
The Impact of Requirement Splitting on the
Efficiency of Supervisory Control Synthesis?

Martijn Goorden1, Joanna van de Mortel-Fronczak1, Michel Reniers1,
Wan Fokkink2, and Jacobus Rooda1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{m.a.goorden, j.m.v.d.mortel, m.a.reniers, j.e.rooda}@tue.nl
2 Vrije Universiteit, Amsterdam, The Netherlands w.j.fokkink@vu.nl

Abstract. Supervisory control theory provides means to synthesize su-
pervisors for a cyber-physical system based on models of the uncontrolled
system components and models of the control requirements. Although
several synthesis procedures have been proposed and automated, ob-
taining correct and useful models of industrial-size applications that are
needed as their input remains a challenge. We show that the efficiency of
supervisor synthesis techniques tends to increase significantly if a single
large requirement is split into a set of smaller requirements. A theoret-
ical underpinning is provided for showing the strength of this modeling
guideline. Moreover, several examples from the literature as well as some
real-life case studies are included for illustration.

Keywords: Supervisory control synthesis · Automata · Requirements
engineering.

1 Introduction

The design of supervisors for cyber-physical systems has become a challenge as
they include more and more components to control and functions to fulfill, while
at the same time market demands require verified safety, decreasing costs, and
decreasing time-to-market for these systems. Model-based systems engineering
methods can help in overcoming these difficulties, see [23].

For the design of supervisors, the supervisory control theory of Ramadge-
Wonham [21, 22] provides means to synthesize supervisors from a model of the
uncontrolled plant (describing what the system could do) and a model of the
control requirements (describing what the system should do). Such a supervisor
interacts with the plant by dynamically disabling some controllable events. Then
synthesis guarantees by construction that the closed-loop behavior of the super-
visor and the plant adheres to all requirements and furthermore is nonblocking,
controllable, and maximally permissive.

? Supported by Rijkswaterstaat, part of the Dutch Ministry of Infrastructure and
Water Management.



2 M. Goorden et al.

A major drawback of synthesizing monolithic supervisors is its computational
complexity, both in the time and memory domain. Although the time complex-
ity of this step is polynomial in the number of states that represent the system,
this number increases exponentially with the number of constituent models of
the different components in the system, as already observed in [22]. For indus-
trial systems, the number of states can easily reach an order of 10100 states.
Different supervisor architectures are exploited in an attempt to overcome these
computational difficulties: modular [20], hierarchical [34], decentralized [28], dis-
tributed [3], multilevel [12], and compositional supervisory control synthesis [18].
Modular, decentralized, and multilevel synthesis are closely related and in this
paper we refer to them as module-based supervisor architectures.

While these architectures claim to gain computational efficiency, in practice
the observed gain depends on the models provided as input for these synthesis
algorithms. Moreover, as systems can be modeled in several ways, i.e., there is
not a single correct model formulation for a certain plant and its requirements,
an engineer might model an industrial system in a disadvantageous way and
might (wrongly) conclude that supervisory control synthesis is not possible for
his system.

To the best of our knowledge, not much attention has been paid in the liter-
ature to the fact that the way in which models are defined can be of a significant
influence on the efficiency of the synthesis procedure. A notable exception is [11],
where symmetry in the model is exploited to efficiently synthesize a supervisor.
Others [6,7,10] have indicated that modeling the system and its requirements is
difficult, and introduced concepts like, e.g., templates to assist the engineer in
modeling correctly, i.e., the obtained models exhibit the behavior the engineer
intended to model.

The purpose of this paper is to provide a modeling guideline to (re)formulate
the models such that the applicability of supervisory control synthesis techniques
increases. This modeling guideline concerns the modeling of the requirements and
expresses that they should be split into smaller ones when possible. We show the-
oretically why this modeling guideline increases the applicability of supervisory
control synthesis. Essentially, smaller requirements allow module-based synthe-
sis techniques to solve numerous but computationally easier problems instead of
those obtained with large requirements, because each new requirement relates
to fewer plant models than the original large requirement. For multilevel synthe-
sis, this effect is visualized by displaying the dependencies with a Dependency
Structure Matrix, see [5]. Experimental results of several case studies show that
this efficiency gain can indeed be obtained in practice. By proposing this guide-
line and by providing examples, our aim is to assist practitioners in applying
supervisory control synthesis.

Requirement specifications in practice often violate the aforementioned guide-
line, which turns out to be detrimental for supervisory control synthesis. Al-
though the guideline may sound somewhat obvious, it required several real-life
case studies with supervisory control synthesis to grasp its importance [25–27].
These case studies were performed in the context of a research project with Rijks-



The Impact of Requirement Splitting 3

waterstaat, the national organisation responsible for the main infrastructure like
roads and bridges in the Netherlands. Notably, the so-called Oisterwijksebaan
revolving bridge in the Dutch city of Tilburg was recently operated by PLC code
automatically generated from the requirements, by means of the CIF supervi-
sory control toolset [2]. These case studies have inspired us to formulate several
modeling guidelines. The aim of this paper is to describe one of them in detail.

The paper is structured as follows. Section 2 provides the preliminaries of
this paper. Section 3 continues by discussing the guideline concerning the model
of the requirement in detail including a theoretical substantiation. In Section 4,
the guideline is demonstrated with an example of supervisory control for an
infrastructural system. Section 5 provides experimental results with cases also
from other application domains where applying the guideline benefits supervisory
control synthesis. The paper concludes with Section 6.

2 Preliminaries

This section provides a brief summary of concepts related to automata and
supervisory control theory relevant for this paper. These concepts are taken
from [4,33].

2.1 Automata

An automaton is a five-tuple G = (Q,Σ, δ, q0, Qm), where Q is the (finite) state
set, Σ is the alphabet of events, δ : Q × Σ → Q the partial function called the
transition function, q0 ∈ Q the initial state, and Qm ⊆ Q the set of marked
states. The alphabet Σ = Σc ∪ Σu is partitioned into sets containing the con-
trollable events (Σc) and the uncontrollable events (Σu), and Σ∗ is the set of all
finite strings of events in Σ, including empty string ε.

We denote with δ(q, σ)! that there exists a transition from state q ∈ Q labeled
with event σ, i.e., δ(q, σ) is defined. The transition function can be extended in
the natural way to strings as δ(q, sσ) = δ(δ(q, s), σ) where s ∈ Σ∗, σ ∈ Σ, and
δ(q, sσ)! if δ(q, s)!∧ δ(δ(q, s), σ)!. We define δ(q, ε) = q for the empty string. The
language generated by the automaton G is L(G) = {s ∈ Σ∗ | δ(q0, s)!} and the
language marked by the automaton is Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}.

A state q of an automaton is called reachable if there is a string s ∈ Σ∗ with
δ(q0, s)! and δ(q0, s) = q. A state q is coreachable if there is a string s ∈ Σ∗ with
δ(q, s)! and δ(q, s) ∈ Qm. An automaton is called nonblocking if every reachable
state is coreachable.

Two automata can be combined by synchronous composition.

Definition 1. Let G1 = (Q1, Σ1, δ1, q0,1, Qm,1), G2 = (Q2, Σ2, δ2, q0,2, Qm,2) be
two automata. The synchronous composition of G1 and G2 is defined as

G1 ‖ G2 = (Q1 ×Q2, Σ1 ∪Σ2, δ1‖2, (q0,1, q0,2), Qm,1 ×Qm,2)



4 M. Goorden et al.

where

δ1‖2((x1, x2), σ) =



(δ1(x1, σ), δ2(x2, σ)) if σ ∈ Σ1 ∩Σ2, δ1(x1, σ)!,

and δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \Σ2 and δ1(x1, σ)!

(x1, δ2(x2, σ)) if σ ∈ Σ2 \Σ1 and δ2(x2, σ)!

undefined otherwise.

Synchronous composition is associative and commutative up to reordering of
the state components in the composed state set. Two automata are called asyn-
chronous if no events are shared, i.e., they do not synchronize over any event.

A composed system G is a collection of automata, i.e., G = {G1, . . . , Gm}. The
synchronous composition of a composed system G, denoted by ‖ G, is defined as
‖ G = G1 ‖ . . . ‖ Gm, and the synchronous composition of two composed systems
G1 ‖ G2 is defined as (‖ G1) ‖ (‖ G2). A composed system G = {G1, . . . , Gm} is
called a product system if the alphabets of the automata are pairwise disjoint,
i.e., Σi ∩Σj = ∅ for all i, j ∈ [1,m], i 6= j [22].

Finally, let G and K be two automata with the same alphabet Σ. K is said
to be controllable with respect to G if, for every string s ∈ Σ∗ and u ∈ Σu such
that δK(q0,K , s)! and δG(q0,G, su)!, it holds that δK(q0,K , su)!.

2.2 Supervisory control theory

The objective of supervisory control theory is to design an automaton called a
supervisor which function is to dynamically disable controllable events so that
the closed-loop system of the plant and the supervisor obeys some specified
behavior, see [4,21,22,33]. More formally, given a plant model P and requirement
model R, the goal is to synthesize supervisor S that adheres to the following
control objectives.

– Safety : all possible behavior of the closed-loop system P ‖ S should always
satisfy the imposed requirements, i.e., L(P ‖ S) ⊆ L(P ‖ R)

– Controllability : uncontrollable events may never be disabled by the supervi-
sor, i.e., S is controllable with respect to P .

– Nonblockingness: the closed-loop system should be able to reach a marked
state from every reachable state, i.e., P ‖ S is nonblocking.

– Maximal permissiveness: the supervisor does not restrict more behavior than
strictly necessary to enforce safety, controllability, and nonblockingness, i.e.,
for all other supervisors S′ satisfying safety, controllability, and nonblock-
ingness it holds that L(P ‖ S′) ⊆ L(P ‖ S).

For the purpose of supervisor synthesis, requirements can be modeled with
automata and state-based expressions, as introduced in [15, 16]. The latter is
useful in practice, as engineers tend to formulate requirements based on states
of the plant. To refer to states of the plant, we introduce the notation P.q which
refers to state q of plant P . State references can be combined with the Boolean
literals T and F and logic connectives to create predicates.



The Impact of Requirement Splitting 5

A state-event invariant expression formulates conditions on the enablement
of an event based on states of the plant, i.e., the condition should evaluate to
true for the event to be enabled. A state-event invariant expression is of the form
σ needs C where σ is an event and C a predicate stating the condition. Let R
be a state-event invariant expression, then event(R) returns the event used in
R and cond(R) returns the condition predicate. An example of a state-event
invariant expression is a needs P1.q1 ∧ P2.q2 formulating that event a is only
allowed when automaton P1 is in state q1 and automaton P2 is in state q2.

Given a composed system representation of the plant Ps = {P1, . . . , Pm} and
a collection of requirements Rs = {R1, . . . , Rn}, we define the tuple (Ps, Rs) as
the control problem for which we want to synthesize a supervisor.

Monolithic supervisory control synthesis results in a single supervisor S from
a single plant model and a single requirement model [21]. There may exist mul-
tiple automata representations of the maximally permissive, safe, controllable,
and nonblocking supervisor. When the plant model and the requirement model
are given as a composed system Ps and Rs, respectively, the monolithic plant
model P and requirement model R are obtained by performing the synchronous
composition of the models in the respective composed system.

Modular supervisory control synthesis uses the fact that the desired behav-
ior is often specified with a collection of requirements Rs [32]. Instead of first
transforming the collection of requirements into a single requirement, as mono-
lithic synthesis does, modular synthesis calculates for each requirement a su-
pervisor based on the plant model. In other words, given a control problem
(Ps, Rs) with Rs = {R1, . . . , Rn}, modular synthesis solves n control problems
(Ps, {R1}), . . . , (Ps, {Rn}). Each control problem (Ps, {Ri}) for i ∈ [1, n] results
in a safe, controllable, nonblocking, and maximally permissive supervisor Si. Un-
fortunately, the collection of supervisors Ss = {S1, . . . , Sn} can be conflicting,
i.e., S1 ‖ . . . ‖ Sn can be blocking. A nonconflicting check can verify whether
Ss is nonconflicting, see [19, 30]. In the case that Ss is nonconflicting, Ss is also
safe, controllable, nonblocking, and maximally permissive for the original control
problem (Ps, Rs) [32]. In the case that Ss is conflicting, an additional coordina-
tor C can be synthesized such that Ss ∪ {C} is safe, controllable, nonblocking,
and maximally permissive for the original control problem (Ps, Rs) [29]. An ex-
tension to this approach, as proposed by [20], states that instead of synthesizing
each time with the complete plant Ps, it suffices to only consider those automata
that relate to the requirement that is considered. This extension is used in the
remainder of this paper.

Decentralized supervisory control synthesis has a similar setting as modu-
lar supervisory control synthesis, except that each supervisor is only allowed to
observe certain events, called local events, instead of all events [14]. This re-
sults in the notion of observability, which is not further discussed in this paper.
Nevertheless, also for decentralized supervisory control synthesis with multiple
requirements, the obtained supervisors may be conflicting.

Multilevel supervisory control synthesis is inspired by decompositions of sys-
tems by engineers [12]. For each subsystem, a supervisor is synthesized based on



6 M. Goorden et al.

requirements for only those subsystems. For synthesis, this resembles modular
supervisory control in the sense that for multilevel synthesis requirements related
to the same subsystem are grouped together before synthesis is performed using
those requirements and the plant model representing the subsystem. Again, the
collection of synthesized supervisors may be conflicting.

3 Modeling guideline and theoretical substantiation

When formulating the requirements, engineers often tend to think in desired
control logic and formulate this logic as requirements. The benefit of supervi-
sory control synthesis is that an engineer is able to focus on what the system
should do, not how it should do it. By shifting from specifying how to specifying
what, requirements do not always become smaller. In this section, we show that
module-based supervisor architectures benefit from having small requirement
models.

We specifically focus on requirements formulated with state-event invariant
expressions. This form matches well with requirements formulated in a natural
language like, e.g., English, see [16]. Furthermore, requirements for industrial-size
applications often originate from failure-mode analysis [17]. States are identified
in which some actuator actions would result in unsafe behavior. Therefore, this
form is frequently used in real-life case studies of infrastructural systems, see [25–
27].

The modeling guideline is formulated as follows:

Split requirements formulated with state-event invariant expressions into a
set of smaller ones.

Splitting a state-event invariant expression can be done as follows. Consider
requirement σ needs C expressing that event σ is only allowed when condi-
tion C holds. When this condition is denoted in conjunctive normal form, i.e.,
C = C1 ∧ . . . ∧ Cl, the single requirement can be split into multiple require-
ments σ needs C1, . . . , σ needs Cl. Due to the safety property of synthesized
supervisors, mentioned in Section 2.2, the set of requirements is equivalent to
the single requirement. In the rest of this section, we show the benefit of having
small requirements theoretically.

Splitting requirements in the form of propositional formula to benefit con-
troller synthesis is a well-known strategy for software product lines, see for ex-
ample [1,9]. Here, a requirement, called a feature constraint, is split into several
configurations (or products) each describing a specific feature combination. For
each configuration a controller is synthesized. There are two main differences
between that work and the work in this paper. First, a feature constraint limits
the possible configurations, while requirements in this paper limit the behavior
of one configuration. Second, only one of the synthesized supervisors for a soft-
ware product line is active (the one for that specific configuration), while in this
work all modular supervisors work in conjunction.



The Impact of Requirement Splitting 7

3.1 Theoretical substantiation

Consider the plant being modeled with a product system Ps = {P1, . . . , Pn}, and
assume that a requirement R may also be modeled with a set of requirements
Rs = {R1, . . . , Rm} such that R =‖ Rs.

3 Any module-based supervisor archi-
tecture ensures that for each (set of) requirement(s) synthesis is performed with
only those plant models that are related to the (set of) requirement(s). Reformu-
lating a larger requirement into smaller requirements ensures that module-based
supervisor architectures can identify smaller control problems to solve. Hence, a
reduction in computational effort is gained.

For modular supervisory control synthesis, the analysis above can be even
further detailed as follows. Assume for simplicity that requirement R relates to
all plant models in Ps, while each smaller requirement Rj ∈ Rs only refers to
a subset Ps,j ⊆ Ps. In the case of a single requirement R, modular supervisory
control synthesis obtains a supervisor for control problem (Ps, {R}). In the case
of multiple smaller requirements, m supervisors are obtained for each control
problem (Ps,j , {Rj}), 1 ≤ j ≤ m. As |Ps,j | ≤ |Ps| holds, the state-space size
of Ps,j is smaller or equal than Ps. The computational effort for each synthesis
problem is therefore at most equal to that of monolithic synthesis. Yet, m su-
pervisors are synthesized instead of just one, so there is a tradeoff between more
control problems to solve and creating smaller control problems to solve. As the
state-space size grows exponentially with the number of automata, reducing the
number of plant components often has a larger effect than synthesizing more
supervisors. Experimental results in Section 5 confirm this tradeoff.

For multilevel supervisory control synthesis, we analyze the effect of splitting
requirements differently than for modular supervisory control synthesis. In mul-
tilevel synthesis, the system is decomposed into subsystems. The dependencies
between plant models indicate how the system may be decomposed. For the pur-
pose of multilevel synthesis, analyzing the dependencies between plant models
induced by the requirement models is valuable, see [8]. Dependencies between
two plant models can be formalized as follows. Given Pi, Pj ∈ Ps, Pi 6= Pj , there
is a dependency between Pi and Pj if and only if there exists a requirement
Rk ∈ Rs such that both plant models are used in Rk. A plant model is used
in a state-event invariant expression if the event in the requirement originates
from the alphabet of that plant model or the condition uses a state of that plant
model. For example, in R = P1.σ needs P2.q2, where we used the notation P1.σ
to indicate that σ is in the alphabet of P1, plant models P1 and P2 are used in
R.

Now, consider requirement R = P.σ needs C where condition C is the con-
junction of some state references, that is C = P1.q1∧. . .∧Pl.ql . This requirement
results in dependencies between plant models P and P1, P and P2, and so on,
and also in dependencies between any pair (Pi, Pj), i, j ∈ [1, l], i 6= j. These

3 Here we have a slight abuse of notation of the synchronous product operator, as
this one is only formally defined for automata. In case of two requirements modeled
with state-event invariant expressions restricting the same event σ, denoted by Ri =
σ needs C1, i ∈ {1, 2}, we define R1 ‖ R2 = σ needs C1 ∧ C2.



8 M. Goorden et al.

D

P1

P1

P2

P2

P3

P3

P4

P4

P

P

1

1

1

1

-

1

1

1

-

1

1

1

-

1

1

1

-

1

1

1

-

1

1

1

1

D′

P1

P1

P2

P2

P3

P3

P4

P4

P

P

1

-

1

-

1

-

1

-

-

1

1

1

1

Fig. 1. Left the DSM D constructed with the original requirement R and right the
DSM D′ with the set of splitted requirements Rs.

dependencies can be visualized with a Dependency Structure Matrix (DSM),
see [5]. Figure 1 shows on the left the DSM D for requirement R with l = 4.
A dependency between plant models is indicated in this DSM with a 1, no de-
pendency is indicated with an empty cell. Such a visualization shows that all
plant models are related with each other. Therefore, multilevel synthesis consid-
ers plant models P, P1, . . . , Pl as a single subsystem and synthesizes a supervisor
for control problem ({P, P1, . . . , Pl}, {R}).

When requirement R is split into multiple requirements collected in set
Rs = {R1, . . . , Rl} where Rk = P.σ needs Pk.qk, k ∈ [0, l], the dependencies
between the plant models reduces. There are still dependencies between plant
models P and P1, P and P2, and so on till P and Pl, yet there are no longer
dependencies between any pair (Pi, Pj), i, j ∈ [1, l], i 6= j, which is the case with
the single requirement R. The effect of splitting requirements is visualized in
DSM D′ in Figure 1. The number of dependencies has reduced significantly.
This reduction allows multilevel synthesis to decompose the system into smaller
subsystems, for example into two subsystems where the first is composed of plant
models P, P1, P2 and the second of plant models P, P3, P4. Similar to modular
synthesis, smaller subsystems result in smaller control problems to solve, result-
ing in a reduction of computational effort. Therefore, splitting requirements can
be beneficial for multilevel supervisory control synthesis.

3.2 Conflicting supervisors

Similar to modular synthesis, splitting requirements introduces an over-approxi-
mation. Synthesizing multiple supervisors for the split requirements may result
in conflicting supervisors.

Consider the following example to illustrate the over-approximation induced
by splitting requirements. Figure 2 shows the plant models of a door actuator and
a door sensor. Requirement R = A Door.c off needs S Door.Off ∧ S Door.On
expresses that the actuator may only be turned off when the door sensor is
off and on. This requirement can be split into the two requirements R1 =
A Door.c off needs S Door.Off andR2 = A Door.c off needs S Door.On. Since
an automaton cannot be in two locations at the same time, the condition of the



The Impact of Requirement Splitting 9

A Door

Off On
c on

c off

S Door

Off On
u on

u off

Fig. 2. Examples of two plant models, with an actuator of a door and a sensor of a
door. Concentric circles indicate marked locations. Solid arrows indicate controllable
events while dashed arrows indicate uncontrollable events.

original requirement R can never be satisfied, effectively disabling event c off in-
definitely. A supervisor synthesized for the single requirement disables event c on
of the actuator, because location On is not marked. When the single requirement
R is replaced by the two requirements R1 and R2, conflicting modular supervi-
sors are synthesized. Each local supervisor will not disable event c on, allowing
the actuator to block in location On.

In general, one can perform a nonconflicting check after synthesizing mod-
ular or multilevel supervisors for the split requirements. Yet, as discussed in
Section 2.2, a nonconflicting check should always be performed if modular or
multilevel synthesis is applied, even when requirements are not split. It is an
interesting question for future research to determine the effect of splitting re-
quirements on the efficiency of the nonconflicting check and on the synthesis of
a coordinator.

The example may indicate that splitting ‘bad’ requirements could induce
conflicts. A requirement demanding an automaton to be in multiple states at
the same time would probably not be the intention of an engineer. Yet, there is
no guarantee that an engineer does not formulate such a requirement. Notwith-
standing the general situation, the following conjecture formalizes the situations
encountered in cases where requirements can be split which will not introduce
conflicting problems.

Conjecture 1. Let P = {P, P1, . . . , Pm} be a product system and requirement
R = P.σ needs C1 ∧ C2 ∧ . . . ∧ Cn such that no pair of conditions Ci, Cj , i, j ∈
[1, n], i 6= j uses the same plant model. Construct the set of split requirements
R = {R1, . . . , Rn} with each split requirement being Ri = P.σ needs Ci. Then
the set of modular supervisors for R is nonconflicting.

4 Demonstration with case study of infrastructural
system

Splitting state-event invariant requirements is demonstrated with the model of
Lock III, located at Tilburg, The Netherlands. Figure 3 shows the lock. The
model of Lock III is given in [25]. A lock is an infrastructural system in rivers
and canals with the purpose to maintain different water levels outside the lock
while also allowing the vessels to pass from one level to the other. A lock consists
primarily of a lock chamber with a lock head on each side. The main subsystems



10 M. Goorden et al.

Fig. 3. Photo of Lock III, located at Tilburg, The Netherlands. Image from
https://beeldbank.rws.nl, Rijkswaterstaat.

of a lock head are the gates, water leveling systems, and the incoming and
outgoing traffic lights. Supervisory control is deployed to ensure safe operation
of the system. In this context, safety not only concerns avoiding human injuries
or causalities, but also water management as large parts of The Netherlands are
located below water level.

For modeling convenience, there is also the state-event invariant expres-
sion D disables σ, which expresses that event σ is disabled when condition
D holds. This expression has the same expressiveness as the form σ needs C:
D disables σ is equivalent to σ needs ¬D. Following the same splitting mech-
anism as introduced with the guideline, requirements of the form D disables σ
can be split if condition D is in disjunctive normal form, i.e., D = D1∨ . . .∨Dk.

The guideline is demonstrated with the following requirement: it is unsafe to
open a gate if (1) the water-leveling system at the other side is not closed, or (2)
the gate at the other side is not closed, or (3) there is no equal water over the
gate, or (4) the incoming traffic light at that lock head is not showing a red or
red-red aspect, or (5) the outgoing traffic light at that lock head is not showing
a red aspect. For one of the gates this requirement is formalized in the model as

(1) culvert N.S.flow ∨ culvert N.A.open ∨ culvert S.S.flow ∨ culvert S.A.open ∨
(2) ¬gate U N.S.closed ∨ gate U N.Dir.opening ∨

¬gate U S.S.closed ∨ gate U S.Dir.opening ∨
(3) s equal D.off ∨



The Impact of Requirement Splitting 11

(4) ¬(in D N.S.red ∨ in D N.S.redred) ∨ ¬(in D N.A.red ∨ in D N.A.redred) ∨
¬(in D S.S.red ∨ in D S.S.redred) ∨ ¬(in D S.A.red ∨ in D S.A.redred) ∨

(5) ¬out D N.S.red ∨ ¬out D N.A.red ∨ ¬out D S.S.red ∨ ¬out D S.A.red

disables gate D N.c open,

where before the first full stop (.) in every state and event name the letter D is an
abbreviation for downstream, U for upstream, N for north, and S for south, and
where after the first full stop the letter A stands for actuator and S for sensor.
The five unsafe situations in which the gate should not open are indicated in the
requirement.

The first option for splitting this requirement is creating five requirements,
one for each unsafe situation. This results in the following five requirements:

(1) culvert N.S.flow ∨ culvert N.A.open ∨ culvert S.S.flow ∨ culvert S.A.open

disables gate D N.c open,

(2) ¬gate U N.S.closed ∨ gate U N.Dir.opening ∨ ¬gate U S.S.closed ∨
gate U S.Dir.opening

disables gate D N.c open,

(3) s equal D.off

disables gate D N.c open,

(4) ¬(in D N.S.red ∨ in D N.S.redred) ∨ ¬(in D N.A.red ∨ in D N.A.redred) ∨
¬(in D S.S.red ∨ in D S.S.redred) ∨ ¬(in D S.A.red ∨ in D S.A.redred)

disables gate D N.c open,

(5) ¬out D N.S.red ∨ ¬out D N.A.red ∨ ¬out D S.S.red ∨ ¬out D S.A.red

disables gate D N.c open.

By specifying these five requirements instead of one, the readability and main-
tainability of the models also increases. Yet, these requirements can be split
even further, as each condition is still in disjunctive normal form. Hence, 17
requirements can be formulated, of which the first four originated from (1) are

(1a) culvert N.S.flow disables gate D N.c open,

(1b) culvert N.A.open disables gate D N.c open,

(1c) culvert S.S.flow disables gate D N.c open,

(1d) culvert S.A.open disables gate D N.c open.

The other requirements can be split similarly.
Another requirement describes normal closing of a gate and expresses that a

gate may only be closed if (1) the command to close the gate is given, and (2)
the gate is not yet closed, and (3) the command to stop the gate is not given.
The model of this textual requirement for one of the gates is

gate D N.c close needs cmd D gate close ∧ ¬gate D N.S.closed ∧
¬cmd stop D gate,



12 M. Goorden et al.

Table 1. Experimental results for synthesizing modular and multilevel supervisors with
the original and adapted Lock III models. The reported state-space size for modular and
multilevel synthesis is the sum of the state-space sizes of the individual supervisors. The
number of supervisors refers to the result of multilevel synthesis, monolithic synthesis
results in only one supervisor and modular synthesis creates a supervisor for each
requirement.

Model
Number of
requirements

Monolithic Modular Multilevel
Number of
supervisors

Original 142 6.0 · 1024 1.60 · 1013 1.45 · 1019 7

Adapted 358 6.0 · 1024 1.32 · 1005 4.62 · 1009 34

where D is an abbreviation for downstream, N for north, S for sensor, and cmd
for command. The three terms of the condition are conjunctive, thus this re-
quirement can be split into three smaller requirements as follows:

gate D N.c close needs cmd D gate close,

gate D N.c close needs ¬gate D N.S.closed,

gate D N.c close needs ¬cmd stop D gate.

Finally, not all requirements may be split. Consider the requirement express-
ing that the outgoing traffic light may only switch to a red aspect if the command
for showing the red aspect is given or any stop command is given. This require-
ment is formalized for one of the outgoing traffic lights as

out D N.c red needs cmd D out r ∨ cmd stop.

Experimental results are shown in Table 1. These results have been obtained
with the CIF toolset [2] and the models can be accessed at a GitHub reposi-
tory4. For both the original model and the adapted model we show the number
of requirements, the controlled state-space size of the monolithic supervisor, the
sum of the controlled state-space sizes of each modular and multilevel supervi-
sor, and the number of multilevel supervisors. Splitting the requirements more
than doubles the number of requirements and significantly increases the effi-
ciency of both modular and multilevel supervisory control synthesis. Focussing
on multilevel synthesis, the gain of using that supervisor architecture for the
original model is already substantial comparing to monolithic synthesis. Yet, for
the adapted model, the state-space size of the multilevel supervisors approaches
the result of modular supervisors by synthesizing only 34 supervisors instead
of 358 supervisors, respectively. Also, the number of multilevel supervisors in-
dicates that by splitting the requirements the system can be decomposed into
more subsystems, as what is expected from the analysis in Section 3.1.

4 https://github.com/magoorden/SplittingRequirements



The Impact of Requirement Splitting 13

5 Four case studies with experimental results

In this section, the modeling guideline described in Section 3 is applied on sev-
eral other models of real-life case studies. We first introduce the case studies
and show a typical requirement that is split according to the modeling guide-
line. Subsequently, experimental results are shown after applying modular and
multilevel supervisory control synthesis on these models.

5.1 Case studies description

Case Marijke. In this case study, the Prinses Marijke complex is modeled,
see [26]. This infrastructural complex is located in the center of The Netherlands
and consists of two waterway locks and a storm surge barrier. In case of high
water levels in the Amsterdam-Rhine Canal, the barrier is closed and vessels
need to use the waterway locks. In all other conditions, the barrier is opened
and vessels can pass under it, without using the waterway locks.

The models of the locks in the Prinses Marijke complex are similar to the
model of Lock III, see Section 3. Only the modeling level, or abstraction detail,
differs. Therefore, the same requirements are specified, which opens the oppor-
tunity to split them.

Case ADAS. In this case study, an Advanced Driver Assistant Systems
(ADAS) is modeled, see [13]. In such an application, a supervisor is synthe-
sized to safely switch in a vehicle between the modes ‘no cruise control (NCC)’,
‘cruise control (CC)’, and ‘adaptive cruise control (ACC)’. Based on input from
the driver as well as vehicle sensors, the vehicle may or may not switch between
these different modes of cruise control.

One of the formulated requirements is related to the desired behavior of the
CC mode. It expresses that the set-point velocity can be decreased if CC is active
and the brake sensor is off and the set-point velocity is higher than 30 km/h
and the CC lever is pushed up for longer than 0.5 s and a set-point velocity is
stored and CC is enabled and the vehicle velocity is higher than 30 km/h. This
single requirement can be split into seven smaller requirements.

Case FESTO. In this case study, a production line designed by FESTO is
modeled, see [24]. The FESTO production line is designed for vocational training
in the field of industrial automation. While no real production takes place, all
movements, velocities, and timings are as if it were. The production line consists
of six workstations with in total 28 actuators, like DC motors and pneumatic
cylinders, and 59 capacitive, optical, and inductive sensors.

In the first workstation, products enter the system from a storage tube. At
the bottom of the tube, a pusher is able to push a product out. This pusher is
only allowed to push (extend) if the system is initialized and the pusher is fully
retracted and there is a product in the storage tube and the output place to
push the product to is empty. This example requirement can be split into four
smaller requirements formulating together the same desired behavior.



14 M. Goorden et al.

Table 2. Experimental results for synthesizing modular and multilevel supervisors
with the original and adapted models of the several case studies. The reported state-
space size for modular and multilevel synthesis is the sum of the state-space sizes of
the individual supervisors. The number of supervisors refers to the result of multilevel
synthesis, monolithic synthesis results in only one supervisor and modular synthesis
creates a supervisor for each requirement.

Model Variant
Number of
require-
ments

Monolithic Modular Multilevel
Number of
supervisors

LockIII Original 142 6.0 · 1024 1.60 · 1013 1.45 · 1019 7

Adapted 358 6.0 · 1024 1.32 · 1005 4.62 · 1009 34

Marijke Original 248 6.68 · 1026 1.29 · 107 5.50 · 1012 26

Adapted 529 6.68 · 1026 2.24 · 105 4.03 · 1011 33

ADAS Original 33 2.0 · 1010 1.5 · 104 1.1 · 108 8

Adapted 72 2.0 · 1010 1.1 · 103 5.2 · 105 16

FESTO Original 78 2.2 · 1025 2.10 · 104 4.00 · 106 12

Adapted 205 2.2 · 1025 2.00 · 103 5.06 · 104 24

5.2 Results

For each case study, requirements are split as much as possible according to
the modeling guideline of Section 3, which results in the original model and an
adapted model. Subsequently, monolithic, modular, and multilevel supervisory
control synthesis are applying with the CIF toolset [2].

The results are shown in Table 2. For the three different synthesis techniques,
the controlled state space is reported. For monolithic synthesis, the number is
the state-space size of the single synthesized supervisor; for modular and multi-
level synthesis, the number is the sum of the state-space sizes of the individual
supervisors. The number of supervisors in the table refers to the number of
supervisors of multilevel synthesis. The number of supervisors for modular syn-
thesis equals the number of requirements and for monolithic synthesis there is
only one supervisor. The results from Lock III, discussed in Section 4, are added
for completeness.

For all four cases, adapting the models by splitting requirements increases
the number of requirements significantly, it often more than doubles. The results
for modular and multilevel synthesis indicate that splitting the requirements
is beneficial for the efficiency of these supervisor architectures. For multilevel
synthesis, splitting the requirements allows to decompose the system differently
such that more subsystems are identified. Therefore, smaller control problems
are defined to be solved, resulting in the reduction of the computational effort.

As expected, the obtained efficiency gain of splitting the requirements differs
per model. For example, reformulating the model of Lock III allows multilevel



The Impact of Requirement Splitting 15

synthesis to formulate an efficient decomposition, indicated by the state-space
size and the number of supervisors, while the reduction is minimal for the model
of the Prinses Marijke complex. Nevertheless, reformulating the model by split-
ting the requirements seems to be always valuable for models of real-life cases.

6 Conclusion and future work

This paper presents a guideline expressing that requirements should be split
into smaller ones, each referring to less plant models than before. Theoretical
substantiation is provided for the effectiveness of this guideline. Examples from
practice show how the guideline can be used. Experimental results indicate that
splitting requirements increases the applicability and efficiency of module-based
supervisor architectures.

The examples indicate that automatic model transformation based on this
guideline should be possible. Future work includes the design and implementa-
tion of such transformations. Furthermore, Section 3 showed an example of a
requirement that could not be split. In [31], the introduction of new event in
the plant is suggested to circumvent this issue. It is worth investigating this sug-
gestion, albeit that also the plant model needs to be adapted. Finally, another
direction for future research is considering requirements in the form of state in-
variant expressions, like the one expressing that actuators A and B may never
be both on at the same time, and determining whether, for example, a logically
equivalent set of state-event invariant expressions may be more beneficial for
module-based supervisor architectures.

Acknowledgments The authors thank Ferdie Reijnen for providing the models
of Lock III and the Prinses Marijke complex. The authors thank Rijkswaterstaat,
part of the Dutch Ministry of Infrastructure and Water Management, for provid-
ing funding for this research. In particular, the authors thank Maria Angenent,
Bert van der Vegt, and Han Vogel for their feedback on the results.

References

1. Basile, D., ter Beek, M.H., Di Giandomenico, F., Gnesi, S.: Orchestration of dy-
namic service product lines with featured modal contract automata. In: 21st Inter-
national Systems and Software Product Line Conference - Volume B. pp. 117–122.
ACM (2017). https://doi.org/10.1145/3109729.3109741

2. van Beek, D.A., Fokkink, W.J., Hendriks, D., Hofkamp, A., Markovski, J., van de
Mortel-Fronczak, J.M., Reniers, M.A.: CIF 3: Model-based engineering of super-
visory controllers. In: Tools and Algorithms for the Construction and Analysis
of Systems. pp. 575–580. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (Apr 2014). https://doi.org/10.1007/978-3-642-54862-8 48

3. Cai, K., Wonham, W.M.: Supervisor localization: A top-down approach to dis-
tributed control of discrete-event systems. IEEE Transactions on Automatic Con-
trol 55(3), 605–618 (Mar 2010)



16 M. Goorden et al.

4. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
Boston, 2nd edn. (2008)

5. Eppinger, S.D., Browning, T.R.: Design structure matrix methods and applica-
tions. MIT press (2012)

6. Fabian, M., Fei, Z., Miremadi, S., Lennartson, B., Åkesson, K.: Supervisory control
of manufacturing systems using extended finite automata. In: Campos, J., Seatzo,
C., Xie, X. (eds.) Formal Methods in Manufacturing, pp. 295–314. Industrial In-
formation Technology, Taylor & Francis Inc., Boca Raton (Feb 2014)

7. Göbe, F., Ney, O., Kowalewski, S.: Reusability and modularity of safety
specifications for supervisory control. In: IEEE 21st International Confer-
ence on Emerging Technologies and Factory Automation. pp. 1–8 (Sep 2016).
https://doi.org/10.1109/ETFA.2016.7733498

8. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Rooda, J.E.:
Structuring multilevel discrete-event systems with dependency structure matri-
ces. In: 56th IEEE Conf. on Decision and Control. pp. 558–564 (Dec 2017).
https://doi.org/10.1109/CDC.2017.8263721

9. Greenyer, J., Brenner, C., Cordy, M., Heymans, P., Gressi, E.: Incrementally
synthesizing controllers from scenario-based product line specifications. In: 9th
Joint Meeting on Foundations of Software Engineering. pp. 433–443. ACM (2013).
https://doi.org/10.1145/2491411.2491445

10. Grigorov, L., Butler, B.E., Cury, J.E.R., Rudie, K.: Conceptual design of discrete-
event systems using templates. Discrete Event Dynamic Systems 21(2), 257–303
(Jun 2011). https://doi.org/10.1007/s10626-010-0089-0

11. Jiao, T., Gan, Y., Xiao, G., Wonham, W.M.: Exploiting symmetry of
discrete-event systems by relabeling and reconfiguration. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems pp. 1–12 (2018).
https://doi.org/10.1109/TSMC.2018.2795011

12. Komenda, J., Masopust, T., van Schuppen, J.H.: Control of an engineering-
structured multilevel discrete-event system. In: 13th Int. Workshop on Discrete
Event Systems. pp. 103–108 (May 2016)

13. Korssen, T., Dolk, V., van de Mortel-Fronczak, J.M., Reniers, M.A., Heemels, M.:
Systematic model-based design and implementation of supervisors for advanced
driver assistance systems. IEEE Transactions on Intelligent Transportation Sys-
tems 19(2), 533–544 (2017). https://doi.org/10.1109/TITS.2017.2776354

14. Lin, F., Wonham, W.M.: Decentralized control and coordination of discrete-event
systems with partial observation. IEEE Transactions on Automatic Control 35(12),
1330–1337 (Dec 1990). https://doi.org/10.1109/9.61009

15. Ma, C., Wonham, W.: Nonblocking Supervisory Control of State Tree Structures.
No. 317 in Lecture Notes in Control and Information Sciences, Springer Berlin
Heidelberg (2005)

16. Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J., Rooda, J.E.: Co-
ordination of resources using generalized state-based requirements. pp. 300–305
(2010)

17. Modarres, M.: Risk Analysis in Engineering : Techniques, Tools, and Trends. CRC
Press (Apr 2016). https://doi.org/10.1201/b21429

18. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional synthesis of
modular nonblocking supervisors. IEEE Transactions on Automatic Control 59(1),
150–162 (Jan 2014)

19. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional nonblocking
verification of extended finite-state machines. Discrete Event Dynamic Systems
26(1), 33–84 (Mar 2016). https://doi.org/10.1007/s10626-015-0217-y



The Impact of Requirement Splitting 17

20. Queiroz, M.H.d., Cury, J.E.R.: Modular supervisory control of large scale discrete
event systems. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems, pp. 103–
110. No. 569 in The Springer International Series in Engineering and Computer
Science, Springer US (2000)

21. Ramadge, P.J.G., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25(1), 206–230 (Jan 1987)

22. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proceed-
ings of the IEEE 77(1), 81–98 (Jan 1989)

23. Ramos, A.L., Ferreira, J.V., Barceló, J.: Model-based systems engineering: An
emerging approach for modern systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 42(1), 101–111 (Jan 2012).
https://doi.org/10.1109/TSMCC.2011.2106495

24. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A.,
Rooda, J.E.: Application of dependency structure matrices and multilevel synthesis
to a production line. In: IEEE Conf. on Control Technology and Applications. pp.
458–464 (Aug 2018). https://doi.org/10.1109/CCTA.2018.8511449

25. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda,
J.E.: Supervisory control synthesis for a waterway lock. In: 1st IEEE
Conf. on Control Technology and Applications. pp. 1562–1568 (Aug 2017).
https://doi.org/10.1109/CCTA.2017.8062679

26. Reijnen, F.F.H., Verbakel, J.J., van de Mortel-Fronczak, J.M., Rooda, J.E.:
Hardware-in-the-loop set-up for supervisory controllers with an application: the
Prinses Marijke complex. In: IEEE Conf. on Control Technology and Applications.
p. accepted (Aug 2019)

27. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E.: Su-
pervisory control synthesis for a lock-bridge combination. Discrete Event Dynamic
Systems (2019), submitted

28. Rudie, K., Wonham, W.M.: Think globally, act locally: decentralized supervisory
control. IEEE Transactions on Automatic Control 37(11), 1692–1708 (Nov 1992)

29. Su, R., van Schuppen, J.H., Rooda, J.E.: Synthesize nonblocking distributed su-
pervisors with coordinators. In: 17th Mediterranean Conference on Control and
Automation. pp. 1108–1113 (Jun 2009)

30. Su, R., van Schuppen, J.H., Rooda, J.E., Hofkamp, A.T.: Nonconflict check by
using sequential automaton abstractions based on weak observation equivalence.
Automatica 46(6), 968–978 (Jun 2010)

31. Theunissen, R.J.M.: Supervisory Control in Health Care Systems.
Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2015),
http://repository.tue.nl/786117

32. Wonham, W.M., Ramadge, P.J.G.: Modular supervisory control of discrete-event
systems. Mathematics of Control, Signals and Systems 1(1), 13–30 (Feb 1988)

33. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Springer,
1st edn. (2018)

34. Zhong, H., Wonham, W.M.: On the consistency of hierarchical supervision in
discrete-event systems. IEEE Transactions on Automatic Control 35(10), 1125–
1134 (Oct 1990)


