
Modeling guidelines for component-based
supervisory control synthesis?

Martijn Goorden1, Joanna van de Mortel-Fronczak1, Michel Reniers1,
Wan Fokkink1,2, and Jacobus Rooda1

1 Eindhoven University of Technology, Eindhoven, The Netherlands,
{m.a.goorden, j.m.v.d.mortel, m.a.reniers, j.e.rooda}@tue.nl

2 Vrije Universiteit, Amsterdam, The Netherlands, w.j.fokkink@vu.nl

Abstract. Supervisory control theory provides means to synthesize su-
pervisors from a model of the uncontrolled plant and a model of the con-
trol requirements. Currently, control engineers lack experience with using
automata for this purpose, which results in low adaptation of supervisory
control theory in practice. This paper presents three modeling guidelines
based on experience of modeling and synthesizing supervisors of large-
scale infrastructural systems. Both guidelines see the model of the plant
as a collection of component models. The first guideline expresses that
independent components should be modeled as asynchronous models.
The second guideline expresses that physical relationships between com-
ponent models can be easily expressed with extended finite automata.
The third guideline expresses that the input-output perspective of the
control hardware should be used as the abstraction level. The importance
of the guidelines is demonstrated with examples from industrial cases.

Keywords: Supervisory control synthesis · Automata · Modeling.

1 Introduction

The design of supervisors for cyber-physical systems has become a challenge, as
these systems include more and more components to control and functions to
fulfill, while at the same time market demands require verified safety, decreasing
costs, and decreasing time-to-market. Model-based systems engineering methods
can help in overcoming these difficulties, see [25].

For the design of supervisors, the supervisory control theory of Ramadge-
Wonham [23, 24] provides means to synthesize supervisors from a model of the
uncontrolled plant (describing what the system can do) and a model of the
control requirements (describing what the system may do). Such a supervisor
interacts with the plant by dynamically disabling some controllable events. Then
synthesis guarantees by construction that the closed-loop behavior of the super-
visor and the plant adheres to all requirements and, furthermore, is nonblocking,
controllable, and maximally permissive.

? Supported by Rijkswaterstaat, part of the Dutch Ministry of Infrastructure and
Water Management.



2 M. Goorden et al.

The number of industrial applications of supervisory control theory reported
in literature is low. In [38], two reasons are provided for this. First, it refers to the
lack of tooling with sufficient computational strength to cope with the size of in-
dustrial applications. Second, it mentions the “lack of experience among control
engineers with modeling and specification in the framework of automata”.

Papers that do publish industrial cases often present only the final model
and not the journey to arrive at this model. This makes it hard to disseminate
knowledge about modeling a system for the purpose of supervisory control syn-
thesis towards practitioners. A few exceptions exist in literature. The authors
of [7,14] have indicated that modeling the system and its requirements is difficult
and introduced concepts like, e.g., templates to assist the engineer in modeling
correctly, i.e., such that the obtained models exhibit the behavior the engineer
intended to model. The description of the case study in [4] is annotated with
modeling choices, yet they are not generalized into a modeling method. In [29],
a method for modeling cyber-physical systems is presented utilizing template-
based modeling of [7,14]. Finally, several modeling guidelines are proposed in [35]
based on experience with modeling bagage-handling systems, which is described
and modeled in [34].

The purpose of this paper is to provide three modeling guidelines based
on experience of modeling and synthesizing supervisors of large-scale infrastruc-
tural systems [19,28,29]. The first modeling guideline expresses that independent
plant components should be modeled as asynchronous plant models, i.e., hav-
ing no shared events. The second modeling guideline recommends that physical
relationships between component models can be easily expressed with extended
finite automata. The third modeling guideline expresses to use the abstraction
level of the inputs and outputs of the control hardware for the plant models.
These three modeling guidelines extend the set of modeling guidelines previ-
ously published in [10,11].

The effect of the first modeling guideline is that each individual plant model
is modeled as small as possible. Besides that smaller models are easier to un-
derstand and maintain over time, having smaller plant models has a significant
positive effect on the efficiency of module-based synthesis techniques, like modu-
lar synthesis of [22] and multilevel synthesis of [15], as shown in [11]. The second
guideline is a natural extension to the first guideline. It may be that two inde-
pendent components become dependent by their arrangement in the system, i.e.,
there is a physical relationship that relates the behavior of these two components
together. The result of the second guideline is a set of asynchronous component
models for the components and an additional automata modeling the physical
relationship. The third guideline helps in determining the right abstraction level
of the model. The result of following the guideline is that the first and second
guideline are more often applicable.

Requirement specifications in practice often violate the aforementioned guide-
lines. Although the guidelines may sound somewhat obvious, it required several
real-life case studies with supervisory control synthesis, see [19,28,29], to formu-
late them and grasp their importance.



Modeling guidelines for component-based supervisory control synthesis 3

The paper is structured as follows. Section 2 provides the preliminaries of this
paper. Section 3 continues by discussing the guideline concerning the modeling
of independent plant components. Section 4 discusses how to model the physical
dependencies between otherwise independent plant components. In Section 5,
the guideline concerning the input-output perspective is discussed. The paper
concludes with Section 6.

2 Preliminaries

This section provides a brief summary of concepts related to automata and
supervisory control theory relevant for this paper. These concepts are taken
from [2,38]. We first explain supervisory control synthesis for automata concep-
tually. Sections 2.1-2.3 introduce these concepts formally.

The supervisory control theory of Ramadge-Wonham [23,24] provides means
to synthesize supervisors from an automaton model of the uncontrolled plant and
an automaton model of the control requirements. For industrial-size systems, the
plant model and requirement model are each composed of smaller models de-
scribing a component of a system or a part of the desired behavior, respectively,
where the smaller models synchronize by shared events. When a system con-
trolled by a supervisor adheres to all specified requirements, the supervisor is
called safe.

A supervisor interacts with the plant by dynamically disabling events. For
the purpose of supervisory control synthesis, all events are classified either as
controllable or as uncontrollable. Controllable events may be disabled by the
supervisor, such as turning an actuator on; uncontrollable events may not be
disabled by the supervisor, such as a sensor switching value. A supervisor ad-
hering to this notion is called controllable.

The automata of the plant and requirement models also have marked states,
which represent a final state or a safe mode-of-operation. It is desired that a
controlled system should always be able to reach at least one of the marked
states. A supervisor ensuring this is called nonblocking.

Finally, a trivial, yet undesired, supervisor is often one that disables all con-
trollable events in order to be safe, controllable, and nonblocking. Therefore, a
more desired supervisor is one that restricts the system only when it is needed to
enforce safety, controllability, and nonblockingness. Such a supervisor is called
maximally permissive. Supervisory control synthesis guarantees by construction
that the supervisor is safe, nonblocking, controllable, and maximally permissive.

2.1 Finite automata

An automaton is a 5-tuple G = (Q,Σ, δ, q0, Qm), where Q is the (finite) state
set, Σ is the (finite) set of events also called the alphabet, δ : Q × Σ → Q
the partial function called the transition function, q0 ∈ Q the initial state, and
Qm ⊆ Q the set of marked states. The alphabet Σ = Σc∪Σu is partitioned into



4 M. Goorden et al.

sets containing the controllable events (Σc) and the uncontrollable events (Σu),
and Σ∗ is the set of all finite strings of events in Σ, including empty string ε.

We denote with δ(q, σ)! that there exists a transition from state q ∈ Q labeled
with event σ, i.e., δ(q, σ) is defined. The transition function can be extended in
the natural way to strings as δ(q, sσ) = δ(δ(q, s), σ) where s ∈ Σ∗, σ ∈ Σ, and
δ(q, sσ)! if δ(q, s)! ∧ δ(δ(q, s), σ)!. We define δ(q, ε) = q for the empty strings.
The language generated by the automaton G is L(G) = {s ∈ Σ∗ | δ(q0, s)!} and
the language marked by the automaton is Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}.

A state q of an automaton is called reachable if there is a string s ∈ Σ∗ with
δ(q0, s)! and δ(q0, s) = q. A state q is coreachable if there is a string s ∈ Σ∗ with
δ(q, s)! and δ(q, s) ∈ Qm. An automaton is called nonblocking if every reachable
state is coreachable.

Two automata can be combined by synchronous composition. In a syn-
chronous composition, transitions labeled with shared events have to be executed
simultaneously.

Definition 1. Let G1 = (Q1, Σ1, δ1, q0,1, Qm,1), G2 = (Q2, Σ2, δ2, q0,2, Qm,2) be
two automata. The synchronous composition of G1 and G2 is defined as

G1 ‖ G2 = (Q1 ×Q2, Σ1 ∪Σ2, δ1‖2, (q0,1, q0,2), Qm,1 ×Qm,2)

where

δ1‖2((x1, x2), σ) =



(δ1(x1, σ), δ2(x2, σ)) if σ ∈ Σ1 ∩Σ2, δ1(x1, σ)!,

and δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \Σ2 and δ1(x1, σ)!

(x1, δ2(x2, σ)) if σ ∈ Σ2 \Σ1 and δ2(x2, σ)!

undefined otherwise.

Synchronous composition is associative and commutative up to reordering of
the state components in the composed state set. Two automata are called asyn-
chronous if no events are shared, i.e., they do not synchronize over any event.

A composed system G is a collection of automata, i.e., G = {G1, . . . , Gm}. The
synchronous composition of a composed system G, denoted by ‖ G, is defined as
‖ G = G1 ‖ . . . ‖ Gm, and the synchronous composition of two composed systems
G1 ‖ G2 is defined as (‖ G1) ‖ (‖ G2). A composed system G = {G1, . . . , Gm} is
called a product system if the alphabets of the automata are pairwise disjoint,
i.e., Σi ∩Σj = ∅ for all i, j ∈ [1,m], i 6= j [24].

Finally, let G and K be two automata with the same alphabet Σ. K is said
to be controllable with respect to G if, for every string s ∈ Σ∗ and u ∈ Σu

such that δK(q0,K , s)! and δG(q0,G, su)!, it holds that δK(q0,K , su)!, where the
subscript G refers to elements of G and subscript K refers to elements of K.

2.2 Extended finite automata

In [32], extended finite automata (EFAs) are introduced for modeling systems,
which are FAs augmented with bounded discrete variables. An EFA is a 7-
tuple E = (L, V,Σ,→, l0, v0, Lm), where L is the (finite) location set, V the



Modeling guidelines for component-based supervisory control synthesis 5

set of variables, Σ is the (finite) set of events also called the alphabet, → the
extended transition relation, l0 ∈ L the initial location, v0 the initial valuation,
and Lm ⊆ L the set of marked locations.

In an EFA, the transition relation is enhanced with guard expressions (con-
ditions) and variable assignments (updates). Formally, the extended transition
relation is →: L×C ×Σ×U ×L, where C is the set of all conditions and U the
set of all updates. A transition is enabled if the associated condition evaluates to
true for the current variables valuation. After taking a transition, the variables
valuation is updated according to the associated update.

A condition is a Boolean expression constructed from discrete variables, lo-
cation variables, constants, the Boolean literals true (T) and false (F), and the
usual arithmetical operators and logical connectives, see [20]. A location variable
is a reference to a location, denoted by A.l, where A is the automaton name and
l a location of automaton A. It evaluates to T when A is in location l.

An update consists of zero or more variable assignments of the form vb := c,
where ‘:=’ denotes an assignment of the value of c to variable vb. It is not allowed
for an update to have multiple assignments for the same variable.

Two EFAs can be combined by computing the synchronous product as de-
fined in [32]. The state of an EFA is the combination of the active location
and current variables valuation. With respect of FAs, two EFAs are now called
asynchronous if they do not share events, variables, or location variables.

A

l1 l2

a
when B.l4
do x := T

b
when B.l3
do x := F

B

l3 l4
c

d

Fig. 1. An example of two EFAs.

Figure 1 shows an example of two EFAs. As shown with EFA A, keyword
when indicates the condition of the transition and keyword do indicates the
update. In EFA B the condition and update are omitted. An omitted condi-
tion indicates that the condition for that transition is T. An omitted update
indicates an ‘I don’t care’ update, i.e., the value of the variables is updated by
another synchronizing transition or, when no synchronizing transitions update
the variable, the value remains the same.

State-based expressions are introduced in [16, 17] as a modeling formalism
more closely related to the textual formulation of control requirements. The
state-event expression e needs c formulates that event e is only enabled when
condition c evaluates to T. The EFA representation of a state-event expression is



6 M. Goorden et al.

shown in Figure 2, such that the synchronous product of two EFAs can be used to
synchronize state-based expressions with EFAs or other state-based expressions.

e when c

Fig. 2. The EFA representation of state-event expression e needs c.

2.3 Supervisory control theory

The objective of supervisory control theory is to design an automaton called a
supervisor which function is to dynamically disable controllable events so that
the closed-loop system of the plant and the supervisor obeys some specified
behavior, see [2,23,24,38]. More formally, given a plant model P and requirement
model R, the goal is to synthesize supervisor S that adheres to the following
control objectives.

– Safety : all possible behavior of the closed-loop system P ‖ S should always
satisfy the imposed requirements, i.e., L(P ‖ S) ⊆ L(P ‖ R)

– Controllability : uncontrollable events may never be disabled by the supervi-
sor, i.e., S is controllable with respect to P .

– Nonblockingness: the closed-loop system should be able to reach a marked
state from every reachable state, i.e., P ‖ S is nonblocking.

– Maximal permissiveness: the supervisor does not restrict more behavior than
strictly necessary to enforce safety, controllability, and nonblockingness, i.e.,
for all other supervisors S′ satisfying safety, controllability, and nonblock-
ingness it holds that L(P ‖ S′) ⊆ L(P ‖ S).

Given a composed system representation of the plant P = {P1, . . . , Pm} and
a collection of requirements R = {R1, . . . , Rn}, we define the tuple (P,R) as
the control problem for which we want to synthesize a supervisor. Furthermore,
in the context of supervisory control synthesis we call each model Pi ∈ P a
component model, to differentiate it from the plant model P = ‖ P.

In this paper, three different synthesis techniques are discussed: monolithic
synthesis, modular synthesis, and multilevel synthesis. These synthesis tech-
niques are introduced below.

Monolithic supervisory control synthesis results in a single supervisor S from
a single plant model and a single requirement model, see [23] or, in case of EFAs,
see [20]. There may exist multiple automata representations of the maximally
permissive, safe, controllable, and nonblocking supervisor. When the plant model
and the requirement model are given as a composed system P and S, respec-
tively, the monolithic plant model P and requirement model R are obtained by
performing the synchronous composition of the models in the respective com-
posed system.



Modeling guidelines for component-based supervisory control synthesis 7

Modular supervisory control synthesis uses the fact that the desired behav-
ior is often specified with a collection of requirements R [37]. Instead of first
transforming the collection of requirements into a single requirement, as mono-
lithic synthesis does, modular synthesis calculates for each requirement a su-
pervisor based on the plant model. In other words, given a control problem
(P,R) with R = {R1, . . . , Rn}, modular synthesis solves n control problems
(P, {R1}), . . . , (P, {Rn}). Each control problem (P, {Ri}) for i ∈ [1, n] results
in a safe, controllable, nonblocking, and maximally permissive supervisor Si.
Unfortunately, the collection of supervisors S = {S1, . . . , Sn} can be conflicting,
i.e., P ‖ S1 ‖ . . . ‖ Sn can be blocking. A nonconflicting check can verify whether
S is nonconflicting, see [6, 18, 21]. In the case that S is nonconflicting, S is also
safe, controllable, nonblocking, and maximally permissive for the original control
problem (P,R) [37]. In the case that S is conflicting, an additional coordinator
C can be synthesized such that S ∪ {C} is safe, controllable, nonblocking, and
maximally permissive for the original control problem (P,R), see [33].

An extension to this approach, as proposed by [22], states that instead of
synthesizing each time with the complete plant P, it suffices to only consider
those automata that relate to the requirement that is considered. This extension
is used in the remainder of this paper.

Multilevel supervisory control synthesis is inspired by decompositions of sys-
tems by engineers [15]. For each subsystem, a supervisor is synthesized based on
requirements for only those subsystems. For synthesis, this resembles modular
supervisory control in the sense that for multilevel synthesis requirements re-
lated to the same subsystem are grouped together before synthesis is performed,
and a supervisor is synthesized for each such subsystem. Again, the collection of
synthesized supervisors may be conflicting.

Requirements relate different component models, as events and variables
mentioned in a requirement should originate from the component models. Mul-
tilevel synthesis allows to apply synthesis to a subsystem of component and re-
quirement models, as long as all component models related to these requirement
models are included in this subsystem. Therefore, it is important to formulate
small requirement models, as shown in [11].

3 Modeling independent components

The first modeling guideline concerns the modeling of the plant. Industrial sys-
tems consist of numerous components or subsystems, of which many are clearly
acting asynchronously in the uncontrolled situation. Consider for example two
conveyor belts after each other, each actuated by its own motor. In the uncon-
trolled situation, these actuators can behave independently of each other. For the
plant model, these two actuators are modeled by two asynchronous automata.
Therefore, the first guideline is formulated as follows.

Model independent plant components as asynchronous component models.

Plant components that have no relationship with each other, should not be
combined into a single component model. A single component model suggests



8 M. Goorden et al.

a relationship, which is absent in this case. Having asynchronous models (i.e.,
no shared events, variables, or location variables) increases readability of the
model, but also allows divide-and-conquer strategies to synthesize supervisors
for smaller subsystems. We illustrate this with two examples.

3.1 Autonomous robot

In this section, the modeling guideline will be illustrated with an industrial
example. Consider an autonomous omnidirectional robot that can move on a
factory floor along a grid, described by the application published in [8]. The goal
of the supervisor is to ensure safe operation of the robot on the factury floor.
We want to model the pose of the robot, i.e., the combination of position along
the x-axis, position along the y-axis, and orientation of the front of the robot.

x

y

0 1 2 3 4
0

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Fig. 3. The schematic representation of the factory floor. The numbers represent states,
with a state being the combination of x-position, y-position, and orientation.

Figure 3 shows the schematic representation of the factory floor, where the
x-axis, y-axis, and orientation are each discretized into four possible values. Each
arrow indicates a pose of the robot: an x-position, y-position, and orientation.
These poses are the states of the robot. The number indicates the state number
that will be used in modeling this environment. Note that in this example the
initial state is not explicitly modeled. Any state could act as the initial state.



Modeling guidelines for component-based supervisory control synthesis 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Fig. 4. The factory floor modeled as a single plant model P. Event labels are not
depicted.

1 2 3 4x-direction X:

m pos x

m neg x

m pos x

m neg x

m pos x

m neg x

1 2 3 4y-direction Y :

m pos y

m neg y

m pos y

m neg y

m pos y

m neg y

1

2

3

4

Orientation O:

r cc

r c

r cc

r c

r cc

r c

r cc

r c

Fig. 5. The factory floor modeled as three asynchronous component models.



10 M. Goorden et al.

Figure 4 shows how this factory floor could be modeled as a single component
model P along the lines of [8]. This dense plant model is hard to read. The way
this model is depicted unveils that there is structure in this system, which could
be exploited further. Figure 5 shows three asynchronous component modelsX,Y ,
and O that in a synchronous composition model exactly the same behavior, i.e.,
P = X ‖ Y ‖ O.

For modular and multilevel synthesis, having multiple asynchronous com-
ponent models instead of a single large model is an advantage. This can be
demonstrated with the following requirements. Suppose that the autonomous
omnidirectional robot may only move in a certain direction if it is oriented in
that direction. This requirement can be formalized as follows. Requirements
R1, . . . , R4 use the single component model P , while R′1, . . . , R

′
4 use the asyn-

chronous component models X,Y , and O. Understanding and assessing the cor-
rectness of requirements R1, . . . , R4 is more difficult than that of requirements
R′1, . . . , R

′
4.

R1 : m pos x needs P.1 ∨ P.5 ∨ P.9 ∨ P.13 ∨ P.17 ∨ P.21 ∨ P.25 ∨ P.29

∨ P.33 ∨ P.37 ∨ P.41 ∨ P.45

R2 : m neg x needs P.19 ∨ P.23 ∨ P.27 ∨ P.31 ∨ P.35 ∨ P.39 ∨ P.43 ∨ P.47

∨ P.51 ∨ P.55 ∨ P.59 ∨ P.63

R3 : m pos y needs P.2 ∨ P.6 ∨ P.10 ∨ P.18 ∨ P.22 ∨ P.26 ∨ P.34 ∨ P.38

∨ P.42 ∨ P.50 ∨ P.54 ∨ P.58

R4 : m neg y needs P.8 ∨ P.12 ∨ P.16 ∨ P.24 ∨ P.28 ∨ P.32 ∨ P.40 ∨ P.44

∨ P.48 ∨ P.56 ∨ P.60 ∨ P.64

R′1 : m pos x needs O.1

R′2 : m neg x needs O.3

R′3 : m pos y needs O.2

R′4 : m neg y needs O.4

In case of the single component model P , we obtain the four control problems
(P,Ri), i ∈ [1, 4]. In case of the asynchronous component models X,Y, and O,
we obtain the four control problems (X ‖ O,R′1), (X ‖ O,R′2), (Y ‖ O,R′3),
and (Y ‖ O,R′3). Table 1 shows numerical results for synthesizing modular
supervisors for the control problems mentioned before. For each supervisor, the
number of states and transitions is mentioned. By modeling the subsystem as a
set of asynchronous automata models, a reduction in the size of the supervisors
is obtained. This reduction can be even more significant if a finer discretization
is used. Assume that both the x and y directions are discretized in k values.
Each of the four synthesized supervisors using the single component model has
4k2 states and 21k2 − 13k transitions; each of the four synthesized supervisors



Modeling guidelines for component-based supervisory control synthesis 11

Table 1. Experimental results for synthesizing modular supervisors with the single
component model and the multiple components model, with the monolithic supervisor
as reference. The states and transitions are of the state space of each supervisor and
i ∈ {1, 2, 3, 4}.

Model Supervisor States Transitions

Single plant Si 64 284

Multiple plants S′
i 16 47

Monolithic supervisor S 64 176

using asynchronous component models has 4k states and 13k−4 transitions. So,
instead of the supervisors growing quadratic in k, the overall state space can be
reduced to only growing linearly in k.

3.2 Waterway lock

In this section, the effect of the modeling guideline on the efficiency of module-
based synthesis techniques is demonstrated with a large-scale industrial example.
Consider a waterway lock in a river or a canal, which is an infrastructural system
that maintains a difference in water levels at both sides while also allowing ships
to go from one water level to the other water level. Such a system consists of
actuators, such as motors to open gates, sensors, such as measuring whether
a gate is open, traffic lights, to communicate with vessels, and buttons, for an
operator to interact with the system.

A model of Lock III, located in Tilburg, the Netherlands, is presented in [28].
This model adheres to the proposed modeling guideline of using asynchronous
component models for independent plant components. This model is adjusted
such that it ignores the modeling guideline. For example, all independent com-
ponents of the gate actuators on the upstream side of the lock are combined.

Table 2. Experimental results for synthesizing modular and multilevel supervisors
with the models of Lock III violating or adhering to the modeling guideline.

Model Components Supervisor States

Violating the guideline 35 Monolithic 6.0 · 1024

Multilevel 1.4 · 1021

Modular 1.8 · 109

Adhering to the guideline 51 Monolithic 6.0 · 1024

Multilevel 3.5 · 107

Modular 6.8 · 105



12 M. Goorden et al.

Table 2 shows experimental results of synthesizing supervisors for the two
different versions of the model of Lock III. By adhering to the modeling guideline,
the number of component models increases from 35 automata to 51 automata.
This has a significant effect on the efficiency of multilevel and modular synthesis.
For the model violating the guideline, the combined size of the supervisors, which
is the sum of the size of each individual supervisor, for multilevel synthesis is
1.4·1021 states, which can be significantly reduced to 3.5·107 states if one adheres
to the modeling guideline. If one adheres to the modeling guideline and deploys
modular synthesis, the combined size of the supervisors can be even reduced
to 6.8 · 105 states. These results clearly indicate the relevance of the proposed
modeling guideline in practice.

4 Modeling physical relations

The second modeling guideline concerns the modeling of physical relations be-
tween components or subsystems. For cyber-physical systems, most actuators
and sensors behave independent of each other, see the first modeling guideline
in Section 3. Yet, some actuators and sensors are related with each other through
the physical design of the component or subsystem. For example, consider a hy-
draulic arm, which can extend and retract, and two sensors measuring the end
position, one for the fully extended position of the arm and one for the fully
retracted position. If no faults occur, then these two sensors are never activated
at the same time, as it is physically impossible that the hydraulic arm is fully
extended and fully retracted at the same time.

Sensor1 Off

On

u on s1u off s1

Sensor2 Off

On

u on s2u off s2

Actuator Off

On

c on ac off a

R : c off a needs Sensor1.On ∧ Sensor2.On

Fig. 6. Models to illustrate the issue with omitting physical relations. Solid arrows indi-
cate transitions labeled with controllable events, dashed transitions indicate transitions
labeled with uncontrollable events.

In [39] the importance of modeling physical relationships is shown. The au-
thors argue that models that are nonblocking, like a synthesized supervisor, may
become blocking when they are implemented on actual control hardware. This
is illustrated with the models shown in Figure 6. In this example, two sensors



Modeling guidelines for component-based supervisory control synthesis 13

and an actuator are modeled without any physical relationship between them
(so the modeling guideline from Section 3 has been applied). Requirement R
expresses that the actuator may only be turned off when both sensors are on.
A safe, nonblocking, controllable, and maximally permissive supervisor synthe-
sized from these plant and requirement models disables event c off a when both
sensors are not on at the same time and enables always all other events. When
this supervisor is implemented on the system where a physical relation ensures
that both sensors can never be on at the same time, the controlled system is no
longer nonblocking. As event c on is always enabled, the actuator can reach the
state On. Subsequently, event c off a is permanently disabled by the physical
relation between the sensors, so the actuator cannot reach a marked location
from the reachable location On.

u on s1 when Sensor2.Off
u on s2 when Sensor1.Off

Fig. 7. The EFA model representing the physical relationship between the two sensors
in the example of Figure 6. In this drawing, the two transitions, each labeled with a
different event, are visualized with only a single edge as they have the same source and
target state.

EFAs are very suitable to include physical relationships into the plant model.
By deploying EFAs, the actuators and sensors can be first modeled as if they do
not have any physical relationship, resulting in asynchronous component models.
Subsequently, a component model can be added explicitly, modeling the physical
relationship. Figure 7 models the physical relationship between the two sensor
models from the example in Figure 6. This model shows clearly that Sensor1
can only go on when Sensor2 is off and vice versa. This example demonstrates
that using EFAs for modeling physical relationships provides a clear and well
maintainable model. Therefore, the second guideline is formulated as follows.

Model physical relationships between components with EFAs.

The proposed method of first modeling sensors and actuators with asyn-
chronous component models and subsequently modeling the physical relation-
ship with EFAs maintains the component-based modeling approach. Three other
modeling approaches used in literature do not adhere to the proposed modeling
guideline. The first method is to model the physically related components di-
rectly as a single component model, see, for example, the several sensors in the
model of Lock III [28]. The second method is to model the physical relationship
with an additional FA model, which is essentially the first method yet now keep-
ing the original component models, see, for example, the interaction between
actuators and sensors in the model of an MRI scanner [36]. The third method
is to model the physical relationship directly in one of the related components,



14 M. Goorden et al.

see, for example, the relationship between sensors and actuators in the model of
Lock III [28].

The proposed modeling guideline has no impact on the efficiency of module-
based synthesis algorithms like modular and multilevel synthesis. When synthe-
sis is performed for a particular (set of) requirement(s), not only the directly
related component models are selected, but also those indirectly related. There-
fore, the models obtained by following the guideline or the other three methods
mentioned in the paragraph above all have the same state-space representation
in their synchronous product of the component models. The advantage of using
the proposed modeling guideline is primarily in ease of modeling, understanding
the model, and adjusting the model.

5 Modeling with the input-output perspective

The third modeling guideline concerns the abstraction level of the model. Choos-
ing the ‘right’ abstraction level for the model is often not straightforward. Often
systems are modeled with high-level events, such as starting a machine, handing
over a product to a buffer, or moving a robot to a certain location. In [1], the
implementation of the supervisor on control hardware is considered, leading to
a so-called input-output perspective modeling approach. With this perspective,
events relate to the change of signal value sent to actuators or received from sen-
sors. Furthermore, all events related to actuators are controllable and all events
related to sensors are uncontrollable. It turns out that this input-output per-
spective has several advantages, which is explained next. Therefore, the third
guideline is formulated as follows.

Use the abstraction level of the inputs and outputs of the control hardware
for the plant model.

For the case studies with infrastructural systems, the goal was to eventually
deploy the synthesized supervisor on hardware. Choosing the abstraction level
of the inputs and outputs of the control hardware allows for the generation of
control code, see [3].

Furthermore, this abstraction level leads to many small and loosely coupled
models of the sensors and actuators, based on just a few templates, as introduced
in [14]. Supervisory control synthesis benefits from having (almost) a product
system, see Section 3 and the work of [5, 9, 12, 26, 35]. In software engineering,
this modeling method is called component-based modeling, see [13].

Using the input-output perspective for modeling can ultimately result in
skipping synthesis completely, as shown in [9]. By using the input-output per-
spective, textual control requirements formulated by engineers can be more easily
translated into models, as the states of actuators and sensors are directly avail-
able in the plant model. This turns out to be beneficial for supervisory control
synthesis, as the plant models and requirement models together already form
a safe, controllable, nonblocking, and maximally permissive supervisor and no
synthesis is needed.



Modeling guidelines for component-based supervisory control synthesis 15

Another modeling method called product-based modeling should be avoided
when possible. An example of a model with this abstraction level is the wafer
scanner logistics model of [31]. It was not possible to synthesize a monolithic
supervisor for this model. In the PhD thesis [30], the wafer scanner is modeled
on the action level without products (towards the input-output perspective,
yet not fully there). For this adapted model, a monolithic supervisor has been
synthesized. In Section 5.1 this example will be discussed in more detail.

5.1 Industrial examples

In this section, modeling with the input-output perspective is demonstrated. For
this purpose, three different case studies are discussed.

Production line buffer

M1 Off

On

c s m1u f m1

M2 Off

On

c s m2u f m2

B Zero

One

u f m1c s m2

c s m2

u f m1

Fig. 8. A model of two machines M1 and M2 and a connecting buffer B. The letter c
is an abbreviation for controllable, u for uncontrollable, s for start, and f for finish.

In the first example in Figure 8, we model two machines M1 and M2 and a buffer
B connecting the two machines, adapted from [38]. The two machines display
similar behavior. The two states indicate that the machine is either on or off. A
controllable event can start the machine, and an uncontrollable event indicates
that the machine has finished. The start and finish events are also used in the
model of the buffer. A product is placed in the buffer when the first machine is
finished, and a product is taken from the buffer when the second machine starts.
As can be seen, a high abstraction level is chosen to model the system.

The FESTO production line, as described and modeled in [27], also contains
a buffer to temporarily store products between two work stations. This example
shows which actuators and sensors are connected to the inputs and outputs of
the control hardware. There is an actuator A1 present to move a product from
the previous work station to the buffer, an actuator A2 to move a product from



16 M. Goorden et al.

A1

Off Onc on a1

c off a1

A2

Off Onc on a2

c off a2

S1

Off Onu on s1

u off s1

S2

Off Onu on s2

u off s2

Fig. 9. An alternative model of the buffer.

the buffer to the next work station, a sensor S1 located at the entrance of the
buffer to measure whether the buffer is full, and a sensor S2 located at the exit
of the buffer to measure whether the buffer is empty. The component models are
shown in Figure 9.

Several differences can be observed between the component models in Fig-
ures 8 and 9. First, in the high-level perspective model the machines in the
proximity of the buffer are modeled, while in the input-output perspective ac-
tuators responsible for the movement of products are modeled. Secondly, the
events in the high-level perspective have a complex meaning, like u f m1 repre-
senting that machine 1 has finished production and the product is placed in the
buffer. And third, maybe the most important observation is that all component
models in the high-level perspective are connected by shared events, while all
component models in the input-output perspective are asynchronous and form
a product system.

Requirements are formulated that express that the buffer may not overflow
or underflow. Requirements R1 and R2 below are formulated for the high-level
perspective model and requirements R3 and R4 for the input-output perspective
model.

R1 : c f m1 needs B.Zero

R2 : c s m2 needs B.One

R3 : c on a1 needs S1.Off

R4 : c on a2 needs S2.On

While these requirements are very similar in form, the input-output perspective
model and its requirements satisfy the Controllable and Nonblocking Modular
Supervisors Properties as presented in [9]. Therefore, no synthesis is needed for
this model and the component and requirement models are together already
modular supervisors.



Modeling guidelines for component-based supervisory control synthesis 17

Waterway traffic light
The second example is a traffic light from a waterway lock, inspired by [28]. Such
a traffic light is used to communicate with vessels whether they are allowed to
enter the lock. The traffic light consists of three lamps, see Figure 10: a red one, a
green one, and another red one. Four aspects, i.e., combinations of lamps turned
on, have the following legal meaning in the communication with vessels.

– Double red aspect. This aspect is formed by having both red lamps on and
the green lamp off. It indicates that the lock is out-of-service.

– Red aspect. This aspect is formed by having the top red lamp on and the
green and bottom red lamps off. It indicates that vessels are not allowed to
enter the lock from this side of the waterway.

– Red-green aspect. This aspect is formed by having the top red and green
lamps on and the bottom red lamp off. It indicates to vessels that they may
enter the lock soon, so captains should prepare their vessels.

– Green aspect. This aspect is formed by having the green lamp on and both
red lamps off. It indicates that vessels are allowed to enter the lock.

ISS Design Real-life application Conclusion

Modeling of the plant

The plant model consists of models for all components in the systems, e.g., traffic
lights, boom barriers, bridge locking mechanism, bridge rotating mechanism, vessel
traffic lights, and the operator interface. In total there are 82 component models,
modeled using 7 templates.

Vessel traffic light actuator example:

red red red red green green
c red

c red red

c red green

c red

c green

c red

12 / 21

Fig. 10. The aspects of the lock traffic light: double red, red, red-green, and green.

RedRed Red RedGreen Greenc r c rg

c r
c rr

c r

c g

Fig. 11. The model of the traffic light as proposed in [28].

Figure 11 shows the model of the traffic light as proposed in [28]. It uses the
four aspects of the traffic light as states and defines possible transitions between
them. The events on the transitions do not correspond directly to a value change
in one of the input or output signals of the control hardware.



18 M. Goorden et al.

TopRed Off

On

c on trc off tr

Green Off

On

c on gc off g

BottomRed Off

On

c on brc off br

Fig. 12. The models of the traffic light using the input-output perspective.

Figure 12 shows the models of the traffic light when the input-output per-
spective is followed. Each lamp in the traffic light can be actuated separately,
resulting in three asynchronous models TopRed, Green, and BottomRed. Each
event now relates to a value change in the output signal of the controller hard-
ware.

Several differences can be observed between the models in Figure 11 and the
models in Figure 12. First, each model created with the input-output perspec-
tive is smaller than the single model with the aspect perspective, which makes
understanding the model easier. Second, the three models with the input-output
perspective are indeed a product system, so benefits in performance of synthesis
as discussed in Section 3 also apply in this case. Third, the plant model with
the input-output perspective describes more behavior, as it includes also illegal
aspects of the traffic light. Therefore, the modeler needs explicitly exclude these
illegal aspects with requirement models. These illegal aspects (and transitions
to these aspects) have already been removed in the model in Figure 11.

In this particular example, there exists a injective mapping between states of
the model in Figure 11 and states in the models in Figure 12. For example, the
state RedRed maps to state TopRed.On, Green.Off, and BottomRed.On; and
the steed Green maps to RedRed.Off, Green.On, and BottomRed.Off. Mappings
for states Red and RedGreen can be derived similarly.

Wafer scanner logistics
The third example is a model of the wafer logistics in a lithography scanner,
see [31]. A lithography scanner exposes silicon wafers to manufacture integrated
circuits. Besides exposing a wafer, several pre- and postprocessing steps are
performed in a lithography scanner, such as conditioning, aligning and measur-
ing. These processing steps are performed multiple times before the integrated
circuits on the wafer are finished. The goal of the supervisory controller is to
properly manage the wafer logistics in such a scanner.

The wafer scanner logistics model of [31] deploys a product-based modeling
perspective, where the products that go through the manufacturing process are
modeled, as well as all actions that are possible on the products. Figure 13
shows two of the component models of the wafer scanner logistics. The model



Modeling guidelines for component-based supervisory control synthesis 19

ObsAligned j

not aligned aligned
PA Align j e

MM PA Align j e

ReqOccupied CH0
free occupied

LRtoCH0 ∗ s

CH0toLR ∗ s
CH0toUR ∗ s

Fig. 13. The model ObsAligned j of the alignment status of wafer j (left) and the
model ReqOccupied CH0 of the occupation of resource CH0 (right), both taken
from [31].

ObsAligned j models for each wafer j ∈ J in the system, with J the set of
all wafers, whether it is aligned or not. This component model represents a
property of a product in the system. The model ReqOccupied CH0 keeps track
whether the resource CH0 is occupied by a wafer or not. As each wafer j ∈ J may
occupy this resource, this automaton needs to be able to synchronize with events
from all wafers, which is in short denoted by ∗ in the model, e.g., LRtoCH0 ∗ s
= {LRtoCH0 j s | j ∈ J}. This model represents a property of a resource in the
system.

The product-based modeling perspective results in all component models
being connected, as they need to synchronize in shared events to track the dif-
ferent products through the system. This is detrimental to the applicability of
synthesis, as mentioned in [30], since synthesizing a monolithic supervisor was
not possible. Also, due to these strongly connected component models, modular
and multilevel synthesis will not ease synthesis, as for each (group of) require-
ment(s) all component models need to be taken into account during synthesis.

In the PhD thesis [30] the explicit models of the products are removed and
the remaining component models of the resources rewritten. This means that the
model ObsAligned j from Figure 13 is no longer included in the adapted model.
The model ReqOccupied CH0 from Figure 13 of resource CH0 is rewritten into
CH0, as shown in Figure 14. The events related to each wafer j are replaced
by generalized events. Furthermore, the events CH0 Measure and CH0 Expose
on the self-loop in location occupied originated from another component model,
not shown in Figure 13, which is removed in the adapted model. Now, for the
adapted model a monolithic supervisor can be synthesized having 2190 states



20 M. Goorden et al.

CH0

free occupied
LRtoCH0

CH0toUR CH0 Measure
CH0 Expose

Fig. 14. The model CH0 of resource CH0, taken from [31].

and 6969 transitions. This is a significant synthesis performance increase, as no
supervisor could be synthesized for the product-based perspective model.

6 Conclusion and future work

This paper presents three guidelines for modeling systems for which a supervisory
controller needs to be synthesized. The first one expresses that independent plant
components should be modeled as asynchronous plant models. The second one
recommend that physical relationships between component models can be easily
expressed with extended finite automata. The third one expresses that the input-
output perspective of the control hardware should be used for the plant models.
Examples from practice show how the guidelines can be used and that they can
result in a considerable increase in performance of supervisory control synthesis.

Acknowledgments The authors thank Maria Angenent, Bert van der Vegt,
and Han Vogel from Rijkswaterstaat for their feedback on the results.

References

1. Balemi, S.: Control of Discrete Event Systems: Theory and Application. Ph.D.
thesis, Swiss Federal Institue of Technology Zurich, Zurich (1992)

2. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
Boston, 2nd edn. (2008)

3. Fabian, M., Hellgren, A.: PLC-based implementation of supervisory control for
discrete event systems. In: 37th IEEE Conference on Decision and Control. vol. 3,
pp. 3305–3310 (1998). https://doi.org/10.1109/CDC.1998.758209

4. Fabian, M., Fei, Z., Miremadi, S., Lennartson, B., Åkesson, K.: Supervisory control
of manufacturing systems using extended finite automata. In: Campos, J., Seatzo,
C., Xie, X. (eds.) Formal Methods in Manufacturing, pp. 295–314. Industrial In-
formation Technology, Taylor & Francis Inc. (2014)

5. Feng, L., Wonham, W.M.: Nonblocking coordination of discrete-event systems by
control-flow nets. In: 46th IEEE Conference on Decision and Control. pp. 3375–
3380. https://doi.org/10.1109/CDC.2007.4434160

6. Flordal, H., Malik, R.: Compositional verification in supervisory con-
trol. SIAM Journal on Control and Optimization 48(3), 1914–1938.
https://doi.org/10.1137/070695526



Modeling guidelines for component-based supervisory control synthesis 21

7. Göbe, F., Ney, O., Kowalewski, S.: Reusability and modularity of safety
specifications for supervisory control. In: 21st IEEE International Confer-
ence on Emerging Technologies and Factory Automation. pp. 1–8 (2016).
https://doi.org/10.1109/ETFA.2016.7733498

8. Gonzalez, A.G.C., Alves, M.V.S., Viana, G.S., Carvalho, L.K., Basilio, J.C.: Super-
visory Control-Based Navigation Architecture: A New Framework for Autonomous
Robots in Industry 4.0 Environments. IEEE Transactions on Industrial Informatics
14(4), 1732–1743 (2018). https://doi.org/10.1109/TII.2017.2788079

9. Goorden, M.A., Fabian, M.: No synthesis needed, we are alright already. In: 15th
IEEE International Conference on Automation Science and Engineering. pp. 195–
202. https://doi.org/10.1109/COASE.2019.8843071

10. Goorden, M.A., van de Mortel-Fronczak, J.M., Etman, L.F.P., Rooda, J.E.: DSM-
based analysis for the recognition of modeling errors in supervisory controller de-
sign. In: 21st International Dependency and Structure Modeling Conference. pp.
127–135 (2019). https://doi.org/10.35199/dsm2019.7

11. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fokkink, W.J.,
Rooda, J.E.: The impact of requirement splitting on the efficiency of supervisory
control synthesis. In: Larsen, K.G., Willemse, T. (eds.) Formal Methods for Indus-
trial Critical Systems. Lecture Notes in Computer Science, vol. 11687, pp. 76–92.
Springer. https://doi.org/10.1007/978-3-030-27008-7 5

12. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fokkink,
W.J., Rooda, J.E.: Structuring multilevel discrete-event systems with depen-
dency structure matrices. IEEE Transactions on Automatic Control (2019).
https://doi.org/10.1109/TAC.2019.292811, early access

13. Gössler, G., Sifakis, J.: Composition for component-based mod-
eling. Science of Computer Programming 55(1), 161–183.
https://doi.org/10.1016/j.scico.2004.05.014

14. Grigorov, L., Butler, B.E., Cury, J.E.R., Rudie, K.: Conceptual design of discrete-
event systems using templates. Discrete Event Dynamic Systems 21(2), 257–303
(2011). https://doi.org/10.1007/s10626-010-0089-0

15. Komenda, J., Masopust, T., van Schuppen, J.H.: Control of an engineering-
structured multilevel discrete-event system. In: 13th International Workshop on
Discrete Event Systems. pp. 103–108 (2016)

16. Ma, C., Wonham, W.: Nonblocking Supervisory Control of State Tree Structures.
No. 317 in Lecture Notes in Control and Information Sciences, Springer (2005)

17. Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J., Rooda, J.E.: Coor-
dination of resources using generalized state-based requirements. In: 10th Interna-
tional Workshop on Discrete Event Systems. pp. 300–305 (2010)

18. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional nonblocking
verification of extended finite-state machines. Discrete Event Dynamic Systems
26(1), 33–84 (2016). https://doi.org/10.1007/s10626-015-0217-y

19. Moormann, L., Maessen, P., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda,
J.E.: Design of a tunnel supervisory controller using synthesis-based engineering
(2020), accepted for ITA-AITES World Tunnel Congress

20. Ouedraogo, L., Kumar, R., Malik, R., Åkesson, K.: Nonblocking and safe
control of discrete-event systems modeled as extended finite automata. IEEE
Transactions on Automation Science and Engineering 8(3), 560–569 (2011).
https://doi.org/10.1109/TASE.2011.2124457

21. Pena, P.N., Cury, J.E.R., Lafortune, S.: Verification of nonconflict of supervisors
using abstractions. IEEE Transactions on Automatic Control 54(12), 2803–2815.
https://doi.org/10.1109/TAC.2009.2031730



22 M. Goorden et al.

22. de Queiroz, M.H., Cury, J.E.R.: Modular supervisory control of large scale discrete
event systems. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems, pp. 103–
110. No. 569 in The Springer International Series in Engineering and Computer
Science (2000)

23. Ramadge, P.J.G., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

24. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proceed-
ings of the IEEE 77(1), 81–98 (1989)

25. Ramos, A.L., Ferreira, J.V., Barceló, J.: Model-based systems engineering: An
emerging approach for modern systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 42(1), 101–111 (2012).
https://doi.org/10.1109/TSMCC.2011.2106495

26. Reijnen, F.F.H., Erens, T.R., van de Mortel-Fronczak, J.M., Rooda, J.E.: Supervi-
sory control synthesis for safety PLCs (2020), submitted to International Workshop
on Discrete Event Systems

27. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A.,
Rooda, J.E.: Application of dependency structure matrices and multilevel syn-
thesis to a production line. In: 2nd IEEE Conference on Control Technology and
Applications. pp. 458–464 (2018). https://doi.org/10.1109/CCTA.2018.8511449

28. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E.:
Supervisory control synthesis for a waterway lock. In: 1st IEEE Con-
ference on Control Technology and Applications. pp. 1562–1568 (2017).
https://doi.org/10.1109/CCTA.2017.8062679

29. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E.: Su-
pervisory control synthesis for a lock-bridge combination (2019), submitted to Dis-
crete Event Dynamic Systems

30. van der Sanden, L.J.: Performance analysis and optimization of supervisory con-
trollers. Ph.D. thesis, Eindhoven University of Technology (2018)

31. van der Sanden, L.J., Reniers, M.A., Geilen, M.C.W., Basten, T., Jacobs, J.,
Voeten, J.P.M., Schiffelers, R.R.H.: Modular model-based supervisory controller
design for wafer logistics in lithography machines. In: 18th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems (2015)

32. Skoldstam, M., Åkesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: 46th IEEE Conference on Decision and Control.
pp. 3387–3392 (2007). https://doi.org/10.1109/CDC.2007.4434894

33. Su, R., van Schuppen, J.H., Rooda, J.E.: Synthesize nonblocking distributed su-
pervisors with coordinators. In: 17th Mediterranean Conference on Control and
Automation. pp. 1108–1113 (2009). https://doi.org/10.1109/MED.2009.5164694

34. Swartjes, L., van Beek, D.A., Fokkink, W.J., van Eekelen, J.A.W.M.:
Model-based design of supervisory controllers for baggage handling sys-
tems. Simulation Modelling Practice and Theory 78, 28–50 (2017).
https://doi.org/10.1016/j.simpat.2017.08.005

35. Swartjes, L.: Model-Based Design of Baggage Handling Systems. Ph.D. thesis,
Eindhoven University of Technology (2018)

36. Theunissen, R.J.M., Petreczky, M., Schiffelers, R.R.H., Beek, D.A.v., Rooda, J.E.:
Application of supervisory control synthesis to a patient support table of a mag-
netic resonance imaging scanner. IEEE Transactions on Automation Science and
Engineering 11(1), 20–32 (2013)

37. Wonham, W.M., Ramadge, P.J.G.: Modular supervisory control of discrete-event
systems. Mathematics of Control, Signals and Systems 1(1), 13–30 (1988)



Modeling guidelines for component-based supervisory control synthesis 23

38. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Springer,
1st edn. (2019)

39. Zaytoon, J., Carre-Meneatrier, V.: Synthesis of control implementation for discrete
manufacturing systems. International Journal of Production Research 39(2), 329–
345 (2001). https://doi.org/10.1080/00207540010002388


