
Structuring Multilevel Discrete-Event Systems
with Dependency Structure Matrices

Martijn Goorden1, Joanna van de Mortel-Fronczak1, Michel Reniers1, and Jacobus Rooda1

Abstract— In this paper, we present a systematic approach
to transform a set of plant models and requirement models
into a tree-structured multilevel discrete-event system to which
multilevel supervisory controller synthesis can be applied.
By analyzing the dependencies between the plants and the
requirements using dependency structure matrix techniques,
a multilevel clustering can be calculated. Since one of the
major drawbacks of synthesizing supervisory controllers is
state space explosion, multiple attempts exist to overcome
this computational difficulty, such as modular, hierarchical,
decentralized, and, recently developed, multilevel supervisory
control synthesis. Unfortunately, the modeler needs to provide
additional information as input for most of these non-monolithic
synthesis procedures. For those supervisory control synthesis
procedures that require additional information, no systematic
approach exists in literature to transform any set of plant
models and requirement models to the appropriate input needed
for a particular synthesis procedure. The presented approach
is applied to a model of a lock and a model of an MRI scanner
patient support table.

I. INTRODUCTION

The complexity of high-tech systems has increased over
the last few decades due to increasing market demands
for better quality, shorter time-to-market, better perfor-
mance, and verified safety. Model-based systems engineering
(MBSE) approaches provide support for dealing with these
demands in the context of supervisory controller design. In
this paper, we consider discrete-event system (DES) models
for which supervisory controllers need to be developed. The
supervisory control theory (SCT) of Ramadge-Wonham pro-
vides an approach to synthesize supervisory controllers such
that the controlled system behavior exhibits the specified
behavior [1], [2].

A major drawback of synthesizing supervisory controllers
is the step where the supremal controllable language is
calculated. Although the time complexity of this step is
polynomial in the number of states that represent the sys-
tem, this number increases exponentially with the number
of constituent models, as already observed in [2]. Sev-
eral attempts exploiting different architectures are proposed
to overcome these computational difficulties: modular [3],
hierarchical [4], decentralized [5], distributed [6], coordi-
nated [7], and, more recently, multilevel supervisory control
synthesis [8].
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A problem with several of these supervisory control archi-
tectures is that additional information needs to be provided
as input for synthesis. For example, hierarchical supervisory
control needs an information mapping between the differ-
ent levels, decentralized control requires projections to the
subsystem alphabets, and multilevel control needs a tree-
structured system. For those supervisory control synthesis
procedures that require additional information, no systematic
approach exists in the literature to transform any DES plant
models together with control requirements to the appropriate
input needed for such a procedure. In this paper, the problem
definition includes the specifications of both the plant models
and the requirement models.

In this paper, we show how to exploit the problem
definition structure by using Dependency Structure Matri-
ces (DSMs) to transform the problem definition into an
appropriate tree structure needed for multilevel supervisory
control of [8]. A DSM provides a concise representation for
the analysis of the structure of systems in many areas of
research [9], [10]. With appropriate analysis techniques, one
is able to highlight important aspects in system architectures,
such as modules and cycles.

In contrast to suggestions found in literature [11], we
analyze the relationship between the plant models and re-
quirement models instead of relationships just between plant
models (e.g., shared events). Our motivation is that we want
to perform supervisory control synthesis which requires both
plant models and requirement models.

The contribution of this paper is a proposal for a sys-
tematic approach to transform a problem definition into
a tree-structured multilevel discrete-event system with the
properties needed for multilevel supervisory control synthesis
of [8]. This transformation uses DSM techniques to analyze
the relationships present in the provided problem definition.

This paper is structured as follows. The concepts and
notations used are provided in Section II regarding DSMs
and in Section III regarding SCT. The main results are
presented in Section IV with an illustrative example. In
Section V, the presented method is applied to an industrial
case. The conclusions are presented in Section VI.

II. DEPENDENCY STRUCTURE MATRICES

In this section, the concepts and notations of Dependency
Structure Matrices (also called Design Structure Matrices)
used in this paper are summarized. A more in depth in-
troduction to DSM analysis is given in [9]. Examples and
applications of DSMs can be found in the recent review
paper [10].



A DSM is a square matrix with the same entities, or
elements, along its axis (e.g., components in a system) and
cells representing relationships between the entities (e.g., a
spatial relationship). This relationship can be different per
DSM.

There exist different types of DSMs. Undirected relation-
ships result in a static DSM, while directed relationships
result in a dynamic DSM. A type of DSM in which the rela-
tionships between different domains are described is called
a Domain Mapping Matrix (DMM), which is a rectangular
matrix. The generation of DSMs from DMMs and DSMs of
other domains are described in [12], [13].

The different types of DSMs allow for different types of
analyses of the considered system. In this paper, a static DSM
will be analyzed. The focus of the literature on static DSMs
is to find a modular architecture by clustering the entities of
the DSM, as shown, for example, in [14].

III. MULTILEVEL DISCRETE-EVENT SYSTEMS

In this section, the concepts and notations of Supervisory
Control Theory used in this paper are summarized. A more
in-depth introduction to SCT can be found in [15], [16].

A. Preliminaries

We assume that the reader is familiar with the concepts of
languages over an alphabet, synchronous product, automata
representation, and monolithic supervisory control synthesis.
Notations used below are taken from [16].

A less frequently used notion is that of a composed system
representation. A composed system is a system model where
the global plant G is represented by a set of subplants Gi, i ∈
I = {1, 2, . . . , n} such that G =‖i∈I Gi, with ‖ being the
synchronous product. A composed system is called a product
system if the alphabets of any two subplants are disjoint [2].
The most refined product system of a composed system is
the product system that requires the minimal computational
effort on product operations to obtain a product system.
In [17], a procedure is provided to transform a composed
system into the most refined product system.

B. Multilevel discrete-event systems

A multilevel discrete-event system (MLDES) is a system
with a tree-based structure, as recently first proposed in
[8]. More formally, let T represent an index set for a tree
structure, where each element (t, u, v) ∈ T represents a node
at level t, in group u, and member v of that group. For
notational simplicity, we write n = (t, u, v) to point to a
node in the tree structure. An MLDES is defined as a set
Gs of subplants, {Gn | n ∈ T}, such that global plant G is
given by G =‖n∈T Gn.

The control synthesis problem of MLDES is stated as
follows. Consider the supervisory control problem where
the global plant is given as G =‖n∈T Gn and the global
requirement K =‖n∈T Kn. Find a set of supervisors where
the global supervisor is given by S =‖n∈T Sn such that the
controlled system S ‖ G satisfies nonblockingness, safety,
controllability, and maximal permissiveness. In this paper we

Fig. 1: The lock at Terneuzen, The Netherlands. Image from
https://beeldbank.rws.nl, Rijkswaterstaat.

refer to S as the automaton representation of the synthesized
supervisor.

As shown in [8], the set of supervisors Ss can be con-
structed by synthesizing for each node n ∈ T a supervisor Sn

with monolithic supervisory control synthesis. The following
theorem states that there exists a solution satisfying safety.

Theorem 1 (Existence of MLDES supervisors [8]):
Consider an MLDES with subplant set Gs and a set of
prefix-closed requirements {Kn | n ∈ T ∧ Kn ⊆ Σ∗Gn

}
such that K =‖n∈T Kn. There exists a set of supervisors
Ss, where Ss = {Sn | n ∈ T ∧ Sn ‖ Gn = Kn}, such that
S ‖ G = K with S ‖ G =‖n∈T Sn ‖ Gn.
It can then also be shown that the solution is maximally
permissive and nonblocking [8], [15]. The more general
situation is still ongoing research.

IV. PROPOSED METHOD

In this section, the proposed method of transforming a
general problem definition into an MLDES is described. The
input for the method can be any general problem definition.
The transformation consists of three stages: recording the
dependencies in the problem definition, finding a valid clus-
tering of the composed system, and constructing the MLDES.
These three stages are explained in detail below. Finally, the
complete algorithm to transform a general problem definition
into an MLDES is provided.

As a general problem definition we mean any composed
system, i.e., G =‖i∈I Gi, I = {1, 2, . . . , g}, g ∈ N+, to-
gether with the composed global requirement, i.e., K =‖j∈J
Kj , J = {1, 2, . . . , k}, k ∈ N+.

Example Throughout this section, an illustrative example
of a lock is provided to explain the presented method. To
maintain different water levels within a canal, a lock is
constructed which allows ships to be lifted to the higher
water level or to be lowered to the lower level. Fig. 1 shows
the lock located at Terneuzen, The Netherlands.

The following subplants are present in this simplified
system:
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Fig. 2: The DMM PR of the simple lock. Only the nonzero
elements are shown for readability.

• Entering light side 1
• Leaving light side 1
• Door actuator side 1
• Door sensor side 1
• Sewer actuator side 1
• Sewer sensor side 1
• Equal water sensor

side 1

• Entering light side 2
• Leaving light side 2
• Door actuator side 2
• Door sensor side 2
• Sewer actuator side 2
• Sewer sensor side 2
• Equal water sensor

side 2

On this system, 26 requirements are imposed to guarantee
the safe operation of a lock. For example, if there is no equal
water over a door, then the door may not be opened.

A. Recording the dependencies

The relationships within the problem definition are ana-
lyzed. Since plant models and requirement models have a
different role in the synthesis process, we consider them
as different domains. The dependencies between plants and
requirements result in a DMM. From this domain mapping,
we can create a DSM with plants as entities with simple
matrix multiplications, see [12].

As a first step, we transform the general problem definition
into the most refined product system. Therefore, if we later
refer to an event, there will be only a single plant model
containing this event in the alphabet. Let the most refined
product system be denoted by G =‖i∈I′ G′i.

Let the DMM be denoted by PR. Construct PR such
that PR(i, j) = 1 if the alphabets of component i and
requirement j are not disjoint, else PR(i, j) = 0.

Example The most refined product system of the simpli-
fied lock is given by:

1) Entering light side 1
2) Leaving light side 1
3) Door side 1
4) Sewer side 1
5) Equal water sensor

side 1

6) Entering light side 2
7) Leaving light side 2
8) Door side 2
9) Sewer side 2

10) Equal water sensor
side 2

The numbers before the components are used in the
remainder of this section to refer to a particular component
of the product system.

The resulting DMM of the simple lock example is shown in
Fig. 2. Consider the requirement mentioned before: if there is
no equal water over a door, then the door may not be opened.
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Fig. 3: DSM P for the simple lock example: left the
unclusterd P and right the clustered PC .

For side 1, this is the third requirement. This requirement
has a relationship with the door component (number 3) and
the equal water sensor component (number 5). Therefore,
PR(3, 3) = PR(5, 3) = 1 and all other elements in column
3 of PR are zero.

B. Finding a valid clustering

Before we can find clusters, we need to formally define a
multilevel clustering.

Definition 1 (Multilevel clustering): The set of all multi-
level clusterings Cm

A on a non-empty element set A is
inductively defined.
• When |A| = 1, (A,A) ∈ Cm

A

• Assume (A1, V1), . . . , (As, Vs) with 2 ≤ s ≤ |A| s.t.
{A1, . . . , As} is a partition of A and ∀i, 1 ≤ i ≤ s :
(Ai, Vi) ∈ Cm

Ai
, then (A, {(Ai, Vi) | 1 ≤ i ≤ s}) ∈ Cm

A .
A multilevel clustering can be seen as recursively

partitioning the set A, i.e., the set A is partitioned
into {A1, . . . , As} where each partitioning is again par-
titioned and so on until a partitioning with a single el-
ement is reached. In the tuple (A, V ) ∈ Cm

A , A pro-
vides immediately all elements in this multilevel clus-
tering and the set V contains the multilevel cluster-
ings of its children. For example, ({1, 2, 3}, {({1}, {1}),
({2, 3}, {({2}, {2}), ({3}, {3})})}) is a multilevel clustering
on the set {1, 2, 3}.

To find a multilevel clustering of the product system
G =‖i∈I′ G′i, we transform first the DMM PR into the DSM
with the plants as the domain. Let the DSM P be defined as
P = PR · PRT with PRT the transpose matrix of PR.

By creating the DSM P from the DMM PR as defined
before, we have the following interpretation. When P(a, b) =
k we know that there exists k requirements that use events
from both G′a and G′b to describe the desired behavior.

Example Fig. 3 shows the DSM P of the lock example.
For example, cell P (3, 1) = 3 indicates that there are 3
requirements which use both plant component 1 (entering
light side 1) and plant component 3 (door side 1). Further-
more, the elements on the diagonal indicate the number of
requirements related to that particular plant component.

The clustering algorithm as presented in [14] is used to
find a multilevel clustering. This paper does not discuss
which clustering algorithm is the best for our purpose. Any
valid multilevel clustering according to Definition 1 can be



used. The chosen algorithm provides a multilevel clustering
which fits our definition, which can be easily observed from
the clustering algorithm description in [14]. Furthermore,
it does not require any information on the structure as
input, like the number of expected clusters or the number
of hierarchical layers.

Example Fig. 3 shows the clustered DSM PC for the
simple lock model. There are three clusters indicated: a
cluster for lock side 1, a cluster for lock side 2, and a cluster
with the circulation sewers of both sides.

C. Constructing the MLDES

From now on we assume that we have a multilevel
clustering (I ′, V ) on the index set I ′ of the product system
{G′i | i ∈ I ′}. We will use the information from the DSM
P and DMM PR to construct the index set T of the tree
structure together with the set of plant models {Gn | n ∈ T}
and requirements {Kn | n ∈ T}.

In this section, we present two algorithms to construct both
the tree index set T and the problem definition at each node
in the tree, respectively. We first explain the algorithm to
construct the index set of the tree structure. Then we explain
the algorithm to determine the problem definition.

Algorithm 1 TransformCmtoT

Input: T, (A, V ), a, b, c, P,PR, {G′i}, {Kj}, {Gn}, {Kn}
Output: T, b, {Gn}, {Kn}

Ensure: Add a new node to T and identify the children
1: add (a, b[a], c) to T
2: G(a,b[a],c),K(a,b[a],c), P,PR =

CalculateGnandKn((A, V ), P,PR, {G′i}, {Kj})
3: if length(V ) > 1 then
4: a = a+ 1
5: if length(b) < a then
6: b = b+ [1]
7: else
8: b[a] = b[a] + 1
9: end if

10: c = 1
11: for all (Ap, Vp) ∈ V do
12: T, b, {Gn}, {Kn} =

TransformCmtoT (T, (Ap, Vp), a, b, c,
P,PR, {G′i}, {Kj}, {Gn}, {Kn})

13: c = c+ 1
14: end for
15: end if

Algorithm 1 shows the algorithm to create the index
set T of the tree structure embedded in the given multi-
level clustering (I ′, V ). We apply this algorithm recursively
to do a depth-first search through the multilevel cluster-
ing. Initially, Algorithm 1 is called with TransformCmtoT
(∅, (I ′, V ), 1, [1], 1, P,PR, {G′i|i ∈ I ′}, {Kj |j ∈ J}, ∅, ∅).

When Algorithm 1 is performed, we know that there exists
a valid level in the tree structure. This level is added to the
tree structure on Line 2. Furthermore, on Line 2 the plant

model and requirement model on level (a, b[a], c) = n is
calculated, see Algorithm 2. The algorithm continues when
we can go further down in the tree structure. Line 4-10 are
used for bookkeeping of the new values of a, b and c. At Line
12 we go further down the tree structure for each subcluster.

Example Starting from the root node, we can iden-
tify three subclusters: {1, 2, 3, 5}, {6, 7, 8, 10}, and {4, 9}.
Searching further, we see that the first subcluster has 4 child
nodes, the second subcluster also has 4 child nodes, and the
third subcluster has 2 child nodes. The resulting tree T has
three levels and is shown in Fig. 4.

Algorithm 2 CalculateGnandKn

Input: (A, V ), P,PR, {G′i}, {Kj} Output: Gn,Kn, P,PR
Ensure: Determines the problem definition for the top node

of the clustering (I, V )
1: if length(V ) = 1 then
2: In = A
3: Jn = {j ∈ J | PR(A, j) = 1 ∧∑

i∈I′ PR(i, j) = 1}
4: else
5: for all (Ax, Vx), (Ay, Vy) ∈ V,Ax 6= Ay do
6: for all x ∈ Ax, y ∈ Ay do
7: if P (x, y) 6= 0 then
8: Jtemp = {j ∈ J | PR(a, j) = 1 ∧

PR(b, j) = 1}
9: P = P −

∑
j∈Jtemp

PR(:, j) · PR(:, j)T

10: In = In ∪ {i ∈ I ′ | ∃j ∈ Jtemp ,
PR(i, j) = 1}

11: Jn = Jn ∪ Jtemp

12: PR(:, Jtemp) = 0
13: end if
14: end for
15: end for
16: end if
17: Gn =‖i∈In G′i
18: Kn =‖j∈Jn

Kj

Algorithm 2 shows the procedure to calculate the problem
definition for a certain node n in the tree structure. P (:, j)
indicates the column vector j of matrix P . We need to make
a distinction between a leaf node or a non-leaf node.

When we have reached a leaf node, Lines 1-3, we set
Gn equal to the plant of the product system indicated by
the multilevel clustering. For this single subplant, there may
exist requirements which are only related to this subplant.
These requirements are identified in Line 3.

When we did not reach a leaf node, the multilevel
clustering (A, V ) consists of multiple subclusters. At the
current node in the tree, we need to identify the requirements
which combine the subclusters into this particular multilevel
clustering (A, V ). To this end, we search in the DSM
P nonzero elements outside each of the subclusters, but
inside cluster (A, V ). In Lines 5-7 we consider all possible
combinations of elements from two different subclusters.
When we find a nonzero element in P , we know that there



(3,1,1)
G′1

(3,1,2)
G′2

(3,1,3)
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(3,1,4)
G′5

(3,2,1)
G′6

(3,2,2)
G′7

(3,2,3)
G′8

(3,2,4)
G′10

(3,3,1)
G′4

(3,3,2)
G′9

(2,1,1)
G′1 ‖ G′2 ‖ G′3 ‖ G′5

K3 ‖ K6 ‖ K7 ‖ K8 ‖ K9 ‖
K10 ‖ K11 ‖ K12 ‖ K13

(2,1,2)
G′6 ‖ G′7 ‖ G′8 ‖ G′10

K16 ‖ K19 ‖ K20 ‖ K21 ‖ K22 ‖
K23 ‖ K24 ‖ K25 ‖ K26

(2,1,3)
G′4 ‖ G′9
K1 ‖ K14

(1,1,1)
G′3 ‖ G′4 ‖ G′8 ‖ G′9

K2 ‖ K4 ‖ K5 ‖ K15 ‖ K17 ‖ K18

Fig. 4: Tree structure: index set T together with Gn and Kn.

exists at least one requirement which relates the two different
subclusters with each other. In Line 8 we identify these
requirements by searching the DMM PR. It is possible that
one of these particular requirements also relates to other
subclusters or even relates to elements inside a particular
subcluster. Therefore, we update P and PR by removing
all the relationships resulting from the found requirements.
When we have finally found all requirements relating the
subclusters together at this node, we calculate at Lines 17
and 18 the plant model and requirement model for this node.

Example Consider the first node (1, 1, 1). In Fig. 3
we can identify three non-zero elements in P outside the
clusters {1, 2, 3, 5}, {6, 7, 8, 10} and {4, 9} and in the lower
triangular part: P (8, 3), P (4, 8) and P (9, 3). For the first
element P (8, 3), we search in PR for all j ∈ J such that
PR(8, j) 6= 0 ∧ PR(3, j) 6= 0. From Fig. 2, we can see
that only j = 5 and j = 18 satisfy this condition and are
therefore added to Jn. Repeating this for P (4, 8) and P (9, 3)
results finally in J(1,1,1) = {2, 4, 5, 15, 17, 18}.

To create In, we search again PR to find those i ∈ I ′
such that PR(i, j) 6= 0, j ∈ Jn. From Fig. 2 we can conclude
that I(1,1,1) = {3, 4, 8, 9}.

The same approach can be applied to find Gn and Kn

for each node n ∈ T . Fig. 4 shows the resulting plant and
requirement model at each node. If a node does not show
a requirement model Kn, none of the original requirements
of {Kj} is placed at this node. Therefore, no supervisory
controller is needed.

By using Algorithm 2 during the creation of the tree
structure in Algorithm 1, we can prove the following two
theorems, Theorem 2 and 3.

Theorem 2 (Plant model conservation): Consider Algo-
rithm 1, it holds that ‖i∈I′ Gi = G =‖n∈T Gn.

Proof: For each node n visited by Algorithm 1, it
follows from Algorithm 2, Line 17, that Gn =‖i∈In G′i
where In ⊆ I ′. Thus,

‖n∈T Gn =‖n∈T (‖i∈In G′i) =‖i∈(∪n∈T In) G
′
i ⊆‖i∈I′ G′i.

(1)

For a valid multilevel clustering (I ′, V ) on index set I ′ it
holds that each index is included in exactly one leaf node.
For the leaf node of element i, we know by Algorithm 2 that
Gn = G′i. Therefore, the subset equality in Equation 1 will
become a set equality, since ∪n∈T,n is leaf node In = I ′.

Theorem 3 (Requirement model conservation): Consider
Algorithm 1, it holds that ‖j∈J Kj = K =‖n∈T Kn.

Proof: For each node n visited by Algorithm 1, it
follows from Algorithm 2, Line 18, that Kn =‖j∈Jn

Kj .
So, to prove that K =‖n∈T Kn, it suffices to prove that
∪n∈TJn = J .

Requirement j is added to Jn for some n, if one of
the nonzero elements of PR(:, j) · PR(:, j)T is checked by
Algorithm 2 when Algorithm 1 is at node n. Therefore, we
know for sure that one of these nonzero elements is checked
if we check all elements of P = PR · PRT .

All diagonal elements of P are checked at the leaf nodes of
the tree structure. For all off-diagonal elements P (a, b) with
a, b ∈ I ′ it holds that we always can find two multilevel
clusters (Ax, Vx) and (Ay, Vy) such that Ax 6= Ay ∧ a ∈
Ax ∧ b ∈ Ay ∧ ∃(Ap, Vp) : (Ax, Vx), (Ay, Vy) ∈ Vp. Since
Algorithm 1 starts at the root node of the tree structure and
inductively creates the index set T until it has reached all leaf
nodes, we must have found (Ap, Vp) such that Algorithm 2
checks P (a, b). Therefore, all elements of P are checked.

D. Complete algorithm

Algorithm 3 shows the complete set of steps performed to
transform a general problem definition into a tree-structured
system with at each node a plant and a requirement model.
The following theorem states that the result of Algorithm
3 is a valid input for synthesis of a set of supervisors Ss

according to [8] and Theorem 1.
Theorem 4 (Valid MLDES tree): Consider a general com-

posed system {Gi | i ∈ I}, {Kj | j ∈ J} with G =‖i∈I
Gi, K =‖j∈J Kj and Algorithm 3, the generated output
T, {Gn | n ∈ T} and {Kn | n ∈ T} is a valid input for
synthesizing the set Ss = {Sn | n ∈ T, Sn ‖ Gn ⊆ Kn}



TABLE I: Results of supervisory control synthesis on the
simple lock model.

Synthesis architecture Subsystem Number
of states

Number of
transitions

Plant model G 82.944 1.041.408

Monolithic supervisor Smono 688 4288

MLDES supervisors Sum 227 954

S(1,1,1) 176 824

S(2,1,1) 22 59

S(2,1,2) 22 59

S(2,1,3) 7 12

according to Theorem 1, i.e., G =‖n∈T Gn, K =‖n∈T Kn

and ∀n ∈ T : Kn ⊆ Σ∗Gn
.

Proof: Theorems 2 and 3 show that G =‖n∈T Gn and
K =‖n∈T Kn, respectively. It only remains to prove that
∀n ∈ T : Kn ⊆ Σ∗Gn

.
Consider a node n, it holds that Kn ⊆ Σ∗Gn

if ΣKn
⊆

ΣGn
. In Algorithm 2, Kn is constructed at Line 18 according

to the index set Jn. One can observe at Lines 3 and 10 of
Algorithm 2 that ∀j ∈ Jn : ∀i ∈ I ′ ∧ PR(i, j) = 1 : i ∈ In.
By the definition of PR given in Line 2 of Algorithm 3 and
the fact that Gn =‖i∈In G′i, we can conclude that ΣKn ⊆
ΣGn

.

Algorithm 3 TransformToMLDES

Input: {Gi | i ∈ I}, {Kj | j ∈ J} Output: T, {Gn | n ∈
T}, {Kn | n ∈ T}

Ensure: The given problem definition is transformed to a
valid MLDES

1: Transform {Gi} to a most refined product system {G′i}
with new index set I ′.

2: Construct matrix PR such that PR(i, j) = 1 iff ΣG′
i
∩

ΣKj 6= ∅,∀i ∈ I ′, j ∈ J .
3: Calculate P = PR · PRT .
4: Cluster P , for example with algorithm presented in [14].

Denote the computed multilevel clustering as (I ′, V ).
5: Transform (I ′, V ) to the tree structure including
{Gn}, {Kn} with Algorithm 1 with initial values
TransformCmtoT (∅, (I ′, V ), 1, [1], 1, P,PR, {G′i},
{Kj}, ∅, ∅).

Example Fig. 4 shows the result after applying Algorithm
3. Supervisor Sn is synthesized for each node n ∈ T with a
monolithic supervisory control synthesis procedure. Table I
shows the number of states and the number of transitions
of the supervisors. For a comparison, also the number of
states and transitions is shown of the plant model and the
supervisory controller obtained with a monolithic synthesis
procedure. Since all nodes at level 3 have no requirement,
no supervisor is synthesized at these nodes.

As can be seen, the found set of supervisors {Sn | n ∈ T}
has a smaller automaton representation than a single mono-

PR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6 1 1 1

1
1 1

1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

Fig. 5: The domain mapping (DMM) matrix PR of the MRI
patient support table. Only the nonzero elements are shown
for readability.
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Fig. 6: DSM P for the MRI: left the unclusterd P and right
the clustered PC .

lithic supervisor Smono. Furthermore, it has been checked that
the set of supervisors is nonconflicting. Therefore, it holds
that ‖n∈T Sn = Smono.

V. INDUSTRIAL CASE

In this section, an industrial case is considered. The
industrial case is a patient support table of a Magnetic
Resonance Imaging (MRI) scanner. For this example, the
proposed method is applied such that MLDES supervisory
control synthesis can be deployed.

In [18], [19] a supervisory controller of the patient support
table of an MRI scanner is designed. The patient support
system can be divided into the horizontal axis, the vertical
axis and the user interface. The supervisory controller should
ensure safe operation of the MRI scanner. The table should
move according to the input of the user while ensuring that
the table does not move further than the end positions in
both horizontal and vertical directions, and the table should
not collide with the coil.

The total plant model consists of 32 automata. A detailed
description of these plant models can be found in [19],
Section 5.3. Please notice that the definition of hMove
should be hMove = {hMoveIn, hMoveOut} and not the
definition as presented in Section 5.3 of [19]. In total, 17
requirements are defined and modeled as automata.

First, the system of 32 plant automata is transformed
to the most refined product system consisting of only
6 plant automata: VAxis, HAxis, HVNormal, UITumble-
Switch, UIManualButton and UIManualLED.

The DMM of the MRI scanner is shown in Fig. 5.
Fig. 6 shows the unclustered and clustered DSM PC . The
clustering is generated with the algorithm presented in [14]



(4,1,1)
G′

1
K1 ‖ K2 ‖ K3

VAxis

(4,1,2)
G′

2
K4 ‖ K5 ‖ K6 ‖
K7 ‖ K8 ‖ K9

HAxis

(3,1,1)
∅

(3,1,2)
G′

3
HVNormal

(3,1,3)
G′

4
UITumbleSwith

(2,1,1)
G′

1 ‖ G′
2 ‖ G′

3 ‖ G′
4

K10 ‖ K11 ‖ K12 ‖ K13

(2,1,2)
G′

5
UIManualButton

(2,1,3)
G′

6
K17

UIManualLED

(1,1,1)
G′

2 ‖ G′
3 ‖ G′

5 ‖ G′
6

K14 ‖ K15 ‖ K16

Fig. 7: Tree structure T together with Gn and Kn of the
MRI scanner.

TABLE II: Results of supervisory control synthesis on the
MRI scanner.

Synthesis architecture Subsystem Number
of states

Number of
transitions

Plant model G 53.120 464.352

Monolithic supervisor Smono 30.880 264.456

MLDES supervisors Sum 6.487 55.642

S(1,1,1) 480 4.528

S(2,1,1) 5.940 50.892

S(2,1,3) 4 12

S(4,1,1) 15 36

S(4,1,2) 48 174

with α = 1, β = 1.2, γ = 10 and µ = 1.2. Note that different
parameter values of the clustering algorithm may lead to
different, but valid, clusterings.

The final MLDES is given in Fig. 7. The result of syn-
thesizing the set of supervisory controllers of this MLDES
is given in Table II. The size of the individual supervisors is
significantly smaller than the monolithic supervisor. Further-
more, it holds that this set of supervisors is nonconflicting
and thus ‖n∈T Sn = Smono.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, a systematic approach is presented to trans-
form a general supervisory control problem definition into
a tree-structured MLDES. The key point of this approach is
to analyze the interaction between the plant models and the
requirement models. After all, supervisory control synthesis
algorithms use both plant and requirement models from
the complete problem definition. Clustering techniques for
DSMs are suitable to find a multilevel clustering for any
given supervisory control problem.

Both the explanatory example and the industrial case
show a reduction in the number of states and transitions
of the synthesized set of supervisors Ss when compared
to a monolithic supervisor Smono. The expectation is that,

with the proposed method, the number of states and the
number of transitions of every supervisor are smaller than
those of the monolithic supervisor though there is as of yet
no guarantee for this expectation. It is interesting to analyze
the relationship between the parameters of the optimization
function of the clustering algorithms and the sizes of the
synthesized supervisors with respect to the sum of the
number of states and the number of transitions.
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