
Supervisory Control of Multilevel Discrete-Event Systems
with a Bus Structure

Martijn Goorden1, Calvin Dingemans1, Michel Reniers1,
Joanna van de Mortel-Fronczak1, Wan Fokkink1, and Jacobus Rooda1

Abstract— High-tech systems often contain a few components
with many dependencies across the system, acting as system-
level integrating components. In a hierarchical system decom-
position, such so-called bus components tend to be placed in
the top node. In supervisory control synthesis, this results in a
significant increase of the state space. In this paper, a method
is proposed to transform a set of plant models and requirement
models into a tree-structured multilevel discrete-event system
with a bus structure. After recording the dependencies within
the system, the bus and the non-bus plant models are identified
and separated. Subsequently, each set of plant models is clus-
tered separately, resulting in a multilevel discrete-event system.
Finally, these two systems are merged into a single multilevel
discrete-event system where bus plant models are distributed
over the multilevel discrete-event system. Experimental results
of several models available in the literature are reported to
assess the applicability of the proposed method.

I. INTRODUCTION

Supervisory Control Theory (SCT), as introduced by
Ramadge-Wonham [1], [2], provides an approach to syn-
thesize supervisory controllers for high-tech systems such
that the controlled system behavior is as specified. Recently,
SCT has been applied in several case studies including large
high-tech systems, such as an advanced driver assistance
system [3], a container terminal [4], and a waterway lock [5].

A major drawback of synthesizing supervisory controllers
is the computational complexity of the step where the
supremal controllable language is calculated. Although the
computational complexity of this step is polynomial in the
number of states that represent the system, this number in-
creases exponentially with the number of constituent models
used to represent the system, as already observed in [2].
For example, [4] reports that a monolithic supervisor could
only be synthesized with the tool Supremica [6], while
others fail. Several attempts exploiting different architec-
tures have been proposed to overcome these computational
difficulties: modular [7], hierarchical [8], decentralized [9],
coordinated [10], and, more recently, multilevel supervisory
control synthesis [11].

A problem with several of these supervisory control ar-
chitectures is that additional information about, for example,
the system’s structure or controller’s structure needs to be
provided as input for synthesis. For example, hierarchical

This work is supported by Rijkswaterstaat, part of the Ministry of
Infrastructure and Water Management of the Government of the Netherlands.

1Martijn Goorden (m.a.goorden@tue.nl), Calvin Dingemans,
Michel Reniers, Joanna v.d. Mortel-Fronczak, Wan Fokkink, and Jacobus
Rooda are with Department of Mechanical Engineering, Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands.

supervisory control needs also a hierarchical mapping of
events or traces between the different levels, decentralized
control requires projections to the subsystem alphabets, and
multilevel control needs a tree-structured system. Recently,
an approach is presented in [12] to transform any set of plant
models together with the control requirements into the ap-
propriate input for multilevel supervisory control synthesis.

In that paper, the structure embedded in the set of plant
models and the set of requirement models is exploited by
using Dependency Structure Matrices (DSMs). A DSM is
an N × N matrix capturing the dependencies among N
system components. It provides a concise representation for
the analysis of the structure of systems in many areas of
engineering and research, several industrial examples are
provided in [13], [14]. With appropriate analysis techniques,
such as clustering, one is able to highlight important aspects
in system structures, such as modules of system components.

High-tech systems often contain components with many
dependencies across the system, acting as system-level in-
tegrating components. These components are called bus
components, see [15]. With the approach presented in [12],
the bus components are placed high, or even in the top
node, in the multilevel system as they are related to many
components in the system. In top nodes, this produces large
sets of plant models and requirements, resulting in a large
supervisory control problem to solve.

The contribution of this paper is a systematic approach to
the transformation of a set of finite-automata plant models
and a set of requirement models with a bus structure into
a tree-structured multilevel discrete-event system (MLDES)
for multilevel supervisory control synthesis of [11]. The
proposed method tries to place bus plant models as low as
possible in the multilevel system, circumventing the creation
of large top nodes, by distributing requirements related to
bus plant models over the nodes instead of combining them
in a single node. After creating a DSM of the system, we
identify the bus plant models and separate them from the
non-bus plant models. Subsequently, we create an MLDES
for the bus and non-bus plant models separately with the
method from [12]. Finally, we merge these two MLDESs
into a single one, which can be used as input for multilevel
supervisory control synthesis. This merging ensures that bus
components are located low in the multilevel system and not
all together in the top node.

This paper is structured as follows. The concepts and
notations used are provided in Section II regarding DSMs
and in Section III regarding SCT. The main results are

P

1
1

2

2

3

3

4

4

5

5

1

-

1
1
1

-

1

-
1

-

1
1

-

1
1

PC

1
1

4

4

2

2

5

5

3

3

1

-

1

-
1

1
1

-
1

1

-
1

-
1
1

Fig. 1: Left the unclustered example DSM P and right the
clustered DSM PC revealing two clusters.

presented in Section IV with an illustrative example of a
model of a lock. Section V provides experimental results
on benchmark testing of the implementation of the proposed
method. Section VI concludes the paper.

II. DEPENDENCY STRUCTURE MATRIX

This section summarizes the concepts and notations of
Dependency Structure Matrices (also called Design Structure
Matrices) used in this paper.

A. Preliminaries

A DSM is a square matrix with the same entities along its
axes (e.g., components of a system) and cells representing
relationships between the entities (e.g., a spatial relationship).
These relationships can be different per DSM. Fig. 1 left
shows an example DSM P of a system with five entities
numbered 1 through 5. A relationship between two entities
is indicated with a 1. The absence of a relation is indicated
with an empty matrix entry.

A matrix in which the relationships between different
domains are described is called a Domain Mapping Matrix
(DMM), which is a rectangular matrix. The generation of
DSMs from DMMs with matrix multiplications is described
in [16], [17].

There exist different types of DSMs. Undirected relation-
ships result in a static DSM, while directed relationships
result in a dynamic DSM. The different types of DSMs allow
for different types of analyses of the considered system. In
this paper, a static DSM is analyzed. Often, the goal of
analyzing static DSMs is to find a modular structure by
clustering the entities of the DSM, as shown, for example, in
[18]. Fig. 1 right shows the clustered example DSM PC . By
reordering the rows and columns of the unclustered DSM P ,
related entities are placed together to form a cluster. Entities
1 and 4 form a cluster and entities 2, 5, and 3 form a cluster.
These clusters are called modular clusters as each entity of
the system is included in exactly one of the clusters.

A more in-depth introduction to DSM analysis, including
notions not used in this paper, is given in [13]. Examples
and applications of DSMs can be found in the recent review
paper [14].

B. Multilevel Markov clustering

The clustering algorithm of [18] utilizes Markov cluster-
ing [19]. In Markov clustering, a symmetric stochastic matrix

P is used that represents the transition matrix of a Markov
chain. The clustering algorithm is an iterative process where
each iteration k consists of two steps: the expansion step and
the inflation step.

In the expansion step the transition matrix of the previous
step Pk−1 is raised to the power α to obtain Pk = Pαk−1. The
new transition matrix represents the transition probabilities of
a Markov chain where a random walker has taken α steps. In
the inflation step, high transition probabilities are increased
and low transition probabilities are decreased by taking the
Hadamard (entry wise) power of Pk with coefficient β and
then normalizing the columns.

The Markov clustering terminates when a fixed-point is
reached [19]. The resulting invariant matrix is then inter-
preted as the adjacency matrix of a weighted directed graph
denoting disjoint clusters.

To apply Markov clustering on a DSM, the DSM has to
be converted into a transition matrix of a Markov chain. To
this end, the DSM is interpreted as an adjacency matrix of
a weighted directed graph, where the rows and columns are
the nodes and the entries are the weights. For each node, a
positive fluid is injected to determine the influence of this
node on other nodes, while a negative fluid is injected to
determine the dependency of this node on other nodes. The
strength of the influence and dependency decreases with a
factor µ each time the flow passes through a node.

This Markov clustering is turned into a multilevel Markov
clustering by using graph coarsening. All components within
a cluster are collapsed into a new super-node. The original
DSM is coarsened with these new super-nodes, where the
new weight between the super-nodes equals the sum of the
inter-cluster edge weights between the clusters.

Components that have many dependencies across the
system, acting as system-level integrating components, are
called bus components, see [15]. Non-bus components may
or may not be connected with other non-bus components.
The heuristic deployed by [18] to identify these bus com-
ponents uses the node degrees of the weighted graph rep-
resented by the DSM. In this heuristic, components are
assigned to the bus by repeatedly checking whether the
degree of a node is at least a factor γ larger than the
median of the degrees of all nodes not yet assigned. When
there are no more nodes that satisfies the condition, the
remaining nodes are the non-bus nodes. It is advised to have
1.5 ≤ γ ≤ 3.0, see [18].

Finally, the proposed multilevel clustering of [18] consists
of 5 steps: determine the bus nodes, create the bus and non-
bus DSM, cluster the bus DSM, cluster the non-bus DSM,
reorder the original DSM. The coefficients α, β, µ, and γ are
parameters of the algorithm.

III. SUPERVISORY CONTROL

This section summarizes the concepts and notations of
Supervisory Control Theory used in this paper. A more in-
depth introduction to SCT can be found in [20], [21].

A. Preliminaries

Discrete-event systems are typically modeled with finite-
state automata (FAs) [20]. An FA is a 5-tuple G = (L,Σ,→,
l0, Lm) where L is a finite set of locations, Σ a set of events,
→ ⊆ L× Σ× L is a transition relation, l0 ∈ L is an initial
location, and Lm ⊆ L is a set of marked locations indicating
‘accepting’ or ‘final’ states.

The event set Σ is partitioned into two disjoint sets: the set
of controllable events Σc and the set of uncontrollable events
Σuc. Controllable events, e.g., switching on an actuator, can
be disabled by the supervisor, while uncontrollable events,
e.g., changing sensor values, cannot be disabled.

In the framework of supervisory control synthesis [1], a
distinction is made between plant models and requirement
models. Plant models describe the uncontrolled behavior of
a system, while requirement models describe the desired
behavior of the system.

For large-scale systems, a collection of plant models Ps =
{P1, P2, . . . , Pm} and a collection of requirement models
Rs = {R1, R2, . . . , Rn} is provided. The collection of plant
models and requirements models interact with each other by
synchronizing over events by the synchronous product ‖ [21].
We use the notation ΣPi

and ΣRj
to indicate the alphabet of

a plant model Pi or a requirement model Rj , respectively.
The collection of plant models Ps can be transformed

into the most refined product system P ′s [22] such that
each subsystem is independent with respect to any other
subsystem, i.e., each subsystem does not share any event
with another subsystem. The most refined product system
represents the same behavior as the original collection Ps.

B. Monolithic supervisor synthesis

A supervisor controls the behavior of a plant. Supervisory
control synthesis [1] provides a method to synthesize a
supervisor that adheres to the following control objectives
for given plant and requirement models.
• Safety: all possible behavior of the controlled system

should always satisfy the imposed requirements.
• Controllability: uncontrollable events may never be dis-

abled by the supervisor.
• Non-blockingness: the controlled system should be able

to reach a marked state from every reachable state.
• Maximal permissiveness: the supervisor does not restrict

more behavior than strictly necessary to enforce safety,
controllability, and non-blockingness.

Monolithic supervisory control synthesis results in a single
supervisor S derived from a single plant model and a
single requirement model. When the plant model and the
requirement model are given as a collection of models Ps
and Rs, respectively, the monolithic plant model P and
the requirement model R are obtained by performing the
synchronous products.

C. Multilevel discrete-event systems

For the design of controllers, a large-scale system is often
decomposed into multiple subsystems. This approach is also

applicable to discrete-event systems. A multilevel discrete-
event system (MLDES) has a tree-based structure, as first
proposed in [11]. Each node in the tree has a unique parent
(except the top node) and may have children. Each node in
the MLDES is interpreted as a subsystem. Therefore, each
node consists of a sub-collection of the plant models and
a sub-collection of the requirement models. An MLDES is
called a coordinated MLDES if all shared events between
children are included in their parent.

To control an MLDES with tree structure T , for each
node n ∈ T a supervisor Sn should be constructed such that
the synchronous product of all controlled subsystems equals
the system controlled by a monolithic supervisor. Supervisor
Sn can be obtained by performing a monolithic supervisor
synthesis algorithm for the subsystem at node n. It has been
shown that such a set of supervisors satisfies the safety and
controllability property [11]. A non-blocking check should
be performed in the same manner as for modular supervisor
synthesis.

D. Structuring MLDES with DSM

The method presented in [12] transforms any set of plant
models and requirement models into an MLDES by using
DSM-based techniques. The method consists of three steps:
recording the dependencies, finding a multilevel clustering,
and constructing the MLDES. After obtaining an MLDES,
mutilevel synthesis of [11] can be applied.

The first step, recording the dependencies, identifies the
relationships between the plant models and the requirement
models. As a preprocessing step, the set of plant models
is transformed into the most-refined product system. Then,
a plant model and a requirement have a relationship if they
share an event. A domain mapping matrix PR with the plant
models along the rows and the requirement models along
the columns is constructed to capture these relationships:
PR(i, j) = 1 if the plant model on row i has a relationship
with the requirement model on column j.

In the second step, finding a multilevel clustering, the
obtained DMM PR is transformed into the DSM P =
PR · PRT where PRT is the transpose matrix of PR. The
DSM P is clustered with the multilevel clustering of [18].

Finally, in the third step, constructing the MLDES, the
obtained multilevel clustering is analyzed in a top-down
manner. Starting from the top node, relationships between
the subclusters are identified by searching in the DSM P
nonzero entries outside the subclusters. A nonzero entry
outside the subclusters means that there exists at least one
requirement relating to plant models from both subclusters.
Therefore, this requirement should be placed in the top node
together with the plant models relating to this requirement.
When all nonzero entries in P outside the subclusters have
been processed, then the method proceeds by analyzing each
subcluster in the same manner until all leaf nodes have been
encountered. The resulting tree is an MLDES where each
node contains a set of plant models and a set of requirement
models.

Fig. 2: The lock at Terneuzen, The Netherlands. Image from
https://beeldbank.rws.nl, Rijkswaterstaat.

IV. BUS MLDES

This section presents the proposed method to create an
MLDES with a bus structure. The illustrative example of [12]
is used to demonstrate the presented approach in this and
the next section. This example is here extended with an
emergency button to include a clear bus component into the
model. The complete model can be found in [23].

Example To maintain different water levels within a canal,
a lock is constructed which allows ships to be lifted to the
higher water level or to be lowered to the lower level. Fig.
2 shows the lock located at Terneuzen.

After obtaining the most-refined product system, the fol-
lowing subplant models are present in this simplified system:

1) Side 1 entering light
2) Side 1 leaving light
3) Side 1 gate
4) Side 1 sewer
5) Side 1 equal-water

sensor

6) Side 2 entering light
7) Side 2 leaving light
8) Side 2 gate
9) Side 2 sewer

10) Side 2 equal-water
sensor

11) Emergency button

On this system, 46 requirements are imposed to guarantee
the safe operation of a lock. For example, “if there is no
equal water over a gate, then the gate may not be opened.”

To analyze a found clustering, we need a formal notion of
a multilevel clustering. The following definition from [12]
provides one.

Definition 1 (Multilevel clustering): The set of all multi-
level clusterings CmA on a non-empty element set A is
inductively defined as follows.
• If |A| = 1, then (A,A) ∈ CmA
• If (A1,M1), . . . , (As,Ms) with 2 ≤ s ≤ |A| s.t.
{A1, . . . , As} is a partition of A and ∀i, 1 ≤ i ≤ s :
(Ai,Mi) ∈ CmAi

, then (A, {(Ai,Mi) | 1 ≤ i ≤ s}) ∈
CmA .

A multilevel clustering can be seen as recursively parti-
tioning set A, i.e., set A is partitioned into {A1, . . . , As}

PC

3
3

8

8

11

11

1

1

2

2

5

5

6

6

7

7

4

4

9

9

10

10

2

1
4
4
4
2
17

1

2
4
4

4
17
2

2
2
1
1

1
1
16
4
4

2
7
1

4

7
2
1

4

1

1

2
7

1
4

7
2

1
4

2
6

2
2

6
2

2

2

1

1

Fig. 3: The clustered DSM PC for the simple lock example
with a bus.

where each partition is again partitioned and so on un-
til partitions with a single element are reached. In tuple
(A,M) ∈ CmA , A provides immediately all elements in this
multilevel clustering and set M contains the multilevel clus-
terings of its children. For example, ({1, 2, 3}, {({1}, {1}),
({2, 3}, {({2}, {2}), ({3}, {3})})}) is a multilevel clustering
of the set {1, 2, 3}.

The first step of [12], recording the dependencies, is still
exactly the same for identifying and clustering with bus
components. Now, multilevel clustering is applied such that a
bus is identified. This will return two multilevel clusterings:
the bus clustering (AB ,MB) and the non-bus clustering
(ANB ,MNB).

Example Fig. 3 shows the clustered DSM of the simple
lock with a bus. This clustering is obtained with parameters
α = 2, β = 2.5, µ = 2.5, and γ = 2.0. Plant models 3, 8,
and 11 are placed in the bus cluster, while the other plant
models are in the non-bus cluster.

Now, each of these two clusters is transformed into an
MLDES with Algorithm 1 of [12] given the most-refined
product system P ′s and requirements Rs. This results in a
tree index set TB together with a set of plant models PB =
{PBn ⊆ P ′s | n ∈ TB} and a set of requirement models
RB = {RBn ⊆ Rs | n ∈ TB} for the bus cluster, and
a tree index set TNB together with a set of plant models
PNB = {PNB

n ⊆ P ′s | n ∈ TNB} and a set of requirement
models RNB = {RNB

n ⊆ Rs | n ∈ TNB} for the non-bus
cluster.

Requirements related to both bus and non-bus components
are in both MLDESs. Furthermore, in each node of the bus
(resp. non-bus) tree where such a requirement is placed, plant
models from the non-bus (resp. bus) clustering are missing.
To solve this problem and to assure that each requirement is
only located in either the bus or the non-bus MLDES, plant
models from the bus MLDES are added to those nodes in
the non-bus MLDES that have the above mentioned problem
and those requirements are removed from the bus MLDES.

Algorithm 1 shows the procedure to identify the require-
ments that have a relationship with both bus and non-bus
components, and subsequently removes requirements from
the bus node and adds the corresponding bus plant models

to the non-bus node.
In the for-loop starting at Line 2, all requirements are

checked one by one. In Line 3, it is checked whether
requirement j has a relationship with both the bus and the
non-bus MLDES. This is achieved by checking whether there
exists a plant index assigned to the bus multilevel cluster that
has a nonzero entry in the DMM PR and there exists a plant
index assigned to the non-bus multilevel clustering that also
has a nonzero entry in PR. If that is the case, the algorithm
continues in Line 4 by getting the node in the bus MLDES
where requirement j is placed in, and in Line 5 by getting the
node in the non-bus MLDES where requirement j is placed
in. From Theorem 3 in [12], we know that we will find this
node, as requirement j was input for both bus and non-bus
MLDES creation, and we know that there exists only one
such node for both MLDESs. When both nodes have been
found, the set Pb,j of bus plant models is identified that relate
to this requirement j on Line 6. Now we have the required
information to remove requirement j from node nB in the
bus MLDES and to add the bus plant models in Pb,j to node
nNB in the non-bus MLDES.

Algorithm 1 MoveReqFromBusToNonbus
Input: bus clustering (AB ,MB) with tree index set TB ,
the set of plant models PB , and the set of requirement
modelsRB , non-bus clustering (ANB ,MNB) with tree index
set TNB , the set of plant models PNB , and the set of
requirement models RNB , the domain mapping matrix PR
Output: adjusted setsRB and PNB where requirements that
are related to both bus and non-bus components are removed
from RB and the corresponding bus plant models are added
to PNB

1: Let l be the length of PR
2: for all j ∈ {1, . . . , l} do
3: if ∃iB ∈ AB with PR(iB , j) 6= 0 and ∃iNB ∈ ANB

with PR(iNB , j) 6= 0 then
4: Find nB s.t. Rj ∈ RBnB ,
5: Find nNB s.t. Rj ∈ RNB

nNB

6: Pb,j := {Pi | i ∈ AB ,PR(i, j) 6= 0}
7: RNB

nB := RNB
nB \ {Rj}

8: PBnNB := PBnNB ∪ Pb,j
9: end if

10: end for

Finally, the two MLDESs can be joined by including an
empty top node as the parent node for the top nodes of the
bus MLDES and the non-bus MLDES.

Example Using the clustered DSM shown in Figure 3, we
can identify the bus tree and the non-bus tree. The bus tree
consists of a top node an then three leaf nodes. The non-
bus tree consists of a top node with five children, of which
three consist of two leaf nodes and two are by themselves
leaf nodes. The resulting trees are shown in Figure 4, where
they are combined by an empty top node.

For this example, Algorithm 1 adds plant models to nodes
3NB , 4NB , 5NB , 7NB , 8NB , 10NB , 11NB , and 12NB of the

non-bus tree and removes requirements from nodes 2B , 3B ,
and 4B of the bus tree.

Algorithm 2 is the complete bus MLDES algorithm. It
transforms a given set of plant models and requirement
models into a bus MLDES with tree-structure T and for each
node in T a set of plant models and requirement models.

Algorithm 2 Bus MLDES
Input: set of plant models Ps = {Pi | i ∈ I}, set of
requirement models Rs = {Rj | j ∈ J}
Output: index set of tree-structure T of bus MLDES, set of
plant models PT = {Pn ⊆ P ′s | n ∈ T}, set of requirement
models RT = {Rn | n ∈ T}

1: Transform Ps to a most-refined product system P ′s =
{P ′i | i ∈ I ′}
with new index set I ′.

2: Construct matrix PR such that PR(i, j) = 1 iff
ΣP ′

i
∩ ΣRj

6= ∅,∀i ∈ I ′, j ∈ J .

3: Calculate P = PR · PRT .
4: Perform bus clustering on P , for example with algorithm

presented in [18]. Assign the computed bus multilevel
clustering to (AB ,MB) and assign the computed non-
bus clustering to (ANB ,MNB).

5: Transform (AB ,MB) to the bus tree structure TB with
PB ,RB , and transform (ANB ,MNB) to the non-bus
tree structure TNB with PNB ,RNB , both by Algorithm
1 of [12].

6: MoveReqFromBusToNonbs((AB ,MB), TB ,PB ,RB ,
(ANB ,MNB), TNB ,PNB ,RNB ,PR).

7: Construct the bus MLDES with T = {0} ∪ TB ∪ TNB ,
PT = {∅} ∪ PB ∪ PNB , and RT = {∅} ∪ RB ∪RNB .

The following two theorems show that all original plant
models and requirement models are somewhere in the con-
structed bus MLDES, if each requirement has a relation with
at least one plant model.

Theorem 1 (Plant model conservation): For an MLDES
constructed with Algorithm 2, ‖i∈I Pi = P =‖n∈T Pn.

Proof: We will follow Algorithm 2 line by line. After
Line 1 it follows that ‖i∈I Pi =‖i∈I′ P ′i . Lines 2 and 3 do not
alter the most-refined product system. After performing bus
clustering in Line 4, we obtain the bus multilevel clustering
(AB ,MB) and non-bus multilevel clustering (ANB ,MNB),
with AB∪ANB = I ′. Therefore, when combining the results
of Line 5 and Theorem 3 of [24], it follows that ‖iB∈AB

PiB =‖nB∈TB PBnB and ‖iNB∈ANB PiNB =‖nNB∈TNB PNB
nNB ,

thus ‖i∈I Pi = (‖nB∈TB PBnB) ‖ (‖nNB∈TNB PNB
nNB).

Continuing with Line 6 of Algorithm 2 and inspecting
Algorithm 1, we observe that plant models present in the
bus clustering are added to the non-bus clustering. Therefore,
it still holds that ‖i∈I Pi = (‖nB∈TB PBnB) ‖ (‖nNB∈TNB

PNB
nNB). Finally, as Line 7 does not remove plant models

during the merge, we can conclude that ‖i∈I Pi =‖n∈T Pn.

Theorem 2 (Requirement model conservation): For an
MLDES constructed with Algorithm 2, ‖i∈J Rj = R =‖n∈T

0

1B

P3 ‖ P8 ‖ P11

R5 ‖ R20 ‖ R33 ‖ R34 ‖ R39 ‖ R40

1NB

2B

P3

3B

P8

4B

P11

2NB

P1 ‖ P2

R6 ‖ R13

5NB

P3 ‖ P5

R3

6NB

P6 ‖ P7

R21 ‖ R28

9NB

P4 ‖ P9

R1 ‖ R16

12NB

P8 ‖ P10

R18

3NB

P1 ‖ P3 ‖ P11

R7 ‖ R8 ‖ R9 ‖
R10 ‖ R31

4NB

P2 ‖ P3 ‖ P11

R11 ‖ R12 ‖ R14 ‖
R15 ‖ R32

7NB

P6 ‖ P8 ‖ P11

R22 ‖ R23 ‖ R24 ‖
R25 ‖ R37

8NB

P7 ‖ P8 ‖ P11

R26 ‖ R27 ‖ R29 ‖
R30 ‖ R38

10NB

P4 ‖ P8 ‖ P11

R4 ‖ R17 ‖
R35 ‖ R36

11NB

P3 ‖ P9 ‖ P11

R2 ‖ R19 ‖
R41 ‖ R42

Fig. 4: Tree structure of the bus MLDES: index set T together with Gn and Kn.

Rn if and only if ∀j ∈ J : PR(:, j)T · PR(:, j) ≥ 1.
Proof: We follow Algorithm 2 line by line. The creation

of the most-refined product system in Line 1, the construction
of the matrices PR and P , and the multilevel clustering do
not alter the requirement set.

Continuing with Line 5, it follows from Theorem 4 of [24]
that ‖j∈J Rj = (‖nB∈TB RBnB) ‖ (‖nNB∈TNB RNB

nNB) if
and only if ∀j ∈ J : PR(:, j)T · PR(:, j) ≥ 1. In Line
6, Algorithm 1 is performed. In Line 7 of Algorithm 1,
requirements are removed from the bus multilevel clustering.
But this is only done when a requirement has a relation-
ship with both bus and non-bus plant models (Line 3 of
Algorithm 1). Therefore, the removed requirements are still
present in de non-bus multilevel clustering and thus ‖j∈J
Rj = (‖nB∈TB RBnB) ‖ (‖nNB∈TNB RNB

nNB) if and only if
∀j ∈ J : PR(:, j)T ·PR(:, j) ≥ 1. This concludes the proof,
as Line 7 of Algorithm 2 does not remove requirements.

Finally, Theorem 3 states that the result of Algorithm 2 is a
valid input for synthesis of a set Ss of supervisors according
to Theorem IV.5 of [11]. By combining these two theorems,
it can be concluded that the presented approach results in the
same controlled behavior as a monolithic supervisor would
achieve.

Theorem 3 (Valid MLDES tree): Consider a composed
system {Pi | i ∈ I} and prefix-closed requirements {Kj | j ∈
J} with P =‖i∈I Pi and R =‖j∈J Rj , respectively. The
output T,PT , and RT generated by Algorithm 2 is an
MLDES for synthesis of set Ss = {Sn | n ∈ T, Sn ‖
Pn ⊆ Rn} according to Theorem IV.5 of [11] if and only if
∀j ∈ J : PR(:, j)T · PR(:, j) ≥ 1.

Proof: It suffices to show that P =‖n∈T Pn, R =‖n∈T
Rn, and ∀n ∈ T : Rn ⊆ Σ∗Pn

. Theorems 1 and 2 show
that P =‖n∈T Pn and R =‖n∈T Rn, respectively. It only
remains to be proved that ∀n ∈ T : Rn ⊆ Σ∗Pn

.
Theorem 5 of [24] applies to the case that requirements

only have dependencies either with bus plant models or
with non-bus plant models. But in general, there may exist
requirements that have dependencies both with bus and

TABLE I: Results of supervisory control synthesis on the
simple lock model with different supervisor architectures.

Synthesis architecture Number of
states

Number of
transitions

Uncontrolled system 165,888 2,248,704

Monolithic supervisor 1,376 8,496

MLDES supervisors 5,690 45,844

Bus MLDES supervisors 253 724

non-bus plant models. This issue is resolved by applying
Algorithm 1 in Line 6. For those requirements that have
dependencies with both bus and non-bus plant models, the
nodes in the bus and non-bus MLDES are determined in
Lines 4 and 5 of Algorithm 1. Line 6 then collects all bus-
plant models related to this requirement. This requirement
is removed from node nB . Doing this for all identified
requirements ensures that RBnB ⊆ Σ∗PnB

. The related bus
plant models are added to the correct node in the non-bus
MLDES (Line 8), which ensures that RNB

nNB ⊆ Σ∗PnNB
.

Finally, in Line 7 of Algorithm 2, an artificial top node is
added, with R0 = ∅ ⊆ ∅ = Σ∗∅. Therefore, we can conclude
that in the final MLDES ∀n ∈ T : Rn ⊆ Σ∗Pn

.
Example Table I shows the results of synthesizing supervi-

sors for the bus MLDES as shown in Figure 4 with multilevel
synthesis of [11], which essentially synthesizes a monolithic
supervisor for each node. For this particular example, it is
very clear that synthesis for the bus MLDES outperforms the
compared synthesis architectures.

V. EXPERIMENTAL RESULTS

In this section, we analyze several models from the lit-
erature to assess the applicability of the presented method.
We expect to observe the complexity reduction for different
examples.

The presented method to transform any problem definition
into an MLDES using DSMs has been implemented in the

discrete-event systems tool CIF [25] together with Mat-
lab [26]. It has been tested on several models available in the
literature. The models have been selected from [24], where
the number of plant models in the most-refined product
system is at least 10. The models and results can be found
in [23]. A short description of each model is provided below.

central-lock This models the central locking system of
a BMW car. The system consists of three doors controlled
by a central locking system. The model is derived from the
KorSys project and it is available in the tool Supremica [6].

production-cell In this production cell, metal blanks need
to be forged by a press [27]. The feed belt forwards blanks
from the stock to the elevating rotary table. The first arm
of the robot picks up the blank and places it in the press.
After processing, the second arm from the same robot picks
the blank and drops it on the deposit belt. At the end of the
deposit belt, the test unit checks whether the forging was
successful. If it passes the test, the blank leaves the system,
otherwise it is moved back to the feed belt by the crane.

adas A car is modeled with two Advanced Driver Assis-
tance Systems (ADASs): Cruise Control (CC) and Adaptive
Cruise Control (ACC) [3]. CC is used to maintain a desired
velocity using feedback control. ACC is used to maintain a
constant inter-vehicle time gap with respect to the predeces-
sor. The user operates the ADASs with a human-machine
interface and can therefore choose between manual control,
CC, or ACC.

adas* A reformulation of the above adas model where
requirements are split into multiple smaller ones when pos-
sible, as proposed in [24].

container-terminal A LEGO model of a container ter-
minal system is used to demonstrate model-based engineer-
ing [4]. The system consists of three lanes, each with a
moving crane and a truck transporting containers between
the three lanes. Containers are loaded into the system in one
lane and finally unloaded via one of the other two lanes. The
choice between one of the two unload lanes depends on the
color of the container.

festo This didactic production line system consists of 28
actuators and 59 sensors [28]. Products undergo various
processing steps in six different workstations: distributing
station, handling station, testing station, buffering station,
processing station, and sorting station.

lock A waterway lock is used in rivers and canals to raise
and lower vessels between different water levels [5]. This
model has various subsystems: gates, paddles, culverts, two-
lamp traffic lights, and three-lamp traffic lights. An operator
interacts with the system through a human-machine interface.

For each model we collect the following metrics: the
number of plant models |I|, the number of requirement
models |J |, the number of plant models in the most-refined
product system |I ′|, the uncontrolled state space size uss ,
the controlled state space size of the monolithic supervisor
mcss , the sum of the controlled state space sizes of the
multilevel supervisors mlcss =

∑
n∈T mcssn, the sum of the

controlled state-space sizes of the bus multilevel supervisors
bmlcss =

∑
n∈Tb

mcssn, the bus coefficient γ, the number

of supervisors of the bus multilevel structure ns , and the
calculation time t in seconds.

Table II shows the experimental results for the different
models. The models are ordered based on the uncontrolled
system state space size. For some models, during the calcu-
lation of some metrics an out-of-memory (OoM) error has
been encountered as indicated in Table II. A nonblocking
check has been performed for those models that have non-
prefix closed requirements [21]. All calculations have been
performed on an HP ZBook laptop with Intel i7 2.4 GHz
CPU and 8GB RAM. At most 2 GB of the available RAM
could be allocated for the calculations.

The experiments showed at first sight mixed results for
MLDES with bus. For example, the production-cell and the
festo models show an increase in the state-space size of the
multilevel supervisors with a bus compared to the multilevel
supervisors without bus. All other models in our benchmark
show a decrease in the state-space sizes.

Inspection of the individual DSMs, which can be found
in [23], shows that both the production-cell and the festo
models do not contain clear bus components. In both cases,
we force the supervisor to have a certain structure that the
system itself does not have. This mismatch is reflected in
having a few large nodes in the bus MLDES.

MLDES with a bus is beneficial for several other models,
like the central-lock and lock models. The bus MLDES
architecture matches these models. For example, the state-
space size of the supervisor(s) for the lock model is reduced
from 6.0 ·1024 states of the monolithic supervisor to 7.7 ·106

states of the bus MLDES supervisors.
The value of the bus coefficient γ is tuned based on trial

and error for each case, as the clustering algorithm of [18]
does not provide any heuristics to choose a ‘good’ value. We
optimized the sum of the state-space sizes of the synthesized
supervisors, as the state-space size is one of the indica-
tions for the complexity of the supervisory control problem.
Having a heuristic would increase the applicability of the
proposed method for the design of supervisory controllers
for large-scale systems, where manual tuning by an engineer
is undesired as it may be time consuming.

The experiments show that several supervisors benefit
from having a bus MLDES architecture. For the included
models, we can conclude based on the unclustered DSM
whether it would benefit from bus MLDES.

VI. CONCLUSION

In this paper, a systematic approach is presented to
transform a set of plant models and a set of requirement
models into a bus MLDES. System components (i.e., plant
models) having many dependencies are separated from the
other system components and transformed into an MLDES
separately. Having two MLDESs, one for the bus components
and one for the non-bus components, these two are merged
into a bus MLDES in such a way that bus components are
placed in the MLDES as low as possible, to prevent (if
possible) a state-space explosion in one of the nodes.

TABLE II: Experimental results for different models

Model |I| |J | |I′| uss mcss mlcss bmlcss γ ns t

central-lock 74 35 74 2.6 · 105 OoM 3.9 · 105 2,108 2.2 15 10.9

production-cell 11 19 10 3.8 · 108 1.1 · 108 22,827 67,983 1.5 10 8.6

adas 28 33 27 3.4 · 109 2.0 · 1010 1.1 · 108 1.3 · 107 2.0 11 5.4

adas* 28 72 27 3.4 · 109 2.0 · 1010 5.2 · 105 4,706 2.3 25 5.3

container-terminal 45 35 15 3.8 · 1022 OoM 3.4 · 1018 1.3 · 1018 3.0 13 117

festo 113 211 88 1.5 · 1026 2.2 · 1025 50,638 2.6 · 105 3.0 38 10.0

lock 71 198 51 6.0 · 1032 6.0 · 1024 3.1 · 109 7.7 · 106 4.2 34 12.9

Experimental results obtained for a set of models from the
literature show that having a bus MLDES architecture can be
beneficial. Only models having clear bus components benefit
from having the proposed bus MLDES architecture.

Future research could focus on providing guidelines for
answering on the question when having a bus MLDES is
beneficial without calculating the bus MLDES and synthe-
sizing supervisors. Furthermore, it would be interesting to
determine the bus coefficient γ heuristically instead of the
current trial-and-error approach. Other optimization criteria
may also be interesting to investigate, like the number of
supervisors or the depth of the MLDES tree.

ACKNOWLEDGMENT
The authors would like to thank Han Vogel, Maria An-

genent and Robert de Roos from Rijkswaterstaat for provid-
ing information regarding locks.

REFERENCES

[1] P. J. G. Ramadge and W. M. Wonham, “Supervisory Control of a
Class of Discrete Event Processes,” SIAM Journal on Control and
Optimization, vol. 25, no. 1, pp. 206–230, Jan. 1987.

[2] ——, “The control of discrete event systems,” Proceedings of the
IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[3] T. Korssen, V. Dolk, J. M. van de Mortel-Fronczak, M. A. Reniers,
and M. Heemels, “Systematic model-based design and implementation
of supervisors for advanced driver assistance systems,” IEEE Trans.
Intell. Transport. Syst., vol. 19, no. 2, pp. 533–544, 2017.

[4] M. A. Reniers and J. M. van de Mortel-Fronczak, “An engineering per-
spective on model-based design of supervisors,” IFAC-PapersOnLine,
vol. 51, no. 7, pp. 257–264, May 2018.

[5] F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak, and
J. E. Rooda, “Supervisory control synthesis for a waterway lock,” in
1st IEEE Conf. on Control Technology and Applications, Aug. 2017,
pp. 1562–1568.

[6] R. Malik, K. Åkesson, H. Flordal, and M. Fabian, “Supremica-An effi-
cient tool for large-scale discrete event systems,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, Jul. 2017.

[7] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,” Mathematics of Control, Signals and Systems,
vol. 1, no. 1, pp. 13–30, Feb. 1988.

[8] H. Zhong and W. M. Wonham, “On the consistency of hierarchical
supervision in discrete-event systems,” IEEE Trans. Automat. Contr.,
vol. 35, no. 10, pp. 1125–1134, Oct. 1990.

[9] K. Rudie and W. M. Wonham, “Think globally, act locally: decen-
tralized supervisory control,” IEEE Trans. Automat. Contr., vol. 37,
no. 11, pp. 1692–1708, Nov. 1992.

[10] J. Komenda and J. H. van Schuppen, “Coordination control of discrete-
event systems,” in 9th Int. Workshop on Discrete Event Systems, May
2008, pp. 9–15.

[11] J. Komenda, T. Masopust, and J. H. van Schuppen, “Control of an
engineering-structured multilevel discrete-event system,” in 13th Int.
Workshop on Discrete Event Systems, May 2016, pp. 103–108.

[12] M. A. Goorden, J. M. van de Mortel-Fronczak, M. A. Reniers,
and J. E. Rooda, “Structuring multilevel discrete-event systems with
dependency structure matrices,” in 56th IEEE Conf. on Decision and
Control, Dec. 2017, pp. 558–564.

[13] S. D. Eppinger and T. R. Browning, Design structure matrix methods
and applications. MIT press, 2012.

[14] T. R. Browning, “Design structure matrix extensions and innovations:
a survey and new opportunities,” IEEE Trans. Eng. Manage., vol. 63,
no. 1, pp. 27–52, 2016.

[15] T.-L. Yu, A. A. Yassine, and D. E. Goldberg, “An information
theoretic method for developing modular architectures using genetic
algorithms,” Research in Engineering Design, vol. 18, no. 2, pp. 91–
109, 2007.

[16] M. S. Maurer, “Structural awareness in complex product design,” Ph.D.
dissertation, Universität München, 2007.

[17] A. Yassine, D. Whitney, S. Daleiden, and J. Lavine, “Connectivity
maps: Modeling and analysing relationships in product development
processes,” Journal of Engineering Design, vol. 14, no. 3, pp. 377–
394, Sep. 2003.

[18] T. Wilschut, L. F. P. Etman, J. E. Rooda, and I. J. B. F. Adan, “Multi-
level flow-based Markov clustering for design structure matrices,”
Journal of Mechanical Design, vol. 139, no. 12, p. 121402, 2017.

[19] S. van Dongen, “Graph clustering via a discrete uncoupling process,”
SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp.
121–141, Jan. 2008.

[20] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems, 1st ed. Springer, 2018.

[21] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Boston: Springer, 2008.

[22] M. H. d. Queiroz and J. E. R. Cury, “Modular Supervisory Control
of Large Scale Discrete Event Systems,” in Discrete Event Systems,
ser. The Springer International Series in Engineering and Computer
Science, R. Boel and G. Stremersch, Eds. Springer US, 2000, no.
569, pp. 103–110.

[23] M. A. Goorden, J. M. van de Mortel-Fronczak, M. A. Reniers, W. J.
Fokkink, and J. E. Rooda, “CIF3 models used for supervisory control
of multilevel discrete-event systems with a bus structure.” [Online].
Available: https://github.com/magoorden/ECC2019

[24] ——, “Structuring multilevel discrete-event systems with dependency
structure matrices,” IEEE Trans. Automat. Contr., vol. submitted, 2019.

[25] D. A. van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp,
J. Markovski, J. M. van de Mortel-Fronczak, and M. A. Reniers, “CIF
3: Model-based engineering of supervisory controllers,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg, Apr. 2014,
pp. 575–580.

[26] Mathworks, “Matlab.” [Online]. Available:
https://www.mathworks.com/products/matlab.html

[27] L. Feng, K. Cai, and W. M. Wonham, “A structural approach to
the non-blocking supervisory control of discrete-event systems,” The
International Journal of Advanced Manufacturing Technology, vol. 41,
no. 11-12, pp. 1152–1168, Apr. 2009.

[28] F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak,
M. A. Reniers, and J. E. Rooda, “Application of dependency structure
matrices and multilevel synthesis to a production line,” in 2nd IEEE
Conf. on Control Technology and Applications, 2018, pp. 458–464.

