
21st INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING
CONFERENCE, DSM 2019
MONTEREY, CA, USA, 23 – 25 September, 2019

DSM-based Analysis for the Recognition of Modeling

Errors in Supervisory Controller Design

Martijn Goorden1, Joanna van de Mortel-Fronczak1, Pascal Etman1, Jacobus Rooda1

1Eindhoven University of Technology

Abstract: The design of supervisory controllers for cyber-physical systems is
steadily becoming harder as increasingly more functionality needs to be automated,
the systems become larger, and safe operation becomes more important. Model-
based systems engineering incorporating formal methods such as supervisory
control synthesis can be used to synthesize these supervisory controllers based on
models of the uncontrolled system components and models of the control
requirements. Although synthesis is an automatic procedure, creating these models
is still a manual activity prone to modeling errors. In this paper, we propose to use
several DSM-supported analysis techniques to identify potential modeling errors.
Analyzing the dependencies between uncontrolled system component models and
requirement models with both a domain mapping matrix and a dependency structure
matrix reveals potential modeling errors. We present several examples of models
from literature to show the potential effectiveness of the DSM-supported analysis of
the uncontrolled system and the associated control requirements.

Keywords: DSM, MBSE, supervisory control theory, formal methods

1 Introduction
Currently, the fourth industrial revolution is taking place, called Industry 4.0, where the
physical world and the digital world are intertwined resulting in cyber-physical systems,
see (Lasi et al., 2017). In these cyber-physical systems, more and more functionality is
automated. This results in the ever increasing responsibility of the supervisory control
systems for a proper and safe execution of these automated functions.

Model-based systems engineering (MBSE) is often proposed as a design method used to
increase the quality of the system, decrease the development cost, and decrease time-to-
market, see (Bahill and Botta, 2008) and (Ramos et al., 2012). Combining MBSE with a
mathematical formalism opens up the possibility to even further improve the design as
desired properties can be analyzed by algorithms, see for example (Waymore, 1993).

Supervisory Control Synthesis (SCS) of (Ramadge and Wonham, 1987, 1989) provides
means to automatically derive (i.e., synthesize) supervisory controllers based on a model
of the system (in control theory called the plant) and a model of the requirements. These
supervisory controllers are proven to ensure that the behavior of the plant always satisfies
the imposed requirements, i.e., the supervisory controllers are correct-by-construction. In
(Baeten et al., 2016), SCS is integrated into MBSE to benefit from synthesis in the
development of supervisory controllers for cyber-physical systems.

DSM-based Analysis for the Recognition of Modeling Errors in Supervisory Controller
Design

DSM 2019

For SCS, the synthesized supervisory controllers are correct for the provided plant model
and requirement model. However, if the quality of these models is insufficient, the
guarantee of a correct supervisory controller is meaningless when it is implemented on the
actual system, which undermines all the benefits of MBSE. As modeling is still a human
activity, the quality of these models is susceptible to modeling errors. As systems to be
automated become larger and larger, identifying modeling errors becomes cumbersome.

The contribution of this paper is showing how Dependency Structure Matrix (DSM) based
techniques, introduced in (Steward, 1981) and reviewed in (Eppinger and Browning,
2012), can be utilized to analyze the plant and requirement models in order to recognize
potential modeling errors. As SCS deploys a mathematical formalism, the interactions
(dependencies) between plant and requirement models can be automatically recorded in a
Domain Mapping Matrix (DMM). From this DMM, a DSM can be constructed. Analysis
of both the DMM and the DSM can reveal modeling errors previously unseen by the
engineer.

This paper is structured as follows. Section 2 introduces concisely the basic concepts of
SCS to be able to interpret the DMM and the DSM derived from the plant and requirement
models. Section 3 describes the derivation of the DMM and shows which modeling errors
can be identified from the DMM. Subsequently, in Section 4, it is shown how the analysis
of the DSM constructed from the DMM contributes to finding modeling errors. Examples
of modeling errors of large cyber-physical systems are presented in Sections 3 and 4. The
paper concludes with Section 5.

2 Design of Supervisory Control Systems
Supervisory Control Synthesis (SCS) as initiated by (Ramadge and Wonham, 1987, 1989)
provides the means to automatically derive (i.e., synthesize) a model of a supervisory
controller based on the formal models of the plant and the requirements. The models of
the plant describe all possible behavior of the system, i.e., what the system can do. The
models of the requirements formulate the desired behavior of the system, i.e., what the
system should do.

Automata are one of the modeling formalisms utilized by SCS. An automaton describes
the possible states of a system (e.g., a lamp can have the states On and Off) and events
that change the state of a system (e.g., event go_on turns the lamp on and event go_off
turns it off). Typically, for each component in the system, such as actuators, sensors, and
buttons, an automaton is constructed to act as the plant model. Automata can be also used
to formulate the requirements, one for each requirement. For example, a requirement may
express that a lamp may only go on after the operator pushed a specific button.

The synthesized supervisory controller can be used to control the uncontrolled plant.
Based on events observed in the plant, it may disable events such that they cannot be
performed next. For example, the supervisor may disable the event go_on as long as it
has not observed the pushed event of the button. The method guarantees that the system
consisting of the uncontrolled plant and the synthesized supervisor together adhere to the
(modelled) requirements.

M. Goorden, J. van de Mortel-Fronczak, P. Etman, J. Rooda

DSM 2019

Figure 1. SCS in combination with MBSE (Baeten et al., 2016).

Figure 1 shows the integration of SCS in MBSE, from (Baeten et al., 2016). In general,
the systems engineering process starts with system requirements followed by a system
design partitioned into subsystems or modules. For each module, requirements are defined
based on the system design. Figure 1 shows an example where all modules of the plant are
displayed as one module (bottom row) and the supervisory controller as the second module
(top row). For the plant, a design is defined which is translated into a model. For the
purpose of supervisory control synthesis, the plant is modeled with automata as described
above. For the supervisory controller, no design is defined, but the requirements are
formulated directly as a model. From the model of the plant and the model of the
requirements, a supervisory controller can be synthesized with SCS. The model of the
supervisory controller together with the plant model can be used, for example, for
simulation-based validation. Finally, the actual plant can be realized from the model and
the actual supervisory control code can be generated from the model of the supervisory
controller.

In practice, instead of creating a single large automaton as the model of the plant, the plant
is modeled with a set of smaller automata, which are called the plant models. Similarly,
the model of the requirement consists of a set of small requirement models. In the rest of
the paper, we use this notion of a set of plant models and a set of requirement models, so
a model will be an element of one of these sets.

3 Domain Mapping Matrix Analysis
To obtain a supervisory controller with SCS, two kinds of models are needed: plant models
and requirement models. The roles of these two kinds of models are different in the
synthesis algorithms. Therefore, a Domain Mapping Matrix (DMM) suits the analysis of

DSM-based Analysis for the Recognition of Modeling Errors in Supervisory Controller
Design

DSM 2019

the models where the plant models are the elements on the one axis and the requirement
models are the elements on the other axis.

Figure 2. Examples of two plant models, with (a) a model of a lamp and (b) a model of a button,
and a requirement expressing that the lamp may only go on when the button is pushed.

As automata are used as a modeling formalism in SCS, we define a dependency between
a plant model and a requirement as follows. There is a dependency between plant model
𝑃𝑃𝑖𝑖 and requirement model 𝑅𝑅𝑗𝑗 if and only if requirement model 𝑅𝑅𝑗𝑗 uses a state or an event
from plant model 𝑃𝑃𝑖𝑖, as formalized in (Goorden et al., 2017). For example, consider again
the simple system of a lamp and a button, and the requirement stating that the lamp may
only go on when the button is pushed, shown in Figure 2. There is a dependency between
this requirement and the lamp, as the requirement uses the event go_on from the lamp.
Furthermore, there is also a dependency between this requirement and the button, as the
requirement uses the state Pushed of the button. The benefit of using a mathematical
formalism is that these dependencies can automatically be identified from the model.

With this definition of a dependency between plant models and requirement models, a
DMM 𝑃𝑃𝑃𝑃 can be constructed. Since we construct this DMM automatically, any error
observed in the DMM can be related to an error in the provided models, not in the method
of constructing the DMM, as could be the case when it was constructed manually. In this
paper, we place the plant models along the rows and the requirements along its columns.
A binary DMM (i.e., the entries of the DMM are either 0 or 1) is sufficient for the purpose
of identifying modeling errors, as we show next.

Figure 3 shows the DMM of the first two workstations of a real production line (which
consists of 6 subsequent workstations in total). A model of this production line has been
provided in (Reijnen et al., 2018). An earlier (incomplete and incorrect) version of the
model, not the final version published in (Reijnen et al, 2018), is used here to show how
modeling errors can be identified. The modeling errors in this and subsequent examples
are errors encountered during the development process, not errors artificially injected in
the model to demonstrate the presented method. For readability of the large DMM, the
names of the plant and requirement models are replaced by numbers. An entry in row 𝑖𝑖
and column 𝑗𝑗 of the DMM indicates a dependency between plant model 𝑃𝑃𝑖𝑖 and requirement
model 𝑅𝑅𝑗𝑗. For example, entry (10, 1) indicates that requirement 𝑅𝑅1 mentions a state or
event from plant 𝑃𝑃10.

M. Goorden, J. van de Mortel-Fronczak, P. Etman, J. Rooda

DSM 2019

The following potential modeling errors can be identified from the DMM. First, an empty
row indicates that no requirement mentions a state or an event from that particular plant
model. This means that the behavior of this subsystem is not restricted by any requirement
or the behavior of this subsystem does not influence the behavior of another subsystem.

Figure 3. The DMM of the first two workstations of a production line.

Probably, this is not the intention of the modeler. Either requirements are missing or the
subsystem is obsolete and should not be modeled. Consider the example shown in Figure
3. Row 11 is an empty row and therefore indicates a potential modeling error. After
analysis, it turned out that the modeled sensor of the production line is indeed obsolete for
the intended functioning and the plant model 𝑃𝑃11 was removed from the system model.

Second, an empty column also indicates a modeling error. Some modeling tools for SCS
allow for the modeling of requirements that refer to other requirements, while this was
never the intention of SCS. A DMM could help in identifying these modeling errors. As
in the DMM the dependencies between plant models and requirement models are captured,
and not the dependencies between requirement models themselves, such a modeling error
would result in an empty column.

Third, a column with just a single nonzero entry may also indicate a modeling error, but
that should be confirmed by the modeler. It may be the case that a requirement is only
restricting the internal behavior of a component and not its interaction; only in this case a
single nonzero entry is expected. If the modeler cannot confirm this, a single nonzero entry
probably indicates a missing dependency or an obsolete dependency. In Figure 3, the last
column of requirement 𝑅𝑅67 has a single nonzero entry. It turned out that this was indeed a
modeling error, as this requirement was stating that component 𝑃𝑃31 should not be used.
Another way of expressing this is simply by removing this component from the model,
which happened in the revised model of the production line as published in (Reijnen et al.,
2018).

DSM-based Analysis for the Recognition of Modeling Errors in Supervisory Controller
Design

DSM 2019

4 Dependency Structure Matrix analysis
From DMM 𝑃𝑃𝑃𝑃, a square Dependency Structure Matrix 𝑃𝑃2 can be constructed by the
matrix transformation 𝑃𝑃2 = 𝑃𝑃𝑃𝑃 ⋅ 𝑃𝑃𝑅𝑅𝑇𝑇, where 𝑃𝑃𝑅𝑅𝑇𝑇 is the transpose of matrix 𝑃𝑃𝑃𝑃 (Maurer,
2007). In DSM 𝑃𝑃2, the plant models are the elements along its axes and a dependency
between two plant models indicates that there exists a requirement that mentions a state or
an event from both plant models. While this DSM construction would create potential
dependencies (which should be checked to verify whether each potential dependency is
an actual dependency), within the context of SCS all potential dependencies are actual
dependencies. Consider the requirement from Section 2 that expresses that a lamp may
only go on after the operator pushed a specific button. SCS can only synthesize a
supervisor for this requirement if both the model of the lamp and the model of the button
are provided as input. Therefore, no matter how the system is clustered (or portioned), at
some point both models need to be together. This dependency between the plant models
is exactly obtained by the matrix transformation described by (Maurer, 2007).

M. Goorden, J. van de Mortel-Fronczak, P. Etman, J. Rooda

DSM 2019

Figure 4. The DSM of the complete production line, based on an earlier version of the model.

When the DSM 𝑃𝑃2 is subsequently clustered, another opportunity to identify modeling
errors is obtained. The DSMs in this paper have been clustered with the Markov-based
clustering algorithm of (Wilschut et al., 2017). Other clustering algorithms may also be
used, like 𝑘𝑘-means clustering (Hartigan and Wong, 1979), spectral clustering (Sarkar et
al., 2014), and hierarchical clustering (AlGeddawy and ElMaraghy, 2013).

First, clustering 𝑃𝑃2 may reveal disjoint subsystems. An example is shown in Figure 4,
where the clustered DSM of the full production line of (Reijnen et al., 2018) is shown. The
identified plant model with an empty row in the DMM 𝑃𝑃𝑃𝑃 of Figure 3 shows up in the
DSM as also having an empty row (and column by construction). More interesting, there
are two large disjoint subsystems present in the model of the system. If the modeler can
argue that they are indeed two independent subsystems, there is no need from the
perspective of SCS to combine them into a single system model. That is, the synthesis
algorithms of SCS can be applied on each subsystem independently to derive two separate
supervisory controllers. More probably, the modeler missed requirements that combine
the two subsystems together resulting in a single system. The latter was the case in the
development of the models for the production line. Using the DSM in Figure 4, the missing
requirements describing the desired interaction between third and fourth workstation have
been identified easily.

Second, the clustered DSM 𝑃𝑃2 can also be analyzed more deeply by inspecting how plant
models are actually clustered. Often, large cyber-physical systems contain multiple similar
components performing similar functions. Therefore, one expects to see similar clusters
for these components. Consider the DSM shown in Figure 5. This DSM depicts the
dependencies within a model for supervisory control of a waterway lock, as described in
(Reijnen et al., 2017). Despite the size of the system, analyzing the DSM 𝑃𝑃2 helped in
finding modeling errors. In Figure 5, the buttons of the user interface related to stopping
the system are shown. The operator has five buttons: an emergency button and four buttons
stopping parts of the system. In the model, 𝐺𝐺21 is the emergency button, and 𝐺𝐺22 through
𝐺𝐺25 are the normal stops. The clustering result shows that all stop buttons are clustered
together, but one hierarchical level lower stop button 𝐺𝐺24 is clustered with the emergency
stop and not with the other stop buttons, which is counter intuitive based on system
knowledge. Further inspection of the DSM shows that 𝐺𝐺24 has fewer dependencies than
all other stop buttons, while all of them have similar functions. After inspecting the actual
model, it turned out that quite some requirements were referring to the stop button 𝐺𝐺25
while they should have referred to 𝐺𝐺24. Such typing errors are not identified by the
modeling formalism, as 𝐺𝐺25 is also a model in the system, but by analyzing the DSM this
modeling error is recognized.

5 Conclusion
The success of MBSE in the design of supervisory controllers for cyber-physical systems
depends on the quality of the provided models. In this paper, we propose to use DSM-
based analysis of these models to reveal potential modeling errors. By analyzing the
dependencies between plant models and requirement models, different kinds of errors may

DSM-based Analysis for the Recognition of Modeling Errors in Supervisory Controller
Design

DSM 2019

be identified, like missing requirements, obsolete plant models, and wrongly formulated
requirements. Both the DMM, with plant models along one axis and the requirement
models along the other axis, and the DSM constructed from the DMM, with plant models
along both of its axes, are useful in analyzing the large system model. Creating the DMM
and the DSM during the modeling process allows the control engineer to reflect on the
current models and eventually conclude with confidence the correctness of the final model.

Future work includes clustering of the DMM and investigating the DSM 𝑅𝑅2 = 𝑃𝑃𝑅𝑅𝑇𝑇 ⋅ 𝑃𝑃𝑃𝑃
with requirement models along both of its axis (instead of plant models) to see whether
the clustered DMM and this DSM also contain features that may indicate modeling errors.

Figure 5. The DSM of the model of Lock III where the part indicated within the blue rectangle
shows the stop buttons in the user interface.

M. Goorden, J. van de Mortel-Fronczak, P. Etman, J. Rooda

DSM 2019

Acknowledgement
The authors thank Ferdie Reijnen for providing the different versions of the models
including the modeling errors created before the published version. The authors thank
Rijkswaterstaat, part of the Dutch Ministry of Infrastructure and Water Management, for
providing funding for this research. In particular, the authors thank Maria Angenent, Bert
van der Vegt, and Han Vogel for their feedback on the results.

References
AlGeddawy, T., ElMaraghy, H., 2013. Optimum granularity level of modular product design

architectures. CIRP Annals 62, 151-154.
Baeten, J.C.M., van de Mortel-Fronczak, J.M., Rooda, J.E., 2016. Integration of supervisory control

synthesis in model-based systems engineering. Complex Systems 55, 39-58.
Bahill, A.T., Botta, R., 2008. Fundamental principles of good system design. Engineering

Management Journal 20, 9-17.
Eppinger, S.D., Browning, T.R., 2012. Design structure matrix methods and applications. MIT

press.
Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Rooda, J.E., 2017. Structuring

multilevel discrete-event systems with dependency structure matrices. IEEE Annual
Conference on Decision and Control, 558-564.

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: a k-means clustering algorithm. Journal of
the Royal Statistical Society, Series C (Applied Statistics) 28, 100-108.

Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M., 2017. Industry 4.0. Business &
Information Systems Engineering 6, 239-242.

Maurer, M.S., 2007. Structural awareness in complex product design. PhD thesis, Universität
München.

Ramadge, P.J.G., Wonham, W.M., 1987. Supervisory control of a class of discrete event processes.
SIAM Journal on Control and Optimization 25, 206-230.

Ramadge, P.J.G., Wonham, W.M., 1989. The control of discrete event systems. Proceedings of the
IEEE 77, 81-98.

Ramos, A.L., Ferreira, J.V., Barceló, J., 2012. Model-based systems engineering: an emerging
approach for modern systems. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 42, 100-111.

Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E., 2017. Supervisory
control synthesis for a waterway lock. IEEE Conference on Control Technology and
Applications, 1562-1568.

Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Rooda, J.E., 2018.
Application of dependency structure matrices and multilevel synthesis to a production line.
IEEE Conference on Control Technology and Applications, 458-464.

Sarkar, S., Dong, A., Henderson, J.A., Robinson, P.A., 2014. Spectral characterization of
hierarchical modularity in product architectures. ASME Journal of Mechanical Design 136,
240-252.

Steward, D.V., 1981. The design structure system: a method for managing the design of complex
systems. IEEE Transactions on Engineering Management EM-28, 71-74.

Waymore, A.W., 1993. Model-based systems engineering. CRC Press.
Wilschut, T., Etman, L.F.P., Rooda, J.E., Adan, I.J.B.F., 2017. Multilevel flow-based Markov

clustering for design structure matrices. ASME Journal of Mechanical Design 139, 121402.

Contact: M. Goorden, Eindhoven University of Technology, Department of Mechanical
Engineering, PO BOX 513, 5600 MB, Eindhoven, the Netherlands, m.a.goorden@tue.nl

mailto:m.a.goorden@tue.nl

	Martijn Goorden1, Joanna van de Mortel-Fronczak1, Pascal Etman1, Jacobus Rooda1
	1Eindhoven University of Technology
	1 Introduction
	2 Design of Supervisory Control Systems
	3 Domain Mapping Matrix Analysis
	4 Dependency Structure Matrix analysis
	5 Conclusion
	Acknowledgement
	References

