2018 IEEE Conference on Control Technology and Applications (CCTA)

Copenhagen, Denmark, August 21-24, 2018

Application of Dependency Structure Matrices and Multilevel Synthesis
to a Production Line

FEH. Reijnen!, M.A. Goorden', J.M. van de Mortel-Fronczak', M.A. Reniers' and J.E. Rooda!

Abstract— Designing correct supervisory controllers for high-
tech systems is becoming increasingly complex due to demands
for verified safety, higher quality, and more functionality. Based
on supervisory control theory, a method is defined to automat-
ically derive a supervisor from a model of the uncontrolled
system (the plant) and a model of the control requirements.
A drawback of this approach is the computational complexity
that grows exponentially with the number of components in the
system. Several control architectures have been proposed in the
literature to overcome this problem. It is not always evident
which control architecture is most suitable for a given system.
Therefore, the research on methods supporting automatic
architecture generation gains in importance. The purpose of this
paper is to illustrate such a method in a case study involving the
development of supervisory control. The control architecture is
automatically derived from the plant and requirement models,
using clustering techniques for dependency structure matrices.
The following development steps are discussed: modeling the
plant, modeling the requirements, structuring the models in
a multilevel control architecture, synthesizing the supervisors,
and generating a real-time controller for implementation.

I. INTRODUCTION

Complexity growth of high-tech systems is caused by
increasing market demands for verified safety, higher quality,
and extensive functionality. At the same time, it is desired
to decrease costs and time-to-market. Model-based systems
engineering methods, such as supervisor synthesis [1], can
help in coping with this complexity when designing super-
visory controllers. Models allow for early verification and
validation, such that fewer design errors are found in the
later implementation and testing phases [2].

Supervisor synthesis [1] is a method to automatically
derive a supervisor from a model of the plant (modeled
as a collection of components) and a model of the control
requirements. The synthesized supervisor controls the plant
such that the controlled system adheres to the requirements
per construction. A drawback of supervisory control theory
is the computational complexity that grows linearly with
the number of states represented by the plant model, which
grows exponentially with the number of components in the
system, referred to as state space explosion. Several methods
exist that try to overcome this complexity by dividing the
state space into modules [3]-[6].

One such method is multilevel discrete-event control syn-
thesis [6], this method can help in reducing the usage of

This work is supported by Rijkswaterstaat, part of the Ministry of
Infrastructure and Water Management of the Government of the Netherlands.

1Ferdie Reijnen, Martijn Goorden, Joanna v.d. Mortel-Fronczak, Michel
Reniers (m.a.reniers@tue.nl), and Jacobus Rooda are with the
Department of Mechanical Engineering, Eindhoven University of Technol-
ogy, Eindhoven, the Netherlands.

978-1-5386-7697-4/18/$31.00 ©2018 IEEE

458

computational resources in the supervisor development pro-
cess. For multilevel synthesis, the system is divided in a tree-
based structure, where each subsystem has a set of children
and a unique parent. Each subsystem consists of a sub-
collection of the components models and a sub-collection
of the requirement models. A supervisor is synthesized for
each subsystem in the tree using monolithic synthesis.

In [7], a method is shown which automatically transforms
any collection of component models and collection of re-
quirement models into a multilevel discrete-event system.
This transformation uses analysis techniques for dependency
structure matrices (DSMs) [8] to derive the system struc-
ture from the component models and requirement models.
Implementation code can automatically be generated from
the collection of synthesized supervisors, using the approach
from [9]. This way of working is schematically depicted in
Fig. 1.

Even though supervisory control theory has been widely
accepted in academia, and numerous applications have been
proposed in the literature, realistic applications are yet few
in number [10]. Two successful attempts at synthesizing and
implementing a supervisor are reported for a theme park
vehicle in [11], and for a patient support system for an MRI
scanner in [12]. In [6] and [7], both cases are analyzed
to show the feasibility of multilevel synthesis. However,
implementation on hardware was not considered there. To
the best of our knowledge, a multilevel supervisor has never
been implemented on hardware.

This paper deals with the design and implementation of a
multilevel supervisory controller for a small-scale production
line. The production line is a didactic system with industrial
components and industrial-size complexity. It consists of five
times as many components and has to adhere to more
requirements than the two aforementioned systems. Didactic
systems such as this one provide researchers and students
with a realistic platform to analyze techniques from academia
in practice. Similar systems, such as xCPS [13] and MOPED
[14], are successfully used to experiment with supervisory
control, image-based control, embedded software, schedul-
ing, and real-time control.

The contribution of this paper is to show how multilevel
synthesis together with DSM-based clustering techniques can
be used to design supervisory controllers for a production
line. The whole development process, i.e., modeling the plant
and requirements, automatically structuring the models in
a multilevel control architecture, synthesizing the supervi-
sors, and implementing the supervisors on the hardware, is
shown. Furthermore, the multilevel supervisor architecture

Modelin,
DSM-based Multilevel Code PLC
structuring © | [PuR,] [PoRs| [PoRe [P.Ri||synthesis * | [s, | [ss] [S.] [||generation” |implementation
Modelin,
.
Fig. 1. Schematic way of working for DSM-based structuring, multilevel synthesis, and code generation. P denotes the collection of component models,

P; a sub-collection of the component models, R the collection of requirement models, R; a sub-collection of the requirement models, and .S; a supervisor.

is compared to the monolithic supervisor architecture, and
to a multilevel supervisor architecture obtained from manual
structuring.

This paper is structured as follows. The production line
analyzed in this case study is introduced in Section II.
The concepts and notions of supervisor synthesis, multilevel
synthesis, and DSMs are provided in Section III. Section IV
discusses our modeling of the production line. In Section
V, the results of DSM-based structuring are discussed. The
resulting multilevel supervisor is shown and compared to su-
pervisors obtained by two other methods in Section VI. The
generation of the real-time controller and the implementation
on the production line are presented in Section VII. Finally,
Section VIII concludes the paper.

II. CASE STUDY DESCRIPTION

For this case study, a small-scale production line consisting
of six stations has been considered, see Fig. 2. The hardware
of the system is produced by Festo Didactic (www . festo.
com).

Fig. 2.

Overview of the small-scale production line.

The production line is developed for vocational training in
the field of automation and communication for both bachelor
and master students in Mechanical Engineering. Although
the system is made of industrial components, no real pro-
cessing takes place. Still, all the movements, velocities, and
timings are as if there was. Various types of pneumatic
cylinders, and DC motors are used as actuators. Sensors of
types optical, inductive, capacitive, electromechanical, reed
contact, and Hall-effect are used. In total, the production line
contains 28 actuators to be controlled by a supervisor and
59 sensors.

The desired controlled behavior of the production line
is as follows. Products enter the production line via the
distributing station, where they have initially been placed
in three storage tubes. Products leave the storage tubes via

459

pushers. A pneumatic gripper, belonging to the handling
station, transports the products to the intermediate buffer.
From the buffer, a transfer cylinder picks up the products
and places them on the elevator plateau at the testing
station. At the festing station, the height of the products is
measured, and correct products are moved via a pneumatic
slide towards the buffering station. Rejected products are
placed in a local buffer. The buffering station consists of
a conveyor belt and a separator. The separator can interrupt
the supply of products towards the processing station. The
processing station consists of a turntable with six places:
entry, testing, drilling, exit, and two spare locations. Product
orientation is checked at the testing location, after which the
products are (virtually) machined by a drill and moved to the
sorting station. The sorting station is the final station in the
production line. Its purpose is to store the products in one of
the three buffers, depending on color and material. Here, a
conveyor belt transports the products. Two pneumatic gates
can be opened or closed to divert products from the belt into
a buffer.

The supervisor of the production line is to be implemented
on a PLC, which is the industrial standard for implementing
supervisory controllers. Here, a soft PLC, connected via
Ethernet to six remote 1/Os, is used to run the PLC code.
This set-up is schematized in Fig. 3.

|Distributing| Handling | Testing | Buffering |Processing| Sorting |

Fig. 3. Schematic overview of the stations in the production line.

III. PRELIMINARIES

A. Supervisor synthesis

Supervisor synthesis [1] is a method to automatically
derive a supervisor for a system from a model of the plant,
and a model of the control requirements. The supervisor
coordinates the plant such that the controlled system is
guaranteed to satisfy the following properties:

o Safety. The controlled system cannot reach states or
enable events that are forbidden by the requirements.

o Controllability. Only controllable events are restricted
by the supervisor.

« Non-blockingness. The controlled system is always able
to reach a marked state.

e Maximal permissiveness. The supervisor imposes the
minimal restriction to satisfy safety, controllability, and
non-blockingness.

Finite state automata (FSAs) are generally used to model
the behavior of the plant. An FSA consists of a finite set of
locations () with transitions between them. These transitions
are labeled by events o € 3. The transition relation is
given as § C @ X X x). Some locations are marked to
indicate that they are safe; they are denoted by @,, C Q.
Initially, the system is in location gg € @, the initial location.
The event set X is partitioned into controllable events Y.
and uncontrollable events 3.,.. Controllable events can be
restricted by the supervisor, e.g., starting an actuator, whereas
uncontrollable events cannot be restricted, e.g., that a sensor
switches on.

Usually, the plant is modeled as a collection of several
interacting components P;, ¢ € I, with I a finite index
set. The plant P is represented by the synchronous product
P =|jer P; [15].

FSAs can be used to model the control requirements as
well; this is especially useful to model the required order
of events. Often, state-based expression models [16] are
also used. These expressions state under which conditions
a certain event is allowed to occur. For an FSA named A
with location g, A.q is used in expressions to denote that
the current location of automaton A is ¢. By being able
to refer to states in these expressions, the requirements can
be formulated very concisely. Usually, requirement model R
consists of a collection of FSAs and state-based expressions,
R;,j € J, with J a finite index set.

The algorithm described in [17] can be used to synthesize
a monolithic supervisor S that adheres to the aforementioned
properties from P and R. To compactly represent the su-
pervisor, the method of [18] can be used, which displays
the supervisor as a finite set of guards for the controllable
events. In CIF 3 [19], this resulting set of guards is returned
as an extended finite state automaton, such that it is possible
to compute the synchronous product. The behavior of the
supervised system is then the synchronous product of the
collection of components P, collection of requirements R,
and supervisor S.

B. Multilevel discrete-event control synthesis

For the design and engineering of large-scale systems,
the system is often decomposed into multiple subsystems.
This approach is also applicable for discrete-event systems.
A multilevel discrete-event system (MLDES) is a discrete-
event system with a tree-based structure, as first proposed in
[6]. Each node in the tree has a unique parent (except the top
node) and may have children. Each node in the MLDES is
interpreted as a subsystem. Therefore, each node consists of a
sub-collection of the component models and a sub-collection
of the requirement models.

460

To control an MLDES with node set N, for each node
n € N a supervisor S, is synthesized such that the
synchronous product of all controlled subsystems equals the
system controlled by a monolithic supervisor. Supervisor S,,
can be obtained by synthesizing with the aforementioned
algorithm a monolithic supervisor for the subsystem at node
n. It can be shown that this set of supervisors satisfies the
safety and controllability property [6]. When the component
and the requirement models are prefix closed, the obtained
result is also non-blocking and maximally permissive [15].

First applications of synthesis for MLDES show a reduc-
tion in the computational complexity and a reduction in the
state space sizes of the controlled systems, see [6], [7].

C. Dependency structure matrices

This subsection provides the general concepts and notions
of dependency structure matrices. A more in-depth introduc-
tion is given in [8]. A DSM is a visual representation of
the linkage between elements in a system in the form of a
square matrix. The same system elements are labeled along
both axes of the matrix. Filled off-diagonal elements are used
to indicate relationships between elements.

DSMs can be clustered, by reordering the matrix elements,
to reveal modules of tightly related components. The algo-
rithm of [20] allows for automatic clustering. DSMs have
also been proven useful in revealing the multilevel structure
of a plant model [7]. The method described in [7] allows
for the automatic transformation of the general supervisory
control problem into the multilevel control problem of [6].

IV. MODELING

In this section, the component models and the requirement
models of the components belonging to the processing station
are described in detail. Due to the large number of compo-
nents and requirements in the production line, the models of
the other stations are not included here, but are available in
[21]. The processing station is depicted in Fig. 4.

Tester
Entry

Turntable

Valid position
sensor

Fig. 4. The processing station [source: Festo].

The processing station consists of a turntable on which
products are loaded. From the entry, they first visit the tester,
which tests the orientation of the product. Subsequently, they
visit the drill unit, where a product is first clamped before
the drill starts machining the product. At the exit, an ejector
removes the products. The turntable has two spare positions
that are not used.

A. Modeling the components of the processing station

The modeling of the components is based on the inputs
and outputs of the control unit. This level of detail is
chosen, such that the synthesized supervisors can be directly
implemented in the control unit. This results in component
models for all sensors and actuators of the stations.

Four sensors measure the presence of a product at the
entry, test, drill, and exit position. There is a sensor that
measures if the turntable is at a valid stopping position.
Two sensors measure the vertical end positions of the drill.
Another sensor indicates whether a product is clamped. The
tester is equipped with a sensor that checks whether the
product dimensions are correct. Lastly, an internal sensor in-
dicates whether the station is initialized. All of these sensors,
except for the drill position sensors, are modeled as a simple
sensor that is either on or off (see the top right automaton in
Fig. 5). The unconnected incoming arrow denotes the initial
location. The filled circle indicates the marked location. Solid
and dashed arrows represent controllable and uncontrollable
events, respectively. The drill position sensors are modeled
as the bottom automaton in Fig. 5. This model includes
the physical restriction that both sensors can never be on
simultaneously.

c.on

Off On Ooff _ _ 2 _ _ On
- -
e =0 @&I._ >0
T c.off T uoff
_up-off
Up u-up ™ u_-down._on Down

- - - - - -

~N—_—— - St ——_ -

u-down_-off

Fig. 5. Model of an actuator (top left), a sensor (top right), and the drill
position sensor (bottom).

Seven actuators are controlled by the supervisor. The
turntable can be rotated clockwise, the tester can be activated,
the drill can be activated, the clamp can be enabled, and
the ejector can be activated. For the turntable, the hardware
prevents it from stopping at an invalid position; hence, the
actuator only sends a short pulse to start the movement. Two
actuators are used for the movement of the drill, one for
ascending and one for descending. All these actuators can
be modeled in the same way as the top left automaton in
Fig. 5.

B. Modeling the requirements of the processing station

In order to operate the processing station in a safe and
efficient manner, the following informal requirements have

461

to be satisfied:

1) The actuators can only activate after the station has
been initialized.

The turntable can only rotate when the other actuators
are in a safe position, i.e., the drill in the upper
position, the clamp retracted, and the tester, drill, and
ejector deactivated.

The turntable can only rotate when a new product has
entered.

The turntable actuator can only be disabled when the
turntable leaves the valid position.

The tester, drill, clamp, and ejector are only allowed
to enable when the turntable is at stand-still and there
is a product.

The clamp can only be released when the drill is up
and disabled.

The drill is only allowed to activate and descend when
there is a clamped product.

The ejector can only be retracted after the product has
been removed.

The tester can only be disabled once the measurement
has been completed.

If there is a product at the testing or drilling location,
it should be processed before the turntable is activated
again.

The cycle at the drilling location should be as follows:
clamp product, activate drill, descend, ascend, deacti-
vate drill, release product.

2)

3)
4)

5)

6)
7)
8)
9)

10)

11

Requirements 1 until 9 state conditions under which
an event is allowed to occur. These requirements can be
modeled intuitively using state-based models, as given below
for the first four requirements. In the models, e needs G
denotes that an event e can only occur when G evaluates
to true. The other requirement models are similar and are
available in [21].

Rl1: {A_turntable.c_on, A_drill.c_on,
A_tester.c_on, A_drilldown.c_on,
A_eject.c_on} needs

S_DInitialized.On

R2: {A_turntable.c_on} needs
S_drill.Up and S_clamp.Off and
A_tester.Off and A_drill.Off and
A_eject.Off

R3: {A_turntable.c_on} needs S_atentry.On

R4: {A_turntable.c_off} needs S_turntable.Off

Requirements 10 and 11 describe the flow in the station,
i.e., they describe the order of events, and can be modeled
using FSAs. For the testing location, Requirement 10 is given
in Fig. 6.

Requirement 10 states that after the tester has been used,
the turntable must first rotate before a new test is allowed. If
there is no product, the turntable can rotate again, denoted by
the self-loop in location A. There is a similar model for the
order of events at the drill location. Models of Requirements
10, and 11 are available in [21].

A_tester.coff

B
tester.c_on
()
»3\'_/ou

A_turntable.c_on

A_turntable.c_on

Fig. 6. Model of requirement 10 for the testing location.

V. DSM-BASED STRUCTURING

In Fig. 7, the result of clustering the component DSM,
using the automated method of [7], is shown. On the axes, all
77 component models are labeled. The off-diagonal marks
indicate a relation between components, via requirements.
The component models of the processing station are mainly
found in cluster C5, visualized by the red coloring. For
clustering, the flow-based Markov clustering algorithm of
[20] is used. The following settings are used: the expansion
constant, an integer value, a = 2, the inflation constant
B = 2.2, and the evaporation constant p = 2.0. Typically,

when larger clusters are desired smaller values for S and p
are chosen. It is advised in [20] to use o = 2; only in case
of a dense DSM, the value of o may be decreased to 1.

Modules of components are visualized by square boxes.
In total 17 supervisors at the fourth level are found (the
smallest boxes); these are typically sensors and actuators that
work closely together. 4 modules are found on the third level,
denoted by C1, C5, C3, and C} in the figure; these coordinate
processes in stations. Some stations are clustered together,
because of their close dependencies. Cluster C; contains the
distributing station and the gripper of the handling station,
cluster C'y the transfer of the handling station, the testing
station, and the buffering station. Clusters C'3 and C; contain
the processing and sorting station, respectively. Then, there
are 2 modules and 1 module for the second and first level,
respectively. At these levels, inter-station interactions are
coordinated.

S_productl (D) :
S_pusherl (D) :
S_stackl_filled (D) :
A_pusherl (D) :
S_product2 (D) :
S_pusher2 (D) :
S_stack2_filled (D) :
S_Dinitialized (D) :
A_pusher2 (D) :
S_product3 (D):
S_pusher3 (D):
S_stack3_filled (D):
A_pusher3 (D):
S_product4 (H):
S_xpos (H):
S_zpos (H):
S_gripper (H):
A_x2distributing (H):
A_X2testing (H):
A_zdown (H):
A_gripperclose (H) :

S_transfer (H):
S_vacuum (H):
S_Hinitialized (H):
A_transfer2pick (H):
A_transfer2drop (H):
A_vacuum (H):
A_ejectpulse (H):
S_capacitive (T):
S_optical (T):
S_reflective (T):
A_elevator_up (T):
A_elevator_down (T):
S_pusher (T):
S_productheight (T):
S_Tinitialized (T):
A_pusher (T):
Timer (T):
S_atseparator (B):
S_separator (B):
S_Binitialized (B) :
A_separator (B):
S_atinput (P)
S_elevator (T):
A_airslide (T):
S_atin (B):
S_atend (B):
A_conveyer (B):
Timer (B):

S_drill (P):
A_drilldown (P):
A_drillup (P):
S_clamp (P):
A_drill (P):
A_turntable (P):
S_atdrill (P):
A_clamp (P)
attest (P):
S_test_ok (P):
S_turntable (P):
S_Pinitialized (P):
A_tester (P):

Timer (P):

S_atexit (P):
A_cject (P):
S_product (S):
S_slidefull (S):
S_Sinitialized (S):
A_conveyer (S):
A_stopperretract (S) :
Timer (S):

S_gatel (S):
A_gatel (S):
S_inductive (S):
S_optical (S):
S_gate2 (S):
A_gate2 (S):

Fig. 7.

The result of DSM-based clustering of the models. The relations in red are derived from the models of the processing station. C7, Cg, C3, and

Cly are all clusters found on the third level. Naming abbreviations: Sensor (S-), Actuator (A-), Distributing (D), Handling (H), Testing (T), Buffering (B),

Processing (P), and Sorting (S).

462

P: 4
R:2
S: 16
P: 10 P:2
R: 12 R: 1
S: 5,120 S: 4
P: 11 P: 13 P: 11 P: 8
C, [rR7 C, |rR:28 C; |R:29 Cy |R:14
S:5,120 S: 36,864 S: 1,980 S: 384
P:4 P:5 P: 4 P: 8 P:8 P: 4 P:5 P:5 P: 6 P:3 P:3 P:2 P: 6 P:2 P: 6 P:2 P:4
R:5 R:7 R:5 R: 12 R: 16 R: 8 R: 8 R:7 R: 6 R: 4 R:3 R: 1 R: 10 R:2 R: 11 R:2 R: 4
S:24 S: 48 S:24 S:360 |[S:192 |[S:12 S: 48 S: 48 S: 144 |[S:12 S: 8 S:4 S: 96 S: 4 S: 96 S: 6 S: 24
Fig. 8. Multilevel discrete-event control architecture, automatically derived from clustered DSM in Fig. 7. P denotes the number of component models,

R the number of requirement models, and S the number of states in the supervised subsystem.

VI. MULTILEVEL SYNTHESIS

The multilevel control structure has been derived automat-
ically from Fig. 7. The top node corresponds to the module
at the first level. Its children are the modules at the second
level, and so on. The resulting structure is given in Fig. 8.
The number of component and requirement models, as well
as the number of states in the supervised subsystem are given
in the figure. The total number of the component models
on the fourth level equals the 77 components in the model;
the number of requirements equals the 204 requirements in
the model. The summation of the states in all subsystems is
50,368 states. The supervisors are synthesized using CIF 3
[19]. The implementation of the synthesis algorithm in CIF
3 follows the BDD-based approach of [22].

For this multilevel structure, the collection of supervisors
obtained is nonconflicting, i.e., the synchronous composition
is nonblocking. This can be established by applying the
compositional nonblocking verification algorithm of [23].
Structuring the system, synthesizing the supervisors, and
checking nonblockingness takes around 13 seconds on a HP
ZBook laptop with Intel i7 2.40 GHz CPU and 8 GB RAM.

It is not always the case that the resulting collection of
supervisors is nonconflicting. In such cases one may con-
struct a coordinator that acts as an additional supervisor for
eliminating the blocking situations. Such a coordinator can
be found by applying monolithic synthesis on all the com-
ponent and requirement models and all supervisors obtained,
or by applying the compositional coordinator construction
proposed in [24].

To compare the used technique to monolithic synthesis
and multilevel synthesis with manual structuring, two more
solutions have been analyzed. For a modeler to manually
divide the production line in modules, it seems intuitive to
choose a module for each individual station. Therefore, it is
assumed that for the manually structured case each station
belongs to a single module, i.e., instead of Cy,C5,C3, and
Cy, there are now six modules at this level, and one module
at the top level. The summation of the number of states in
all the subsystems, the computation times, and the number
of supervisors, are given in Table I.

463

TABLE I
RESULTS OF DIFFERENT SYNTHESIS APPROACHES.

Synthesis architecture States Time [s] | Supervisors
MLDES synthesis 5.0 x 10* 13 44
automatically structured

MLDES synthesis 1.4 x 108 2 7
manually structured

Monolithic synthesis 2.2 x 10%° 370 1

As can be seen, the multilevel supervisors have a smaller
state representation than the monolithic supervisor. It also
takes considerably less time to compute the multilevel su-
pervisors. Furthermore, the automatically structured supervi-
sors are smaller than the manually structured supervisors.
Regarding computation time, the difference between the
multilevel approaches is mainly due to the time it takes to
start the clustering algorithm. However, the time it takes to
manually identify the clusters is not taken into account here,
which can be very time consuming. When using DSMs this
identification step is automated.

VII. CODE GENERATION

As is mentioned in Section II, the supervisors of the
production line are implemented on a PLC. PLCs do not
support automata-based programming languages and do not
have concepts such as event synchronization. The synthe-
sized supervisors can therefore not be implemented directly.
Here, we use the transformation described in [9] to remove
synchronizations, such that the supervisors can be imple-
mented in a sequential programming language. The resulting
code scales linearly with the number of states and edges in
the models. Since the synchronous product is not calculated
explicitly, the number of states and edges remains small.

In CIF 3 [19], this transformation algorithm is imple-
mented to generate structured text PLC code. Structured
text adheres to international standard IEC-61131-3 for PLC
code. It is a textual programming language. Code generation
from automata models has successfully been used in previous
projects, such as for baggage handling systems in [25]. For
the production line, the generated code consists of 9200 lines

of code and has a file size of 300kB.

The generated structured text PLC code was successfully
installed on the PLC. The only manual activity required is the
association of changes of the PLC input and output variables
with uncontrollable and controllable events, respectively. Of
course, our modeling of the plant has already assumed such a
relationship. Typically, the rising edge is connected to an on
event, whereas the falling edge is connected to an off event.

When observing the controlled behavior, some model
mismatches were found, e.g., product sensors in the pro-
cessing station switch on when the turntable is rotating over
them. After improving the models, the new PLC code was
generated in minutes (this includes altering the model, DSM-
based structuring, and multilevel synthesis). After these
improvements, the observed controlled behavior was in line
with the behavior described in Section II. It should be noted
that there could be differences in the behavior of the models,
and the behavior of the code on a PLC, due to the nature of
PLCs, e.g., simultaneity, and inexact synchronization [26].
However, we did not observe problems related to these
phenomena. This can be explained by the short cycle time
of the PLC (milliseconds) compared to the time of activities
(seconds) in the production line.

The synthesized collection of supervisors seems suited for
a distributed implementation on multiple PLCs. This needs
to be investigated in detail.

VIII. CONCLUDING REMARKS

In this paper, a method for automatic generation of control
architectures for supervisory control problems is illustrated
in a production line case study. This method uses analysis
techniques for DSMs to automatically derive the multilevel
control architecture. It is shown that this approach leads to a
considerable reduction in computational effort for synthesis
compared to the monolithic approach. Moreover, it is shown
that the resulting set of supervisors has successfully been
implemented and validated on the actual hardware.

ACKNOWLEDGMENTS

We thank Henk van Rooy for his assistance with the
implementation aspects related to the Festo stations.

REFERENCES
[1] P.J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206-230, 1987.
N. C. W. M. Braspenning, J. M. van de Mortel-Fronczak, and J. E.
Rooda, “A model-based integration and testing method to reduce
system development effort,” ENTCS, vol. 164, no. 4, pp. 13-28, 2006.
W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,” MCSS, vol. 1, no. 1, pp. 13-30, 1988.
H. Zhong and W. M. Wonham, “On the consistency of hierarchical
supervision in discrete-event systems,” IEEE Trans. Automat. Contr.,
vol. 35, no. 10, pp. 1125-1134, 1990.
K. Rudie and W. M. Wonham, “Think globally, act locally: Decen-
tralized supervisory control,” IEEE Trans. Automat. Contr., vol. 37,
no. 11, pp. 1692-1708, 1992.
J. Komenda, T. Masopust, and J. H. van Schuppen, “Control of an
engineering-structured multilevel discrete-event system,” in WODES.
IEEE, 2016, pp. 103-108.

[2]

464

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. A. Goorden, J. M. van de Mortel-Fronczak, M. A. Reniers,
and J. E. Rooda, “Structuring multilevel discrete-event systems with
dependency structure matrices,” in CDC. IEEE, 2017, pp. 558-564.
S. D. Eppinger and T. R. Browning, Design structure matrix methods
and applications. MIT press, 2012.

L. Swartjes, D. A. van Beek, and M. A. Reniers, “Towards the removal
of synchronous behavior of events in automata,” in WODES. Elsevier,
2014, pp. 188-194.

W. M. Wonham, K. Cai, and K. Rudie, “Supervisory control of
discrete-event systems: A brief history—1980-2015,” in IFAC world
congress. Elsevier, 2017, pp. 1827-1833.

S. T. J. Forschelen, J. M. van de Mortel-Fronczak, R. Su, and J. E.
Rooda, “Application of supervisory control theory to theme park
vehicles,” DEDS, vol. 22, no. 4, pp. 511-540, 2012.

R. J. M. Theunissen, M. Petreczky, R. R. H. Schiffelers, D. A. van
Beek, and J. E. Rooda, “Application of supervisory control synthesis
to a patient support table of a magnetic resonance imaging scanner,”
IEEE Trans. Automat. Sci. Eng., vol. 11, no. 1, pp. 20-32, 2014.

S. Adyanthaya, H. A. Ara, J. Bastos, A. R. B. Behrouzian, R. M.
Sanchez, J. van Pinxten, B. van der Sanden, U. Waqas, T. Basten,
H. Corporaal, R. Frijns, M. Geilen, D. Goswami, M. Hendriks,
S. Stuijk, M. A. Reniers, and J. Voeten, “xCPS: a tool to explore
cyber physical systems,” SIGBED Review, vol. 14, no. 1, pp. 81-95,
2016.

J. Axelsson, A. Kobetski, Z. Ni, S. Zhang, and E. Johansson,
“MOPED: A mobile open platform for experimental design of cyber-
physical systems,” in SEAA. 1EEE, 2014, pp. 423-430.

C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer Science & Business Media, 2009.

C. Ma and W. M. Wonham, “Nonblocking supervisory control of state
tree structures,” IEEE Trans. Automat. Contr., vol. 51, no. 5, pp. 782—
793, 2006.

L. Ouedraogo, R. Kumar, R. Malik, and K. Akesson, “Nonblocking
and safe control of discrete-event systems modeled as extended finite
automata,” I[EEE Trans. Automat. Sci. Eng., vol. 8, no. 3, pp. 560-569,
2011.

S. Miremadi, K. Akesson, and B. Lennartson, “Extraction and repre-
sentation of a supervisor using guards in extended finite automata,” in
WODES. IEEE, 2008, pp. 193-199.

D. A. van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp,
J. Markovski, J. M. van de Mortel-Fronczak, and M. A. Reniers, “CIF
3: Model-based engineering of supervisory controllers,” in TACAS.
Springer, 2014, pp. 575-580.

T. Wilschut, L. F. P. Etman, J. E. Rooda, and I. J. B. F. Adan, “Mul-
tilevel flow-based Markov clustering for design structure matrices,”
Journal of Mechanical Design, vol. 139, no. 12, p. 121402, 2017.

F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak, M. A.
Reniers, and J. E. Rooda, “CIF3 models for the small-scale production
line,” 2018, www.github.com/ffhreijnen/CCTAProductionLine.

S. Miremadi and B. Lennartson, “Symbolic on-the-fly synthesis in
supervisory control theory,” IEEE Trans. Contr. Syst. Technol., vol. 24,
no. 5, pp. 1705-1716, 2016.

S. Mohajerani, R. Malik, and M. Fabian, “A framework for compo-
sitional nonblocking verification of extended finite-state machines,”
DEDS, vol. 26, no. 1, pp. 33-84, 2016.

M. A. Goorden, M. A. Reniers, J. M. van de Mortel-Fronczak, W. J.
Fokkink, and J. E. Rooda, “Compositional coordinator synthesis for
blocking systems of extended finite automata,” 2018, submitted for
publication.

L. Swartjes, D. A. van Beek, W. J. Fokkink, and J. A. W. M. van
Eekelen, “Model-based design of supervisory controllers for baggage
handling systems,” Simulation Modelling Practice and Theory, vol. 78,
pp- 28-50, 2017.

J. Zaytoon and B. Riera, “Synthesis and implementation of logic
controllers—a review,” Annual Reviews in Control, 2017.

