The Road Ahead for Supervisor Synthesis

M.A. Goorden, L. Moormann, F.F.H. Reijnen, J.J. Verbakel, D.A. van Beek,
A.T. Hofkamp, J.M. van de Mortel-Fronczak, M.A. Reniers, W.J. Fokkink,
J.E. Rooda, and L.F.P. Etman

Eindhoven University of Technology, The Netherlands

Abstract. This paper reports on recent research advances in supervi-
sor synthesis, as well as industrial applications and future research chal-
lenges, especially in the context of a research project funded by Rijks-
waterstaat, responsible for the construction and maintenance of infras-
tructure in the Netherlands.

1 Introduction

Rijkswaterstaat, as part of the Dutch Ministry of Infrastructure and Water Man-
agement, is responsible for the design, construction, management, and mainte-
nance of the main infrastructure in the Netherlands. This includes roads, bridges,
tunnels, and waterway locks. In the coming decades, many such systems will be
renovated or replaced, as they reach their end of life cycle or have capacity prob-
lems. In the past, they were engineered, built, and maintained on an individual
project basis, resulting in a large variety of solutions to the same engineering
problem. Rijkswaterstaat is seeking methods for modularization and standard-
ization to increase quality and evolvability, decrease life-cycle costs, and enable
so-called smart mobility. More and more functionality of infrastructural systems
is being automated. The quality of supervisory controllers for such systems has
a significant impact on their availability and reliability.

Supervisory control theory is a model-based methodology for designing su-
pervisory controllers. Supervisor synthesis allows to automatically calculate a
supervisor. From the supervisor, a supervisory controller can be derived. Taking
the uncontrolled behavior of the system components as starting point, an engi-
neer needs to formulate system requirements that rule out all undesired behavior,
while allowing desired behavior. The supervisor is then synthesized automati-
cally from the requirements together with the unrestricted system behavior. This
is achieved by blocking controllable (output) events, such as starting a motor,
as opposed to uncontrollable (input) events, such as sensor reports, over which
the supervisor exerts no control. This automatic synthesis may at first sound as
some kind of wizardry, but in essence the underlying idea is simple. Let us take
the example of a bridge. The software units that drive the different components
of the bridge, such as barriers, traffic lights, and the motors to lift the bridge
decks, are all supposed to be operational. The supervisor is only required to
block illegal activities, such as opening the bridge while the barriers have not

yet closed. Such illegal activities are pre-determined from the requirements and
then made unreachable by blocking as few controllable events as possible.

Rijkswaterstaat, in an effort to regulate and unify the system designs of its
diverse contractors, has developed a strict regime of structuring and formulating
requirements, which form the starting point and basis for system implementa-
tions. Additionally, infrastructural systems under their responsibility are mostly
discrete-event systems with a clear distinction between controllable and uncon-
trollable events. This makes supervisor synthesis a suitable engineering method
for these applications, which can contribute to the aim of Rijkswaterstaat to
increase the quality and evolvability of its supervisory controllers.

In the past, the applicability of supervisor synthesis in real-life systems en-
gineering was often limited due to the heavy demand on computational power,
both in time and memory. Recent research developments have helped to make
this methodology applicable to large real-life infrastructural systems. This paper
discusses some of these developments as well as several case studies in the con-
text of the Rijkswaterstaat project, which all use the CIF 3 toolset. These case
studies concern the development of supervisory controllers for bridges, tunnels,
waterway locks, and roadside systems. We also discuss future research challenges
to further strengthen the applicability of supervisor synthesis.

2 Supervisory control theory

The task of a supervisory controller is to control the different components and
subsystems such that the entire system, called the plant, behaves as intended. A
supervisory controller is part of a control stack with different layers, see Fig. 1
below. A human operator sends instructions to the supervisory controller via a
graphical user interface (GUI), such as to raise a sluice gate inside a waterway
lock. The GUI moreover displays sensor data from the plant, such as the height
of the water inside the lock. At the plant, actuators drive the mechanical com-
ponents of the plant, while sensors pick up information regarding the plant. A
supervisory controller constitutes a layer between the GUI and the actuators and
sensors. Signals to actuators can be blocked by the supervisory controller, i.e.,
are controllable, if they would lead to violation of a requirement on the plant’s
behavior. Signals from sensors are uncontrollable for the supervisory controller
and are always allowed to occur.

Supervisory control theory, initiated by Ramadge and Wonham [26], auto-
matically synthesizes a supervisor from formal specifications of (1) the plant
components and (2) the requirements imposed on the behavior of the plant.
This supervisor can then be used to derive a supervisory controller, as shown
in [4,15]. Here we will focus on formal specifications expressed by so-called ex-
tended finite automata (EFAs), consisting of finite automata embellished with
discrete variables. Guards and updates can be added to transitions that use such
variables. EFAs have the same expressive power as finite automata [36], but tend
to provide a much more concise representation of the modeled behavior.

: Operator :
: Graphical User Interface :
: Supervisory Controller(s) :
: [Actuators) [Sensors) :
: Mechanical Components :

Fig. 1. Schematic view of a control system structure of an infrastructural system

The components of the plant are specified as EFAs and put in a synchronous
product, meaning that a certain event, with a particular action name, can only
be performed if each component that contains this event is in a state where it
can perform this event. This synchronous product specifies the behavior of the
entire plant. The requirements that are imposed on the plant behavior are also
specified in the form of EFAs. To achieve a supervisor, the requirements are
added to the synchronous product. As a result, events that can be performed by
the plant may be blocked because they are not allowed by a requirement.

The requirements concern safety properties, making sure that no bad things
will ever happen. To ensure liveness, meaning that eventually something good
will happen, some states in the EFAs of plant components can be marked by the
modeller. A marked state in the synchronous product means that all individual
plant components are in a marked state, expressing that the plant is in a steady
position, e.g., the bridge deck is closed, the barriers are open, and the signals are
green. It must be guaranteed that the plant can always reach a marked state.
Therefore, (events leading to) states that violate this property are blocked.

In summary, the synthesized supervisor is (1) safe, meaning that all require-
ments are satisfied, (2) controllable, meaning that it only blocks controllable
events, and (3) nonblocking, meaning that the plant can always reach a marked
state. Moreover, it is (4) mazimally permissive, meaning that the supervisor
imposes the minimum restrictions to enforce the first three properties.

A nice introduction to supervisory control theory is offered in [2].

3 Techniques to enhance supervisor synthesis

This section discusses different techniques that help to scale supervisor synthe-
sis to large-scale industrial case studies, how additional features such as fault-
tolerance and counterexample generation can be included in the synthesis pro-
cess, and that implementation code for a programmable logic controller (PLC)
can be generated from a supervisor.

3.1 Multilevel synthesis through design structure matrices

The number of states of a plant grows exponentially with its number of compo-
nents. For example, in [29], a supervisor was synthesized for a relatively small
waterway lock, called Lock III, consisting of a single chamber in the Wilhelmina
canal at the city of Tilburg. The combination of 4 incoming and 4 outgoing
traffic lights, 2 gate paddles, 2 culverts, 4 gates, 2 equal-water sensors, and 25
GUI buttons gives rise to an uncontrolled plant that has 6.0 - 1032 states. In to-
tal systems engineers formulated 142 requirements for this plant. Its controlled
state space, monitored by the maximally permissive supervisor, still consists of
5.9 - 10%* states. A key challenge in performing supervisor synthesis for large
real-life infrastructural systems is to cope with this inherent state space explo-
sion problem. The experiments on Lock III reported in this section were redone
especially for the current paper, to achieve consistent numbers on sizes of state
spaces for the different optimizations. All models and results can be found on a
Git repository?.

In modular supervisor synthesis [41], for each individual requirement a dif-
ferent “local” supervisor is synthesized. An event is enabled by the overall su-
pervisor if all local supervisors enable it. An important optimization with regard
to modular synthesis, proposed in [25], is to consider for each requirement only
those plant components that have at least one event in common with this require-
ment. This can lead to a drastic reduction in the sizes of the local supervisors.
Multilevel synthesis [10] reduces the large number of local supervisors generated
in modular synthesis by grouping together subsets of components and their re-
lated requirements and generating a local supervisor for each such cluster. A key
underlying idea is to keep track which pairs of distinct plant components have
a requirement in common, in the sense that the requirement is related to both
components. This is documented in a so-called design structure matrix (DSM),
with one row as well as one column for every plant component. A field in the
matrix is colored gray if the components associated to its row and to its column
have a requirement in common. An algorithm from [40] determines a clustering
of components such that gray fields in the matrix are placed as close as possible
to the diagonal. In Fig. 2, a DSM for Lock III is depicted. The clustering al-
gorithm in this case determines clusters which can be mapped back to physical
entities: gates, traffic lights, water leveling systems, and the stop and emergency
stop.

! https://github.com/magoorden/SETTA2020

Synthesis is performed for the plant components in each cluster separately,
together with all related requirements for this cluster. Synthesis continues in a
hierarchical fashion: next it is performed for related clusters of clusters, et cetera,
until finally the overall supervisor for the entire plant is computed. Multilevel

synthesis for Lock III produces local supervisors that in total require 1.8 - 1023
024

states, as compared to the aforementioned 6.0 - 1 states for a monolithic

supervisor.

Traffic lights|upstream

@8 47 Gates upstream
| L] LIl]

Fig. 2. Clustered DSM for Lock III

It turns out to be very important for the efficiency of multilevel synthesis to split
a requirement into smaller requirements when possible [8]. The reason is that
this gives rise to fewer relations between the different plant components, so that
smaller clusters of components can be synthesized at the start. For example, one
requirement of Lock III states that it is unsafe to open a gate when:

— the water-leveling system at the other side is not closed, or
— the gate at the other side is not closed, or
— there is no equal water over the gate.

This requirement can be divided into 13 smaller requirements: (1) split the 3
disjuncts; (2) disentangle references to multiple system states (e.g., “not closed”);
and (3) disentangle references to multiple plant components (e.g., gates consist
of multiple components). Overall, in [8], the 142 requirements for Lock III are
split into 358 requirements. As a result, the number of states required for the
local supervisors drops to 4.5 - 10 states.

Similar to splitting requirements, multilevel synthesis is also strengthened by
splitting plant components into smaller components. In [9], the 35 components
are split into 51 smaller components, yielding a reduction of the local supervisors
to 1.5 - 10'° states with respect to the original model.

Combining splitting of requirements and splitting of plant components im-
proves the efficiency of multilevel synthesis significantly. Having 51 plant com-
ponents and 358 requirements results in the number of states required for the
local supervisors to drop spectacularly to 2.9 - 1010 states.

Bus structures inside a plant, which have requirements in common with most
of the plant components, turn out to cause a bottleneck for multilevel synthe-
sis. The stop and emergency stop for Lock III form an example of such a bus
structure. Bus components are usually considered only at the final phase of mul-
tilevel synthesis, when the overall supervisor is computed. This tends to produce
a relatively large supervisor at this final phase. Therefore, in [5] it is proposed
to treat bus components separately in multilevel synthesis. At each synthesis
phase, concerning certain non-bus components and the requirements they have
in common, the bus components that are related to at least one of these require-
ments are included, thus avoiding the need to treat the bus structure separately
at the very end. For instance, for Lock III, treating bus components in this way
produces local supervisors that in total require only 7.7 - 10® states.

Next to guiding the hierarchical structuring of clusters of components within
multilevel synthesis, DSMs also help in capturing modeling errors of the actual
plant. For example, let us consider only the stop and emergency stop of the DSM
for the original model of Lock III, detailed in Fig. 3

emergencystop:

Fig. 3. Snippet of the clustered DSM for Lock III indicating a modeling error

Since the functionality of stopl, stop2, stop3, and stop4 is similar, one would
expect that the rows for these four components in the DSM would be similar.
However, the highlighted row for stop3 is clearly distinct from the rows for
the other three components. This observation led to the detection of a small but

serious copy/paste error in several requirements formulated by system engineers,
where the event name stop4 should actually be stop3. Based on a series of
industrial case studies, in [7] three modeling guidelines are formulated in relation
to DSMs. (1) Similar components should have similar relationships in a DSM.
(2) A DSM should not contain an empty row or column. (3) A DSM should
not have independent clusters. The first two guidelines led to the detection of
modeling flaws in plant components and requirements, while the third guideline
led to the detection of missing requirements.

In this section Lock III was used as a running example. Another illuminating
example of the strength of combining multilevel synthesis with DSMs can be
found in [28], where this approach is applied to a small-scale production line,
from modeling the plant and its requirements up to the automatic generation of
controller code for implementation.

3.2 Additional features for supervisor synthesis

We discuss several advancements and case studies in supervisor synthesis that
add features needed for industrial applications and pave the way to apply su-
pervisory control theory from formal plant models and requirements up to the
generation of efficient PLC code for a controller that implements the supervisor.

Nonblockingness check for modular synthesis The Achilles’ heel of modular su-
pervisor synthesis is that a collection of nonblocking local supervisors may still
induce a blocking overall supervisor, meaning that the latter supervisor con-
tains states from which no marked state is reachable. In [18], a method is in-
troduced to efficiently check for nonblockingness, by first performing a string of
blockingness-preserving abstraction steps on the local supervisors, resulting in a
simplified monolithic supervisor, which is blocking if and only if the overall su-
pervisor induced by the local supervisors in blocking. In [11], reversals of those
abstraction steps are defined, so that a blocking simplified supervisor can be
used to transform the corresponding overall supervisor into a nonblocking one
(which is safe, controllable, and maximally permissive).

Achieving nonblockingness through a dependency graph In [6], properties are for-
mulated on plant components and requirements which ensure that the resulting
supervisor is nonblocking. Roughly these are: (1) plant automata are strongly
connected, (2) different plant automata do not have events in common, (3) re-
quirements express in which states some plant automata must be to perform
some controllable event, and (4) the plant automata mentioned in a require-
ment only consist of uncontrollable events. Properties (1) and (4) ensure that
plant components can always be brought in a state needed to satisfy a certain
requirement, as expressed in (3). And (2) makes sure a plant component can be
brought in a desired state while the other plant components remain stationary.
In modular synthesis this allows to determine clusters where nonblockingness is
obtained for free.

In practice, a stumbling block for this method tends to be violation of prop-
erty (4). Therefore, in [12], a dependency graph is introduced, in which the nodes
are plant components and there is an edge from a node P to a node Q@ if a re-
quirement expresses a condition on a controllable event that occurs in plant P,
while the requirement requires plant @ to be in a certain state. Plant components
that do not exhibit an infinite path in this graph, do not give rise to blocking
behavior. For example, the following dependency graph in Fig. 4 is generated
for the model of Lock III.

®4f 4 W9Lss Bas
030
‘26
o2y
0o 19y
opo 36
32
65— 939 04504,
ez 08845945 S5
50 b)
0> ®49 13
&57 S1pis ®70 Fars
%2, BBz 02 S5 ¥ ®2

Fig. 4. The dependency graph for Lock III

The strongly connected components in this graph, drawn in red, require a
nonblockingness check, as well as nodes from which a path exists to a strongly
connected component, drawn in purple. In total 27 plant components and related
requirements of Lock III can thus be omitted from the nonblockingness check.

Symmetry reduction Validation of supervisory controllers is an important step
to guarantee correct and safe system behavior. In [20], a method is proposed to
significantly reduce the validation effort by exploiting that often different plant
components are equivalent in behavior, and likewise for different requirements,
modulo some renamings of events. This symmetry reduction was essential in
a case study on tunnel systems. A supervisor for subsystems such as lighting,
ventilation, and emergency detection in the First Heinenoordtunnel, a road-
way tunnel with two traffic tubes located south of the city Rotterdam, could
be validated without exploiting symmetry [21]. However, for the King Willem-
Alexandertunnel at the city of Maastricht, the first two-layered roadway tunnel

in the Netherlands, with two traffic tubes at each layer, the supervisor, became
so large that it could only be validated after applying symmetry reduction [20].
This research line has also been combined successfully with the work on depen-
dency graphs in [22].

Counterexample generation The generated supervisor may not be according to
the expectations of the user, typically because it does not allow any plant be-
havior. In such cases it is desirable to obtain feedback on the synthesis process,
for instance to detect a modeling error that causes aberrations in the generated
supervisor. In [38], a collection of deduction rules are presented that allow to
derive reasons for the absence of a state in a supervised system and provide
feedback to the user. An adaptation of a standard synthesis algorithm is pro-
vided to automatically obtain a cause for each state that is omitted from a plant
during synthesis.

Synthesis of fault-tolerant supervisors A fault-tolerant supervisor [19] enables the
plant to continue its intended operations, possibly with degraded service, when
some of its components fail or a fault occurs, such as a broken wire, defect sensor,
or blocking actuator. In [24], after detection of a fault, an alternative supervisor
is activated, designed specifically for this type of fault. An alternative approach
is followed in [34], where the same supervisor controls the plant before and after
the occurrence of faults. Instead, the models of the plant components and the
requirements are divided into fault-free and post-fault behavior, where the latter
depends on the type of fault that is diagnosed. This approach was successfully
applied to synthesize a fault-tolerant supervisor for the Algera bridge over the
river IJssel (see Fig. 5), which consists of two vehicle lanes, a lane for cyclists,
and a lane for pedestrians. This supervisor allows the bridge to continue its
operation when only one out of a pair of stop signs breaks down, and restricted
operation when one of a pair of barriers remains stuck in the closed position.
Furthermore, it takes appropriate action if the bridge deck opens erroneously.

Continuous-time simulation A hybrid plant model is obtained by extending the
discrete-event model used for synthesis with continuous behavior. This is mod-
eled by continuous variables that change their values at the passing of time,
defined by a differential equation that can depend, for example, on the current
location of a plant component. Additionally, continuous variables may change
their values during an event. In [30], this approach was used to simulate a super-
visor for the Algera complex, consisting of the aforementioned bridge together
with a waterway lock and two storm surge barriers.

Hardware-in-the-loop simulation While model simulation is a powerful tool for
validation, it offers only a partial analysis. Aspects related to the execution of
the supervisory controller on the hardware and communication with subsystems,
such as GUIs, cannot be validated with model simulation. To bridge the gap be-
tween model simulation and realization, hardware-in-the-loop simulation can be
performed after model simulation and before implementation, meaning that the

Fig. 5. The Algera complex consisting of a lock, a bascule bridge, and two storm surge
barriers [https://beeldbank.rws.nl, Rijkswaterstaat / Joop van Houdt].

supervisory controller realization and its subsystems are connected to a model of
the plant. In [35], an engineering method is proposed that combines supervisor
synthesis with hardware-in-the-loop simulation. Models created for synthesis are
refined and re-used to obtain models for model simulation and hardware-in-the-
loop simulation. This method was applied successfully to the Prinses Marijke
complex in the Amsterdam-Rhine canal, consisting of two waterway locks and a
floodgate as protection from the river Lek.

Confluence and finite response While nonblockingness of a supervisor guarantees
that always a marked state of the plant is reachable, it does not guarantee that
a deterministic supervisory controller implemented on the basis of such a super-
visor ever reaches a marked state [4]. In the transformation from a synthesized
supervisor to an actual supervisory controller that drives the mechanical plant by
enforcing events, it is important to know whether the supervisor exhibits finite
response and confluence [3]. A state of the plane is called stable if the super-
visory controller cannot enforce any event, typically because all events leaving
this state are uncontrollable. Usually the marked states of a plant are stable.
Finite response guarantees that each execution trace allowed by the supervisor
eventually returns to a stable state, so that clearly this property is also satis-
fied by the supervisory controller implemented on the basis of this supervisor.
This ensures that a supervisory controller cannot continuously enforce events.
Confluence of a supervisor guarantees that each enforcement of events by the

10

supervisory controller leads back to the same stable state. In [31], building on
earlier work in [15], sufficient criteria are given to guarantee that a synthesized
supervisor exhibits finite response, and also sufficient criteria to guarantee that
it is confluent.

Generation of PLC code For the implementation of supervisory controllers, often
a programmable logic controller is used. In [37], PLC code is generated automat-
ically from a model of the supervisor. In recent follow-up work, the structure of
generated PLC code has been improved and optimization techniques have been
used to reduce its variability in execution times.

In industry, supervisory controllers need to adhere to strict safety standards.
To achieve these standards, safety PLCs are used, which contain diagnostic func-
tions to detect internal faults in the hardware and avoid unsafe situations that
could be caused by such faults. For a safety PLC implementation, the super-
visory controller has to be split into a regular and a safety part. In [27], a
method is presented that automatically performs this split. It has been used to
generate controller code for the Oisterwijksebaanbrug, a rotating bridge in the
Wilhelmina canal at the city of Tilburg, which was then successfully employed
for real-life operation of the bridge [32]. This application demonstrated all the
necessary steps to go from a specification to an implementation of a supervisor,
driving home the point that supervisory control theory is a viable engineering
approach to transform a consistent and complete set of well-defined requirements
into efficient PLC code for controlling industrial infrastructural systems.

Tooling The reported case studies have all been carried out using the CIF 3
toolset [1]. It is based on networks of hybrid automata with invariants and dif-
ferential algebraic equations. Automata can interact in several ways: multi-party
synchronization via shared events; and shared variables (local write, global read).
CIF 3 supports a rich set of data types and expressions (e.g., lists, sets, dic-
tionaries, and tuples), functions, conditional updates, and multi-assignments.
Large-scale systems can be modeled conveniently owing to parametrized process
definitions and instantiations of automata, grouping of arbitrary components in
sub-scopes, and an import mechanism.

The synthesis algorithm of CIF 3 (based on the algorithm of [23]) computes
various predicates, such as conditions under which controllable events may take
place in the controlled system, and the initialization predicate of the controlled
system. These predicates are included in the supervisor that results from syn-
thesis. Crucial for the good performance of the toolset is that internally such
predicates are represented compactly in the form of binary decision diagrams.
Parts of the CIF 3 tool were inspired by Supremica [16], including the use of
advanced model checking techniques such as symbolic representations.

The CIF 3 simulator enables interactive visualization-based simulation of
the behavior of the controlled system. It can be employed to validate models
in isolation. Additionally it may be used to validate the supervisory controller
when put in the context of the uncontrolled hybrid plant.

11

Interoperability with other languages and tools is achieved by means of model
transformations, external functions, and co-simulation via the Matlab/Simulink
S-function interface. PLC code generation conforming to the IEC 61131-3 stan-
dard allows for implementation of CIF 3 supervisory controllers in actual sys-
tems.

From 2020 on, development of the CIF 3 toolset continues within the Eclipse
project ESCET? (Supervisory Control Engineering Toolset), offering an open
environment in which interested academic and industrial partners can collabo-
rate on and profit from the further development of tool support for supervisory
control theory.

4 Research challenges

We envision the following research challenges for the coming years.

— Stronger liveness notions: Reachability of a marked state by the plant is
a rather limited notion to ensure liveness properties, which express that
eventually something good will happen. It might be a good idea to integrate
stronger liveness notions in the synthesis algorithms.

— FEzploit symmetry reduction: The work on symmetry reduction in [20] may
be extended from validation to optimization of synthesis algorithms. Fur-
thermore, it could be integrated with multilevel synthesis to profit from
symmetries in subclusters of components.

— Insightful counterexample generation: The framework in [38] can provide
causes on why a certain state was trimmed by a supervisor, but often there
are many such causes. Informative feedback requires a sensible selection from
these causes and depicting them in an insightful manner. Moreover, coun-
terexample generation needs to be integrated in the tooling.

— Utilize DSMs in tools: Structure information from a DSM regarding a plant
could be exploited to optimize synthesis algorithms and tools. In particular,
inside CIF 3 predicates are represented by binary decision diagrams. Their
sizes are very sensitive to the ordering of systems variables against which
they are constructed. In [39], it was shown that the difference between the
‘right’ and ‘wrong’ ordering for the variables in Lock III can mean a shift
in computation time from a few seconds to a few hours. Initial results show
that ordering variables based on a DSM can yield a significant compaction
of binary decision diagrams.

— Improve supervisory controller generation from a supervisor: It seems pos-
sible to relax the requirements on supervisors to ensure finite response and
confluence in [31]. Moreover, ideally these notions will be strengthened to
ensure that a supervisory controller always eventually returns the plant to
a marked state [15].

— Integration into the engineering process: Supervisory control synthesis needs
to be made accessible for system engineers, by clear GUIs in the tools, adding

% https://projects.eclipse.org/projects/technology.escet

12

features that are needed in practice, and providing proper instruction mate-
rial.

5 Conclusion

The 30th anniversary of the inception of supervisory control theory by Ramadge
and Wonham was celebrated by a workshop on December 11, 2017, preceding
the CDC conference in Melbourne, Australia [14]. The case studies presented
in the current paper, in the context of a project with Rijkswaterstaat, show
that this theory has reached a maturity level that allows it to be fully embraced
by industry. The project initially focused on control systems for bridges and
waterway locks, which may in the long run support smart waterways. It then
extended to tunnels, taking into account important aspects such as emergency
situations and escape routes. Recently it extended further to roadside systems,
where managing and avoiding traffic jams is a serious point of concern.

A challenge lies ahead to support industrial partners in adapting synthesis-
based engineering methods for their supervisory control systems. To strengthen
the integration of supervisor synthesis within the engineering process, in [33], a
graphical modeling method has been developed based on a library of standard-
ized modules within movable bridges, inspired by work in [13,17]. Subsystems
of a plant are modeled by instantiating modules from the library. The method
is supported by a tool. In this way supervisors have been developed for a family
of 17 real-life bridges.

Key to the success of the project has been its close connection to the actual
engineering process at Rijkswaterstaat and its subcontractors. We are grateful to
Rijkswaterstaat for their financial support as well as their active participation in
the project. In particular we thank Maria Angenent, John van Dinther, Patrick
Maessen, Bert van der Vegt, and Han Vogel.

Finally, we gratefully acknowledge the groundbreaking work by the interna-
tional research community of supervisory control theory, which has served as a
corner stone and inspiration for the work reported here. In particular we would
like to mention Knut Akesson, Kai Cai, José Cury, Martin Fabian, Dennis Hen-
driks, Stéphane Lafortune, Robi Malik, Sahar Mohajerani, Thomas Moor, Max
Hering de Queiroz, Peter Ramadge, Karen Rudie, Jan van Schuppen, Rong Su,
and, last but not least, W. Murray Wonham.

References

1. van Beek, D., Fokkink, W., Hendriks, D., Hofkamp, A., Markovski, J., van de
Mortel-Fronczak, J., Reniers, M.: CIF 3: Model-based engineering of supervisory
controllers. In: 20th Conference on Tools and Algorithms for the Construction and
Analysis of Systems — TACAS’14. Lecture Notes in Computer Science, vol. 8413,
pp. 575-580. Springer (2014)

2. Cai, K., Wonham, W.: Supervisory Control of Discrete-Event Systems. Communi-
cations and Control Engineering, Springer (2019)

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

Dietrich, P., Malik, R., Wonham, W., Brandin, B.: Implementation considerations
in supervisory control. In: Synthesis and Control of Discrete Event Systems, pp.
185-201. Kluwer (2002)

Fabian, M., Hellgren, A.: PLC-based implementation of supervisory control for
discrete event systems. In: 37th Conference on Decision and Control — CDC’98.
vol. 3, pp. 3305-3310. IEEE (1998)

Goorden, M., Dingemans, C., Reniers, M., van de Mortel-Fronczak, J., Fokkink,
W., Rooda, J.: Supervisory control of multilevel discrete-event systems with a bus
structure. In: 17th European Control Conference — ECC’19. pp. 3204-3211. IEEE
(2019)

Goorden, M., Fabian, M.: No synthesis needed, we are alright already. In: 15th
Conference on Automation Science and Engineering — CASE’19. pp. 195-202. IEEE
(2019)

Goorden, M., van de Mortel-Fronczak, J., Etman, L., Rooda, J.: DSM-based anal-
ysis for the recognition of modeling errors in supervisory controller design. In: 21st
Dependency and Structure Modeling Conference, DSM’19. pp. 127-135 (2019)
Goorden, M., van de Mortel-Fronczak, J., Reniers, M., Fokkink, W., Rooda, J.:
The impact of requirement splitting on the efficiency of supervisory control syn-
thesis. In: 17th Conference on Formal Methods in Industrially Critical Systems —
FMICS’19. Lecture Notes in Computer Science, vol. 11687, pp. 76-92. Springer
(2019)

Goorden, M., van de Mortel-Fronczak, J., Reniers, M., Fokkink, W., Rooda, J.:
Modeling guidelines for component-based supervisory control synthesis. In: 16th
Conference on Formal Aspects of Component Software — FACS’19. Lecture Notes
in Computer Science, vol. 12018, pp. 1-22. Springer (2019)

Goorden, M., van de Mortel-Fronczak, J., Reniers, M., Fokkink, W., Rooda, J.:
Structuring multilevel discrete-event systems with dependency structure matrices.
IEEE Transactions on Automatic Control 65(4), 1625-1639 (2019)

Goorden, M., Reniers, M., van de Mortel-Fronczak, J., Fokkink, W., Rooda, J.:
Compositional coordinator synthesis for discrete event systems (2020), submitted
to Discrete Event Dynamic Systems

Goorden, M., van de Mortel-Fronczak, J., Reniers, M., Fabian, M., Fokkink, W.,
Rooda, J.: Model properties for efficient synthesis of nonblocking modular super-
visors. arXiv preprint arXiv:2007.05795 (2020)

Grigorov, L., Butler, B., Cury, J., Rudie, K.: Conceptual design of discrete-event
systems using templates. Discrete Event Dynamic Systems 21(2), 257-303 (2011)
Lafortune, S., Rudie, K., Tripakis, S.: Thirty years of the Ramadge-Wonham the-
ory of supervisory control: A retrospective and future perspectives. IEEE Control
Systems Magazine 38(4), 111-112 (2018)

Malik, P.: From Supervisory Control to Nonblocking Controllers for Discrete Event
Systems. Ph.D. thesis, Universitat Kaiserslautern (2003)

Malik, R., Akesson, K., Flordal, H., Fabian, M.: Supremica-an efficient tool
for large-scale discrete event systems. In: 20th IFAC World Congress. IFAC-
PapersOnline 50(1), 5794-5799 (2017)

Malik, R., Fabian, M., Akesson, K.: Modelling large-scale discrete-event systems
using modules, aliases, and extended finite-state automata. In: 18th IFAC World
Congress. IFAC Proceedings Volumes 44(1), 7000-7005 (2011)

Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional nonblocking
verification of extended finite-state machines. Discrete Event Dynamic Systems
26(1), 33-84 (2016)

14

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Moor, T.: A discussion of fault-tolerant supervisory control in terms of formal
languages. Annual Reviews in Control 41, 159-169 (2016)

Moormann, L., Goorden, M., van de Mortel-Fronczak, J., Fokkink, W., Maessen, P.,
Rooda, J.: Efficient validation of supervisory controllers using symmetry reduction.
In: 15th Workshop on Discrete Event Systems — WODES’20. IFAC (2020), in press
Moormann, L., Maessen, P., Goorden, M., van de Mortel-Fronczak, J., Rooda, J.:
Design of a tunnel supervisory controller using synthesis-based engineering. In:
ITA-AITES World Tunnel Congress — WTC’20 (2020), in press

Moormann, L., van de Mortel-Fronczak, J., Fokkink, W., Rooda, J.: Exploiting
symmetry in dependency graphs for model reduction in supervisor synthesis. In:
16th Conference on Automation Science and Engineering — CASE’20. pp. 660—
—667. IEEE (2020)

Ouedraogo, L., Kumar, R., Malik, R., Akesson, K.: Nonblocking and safe control
of discrete-event systems modeled as extended finite automata. IEEE Transactions
on Automation Science and Engineering 8(3), 560-569 (2011)

Paoli, A., Sartini, M., Lafortune, S.: Active fault tolerant control of discrete event
systems using online diagnostics. Automatica 47(4), 639-649 (2011)

de Queiroz, M., Cury, J.: Modular supervisory control of large scale discrete event
systems. In: Discrete Event Systems, Engineering and Computer Science, vol. 569.
Springer (2000)

Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. SIAM Journal on Control and Optimization 25(1), 206-230 (1987)
Reijnen, F., Erens, T., van de Mortel-Fronczak, J., Rooda, J.: Supervisory con-
trol synthesis for safety PLCs. In: 15th Workshop on Discrete Event Systems —
WODES’20. IFAC (2020), in press

Reijnen, F., Goorden, M., van de Mortel-Fronczak, J., Reniers, M., Rooda, J.: Ap-
plication of dependency structure matrices and multilevel synthesis to a production
line. In: 2nd Conference on Control Technology and Applications — CCTA’18. pp.
458-464. IEEE (2018)

Reijnen, F., Goorden, M., van de Mortel-Fronczak, J., Rooda, J.: Supervisory
control synthesis for a waterway lock. In: 1st Conference on Control Technology
and Applications — CCTA’17. pp. 1562-1563. IEEE (2017)

Reijnen, F.,; Goorden, M., van de Mortel-Fronczak, J., Rooda, J.: Modeling for su-
pervisor synthesis — a lock-bridge combination case study. Discrete Event Dynamic
Systems 30(3), 499-532 (2020)

Reijnen, F., Hofkamp, A., van de Mortel-Fronczak, J., Rooda, J.: Finite response
and confluence of state-based supervisory controllers. In: 15th Conference on Au-
tomation Science and Engineering — CASE’19. pp. 509-516. IEEE (2019)
Reijnen, F., Leliveld, E.B., van de Mortel-Fronczak, J., van Dinther, J., Rooda,
J., Fokkink, W.: A synthesized fault-tolerant supervisory controller for a rotating
bridge (2020), under submission

Reijnen, F., van de Mortel-Fronczak, J., Reniers, M., Rooda, J.: Design of a su-
pervisor platform for movable bridges. In: 16th Conference on Automation Science
and Engineering — CASE’20. pp. 1298—1304. IEEE (2020)

Reijnen, F., Reniers, M., van de Mortel-Fronczak, J., Rooda, J.: Structured synthe-
sis of fault-tolerant supervisory controllers. In: 10th Symposium on Fault Detec-
tion, Supervision and Safety of Technical Processes — SAFEPROCESS’18. IFAC-
PapersOnLine, 51(24), 894-901 (2018)

Reijnen, F., Verbakel, J., van de Mortel-Fronczak, J., Rooda, J.: Hardware-in-the-
loop set-up for supervisory controllers with an application: the Prinses Marijke

15

36.

37.

38.

39.

40.

41.

complex. In: 3rd Conference on Control Technology and Applications — CCTA’19.
pp. 843-850. IEEE (2019)

Skoldstam, M., Akesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: 46th Conference on Decision and Control —
CDC’2007. pp. 3387-3392. IEEE (2007)

Swartjes, L., van Beek, D., Reniers, M.: Towards the removal of synchronous be-
havior of events in automata. In: 12th Workshop on Discrete Event Systems —
WODES’14. IFAC Proceedings Volumes 47(2), 188-194 (2014)

Swartjes, L., Reniers, M., Fokkink, W.: Deducing causes for the absence of states
in supervised systems. In: 6th Conference on Control, Decision and Information
Technologies — CoDIT’19. pp. 144-149. IEEE (2019)

Thuijsman, S., Hendriks, D., Theunissen, R., Reniers, M., Schiffelers, R.: Compu-
tational effort of BDD-based supervisor synthesis of extended finite automata. In:
15th Conference on Automation Science and Engineering — CASE’19. pp. 486-493.
IEEE (2019)

Wilschut, T., Etman, L., Rooda, J., Adan, I.: Multilevel flow-based Markov clus-
tering for design structure matrices. Journal of Mechanical Design 139(12), 121402
(2017)

Wonham, W., Ramadge, P.: Modular supervisory control of discrete-event systems.
Mathematics of Control, Signals, and Systems 1(1), 13-30 (1988)

16

