The initial states of all automata are the
states during normal operation, and the marked states are
the states of a fully opened traffic tube. A traffic tube is
fully opened when both boom barriers are open and the
traffic light mode is off.

2

1

Fig. 6. Overview of traffic lights (1) and boom barriers (2).

Modeling the traffic light The traffic light that is used
to close the traffic tube has a yellow and a red aspect. It
has four possible modes being off, flashing, yellow, and
red. The automaton for this traffic light is shown in Fig.
7. The possible transitions between the four modes are
predefined and incorporated as such in this automaton.
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flashingoff yellow red

c off

c flashing
c yellow c red

c flashing

Fig. 7. The mode of the traffic light.

Modeling the boom barriers The boom barrier model
consists of two actuator models, regulating the movement
of the boom barrier, and two sensors, detecting the posi-
tion of the boom barrier. The physical relation of both
the movement (the barrier cannot move up and down
simultaneously) and the position (the barrier cannot be
open and closed simultaneously) are incorporated in these
models. Each event name in the component models of
a boom barrier is appended with i, with i ∈ {1, 2} to
distinguish the events of the first and the second boom
barrier. The automaton displayed in Fig. 8 shows the
movement model of a boom barrier.

idle downwardupward

c down i

c stop i

c stop i

c up i

Fig. 8. The movement of a boom barrier.

Fig. 9 shows the automaton for indicating the position of
a boom barrier, which is the combination of the lower and
upper position sensor. The transitions in this automaton
are uncontrollable, since it concerns sensor detections.

intermediate closedopen

u closed on i

u closed off i

u open off i

u open on i

Fig. 9. The position of a boom barrier.

A third sensor is also part of the boom barrier, which
detects if an obstacle is present below the boom barrier.
The automaton for this sensor is shown in Fig. 10.

off onu obstacle on i

u obstacle off i

Fig. 10. The obstacle detection sensor at a boom barrier.

When looking at the component models of both boom
barriers, one can see that the component model of the
movement of boom barrier 1 is isomorphic to the com-
ponent model of the movement of boom barrier 2. Fur-
thermore, the component models of the position of the
boom barriers are isomorphic, as well as the component
models of the obstacle detection sensors. It is therefore
determined that boom barrier 1 is isomorphic to boom
barrier 2. The possible behavior of the second boom barrier
is thus equivalent to the possible behavior of the first
boom barrier. Following Principle 1 of Section 3, one can
establish that the component models of only one of the
boom barriers need to be validated.

Modeling the requirements Several requirements related
to the traffic light and the two boom barriers are described
here, and the principles from Section 3 are used to deter-
mine which requirements do not need to be validated.

Following Principle 2 in Section 3, only one requirement of
the requirement pairs listed below needs to be validated:

(1) A boom barrier may only move up if the boom barrier
position is not open.

c up 1 needs ¬boombarrier 1 position.open

c up 2 needs ¬boombarrier 2 position.open

(2) A boom barrier may only move down if the boom
barrier position is not closed.

c down 1 needs ¬boombarrier 1 position.closed

c down 2 needs ¬boombarrier 2 position.closed

(3) A boom barrier may only move down if the obstacle
detection is off.

c down 1 needs obstacle detection 1.off

c down 2 needs obstacle detection 2.off

Following Principle 4 in Section 3, only one requirement of
the requirement pairs listed below needs to be validated:

(1) A boom barrier may not move down if the traffic light
mode is not red.

¬traffic light.red disables c down 1

¬traffic light.red disables c down 2

(2) The traffic light may not turn off if a boom barrier
position is not open.

¬boombarrier 1 position.open disables c off

¬boombarrier 2 position.open disables c off

(3) A boom barrier may only stop if the boom barrier
movement is downward and either the obstacle detec-
tion is on or the traffic light mode is not red.

c stop 1 needs boombarrier 1 movement.downward

∧(obstacle detection 1.on ∨ ¬trafficlight.red)
c stop 2 needs boombarrier 2 movement.downward

∧(obstacle detection 2.on ∨ ¬trafficlight.red)

4.3 Results

A supervisory controller has been synthesized for three
different models of the KWA-tunnel: for one, two, and four
traffic tubes. Monolithic synthesis proved to be impossible
for these models due to memory issues, so multilevel
synthesis has been used. Table 1 shows results of the
synthesis for all three models, including plant models,
requirement models, number of supervisors, and state-
space sizes.

Table 1. Results for the one, two, and four tube
KWA-tunnel model.

One tube Two tubes Four tubes

Component models 184 404 808
Requirement models 360 756 1482
Supervisors 33 70 139
Uncontrolled state-space 3.5 · 1051 1.4 · 10111 2.0 · 10222
Controlled state-space 3.0 · 1021 5.0 · 1026 8.9 · 1031
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The validation of the supervisory controllers has been
performed through simulations. A hybrid model is created
to incorporate the continuous time behavior, such as the
movement of the boom barriers. Furthermore, a visualiza-
tion of the system has been created, as shown in Fig. 11 for
the two-tube model. The upper part of the visualization
represents the system in its current state, while the man-
machine interface can be seen in the lower part of the
visualization.

CaDo Entry Entrance Central Exit Leave

CaDoEntryEntranceCentralExitLeave
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CCTV Camera:
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CCTV Camera:
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Ventilation mode: Ventilation mode:

Operating

Operating Operating

Fig. 11. Visualization of the two-tube model.

Symmetry reduction has been used to validate the models
of the KWA-tunnel more efficiently. To give an indication
of the effectiveness of symmetry reduction, Table 2 shows
the number of component models and requirement models
that did not need to be validated as well as the total
number of component models and requirement models.
The table also shows how many requirements did not need
to be validated for each principle from Section 3.

Table 2. Number of component and require-
ment models that do not need to be validated

per KWA-tunnel model.

One tube Two tubes Four tubes

Components: 184 404 808
Principle 1 164 380 784

Requirements: 360 756 1482
Principle 2 58 416 1136
Principle 3 15 19 27
Principle 4 167 171 169
Principle 5 0 0 0
Total 240 606 1332

As can be concluded from Table 2, symmetry reduction
is very effective for validating the component models
of all three cases. This is mainly due to the fact that
most components can be instantiated from a small set of
templates, such as actuators, sensors, and buttons. The
effectiveness of symmetry reduction increases with the
number of component models. The highest effectiveness
is seen in the four-tube model, where 784 of the 808
component models (> 95%) do not need to be validated.

When looking at the results for the requirement models,
symmetry reduction shows a decent effectiveness in the
one-tube model, as 240 of the 360 requirements do not
need to be validated. This is mostly due to Principle
4. Furthermore, the effectiveness of symmetry reduction

increases for the validation of the two- and four-tube
models. As can be seen for these models, almost all
requirements that do not need to be validated follow
Principle 2, since these requirements are isomorphic to
the requirements of one traffic tube. The two-tube model
introduces several new requirements, related to safe space
and inter-tube behavior, that do need to be validated.
The resulting difference is that 150 requirements need
to be validated in the two-tube model, compared to 120
in the one-tube model. The four-tube model introduces
no new requirements compared to the two-tube model.
Several requirements are, however, adapted to link all four
traffic tubes. For the four-tube model 150 of the 1482
requirements need to be validated.

It turns out that none of the models in this case study
contain requirements that follow Principle 5. However,
to show that there could exist requirements that follow
Principle 5 in a such a model, two requirements from the
two-tube models are adapted and shown below.

tube 1.c support needs tube 2.emergency ∨ safe space.emergency

tube 2.c support needs tube 1.emergency ∨ safe space.emergency

In these adapted requirements, an emergency can occur
either in a traffic tube or in the safe space, resulting in one
or two supporting traffic tubes to handle this emergency.

5. CONCLUDING REMARKS

This paper introduces the method of symmetry reduction
for supervisory controller behavior that can be used to
more efficiently validate models that contain isomorphic
component models and requirement models. In the KWA-
tunnel case study, component models and requirement
models are created for one, two, and four traffic tubes.
Multilevel synthesis was used to synthesize supervisory
controllers. Symmetry reduction was used to efficiently
validate these models, thus reducing the total validation
time and effort. The effectiveness of symmetry reduction
has been expressed by the number of component models
and requirement models that did not need to be validated
compared to the total number of models.

In this case, isomorphism has been determined manually
for both the component models and the requirement mod-
els, as this was an easy task due to the relatively small
component models and the use of template instantiations.
However, addition of automatic detection of isomorphism
can further reduce validation time, and remove the pos-
sibility of manual mistakes. Algorithms for isomorphism
detection have been investigated in previous work as Miko-
lajczak (1991), and could be used as a basis for the imple-
mentation of an algorithm to determine isomorphism.

In this paper, symmetry reduction is used to more effi-
ciently validate the component models and requirement
models of a synthesized supervisory controller. Future
work on symmetry reduction includes reducing the state-
space size for the purpose of more easily synthesizing a
supervisory controller. In this application, when a system
is symmetrical in behavior, a supervisor can be synthesized
for part of the system and translated to the other part of
the system since the behavior is equivalent. Previous work
on exploiting symmetry for the purpose of synthesis is
shown in Eyzell and Cury (2001). In contrast to this work,
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our notion of symmetry is based on isomorphism between
automata and state-based requirements, as opposed to a
language-based equivalence.
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