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Abstract: The design of supervisory controllers for cyber-physical systems is 
steadily becoming harder as increasingly more functionality needs to be automated, 
the systems become larger, and safe operation becomes more important. Model-
based systems engineering incorporating formal methods such as supervisory 
control synthesis can be used to synthesize these supervisory controllers based on 
models of the uncontrolled system components and models of the control 
requirements. Although synthesis is an automatic procedure, creating these models 
is still a manual activity prone to modeling errors. In this paper, we propose to use 
several DSM-supported analysis techniques to identify potential modeling errors. 
Analyzing the dependencies between uncontrolled system component models and 
requirement models with both a domain mapping matrix and a dependency structure 
matrix reveals potential modeling errors. We present several examples of models 
from literature to show the potential effectiveness of the DSM-supported analysis of 
the uncontrolled system and the associated control requirements. 
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1 Introduction 
Currently, the fourth industrial revolution is taking place, called Industry 4.0, where the 
physical world and the digital world are intertwined resulting in cyber-physical systems, 
see (Lasi et al., 2017). In these cyber-physical systems, more and more functionality is 
automated. This results in the ever increasing responsibility of the supervisory control 
systems for a proper and safe execution of these automated functions. 

Model-based systems engineering (MBSE) is often proposed as a design method used to 
increase the quality of the system, decrease the development cost, and decrease time-to-
market, see (Bahill and Botta, 2008) and (Ramos et al., 2012). Combining MBSE with a 
mathematical formalism opens up the possibility to even further improve the design as 
desired properties can be analyzed by algorithms, see for example (Waymore, 1993). 

Supervisory Control Synthesis (SCS) of (Ramadge and Wonham, 1987, 1989) provides 
means to automatically derive (i.e., synthesize) supervisory controllers based on a model 
of the system (in control theory called the plant) and a model of the requirements. These 
supervisory controllers are proven to ensure that the behavior of the plant always satisfies 
the imposed requirements, i.e., the supervisory controllers are correct-by-construction. In 
(Baeten et al., 2016), SCS is integrated into MBSE to benefit from synthesis in the 
development of supervisory controllers for cyber-physical systems. 
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For SCS, the synthesized supervisory controllers are correct for the provided plant model 
and requirement model. However, if the quality of these models is insufficient, the 
guarantee of a correct supervisory controller is meaningless when it is implemented on the 
actual system, which undermines all the benefits of MBSE. As modeling is still a human 
activity, the quality of these models is susceptible to modeling errors. As systems to be 
automated become larger and larger, identifying modeling errors becomes cumbersome. 

The contribution of this paper is showing how Dependency Structure Matrix (DSM) based 
techniques, introduced in (Steward, 1981) and reviewed in (Eppinger and Browning, 
2012), can be utilized to analyze the plant and requirement models in order to recognize 
potential modeling errors. As SCS deploys a mathematical formalism, the interactions 
(dependencies) between plant and requirement models can be automatically recorded in a 
Domain Mapping Matrix (DMM). From this DMM, a DSM can be constructed. Analysis 
of both the DMM and the DSM can reveal modeling errors previously unseen by the 
engineer. 

This paper is structured as follows. Section 2 introduces concisely the basic concepts of 
SCS to be able to interpret the DMM and the DSM derived from the plant and requirement 
models. Section 3 describes the derivation of the DMM and shows which modeling errors 
can be identified from the DMM. Subsequently, in Section 4, it is shown how the analysis 
of the DSM constructed from the DMM contributes to finding modeling errors. Examples 
of modeling errors of large cyber-physical systems are presented in Sections 3 and 4. The 
paper concludes with Section 5. 

2 Design of Supervisory Control Systems 
Supervisory Control Synthesis (SCS) as initiated by (Ramadge and Wonham, 1987, 1989) 
provides the means to automatically derive (i.e., synthesize) a model of a supervisory 
controller based on the formal models of the plant and the requirements. The models of 
the plant describe all possible behavior of the system, i.e., what the system can do. The 
models of the requirements formulate the desired behavior of the system, i.e., what the 
system should do.  

Automata are one of the modeling formalisms utilized by SCS. An automaton describes 
the possible states of a system (e.g., a lamp can have the states On and Off) and events 
that change the state of a system (e.g., event go_on turns the lamp on and event go_off 
turns it off). Typically, for each component in the system, such as actuators, sensors, and 
buttons, an automaton is constructed to act as the plant model. Automata can be also used 
to formulate the requirements, one for each requirement. For example, a requirement may 
express that a lamp may only go on after the operator pushed a specific button. 

The synthesized supervisory controller can be used to control the uncontrolled plant. 
Based on events observed in the plant, it may disable events such that they cannot be 
performed next. For example, the supervisor may disable the event go_on as long as it 
has not observed the pushed event of the button. The method guarantees that the system 
consisting of the uncontrolled plant and the synthesized supervisor together adhere to the 
(modelled) requirements. 
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Figure 1. SCS in combination with MBSE (Baeten et al., 2016). 

Figure 1 shows the integration of SCS in MBSE, from (Baeten et al., 2016). In general, 
the systems engineering process starts with system requirements followed by a system 
design partitioned into subsystems or modules. For each module, requirements are defined 
based on the system design. Figure 1 shows an example where all modules of the plant are 
displayed as one module (bottom row) and the supervisory controller as the second module 
(top row). For the plant, a design is defined which is translated into a model. For the 
purpose of supervisory control synthesis, the plant is modeled with automata as described 
above. For the supervisory controller, no design is defined, but the requirements are 
formulated directly as a model. From the model of the plant and the model of the 
requirements, a supervisory controller can be synthesized with SCS. The model of the 
supervisory controller together with the plant model can be used, for example, for 
simulation-based validation. Finally, the actual plant can be realized from the model and 
the actual supervisory control code can be generated from the model of the supervisory 
controller. 

In practice, instead of creating a single large automaton as the model of the plant, the plant 
is modeled with a set of smaller automata, which are called the plant models. Similarly, 
the model of the requirement consists of a set of small requirement models. In the rest of 
the paper, we use this notion of a set of plant models and a set of requirement models, so 
a model will be an element of one of these sets. 

3 Domain Mapping Matrix Analysis 
To obtain a supervisory controller with SCS, two kinds of models are needed: plant models 
and requirement models. The roles of these two kinds of models are different in the 
synthesis algorithms. Therefore, a Domain Mapping Matrix (DMM) suits the analysis of 
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the models where the plant models are the elements on the one axis and the requirement 
models are the elements on the other axis. 

 

Figure 2. Examples of two plant models, with (a) a model of a lamp and (b) a model of a button, 
and a requirement expressing that the lamp may only go on when the button is pushed. 

As automata are used as a modeling formalism in SCS, we define a dependency between 
a plant model and a requirement as follows. There is a dependency between plant model 
𝑃𝑃𝑖𝑖 and requirement model 𝑅𝑅𝑗𝑗 if and only if requirement model 𝑅𝑅𝑗𝑗 uses a state or an event 
from plant model 𝑃𝑃𝑖𝑖, as formalized in (Goorden et al., 2017). For example, consider again 
the simple system of a lamp and a button, and the requirement stating that the lamp may 
only go on when the button is pushed, shown in Figure 2. There is a dependency between 
this requirement and the lamp, as the requirement uses the event go_on from the lamp. 
Furthermore, there is also a dependency between this requirement and the button, as the 
requirement uses the state Pushed of the button. The benefit of using a mathematical 
formalism is that these dependencies can automatically be identified from the model. 

With this definition of a dependency between plant models and requirement models, a 
DMM 𝑃𝑃𝑃𝑃 can be constructed. Since we construct this DMM automatically, any error 
observed in the DMM can be related to an error in the provided models, not in the method 
of constructing the DMM, as could be the case when it was constructed manually. In this 
paper, we place the plant models along the rows and the requirements along its columns. 
A binary DMM (i.e., the entries of the DMM are either 0 or 1) is sufficient for the purpose 
of identifying modeling errors, as we show next. 

Figure 3 shows the DMM of the first two workstations of a real production line (which 
consists of 6 subsequent workstations in total). A model of this production line has been 
provided in (Reijnen et al., 2018).  An earlier (incomplete and incorrect) version of the 
model, not the final version published in (Reijnen et al, 2018), is used here to show how 
modeling errors can be identified. The modeling errors in this and subsequent examples 
are errors encountered during the development process, not errors artificially injected in 
the model to demonstrate the presented method. For readability of the large DMM, the 
names of the plant and requirement models are replaced by numbers. An entry in row 𝑖𝑖 
and column 𝑗𝑗 of the DMM indicates a dependency between plant model 𝑃𝑃𝑖𝑖 and requirement 
model 𝑅𝑅𝑗𝑗. For example, entry (10, 1) indicates that requirement 𝑅𝑅1 mentions a state or 
event from plant 𝑃𝑃10. 
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The following potential modeling errors can be identified from the DMM. First, an empty 
row indicates that no requirement mentions a state or an event from that particular plant 
model. This means that the behavior of this subsystem is not restricted by any requirement 
or the behavior of this subsystem does not influence the behavior of another subsystem.  

 

Figure 3. The DMM of the first two workstations of a production line. 

Probably, this is not the intention of the modeler. Either requirements are missing or the 
subsystem is obsolete and should not be modeled. Consider the example shown in Figure 
3. Row 11 is an empty row and therefore indicates a potential modeling error. After 
analysis, it turned out that the modeled sensor of the production line is indeed obsolete for 
the intended functioning and the plant model 𝑃𝑃11 was removed from the system model.  

Second, an empty column also indicates a modeling error. Some modeling tools for SCS 
allow for the modeling of requirements that refer to other requirements, while this was 
never the intention of SCS. A DMM could help in identifying these modeling errors. As 
in the DMM the dependencies between plant models and requirement models are captured, 
and not the dependencies between requirement models themselves, such a modeling error 
would result in an empty column.  

Third, a column with just a single nonzero entry may also indicate a modeling error, but 
that should be confirmed by the modeler. It may be the case that a requirement is only 
restricting the internal behavior of a component and not its interaction; only in this case a 
single nonzero entry is expected. If the modeler cannot confirm this, a single nonzero entry 
probably indicates a missing dependency or an obsolete dependency. In Figure 3, the last 
column of requirement 𝑅𝑅67 has a single nonzero entry. It turned out that this was indeed a 
modeling error, as this requirement was stating that component 𝑃𝑃31 should not be used. 
Another way of expressing this is simply by removing this component from the model, 
which happened in the revised model of the production line as published in (Reijnen et al., 
2018). 
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4 Dependency Structure Matrix analysis 
From DMM 𝑃𝑃𝑃𝑃, a square Dependency Structure Matrix 𝑃𝑃2 can be constructed by the 
matrix transformation 𝑃𝑃2 = 𝑃𝑃𝑃𝑃 ⋅ 𝑃𝑃𝑅𝑅𝑇𝑇, where 𝑃𝑃𝑅𝑅𝑇𝑇 is the transpose of matrix 𝑃𝑃𝑃𝑃 (Maurer, 
2007). In DSM 𝑃𝑃2, the plant models are the elements along its axes and a dependency 
between two plant models indicates that there exists a requirement that mentions a state or 
an event from both plant models. While this DSM construction would create potential 
dependencies (which should be checked to verify whether each potential dependency is 
an actual dependency), within the context of SCS all potential dependencies are actual 
dependencies. Consider the requirement from Section 2 that expresses that a lamp may 
only go on after the operator pushed a specific button. SCS can only synthesize a 
supervisor for this requirement if both the model of the lamp and the model of the button 
are provided as input. Therefore, no matter how the system is clustered (or portioned), at 
some point both models need to be together. This dependency between the plant models 
is exactly obtained by the matrix transformation described by (Maurer, 2007). 
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Figure 4. The DSM of the complete production line, based on an earlier version of the model. 

When the DSM 𝑃𝑃2 is subsequently clustered, another opportunity to identify modeling 
errors is obtained. The DSMs in this paper have been clustered with the Markov-based 
clustering algorithm of (Wilschut et al., 2017). Other clustering algorithms may also be 
used, like 𝑘𝑘-means clustering (Hartigan and Wong, 1979), spectral clustering (Sarkar et 
al., 2014), and hierarchical clustering (AlGeddawy and ElMaraghy, 2013). 

First, clustering 𝑃𝑃2 may reveal disjoint subsystems. An example is shown in Figure 4, 
where the clustered DSM of the full production line of (Reijnen et al., 2018) is shown. The 
identified plant model with an empty row in the DMM 𝑃𝑃𝑃𝑃 of Figure 3 shows up in the 
DSM as also having an empty row (and column by construction). More interesting, there 
are two large disjoint subsystems present in the model of the system. If the modeler can 
argue that they are indeed two independent subsystems, there is no need from the 
perspective of SCS to combine them into a single system model. That is, the synthesis 
algorithms of SCS can be applied on each subsystem independently to derive two separate 
supervisory controllers. More probably, the modeler missed requirements that combine 
the two subsystems together resulting in a single system. The latter was the case in the 
development of the models for the production line. Using the DSM in Figure 4, the missing 
requirements describing the desired interaction between third and fourth workstation have 
been identified easily. 

Second, the clustered DSM 𝑃𝑃2 can also be analyzed more deeply by inspecting how plant 
models are actually clustered. Often, large cyber-physical systems contain multiple similar 
components performing similar functions. Therefore, one expects to see similar clusters 
for these components. Consider the DSM shown in Figure 5. This DSM depicts the 
dependencies within a model for supervisory control of a waterway lock, as described in 
(Reijnen et al., 2017). Despite the size of the system, analyzing the DSM 𝑃𝑃2 helped in 
finding modeling errors. In Figure 5, the buttons of the user interface related to stopping 
the system are shown. The operator has five buttons: an emergency button and four buttons 
stopping parts of the system. In the model, 𝐺𝐺21 is the emergency button, and 𝐺𝐺22 through 
𝐺𝐺25 are the normal stops. The clustering result shows that all stop buttons are clustered 
together, but one hierarchical level lower stop button 𝐺𝐺24 is clustered with the emergency 
stop and not with the other stop buttons, which is counter intuitive based on system 
knowledge. Further inspection of the DSM shows that 𝐺𝐺24 has fewer dependencies than 
all other stop buttons, while all of them have similar functions. After inspecting the actual 
model, it turned out that quite some requirements were referring to the stop button 𝐺𝐺25 
while they should have referred to 𝐺𝐺24. Such typing errors are not identified by the 
modeling formalism, as 𝐺𝐺25 is also a model in the system, but by analyzing the DSM this 
modeling error is recognized.  

5 Conclusion 
The success of MBSE in the design of supervisory controllers for cyber-physical systems 
depends on the quality of the provided models. In this paper, we propose to use DSM-
based analysis of these models to reveal potential modeling errors. By analyzing the 
dependencies between plant models and requirement models, different kinds of errors may 
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be identified, like missing requirements, obsolete plant models, and wrongly formulated 
requirements. Both the DMM, with plant models along one axis and the requirement 
models along the other axis, and the DSM constructed from the DMM, with plant models 
along both of its axes, are useful in analyzing the large system model. Creating the DMM 
and the DSM during the modeling process allows the control engineer to reflect on the 
current models and eventually conclude with confidence the correctness of the final model. 

Future work includes clustering of the DMM and investigating the DSM 𝑅𝑅2 = 𝑃𝑃𝑅𝑅𝑇𝑇 ⋅ 𝑃𝑃𝑃𝑃 
with requirement models along both of its axis (instead of plant models) to see whether 
the clustered DMM and this DSM also contain features that may indicate modeling errors.  

 

Figure 5. The DSM of the model of Lock III where the part indicated within the blue rectangle 
shows the stop buttons in the user interface. 
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