
No synthesis needed, we are alright already

Martijn Goorden1 and Martin Fabian2

Abstract— Supervisory control theory provides means to
synthesize supervisors for cyber-physical systems based on
models of the uncontrolled plant and models of the control
requirements. In general, it has been shown that supervisory
control synthesis is NP-hard, which is not beneficial for the
applicability to industrial-sized systems. However, supervisory
control synthesis seems to be easy for several industrial-sized
systems compared to the theoretical worst-case complexity. In
this paper, we propose properties to identify easy supervisory
control problems. When a system satisfies these properties, we
show that the plant models and the requirement models together
are a controllable, nonblocking, and maximally permissive
supervisor, i.e., no synthesis is needed to calculate a supervisor.
Furthermore, these properties allow for local verification of
each plant and requirement model separately.

I. INTRODUCTION
The design of supervisors for cyber-physical systems has

become a challenge as these high-tech systems include more
and more components to control and functions to fulfill,
while at the same time market demands require verified
safety, decreasing costs and decreasing time-to-market for
these systems. Model-based systems engineering methodolo-
gies can help in overcoming these difficulties.

For the design of supervisors, the supervisory control
theory of Ramadge-Wonham [1], [2] provides means to
synthesize supervisors from a model of the uncontrolled plant
and a model of the control requirements. Then synthesis
guarantees by construction that the closed-loop behavior of
the supervisor and the plant adheres to all requirements, is
nonblocking, is controllable, and is maximally permissive.

Supervisors can be implemented on several different hard-
ware platforms, of which the Programmable Logic Controller
(PLC) is the one typically used [3]. Those hardware plat-
forms have in common that the supervisor receives sensor
signals through the input channels and sends actuator signals
through the output channels.

Models on this input/output level are very well suitable for
supervisory control theory as shown by [4]. The notion of
controllable events match with (actuator) commands given by
the supervisor to the plant, and the notion of uncontrollable
events match with responses of the plant to these commands.

Recently, several models of industrial-size applications
have been published that utilizes this input/output perspec-
tive, among them [5], [6], [7]. Analyzing the results of

*This work is supported by Rijkswaterstaat, part of the Ministry of
Infrastructure and Water Management of the Government of the Netherlands

1Martijn Goorden is with Department of Mechanical Engineer-
ing, Eindhoven University of Technology, Eindhoven, The Netherlands.
m.a.goorden@tue.nl

2Martin Fabian is with the Department of Electrical Engi-
neering, Chalmers University of Technology, Göteborg, Sweden.
fabian@chalmers.se

these cases, one discovers that the synthesized supervisors
do not impose additional restrictions on the plant, i.e., the
provided set of requirement models is sufficient to control
the plant such that the closed-loop behavior is nonblock-
ing, controllable, and maximally permissive. Therefore, time
and computing resources have been wasted, as synthesis
turned out to be unnecessary. If it was known beforehand
that a synthesized supervisor would not impose additional
restrictions, then this time and computing resources could
be saved. Furthermore, if properties are defined that lead to
a supervisor that does not impose any additional restrictions,
one could try to model the plant in such a way that those
properties are fulfilled, and thus immediately know that by
construction it fulfills the requirements of a supervisor.

The main contribution of this paper is to provide a set of
properties such that, if a set of plant models and requirement
models satisfy these properties, no synthesis is needed.
The proposed properties match the input/output perspective.
Furthermore, verifying the properties does not suffer the
notorious state-space explosion problem: the only global
property concerns sharing of events, all other properties
can be verified considering only a single plant model or a
requirement model.

As far as the knowledge of the authors reach, no similar
properties have been proposed before within the community
of supervisory control theory. In [8] it was already noted
that by observing real-world problems more closely one
could discover instances of supervisory control synthesis
that are no longer NP-hard. Unfortunately, the authors do
not include any suggestion of what these instances might
be or how to find these. Within the community of reactive
synthesis, a class of LTL formulas exists, called Generalized
reactivity(1), for which it is known that the synthesis problem
can be solved in N3 time, where N is the size of the state
space, instead of the theoretical double exponential lower
bound for the general case [9]. Restricting this class even
further can result in N2 solutions [10]. Furthermore, the
authors of [9] argue that the class of Generalized reactivity(1)
is sufficiently expressive to provide complete specifications
for many design problems suitable for reactive synthesis.
Those readers interested in the similarities and differences
between supervisory control synthesis and reactive synthe-
sis are referred to [11]. Improved calculation complexity
notwithstanding, those approaches still rely on synthesis,
whereas properties presented in this paper do away with
synthesis altogether; if the defined properties of the plant
and the specification are met, the resulting model will be a
correct supervisor, so no synthesis is needed.

The structure of this paper is as follows. In Section II the



preliminaries of this paper are provided. The properties are
presented in Section III. In Section IV examples are provided
of models each satisfying all properties except one. For
each example the intuition behind the property is explained
by showing that synthesis is needed. In Section V it is
proven that any set of plant models and requirement models
satisfying the presented properties are by its own already
nonblocking and controllable, and therefore also maximally
permissive. Section VI concludes the paper.

II. PRELIMINARIES

This section provides a brief introduction of languages,
automata, and supervisory control theory. For a more in-
depth introduction, the reader is referred to [12], [13].

A. Languages

Let alphabet Σ be a finite set of event labels and let Σ∗

be a set of all finite strings of elements in Σ, including the
empty string ε. A string u ∈ Σ∗ is a prefix of v ∈ Σ∗ if
there exists a string s ∈ Σ∗ such that v = us. The alphabet
Σ = Σc ∪Σu is partitioned into two disjoint sets containing
the controllable events (Σc) and the uncontrollable events
(Σu).

A language over Σ is any subset of Σ∗. The empty
language is denoted by ∅. The behavior of a discrete-event
system (DES) can be modeled by language L ⊆ Σ∗.

The prefix closure of a language L is given by L = {u ∈
Σ∗|(∃v ∈ Σ∗)uv ∈ L}. A language is called prefix closed if
L = L.

B. Automata

An automaton is a five-tuple G = (Q,Σ, δ, q0, Qm), where
Q is the (finite) state set, Σ is the alphabet of events, δ :
Q×Σ→ Q the partial function called the transition function,
q0 ∈ Q the initial state, and Qm ⊆ Q the set of marked
states.

We denote with δ(q, σ)! that there exists a transition from
state q ∈ Q labeled with event σ, i.e., δ(q, σ) is defined.
The transition function can be extended in a natural way to
strings as δ(q, sσ) = δ(δ(q, s), σ) where s ∈ Σ∗, σ ∈ Σ, and
δ(q, sσ)! if δ(q, s)!∧δ(δ(q, s), σ)!. We define δ(q, ε) = q for
the empty string. The language generated by the automaton
G is L(G) = {s ∈ Σ∗ | δ(q0, s)!} and the language marked
by the automaton G is Lm(G) = {s ∈ L(G) | δ(q0, s) ∈
Qm}.

A path p of an automaton is defined as a sequence of al-
ternating states and events, i.e., q1σ1q2σ2 . . . σn−1qnσnqn+1

such that for step i = 1 . . . n it holds that δ(qi, σi) = qi+1.
A path can also be written in infix notation q1

σ1−→ q2
σ2−→

. . .
σn−1−−−→ qn

σn−−→ qn+1.
A state q of an automaton is called reachable if there

is a string s ∈ Σ∗ with δ(q0, s)! and δ(q0, s) = q. The
automaton G is called reachable if every state q ∈ Q
is reachable. A state q is coreachable if there is a string
s ∈ Σ∗ with δ(q, s)! and δ(q, s) ∈ Qm. The automaton G
is called coreachable if every state q ∈ Q is coreachable.
An automaton is called nonblocking if every reachable

state is coreachable. An automaton is called trim if it is
reachable and coreachable. Notice that a trim automaton is
nonblocking, but a nonblocking automaton may not be trim,
since it may have unreachable states.

An automaton is called a strongly connected automaton if
from every state you can reach all other states, i.e., given a
pair of states q1, q2 ∈ Q there exists a string s ∈ Σ∗ such
that δ(q1, s) = q2 [14].

Two automata can be combined by synchronous compo-
sition.

Definition 1: Let G1 = (Q1,Σ1, δ1, q0,1, Qm,1), G2 =
(Q2,Σ2, δ2, q0,2, Qm,2) be two automata. The synchronous
composition of G1 and G2 is defined as

G1 ‖ G2 = (Q1 ×Q2,Σ1 ∪ Σ2, δ1‖2, (q0,1, q0,2),

Qm,1 ×Qm,2)

where

δ1‖2((x1, x2), σ) =

(δ1(x1, σ), δ2(x2, σ)) if σ ∈ Σ1 ∩ Σ2, δ1(x1, σ)!,

and δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \ Σ2 and δ1(x1, σ)!

(x1, δ2(x2, σ)) if σ ∈ Σ2 \ Σ1 and δ2(x2, σ)!

undefined otherwise.
Synchronous composition is associative and commutative up
to reordering of the state components in the composed state
set.

A composed system G is a collection of automata, i.e.,
G = {G1, . . . , Gm}. The synchronous composition of a
composed system ‖ G is defined as ‖ G = G1 ‖ . . . ‖
Gm. A composed system is called a product system if the
alphabets are pairwise disjoint, i.e., Σi ∩ Σj = ∅ for all
i, j ∈ [1,m], i 6= j [2].

Finally, let G and K be two automata with the same
alphabet Σ. K is said to be controllable with respect to G if,
for every string s ∈ Σ∗ and u ∈ Σu such that δK(q0,K , s)!
and δG(q0,G, su)!, it holds that δK(q0,K , su)!.

C. Supervisory control theory

The objective of supervisory control theory [1], [2], [12],
[13] is to design an automaton called a supervisor that has
the function to dynamically disable controllable events so
that the closed loop system of the plant and the supervisor
obeys some specified behavior. More formally, given a plant
model P and requirement model R, the goal is to synthesize
supervisor S that adheres the following control objectives.
• Safety: all possible behavior of the closed-loop system
P ‖ S should always satisfy the imposed requirements,
i.e., L(P ‖ S) ⊆ L(P ‖ R)

• Controllability: uncontrollable events may never be dis-
abled by the supervisor, i.e., S is controllable with
respect to P .

• Nonblockingness: the closed-loop system should be able
to reach a marked state from every reachable state, i.e.,
P ‖ S is nonblocking.



• Maximal permissiveness: the supervisor does not restrict
more behavior than strictly necessary to enforce safety,
controllability, and nonblockingness, i.e., for all other
supervisors S′ it holds that L(P ‖ S′) ⊆ L(P ‖ S).

Monolithic supervisory control synthesis results in a sin-
gle supervisor S from a single plant model and a single
requirement model [1]. We refer to S as the automaton
representation of the synthesized supervisor and we assume
that S = P ‖ S, as only deterministic automata are
considered. When the plant model and the requirement model
are given as a composed system Ps and Rs, respectively,
the monolithic plant model P and requirement model R
are obtained by performing the synchronous composition of
the models in the respective composed system. Furthermore,
S can be obtained by calculating the supremal element of
the set of controllable and nonblocking supervisors, i.e.,
S = supCN (P,R).

For the purpose of supervisor synthesis, requirements can
be modeled with automata and state-based expressions [15],
[16]. The latter is useful in practice, as engineers tend to
formulate requirements based on states of the plant. There
are two forms of state-based expressions: state invariant
expressions and state-event invariant expressions. To refer to
states of the plant, we introduce the following notation and
interpretation (inspired by [17]). Let P be an automaton and
x ∈ Q the “current” state of automaton P , i.e., x = δ(q0, s)
after performing string s. The expression P.q(x) ≡ P.q =
x evaluates to true if x equals state q of automaton P ,
otherwise it evaluates to false. Therefore, state references
can be combined with the Booleans literals T and F and
logic connectives to create predicates. In the remainder of
the paper, we use the notation P.q as a short hand for P.q(x).

A state invariant expression formulates state-based condi-
tions that should always hold, i.e., a state invariant expression
should evaluate to true for all reachable states in the closed-
loop system. A state invariant expression R can be converted
to an automaton in the following way. Let plants(R) denote
the set of plant models mentioned in R. Then we create
the automaton representation Ra by taking the synchronous
composition of all plants in plants(R), removing the states
that evaluate R to false, and removing the transitions going to
these removed states. Therefore, we define the synchronous
composition of an automaton P with a state invariant expres-
sion R, denoted with P ‖ R, as the synchronous composition
of P and the automaton representation Ra of R, i.e., P ‖
R = P ‖ Ra.

A state-event invariant expression formulates conditions
on the enablement of an event based on states of the plant,
i.e., a state-event invariant expression should evaluate to
true for the event to be enabled. A state-event invariant
expression is of the form σ needs C where σ is an event
and C a predicate stating the condition. Let R be a state-
event invariant expression, then event(R) returns the event
σ used in R and cond(R) returns the condition predicate C.
The synchronous composition of a plant P with a state-event
invariant expression R, denoted with P ‖ R, is defined by
altering the transition function δ.

Definition 2: Let P = (Q,Σ, δ, q0, Qm) and R =
µ needs C. Then the synchronous composition of P and
R is defined as

P ‖ R = (Q,Σ, δ′, q0, Qm)

where δ′(q, σ) = δ(q, σ) unless σ = µ and C|P.q = F
where C|P.q indicates that all state references P.q in C are
substituted by T and all state references P.r, r ∈ Q, r 6= q
in C replaced by F.
This interpretation can be easily extended to a set of state-
event invariant expressions Rs = {R1, . . . , Rn}.

Given a composed system representation of the plant
Ps = {P1, . . . , Pm} and a collection of requirements Rs =
{R1, . . . , Rn}, we define the tuple (Ps, Rs) as the control
problem for which we want to synthesize a supervisor.
We make the following (technical) assumptions about this
control problem:
• Ps 6= ∅, while Rs can be the empty set.
• All P ∈ Ps agree on the controllability status of each

shared event.
• For all P ∈ Ps, it holds that P is an automaton where
QP and ΣP are nonempty.

• For all R ∈ Rs, it holds that
– if R is an automaton, then QR and ΣR are

nonempty, and ΣR ⊆ ΣP where ΣP =
⋃m
i=1 ΣPi

,
– if R is a state invariant expression, then for each

state reference P.q it holds that P ∈ Ps and q ∈
QP ,

– if R is a state-event invariant expression, then
event(R) ∈ ΣP , and for each state reference Pi.q
in cond(R) it holds that Pi ∈ Ps and q ∈ QPi

,
Modular supervisory control synthesis uses the fact that

often the desired behavior is specified with a collection
of requirements Rs [18]. Instead of first transforming the
collection of requirements into a single requirement, as
monolithic synthesis does, modular synthesis calculates for
each requirement a supervisor based on the plant model.
In other words, given a control problem (Ps, Rs) with
Rs = {R1, . . . , Rn}, modular synthesis solves n control
problems (Ps, {R1}), . . . , (Ps, {Rn}). Each control problem
(Ps, {Ri}) for i ∈ [1, n] results in a safe, controllable,
nonblocking, and maximally permissive supervisor Si. Un-
fortunately, the collection of supervisors Ss = {S1, . . . , Sn}
can be conflicting, i.e., S1 ‖ . . . ‖ Sn can be blocking. A
nonconflicting check can verify whether Ss is nonconflict-
ing [19], [20]. In the case that Ss is nonconflicting, Ss is also
safe, controllable, nonblocking, and maximally permissive
for the original control problem (Ps, Rs). In the case that
Ss is conflicting, an additional coordinator C can be synthe-
sized such that Ss ∪ {C} is safe, controllable, nonblocking,
and maximally permissive for the original control problem
(Ps, Rs) [21].

III. NONBLOCKING MODULAR SUPERVISORS

In this section we first describe several characteristics of
industrial-sized applications where synthesis does not add



any restrictions beside those implied by the requirements.
Then, we provide properties that together guarantee control-
lable and nonblocking modular supervisors that are together
nonconflicting. Finally, we provide the formal proofs.

A. Characteristics of models

First, as the supervisors synthesized for the industrial
applications presented in [5], [6], [7] are intended to be
implemented on control hardware, the input-output perspec-
tive of [4] is used. This entails that each sensor is modeled
with uncontrollable events, while actuators are modeled with
controllable events. This modeling paradigm results in a
collection of numerous small plant component models that
are loosely coupled, if at all, by shared events. Therefore,
the plant model is a product system.

In the rest of this paper we call an automaton a sensor
automaton if its alphabet only has uncontrollable events; an
automaton is called an actuator automaton if the alphabet
only contains controllable events.

Secondly, both sensors and actuators have cyclic behav-
ior, resulting in a trim and strongly connected model. For
example, all sensors and actuators in a production line are
modeled in this way in [6]. Furthermore, unreachable states
in an uncontrolled plant represent states that are physically
impossible to reach and are often not modeled or removed
from the model.

Finally, requirements for industrial-sized applications of-
ten originate from safety risk analysis [22]. States are
identified in which some actuator actions would result in
unsafe behavior. For example, the safety specifications of a
waterway lock that need to be fulfilled by the supervisor
are described in Section 4.191 of [23]. Each of the 16 re-
quirements describes a state of the plant and the disablement
of certain actuator actions for that state. It is shown in [5]
that these textual specifications can easily be described with
state-event invariant expressions.

B. Properties

The following properties together guarantee that the con-
trol problem itself is a modular globally nonblocking and
controllable supervisor.

CNMSP (Controllable and Nonblocking Modular Supervi-
sors Properties)
A control problem (Ps, Rs) satisfies CNMSP if it has the
following properties:

1) Ps is a product system
2) For all P ∈ Ps it holds that

a) P is trim (which implies nonblocking)
b) P is a strongly connected automaton

3) For all R ∈ Rs it holds that
a) R is a state-event invariant expression e needs C
b) There exists no other requirement for this event

e
c) e ∈ Σc
d) C =

∨∧
X , i.e., disjunctive normal form where

X is Pi.l or ¬Pi.l

P1

l1

l2

ab

P2

l1

l2

ab

P3

l1

l2

!x!y

R1 : a needs P3.l1

Fig. 1: Example violating Property 1 of CNMSP. In this and
subsequent figures, marked states are indicated by concen-
tric circles and uncontrollable events are prefixed with an
exclamation mark.

e) Pi is a sensor model
f) Each conjunction contains at most one reference

to each Pi
g) When Pi only has a single state, ¬Pi.l is not

allowed
The first workstation model of the FESTO production line

as described in [6] satisfies these properties. Therefore, the
provided plant and requirement models are sufficient to act
as controllable and nonblocking modular supervisors, as for-
mulated in the following theorem. In that case, the modular
supervisor represented by the plant models and requirement
models is by definition also maximally permissive.

Theorem 1: Let P and R be a set of plant models and
requirement models satisfying CNMSP. Then no supervisor
synthesis is required, i.e., P ‖ R is controllable and non-
blocking.

Before we prove this theorem, we will strengthen the
intuition of the properties in the next section.

IV. EXAMPLES OF BLOCKING MODULAR
SUPERVISORS

In this section, several examples of blocking modular
supervisors are provided. In each example, only a single
property of CNMSP is violated. These examples show the
intuition behind the proposed properties. Furthermore, the
examples also show that each CNMSP property is essential,
removing any one (or more) of them no longer guarantees a
nonblocking system without synthesizing a supervisor.

A. Property 1 removed

If plant component models are allowed to share events,
the control problem in Figure 1 would be allowed. P =
P1 ‖ P2 ‖ P3 is no longer a product system as P1 and P2

share events a and b. Since P1 ‖ P2 becomes unmarked, a
synthesized supervisor S1 for this control problem is the null
supervisor, hence it is not equal to P ‖ R1.

B. Property 2.a removed

The control problem in Figure 2 has a non-trim plant
component model. This example solved the problem of
Section IV-A (where P was not a product system) by syn-
chronizing the plant component automata that share events.



P1 ‖ P2

l1 l2

a

b

P3

l1 l2

!x

!y

R1 : a needs P3.l1

Fig. 2: Example violating Property 2.a of CNMSP.

P1

l1 l2

a

b

P2

l1 l2

!x

R1 : b needs P2.l1

Fig. 3: Example violating Property 2.b of CNMSP.

Unfortunately, now the property that each plant component
automaton should be trim is violated, and again a synthesized
supervisor S1 would be the null supervisor, hence it is not
equal to P ‖ R1.

C. Property 2.b removed

In the example of Figure 3, P2 is trim, but not strongly
connected, so condition R1 is not fulfilled once P2 left its
initial state P2.l1, which blocks the plant when P1 is in state
P1.l1. As x is uncontrollable, no supervisor can prevent P2

from leaving P2.l1. Any supervisor must therefore disable
event a to prevent P1 entering state P1.l2, which solves the
blocking issue. As the maximally permissive supervisor must
disable events, it does not hold that S1 = P ‖ R1.

D. Property 3.a removed

If requirements other than state-event invariant expressions
are allowed, the control problem in Figure 4 would be
allowed. In this example, we used a state invariant expression
excluding the globally marked state. Therefore, a synthesized
nonblocking supervisor S1 would be the null supervisor,
hence it is not equal to P ‖ R1.

E. Property 3.b removed

If more than one state-event invariant expression exists
for the same event e, the control problem in Figure 5
would be allowed. Here, when P1 reaches state P1.l2, the
only transition to a marked state is labeled with event b.
The condition of requirement R1 can always eventually
become true as state P2.l1 can always eventually be reached.
Therefore, supervisor S1 = P ‖ R1. The same argument
applies for requirement R2, resulting in S2 = P ‖ R2.
Unfortunately, S1 and S2 are conflicting as P2 can only be
either in P2.l1 or P2.l2, thus only the condition of R1 or R2

can be true at the same time.

P1

l1 l2

a

b

P2

l1 l2

c

d

R1 : ¬(P1.l2 ∧ P2.l2)

Fig. 4: Example violating Property 3.a of CNMSP.

P1

l1 l2

a

b

P2

l1 l2

!x

!y

R1 : b needs P2.l1 R2 : b needs P2.l2

Fig. 5: Example violating Property 3.b of CNMSP.

P1

l1 l2

a

!z

P2

l1 l2

!x

!y

R1 :!z needs P2.l1

Fig. 6: Example violating Property 3.c of CNMSP.

F. Property 3.c removed

If for the state-event invariant expression e needs C the
event e was allowed to be uncontrollable, the problem
illustrated in Figure 6 could arise. As requirement R1 is not
controllable with respect to the plant component P1, any
supervisor would have to disable some controllable event, a
in Figure 6, and so a synthesized supervisor S1 would not
be equal to P ‖ R1.

G. Property 3.d removed

If the condition C of a state-event invariant expression
could be any Boolean expression, the control problem in
Figure 7 is allowed. In this example, as P2 has only 2
states, the expression P2.l1 ∨ P2.l2 will always results in
true, and thus ¬(P2.l1 ∨ P2.l2) will always results in false.
Therefore, when P1 is in state P1, l2, event b is disabled
and P1 cannot reach a marked state. To resolve this, any
synthesized supervisor S1 needs to disable event a to prevent
P1 from entering state P1.l1, hence it is not equal to P ‖ R1.

H. Property 3.e removed

In the example of Figure 8, a state of a sensor model
is used in the condition C of the state-event invariant
expression. Here, it still holds for each individual supervisor
that Sj = P ‖ Rj , but the collection of supervisors S is
blocking, as when the plant is in state (P1.l2, P2.l2), no
transition is possible. To be able to perform the transition
labeled with b, plant component P2 needs to be in state
P2.l1. But to get P2 to this state, the transition labeled with
event d needs to be performed. Unfortunately, event d is
only enabled when plant component P1 is in state P1.l1.
But to get P1 to this state, the transition labeled with event
b needs to be performed. Now we have cycled back in our

P1

l1 l2

a

b

P2

l1 l2

!x

!y

R1 : b needs ¬(P2.l1 ∨ P2.l2)

Fig. 7: Example violating Property 3.d of CNMSP.



P1

l1 l2

a

b

P2

l1 l2

c

d

R1 : b needs P2.l1 R2 : d needs P1.l1

Fig. 8: Example violating Property 3.e of CNMSP.

P1

l1 l2

a

b

P2

l1 l2

!x

!y

R1 : b needs (P2.l1 ∧ P2.l2)

Fig. 9: Example violating Property 3.f of CNMSP.

argumentation, concluding that there does not exist a path to
a globally marked state. Thus S is blocking.

I. Property 3.f removed

If a conjunction could have more than one reference to
the same plant component model, the control problem in
Figure 9 is allowed. As an automaton can only be in one
state at a time, P2 is either in P2.l1 or P2.l2. Therefore, the
condition (P2.l1∧P2.l2) evaluates in this example always to
false. Thus, when P1 reaches state P1.l2, no path exists to a
marked state. To resolve this, any synthesized supervisor S1

needs to disable event a, hence it is not equal to P ‖ R1.

J. Property 3.g removed

If the negation can be used for referring to a single-state
plant component, the problem illustrated in Figure 10 could
arise. In this example, as P2 has only a single state, the
predicate ¬P2.l1 evaluates always to false. Thus, when P1

reaches state P1.l2, no path exists to a marked state. To
resolve this, any synthesized supervisor S1 needs to disable
event a, hence it is not equal to P ‖ R1.

V. PROOFS

In order to prove that a control problem satisfying CN-
MSP does not require synthesis (Theorem 1), we start by
proving the following five lemmas.

The first two lemmas show that when a plant model is
provided as a product system and each individual automaton
is trim or strongly connected, then the synchronous compo-
sition of these automata is also trim or strongly connected,
respectively.

Lemma 1: Let Ps = {P1, . . . , Pm} be a product system
where each individual Pi ∈ Ps is trim. Then P1 ‖ . . . ‖ Pm
is trim.

P1

l1 l2

a

b

P2

l1

!x

R1 : b needs ¬P2.l1

Fig. 10: Example violating Property 3.g of CNMSP.

Proof: Denote P = P1 ‖ . . . ‖ Pn, P =
(Q,Σ, δ, q0, Qm), and Pi = (Qi,Σi, δi, q0,i, Qm,i). We show
that P is reachable and coreachable.

Firstly, assume that q = (q1, . . . , qn) is a state in P . As
each individual Pi is trim, it follows that there exists a string
si ∈ Σ∗i such that δi(q0,i, si) = qi. From the definition of
synchronous composition and the fact that Ps is a prod-
uct system, it follows that δ((r1, . . . , q0,i, . . . , rm), si) =
(r1, . . . , qi, . . . , rm) for any state rj ∈ Qj , j 6= i. Therefore,
it holds that δ((q0,1, . . . , q0,n), s1s2 . . . sn) = q in P . As the
state q is chosen arbitrarily, it follows that P is reachable.

Secondly, assume again that q = (q1, . . . , qn) is a state
in P . As each individual Pi is trim, it follows that there
exists a string si ∈ Σ∗i such that δi(qi, si) = qi,k ∈
Qm,i. From the definition of synchronous composition
and the fact that Ps is a product system, it follows that
δ((r1, . . . , qi, . . . , rm), si) = (r1, . . . , qi,k, . . . , rm) where
qi,k for any state rj ∈ Qj , j 6= i. Therefore, it holds that
δ(q, s1s2 . . . sn) ∈ Qm in P . As state q is chosen arbitrarily,
it follows that P is coreachable.

Lemma 2: Let Ps = {P1, . . . , Pm} be a product system
where each individual Pi ∈ Ps is a strongly connected
automaton. Then P1 ‖ . . . ‖ Pm is a strongly connected
automaton.

Proof: Denote P = P1 ‖ . . . ‖ Pn, P =
(Q,Σ, δ, q0, Qm), and Pi = (Qi,Σi, δi, q0,i, Qm,i). We show
that for any pair of two states x = (x1, . . . , xm) ∈ Q, y =
(y1, . . . , ym) ∈ Q there exists a string s ∈ Σ∗ such that
δ(x, s) = y.

As each individual Pi is strongly connected, it follows
that there exists a string si ∈ Σ∗i such that δi(xi, si) = yi.
From the definition of synchronous composition and the fact
that Ps is a product system, it follows that δ((r1, . . . , xi, . . . ,
rm), si) = (r1, . . . , yi, . . . , rm) for any state rj ∈ Qj , j 6= i.
Therefore, it holds that δ(x, s1s2 . . . sn) = y in P . As states
x and y are chosen arbitrarily, it follows that P is a strongly
connected automaton.

The following lemma expresses that when a control prob-
lem with a single requirement satisfies CNMSP, then we can
always eventually reach a state such that the condition of
this requirement evaluates to true, thus enabling the guarded
event.

Lemma 3: Let (Ps, {R}) be a control problem with a sin-
gle requirement satisfying CNMSP. Denote R = e needs C.
Then, from any state q ∈ Q, there exists a string s ∈ Σ∗ such
that a state r is reached and C(r) = T.

Proof: As Ps is a product system (Property 1), there
is only a single plant component Pk such that e ∈ Σk.
From the combination of properties 3.c-e, it follows that
plant component Pk is not used in condition C, as it has
to be an actuator model. Therefore, the state of Pk does not
matter.

Furthermore, observe that Ps \ {Pk} = (Ps \ {Pk}) ‖ R.
From Property 2.b and Lemma 2 it follows that Ps \{Pk} is
a strongly connected automaton, thus Ps \ {Pk} ‖ R is also
a strongly connected automata. Therefore, if there exists a
state r that satisfies C, i.e., C(r) = T, then there also exists



a string s ∈ Σ∗ such that δ(q, s) = r. So it remains to be
proven that such a state r exists.

As C is in disjunctive normal form (Property 3.d), it fol-
lows that if r satisfies C, it satisfies one of the conjunctions.
From properties 3.e and 3.f we know that there is at most one
reference to each Pi ∈ Ps\{Pk} in each conjunction. If there
is no reference to Pi, then all states of this automaton satisfy
this conjunction. If Pi is mentioned in this conjunction, then,
from properties 3.d and 3.g, there exists at least one state
qi ∈ Qi that satisfies this conjunction. Thus there exists a
state r such that C is satisfied.

Now we prove the following two lemmas: the first one
shows that under the given conditions, we do not have to do
synthesis locally, and the second one shows that under the
given conditions the supervisors are globally nonblocking.

Lemma 4: Let (Ps, Rs) be a control problem satisfy-
ing CNMSP. Construct the set of modular supervisors
S = {S1, . . . , Sn} such that each supervisor Sj =
supCN (P,Rj) is the maximally permissive controllable and
nonblocking supervisor for plant P =‖ Ps and requirement
Rj ∈ R. Then Sj = P ‖ Rj .

Proof: In the case that Rs = ∅, no supervisor is syn-
thesized. It follows from properties 1 and 2.a and Lemma 1
that P is trim, so there is indeed no need for a supervisor.
In the remainder of the proof we assume that Rs 6= ∅.

For each individual supervisor Sj we show that Rj is
controllable with respect to plant P and that P ‖ Rj is
nonblocking. The fact that Rj is controllable follows directly
from Property 3.c. It remains to be proven that P ‖ Rj
is nonblocking. From Property 3.a we have an event ej =
event(Rj) associated with this requirement Rj . As Ps is
a product system (Property 1), there is only a single plant
component Pk such that ej ∈ Σk. Now we partition the
set of plant component models into {Pk}, Psm = {Pi ∈
Ps | Pi is a sensor model}, and Po = Ps \ ({Pk} ∪ Psm).
Observe that the behavior of the plant components in Psm

and Po are not altered by requirement Rj , so lemmas 1 and 2
apply on the sets Psm , Po, and Psm ∪ Po, i.e, Psm ‖ Rj ,
Po ‖ Rj , and (Psm ∪ Po) ‖ Rj are all trim and strongly
connected automata.

To show that P ‖ Rj is nonblocking, we show that for
each reachable state q there exists a string s ∈ Σ∗ such that a
marked state qm ∈ Qm can be reached. Consider automaton
Pk with current state qk. As automaton Pk is trim (Property
2.a), there exists a path labeled with string sk ∈ Σ∗k such
that a state qm,k ∈ Qm,k can be reached from state qk. We
will show that this path is still possible under the influence
of requirement Rj , i.e., it is still a path in Pk ‖ Rj . Consider
two cases for this path.
• If sk does not contain event ej , then the path labeled

with sk is trivially possible in Pk ‖ Rj .
• If sk contains event ej , then requirement Rj may

remove event ej from the enabled event sets and pre-
venting Pk ‖ Rj from reaching a marked state. For
each transition labeled with event ej , we know from
Lemma 3 that there exists a path in P reaching a state
r such that C(r) = T. Therefore, there always exists a

path in P such that ej is enabled. Thus, the path labeled
with sk is still possible in Pk ‖ Rj .

Combining the above observation for sk and the fact that
(Psm ∪ Po) ‖ Rj is trim, we know that string s exists such
that a marked state qm is reached from state q. As q is
arbitrarily chosen, it follows that P ‖ Rj is nonblocking.

Lemma 5: Let (Ps, Rs) be a control problem satisfy-
ing CNMSP. Construct the set of modular supervisors
S = {S1, . . . , Sn} such that each supervisor Sj =
supCN (P,Rj) is the maximally permissive controllable and
nonblocking supervisor for plant P = P1 ‖ . . . ‖ Pm and
requirement Rj ∈ R. Then S is nonconflicting.

Proof: For S to be nonconflicting, it should hold that
S1 ‖ . . . ‖ Sn is nonblocking. From Lemma 4 it follows that
each Sj = P ‖ Rj . Therefore, S1 ‖ . . . ‖ Sn = (P ‖ R1) ‖
. . . ‖ (P ‖ Rn) = P ‖ R1 ‖ . . . ‖ Rn. Partition the set of
plant models Ps into the set of sensor models Psm = {Pi ∈
Ps | Pi is a sensor model}, the set of restricted models Pr =
{Pi ∈ Ps | ∃Rj ∈ Rs s.t. event(Rj) ∈ Σi}, and the other
plant models Po = Ps \ (Psm ∪ Pr).

Clearly, no plant model in Po is affected by the require-
ments, so lemmas 1 and 2 apply, i.e., Po ‖ Rs is a trim and
strongly connected automaton. Furthermore, from Property
3.c and the definition of a sensor model it follows that also
no plant model in Psm is affected by the requirements, thus
by lemmas 1 and 2 it follows that Psm ‖ Rs is a trim and
strongly connected automaton. Again using lemmas 1 and 2
results that Po ‖ Psm ‖ Rs is a trim and strongly connected
automaton.

For Po ‖ Psm ‖ Pr ‖ Rs to be nonblocking, it should
hold that from every reachable state q ∈ Q there exists
a string s ∈ Σ∗ such that δ(q, s) ∈ Qm. As Pr is trim
(Lemma 1) it follows that there exists a string sr ∈ Σ∗r
such that δ(qr, sr) ∈ Qm in Pr. From the definition of
synchronous composition with a state-event requirement, it
follows that θ(qr, sr) ∈ Qm in Pr ‖ Rs. For δ(qr, sr) ∈ Qm
in Pr ‖ Rs to hold, each event in sr should be enabled along
its path. There are two cases for each event σ in string sr.

• If there does not exist a requirement Rj ∈ Rs such that
event(Rj) = σ, then σ is enabled.

• If there does exist a requirement Rj ∈ Rs such that
event(Rj) = σ, then Rj is also the only requirement
in Rs such that event(Rj) = σ (Property 3.b). As
the condition Cj = cond(Rj) only depends on plant
components from Psm and not plant components from
Pr or Po (Property 3.e), it follows from Lemma 4 that
there exists a string in Psm such that the reached state
r satisfies Cj . No transition in plant components from
Pr and Po are needed as all states from these plant
components are irrelevant in satisfying the condition
Cj . Therefore, there exists a path in P such that σ is
enabled.

From the above observation, we conclude that we can always
find a string (including the empty string) such that σ is
enabled. As σ is chosen arbitrarily along the path in Pr



labeled with sr, it follows that δ(qr, sr) ∈ Qm,r. Finally,
combining this with the fact that qr is chosen arbitrarily and
that Po ‖ Psm ‖ Rs is trim, it follows that Po ‖ Psm ‖ Pr ‖
Rs is nonblocking.

Now we are ready to prove the main theorem of the paper.
Theorem 1: Let P and R be a set of plant models and

requirement models satisfying CNMSP. Then no supervisor
synthesis is required, i.e., P ‖ R is controllable and non-
blocking.

Proof: From lemmas 4 and 5 it follows that we can
construct a set of supervisors S = {S1, . . . , Sn} such that
Sj = supCN (P,Rj) = P ‖ Rj and S is nonconflicting.
The antecedent follows directly from combining these last
two facts.

VI. CONCLUSION

In this paper, we presented properties such that a control
problem satisfying these properties is already controllable
and nonblocking without synthesizing a supervisor. There-
fore, the control problem itself represents a safe, control-
lable, nonblocking, and maximally permissive supervisor.
The properties match with the input/output perspective often
needed for supervisor implementations. Furthermore, the
properties can be verified easily, avoiding the notorious state-
space explosion problem of synthesis. Examples show that
violating any one of these properties may result in the need
of synthesis.

Further research is needed in the relaxation of the proposed
properties. Sometimes it is desired to model the physical
relation between actuators and sensors [24]. Otherwise, a
supervisor that is proven to be nonblocking may block after
implementation. Adding shared events to model the interac-
tions will violate Property 1, as it is no longer a product
system. Transforming this new model into a product system
representation, the actuator and sensor models are combined
into one. Therefore, requirements no longer refer only to
states of sensor models (violating Property 3.e). Furthermore,
sometimes a requirement needs to express explicitly that, for
example, an actuator needs to be at rest to guarantee safety
of the plant. This type of requirements also violates Property
3.e.

ACKNOWLEDGMENT

The authors thank Michel Reniers, Joanna van de Mortel-
Fronczak, and Jacobus Rooda for several fruitful discussions
on the proposed set of properties and its applicability to
industrial-based cases.

REFERENCES

[1] P. J. G. Ramadge and W. M. Wonham, “Supervisory Control of a
Class of Discrete Event Processes,” SIAM Journal on Control and
Optimization, vol. 25, no. 1, pp. 206–230, Jan. 1987.

[2] ——, “The control of discrete event systems,” Proceedings of the
IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[3] M. Fabian and A. Hellgren, “PLC-based implementation of supervi-
sory control for discrete event systems,” in Proceedings of the 37th
IEEE Conference on Decision and Control, vol. 3, 1998, pp. 3305–
3310 vol.3.

[4] S. Balemi, “Control of Discrete Event Systems: Theory and Appli-
cation,” Ph.D. thesis, Swiss Federal Institue of Technology Zurich,
Zurich, 1992.

[5] F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak, and
J. E. Rooda, “Supervisory control synthesis for a waterway lock,” in
IEEE Conference on Control Technology and Applications, Aug. 2017,
pp. 1562–1568.

[6] F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak,
M. A. Reniers, and J. E. Rooda, “Application of dependency structure
matrices and multilevel synthesis to a production line,” in IEEE
Conference on Control Technology and Applications, Aug. 2018, pp.
458–464.

[7] F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak,
and J. E. Rooda, “Supervisory control synthesis for a lock-bridge
combination,” submitted to Discrete Event Dynamic Systems, 2019.

[8] P. Gohari and W. M. Wonham, “On the complexity of supervisory
control design in the RW framework,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 30, no. 5, pp. 643–
652, Oct. 2000.

[9] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) de-
signs,” in Verification, Model Checking, and Abstract Interpretation,
ser. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
Jan. 2006, pp. 364–380.

[10] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis
for timed automata,” IFAC Proceedings Volumes, vol. 31, no. 18, pp.
447–452, Jul. 1998.

[11] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi, “Supervisory
control and reactive synthesis: a comparative introduction,” Discrete
Event Dynamic Systems, vol. 27, no. 2, pp. 209–260, Jun. 2017.

[12] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Boston: Springer, 2008.

[13] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems, 1st ed. Springer, 2018.

[14] M. Ito, “A representation of strongly connected automata and its
applications,” Journal of Computer and System Sciences, vol. 17, no. 1,
pp. 65–80, Aug. 1978.

[15] C. Ma and W. M. Wonham, Nonblocking Supervisory Control of
State Tree Structures, ser. Lecture Notes in Control and Information
Sciences. Springer Berlin Heidelberg, 2005, no. 317.

[16] J. Markovski, K. G. M. Jacobs, D. A. van Beek, L. J. Somers,
and J. E. Rooda, “Coordination of resources using generalized state-
based requirements.” in 10th International Workshop on Discrete Event
Systems, 2010, pp. 300–305.

[17] S. Miremadi, K. Åkesson, and B. Lennartson, “Extraction and repre-
sentation of a supervisor using guards in extended finite automata,”
in 9th International Workshop on Discrete Event Systems, May 2008,
pp. 193–199.

[18] W. M. Wonham and P. J. G. Ramadge, “Modular supervisory control of
discrete-event systems,” Mathematics of Control, Signals and Systems,
vol. 1, no. 1, pp. 13–30, Feb. 1988.

[19] S. Mohajerani, R. Malik, and M. Fabian, “A framework for com-
positional nonblocking verification of extended finite-state machines,”
Discrete Event Dynamic Systems, vol. 26, no. 1, pp. 33–84, Mar. 2016.

[20] R. Su, J. H. van Schuppen, J. E. Rooda, and A. T. Hofkamp,
“Nonconflict check by using sequential automaton abstractions based
on weak observation equivalence,” Automatica, vol. 46, no. 6, pp.
968–978, Jun. 2010.

[21] R. Su, J. H. van Schuppen, and J. E. Rooda, “Synthesize nonblocking
distributed supervisors with coordinators,” in 17th Mediterranean
Conference on Control and Automation, Jun. 2009, pp. 1108–1113.

[22] M. Modarres, Risk Analysis in Engineering : Techniques, Tools, and
Trends. CRC Press, Apr. 2016.

[23] Rijkswaterstaat, “Landelijke brug- en sluisstandaard, vraagspecificatie
eisen v4.0,” Dutch Ministry of Infrastructure and the Environment,
Standard, October 2015, in Dutch.

[24] J. Zaytoon and V. Carre-Meneatrier, “Synthesis of control implemen-
tation for discrete manufacturing systems,” International Journal of
Production Research, vol. 39, no. 2, pp. 329–345, Jan. 2001.


