Supervisory Control Synthesis for a Waterway Lock

F.F.H. Reijnen, M.A. Goorden, J.M. van de Mortel-Fronczak and J.E. Rooda

Abstract— Formal methods help in coping with the growing
functionality and complexity, time-to-market and costs in cyber-
physical systems (CPSs). Supervisory control synthesis (SCS)
is such a method. It can be used to synthesize a controller
for a CPS from the uncontrolled system model (plant) and
the specification model (requirements). While SCS is an active
research topic, reports on industrial applications are rare. In
this paper, we show the applicability of SCS to the design
of controllers for waterway locks. The following steps in the
development process are discussed: modeling the plant and
the requirements, synthesizing the supervisor, validating the
supervisor, generating a real-time controller and implementing
this controller on a PLC. Following this way of working,
a supervisory controller for a real waterway lock has been
successfully developed and analyzed. The real-time controller
is implemented in an experimental set-up. The state-space size
of the uncontrolled plant is 6.0 x 103 and the number of state-
based requirements involved in the specification is 234. The
synthesized controller is automatically translated into 1.2 x 10*
lines of structured text, executable by a PLC. This case study
delivers a proof of concept for the applicability of the procedure
for supervisor synthesis and automatic PLC code generation to
industrial-size systems.

I. INTRODUCTION

Cyber-physical systems (CPSs) have become increasingly
complex due to the high demands from the market in terms
of functionality, quality and safety. As a result, controllers
for these systems are getting more complex as well. At the
same time, it is desired to decrease time-to-market and costs.
Model-based development methods can help in overcoming
these difficulties, as shown in [1] and [2]. The use of formal
models has a vast advantage over the traditional engineering
process, see e.g., [3][4]. Models can help in verifying and
validating the controller design early in the process, resulting
in a reduction of design errors found during the later testing
and integration phase, where errors are more costly and time-
consuming to repair.

This paper shows how formal methods can aid in the
development of supervisory controllers. A supervisory con-
troller is responsible for coordinating the activities in CPSs
based on discrete observations of the system’s state. These
observations come from sensors measuring the state of
the mechanical components in the system. Based on the
observations, the supervisor decides which actions can safely
be executed, and which actions have to be restricted. Actions
typically involve the actuation of a mechanical component.
Often, resource controllers are placed between the super-
visor and the actuators and sensors for low-level control.
This control structure is schematically depicted in Figure 1.
Designing a supervisory controller is challenging, due to the
large number of states the system can be in, leading to a
high complexity in CPSs.

(Operator)

(Supervisory controller(s))

(Resource controller(s))

((Actuators) (Sensors))

(Mechanical components)

Fig. 1. Control structure in a cyber-physical system.

Supervisory control synthesis (SCS) [5] is a method for
the design of supervisors. Formal models of the uncontrolled
system (plant), and the specification (requirements) are used
to synthesize a model of the supervisor. The supervisor
is guaranteed to behave according to the specification, is
non-blocking, controllable and maximally permissive. The
synthesis procedure eliminates the manual design process of
creating a supervisory controller that satisfies the require-
ments. Hence, the focus shifts from developing and debug-
ging the implementation code to designing and debugging the
requirements, which is often more intuitive. The supervisor
model can be analyzed by verification tools and be validated
by means of simulation. This increases the confidence in its
correctness before implementation. Moreover, the supervisor
model can be used for automatic generation of the imple-
mentation code.

Although SCS has widely been accepted within academia,
reports on industrial applications are scarce. Previous suc-
cessful attempts include control of a patient support table for
an MRI scanner [6], a theme park vehicle [7] and a mobile
robot [8]. Causes for the low number of industrial applica-
tions can be due to the large state-spaces often encountered
in there. A second cause is the lack of commercially available
tooling for SCS.

In this paper, a waterway lock has been investigated as
an industrial application for SCS. It is shown that SCS is
applicable to the design of supervisory controllers for lock
systems. In contrast to the before mentioned applications,
the uncontrolled state-space size of the lock is much larger
(6.0 x 1032 compared to 5.2 x 10* for the theme park
vehicle) and more requirements (234 compared to 34) are
involved. Moreover, PLC code is automatically generated
from the synthesized model of the supervisor and tested in

an experimental set-up.

This paper is structured as follows. The waterway lock
analyzed in this case-study is described in Section II. The
formal plant and requirement models developed for the lock
are discussed in Section III. The synthesis of the supervisor is
discussed in Sections IV. Section V describes the validation
and simulation of the synthesized supervisor. The automatic
generation and implementation of the supervisor in a real-
time experimental set-up is presented in Section VI. Finally,
Section VII concludes the paper and discusses further re-
search.

II. SYSTEM DESCRIPTION

A waterway lock is used in canals and rivers to facilitate
raising and lowering of vessels between stretches of water
of different levels. To this end, a chamber is used, that is
separated from the rest of the canal by gates at the upper
and lower end. In the chamber, the water level can be varied.
An example of a lock with three chambers can be seen in
Figure 2.

Fig. 2.

Lock system in Maasbracht, the Netherlands.

For this case study, Lock III in Tilburg, the Netherlands
has been considered. Lock III consists of only one chamber.
A schematic representation of Lock III is shown in Figure 3.
Various subsystems can be distinguished in Lock III: gates,
paddles, culverts, two-lamp traffic lights and three-lamp
traffic lights. Most other locks consist of similar subsystems.
The gates are watertight doors which seal off the chamber
from the outside water. Each gate can be opened or closed
by a hydraulic actuating system. At the downstream side of
the lock, paddles are built into the gates for emptying the
chamber. At the upstream side of the lock, culverts can be
opened to fill the chamber.

Traffic at both sides of the lock is regulated by traffic
lights. At each entrance two traffic lights are positioned to
regulate incoming vessels. Additionally, at each exit two
traffic lights are used to regulate outgoing vessels. The
outgoing traffic lights can display a red or a green aspect,
signaling vessels to wait or to leave the lock, respectively.
The incoming traffic lights can display a red, a red-green, a
green or a red-red aspect. A red or a green aspect signals
vessels to wait or to enter the lock, respectively. A red-green

Bottom gate Top gate

Culvert

Bottom gate

Top gate

Downstream Upstream
-— - 5
Fig. 3. A schematic representation of the top view (top) and side view

(bottom) of Lock III.

aspect indicates that the vessels can soon enter the lock, and
a red-red aspect indicates that the lock is out-of-service.

Lock III is controlled from a remote control center, where
operators monitor the lock via camera images. An operator
controls the locks through a graphical user interface (GUI)
implemented on a SCADA system. The GUI contains buttons
to operate gates, paddles, culverts and traffic lights. For these
components, commands to open, close and stop or to change
a sign aspect, as well as an emergency stop are available.
In total 25 different commands are available. Furthermore,
graphically represented feedback from sensor signals is given
via the GUI to the operator, e.g., the positions of the gates
and valves, the sign aspects and the water heights.

III. MODEL DEVELOPMENT

In order to synthesize a supervisory controller for Lock
III, the uncontrolled system and the control specifications
are modeled. The behavior of the uncontrolled system is
modeled using automata, as is common in the context
of SCS. An automaton consists of states and transitions
between them, which are labeled by events. Events can
be either controllable or uncontrollable. Controllable events
represent actions that can be influenced by the supervisor,
e.g., enabling or disabling an actuator. Uncontrollable events
cannot be restricted, e.g., a sensor switching on or off.
Graphically, states are denoted by (labeled) circles, where
an unconnected incoming arrow indicates the initial state,
and filled circles indicate the marked state. A marked state
denotes a safe state in the system. Transitions, labeled by
controllable and uncontrollable events are depicted by solid
and dashed arrows, respectively.

In this context, models of the control specification are
either represented by automata or by state-based expressions.
Here, the textual specifications of Lock III are intuitively

translated into state-based expressions, corresponding to the
syntax proposed in [9] and [10]. These state-based expres-
sions come in two forms, £ needs Y and Y disables .
The first means: event (set) x is restricted in all states, except
for state(s) Y. The second means: event (set) x is restricted
in all state(s) Y. These expressions are complementary in the
sense that z needs Y & —Y disables z. Depending on
the size of Y and —Y’, one of the two can be more convenient
to use. Here, Y is in the form of a logical expression over
multiple states, where —, V and A are used for ‘not’, ‘or’
and ‘and’, respectively.

A. Plant model

In this subsection, the model of the uncontrolled behavior
of Lock III is presented in detail'. The system model is
decomposed into subsystems, which are further decomposed
into components. Typically, components are either actuators
or sensors. The behavior of the lock system is obtained by the
parallel composition (synchronous product) of all subsystem
components. This decomposition allows for small models
at component level. The model decomposition for Lock III,
excluding the GUI buttons is depicted in Figure 4. An arrow
indicates the relation between the system and a subsystem,
and between a subsystem and its components.

Direction | Pressure P
actuator | Actuator ctuator
aifuzetir Sensor Sensor Sensor (3)
A A
Equal Incoming
CEITE () water (2) ||traffic light (4)
L} A LY
Lock III
¥ ¥ ¥
Outgoing
traffic light (4) Culvert (2) Paddle (2)
¥ ¥ 17
Sensor (2) Sensor Sensor (3)
Actuator Actuator Actuator

Fig. 4. A schematic decomposition of the plant, excluding the GUI. A
number indicates the number of subsystems or components present.

The plant consists of the following subsystems: 4 outgoing
traffic lights, 4 incoming traffic lights, 2 gate paddles, 2
culverts, 4 gates, 2 equal-water sensors and 25 GUI buttons.
The subsystems have a unique name, depending on their
position in the lock, ‘D’ or ‘U’ for downstream or upstream
side, respectively, and ‘N’ or ‘S’ for north or south side,
respectively. E.g., gate DN refers to the north gate at the
downstream side of the lock (see Figure 3). Subsystems
are further decomposed into actuators ‘.A’ and sensors ‘.S’.
Below, the defined subsystems are explained in more detail.

1) Outgoing traffic light: The outgoing traffic light model
is decomposed into an actuator and two sensors. The actuator
is modeled as two states, red and green, which are the

The code is available at: github.com/ffhreijnen/LockCCTA

two defined aspects the traffic light can show. Initially, the
red aspect is shown, as this is a safe state. The automaton
depicted in Figure 5 contains this behavior.

c_green

T c.red

Fig. 5. Model of the outgoing traffic light actuator.

Two sensors provide feedback on the state of the lamps,
e.g., the lamp is enabled or the lamp is disabled. Such a
sensor is modeled with two states, on and of £. The initial
state for the red and green lamp sensors are on and off,
respectively. The models for these sensors are depicted in
Figure 6 by the left and right automaton, respectively.

off _ _ T _ _ on off _ _ T _ _ on
. 0 oIl e
T u_off uoff T

Fig. 6. Model of the outgoing traffic light green lamp sensor (left) and
red lamp sensor (right).

2) Incoming traffic light: The incoming traffic light model
is decomposed into an actuator and three sensors. The
actuator can switch between the red, green, red-green and
red-red aspects. Three requirements are already included in
the model: the green, red-green and red-red states can only
be reached from the red-green, red and red state, respectively.
Figure 7 depicts the automaton that captures this behavior.

c.red c.redgreen

redred red redgreen green
c_green
./\ > o ?
T c_red ~

c_redred c-red

Fig. 7. Model of the incoming traffic light actuator.

The sensor model for the top red lamp is the same as
the right automaton depicted in Figure 6, whereas the green
and bottom red light sensors are equal to the left automaton
depicted in Figure 6.

3) Gate paddle: The gate paddle model consists of an
actuator that actuates a valve, controlling three cylinders
connected to panels in the gate, and two end-position sensors
per cylinder. The actuator can extend and retract the cylinders
in order to close and open the panels, respectively. When
not actuated, the cylinders are in a rest position, which is
the initial position. This behavior is captured by the top
automaton depicted in Figure 8.

Each cylinder is equipped with two sensors, measuring
the fully retracted and fully extended positions. A state
where both sensors are enabled simultaneously, does not
exist physically, and is therefore not included in the model.

Ope%ingc./swr)\fest‘/cs_t%gng

c-open T c_close

u_closed.off u_open_off

closed _————_ between _ ———~ _
<

- A4 7
?:____,,/O____,

u-closed-on

open

Fig. 8. Model of the paddle actuator (top) and sensor (bottom).

Initially, the paddles are closed. The bottom automaton in
Figure 8 contains the sensor behavior.

4) Culvert: The culvert model consists of an actuator and
a sensor. The actuator can be instructed to open or close
the culvert (no rest position). Initially, the culvert is closed.
Water flow through the culvert is measured with a flow
sensor, where initially no flow is measured. This behavior
is represented by the left and right automaton in Figure 9
for the actuator and sensor, respectively.

closed c-open open noflow _ _':90_ . flow
e >0 @ 0
T c_close u-off
Fig. 9. Model of the culvert actuator (left) and sensor (right).

5) Gate: Controlling a gate is more involved. A gate
can open (or close) by retracting (or extending) a hydraulic
cylinder. When not actuated the cylinder is in a rest position.
The automaton in Figure 10 represents the valve that controls
this cylinder.

c_stop c_stop

c-open T c_.close

Fig. 10. Model of the gate direction actuator.

The pressure and movement speed in this cylinder are con-
trolled to influence the movement of the gate. The pressure in
the cylinder can be set to high or low for movement, and to
off if the gate is in rest. The automaton in Figure 11 depicts
this behavior.

high c-high_off Low

o0 0

c_high_on c_low_on

off c-lowoff

Fig. 11. Model of the gate pressure actuator.

Movement speed of the gate can be fast or slow. Fast
is used for the initial movement and slow for the last few

degrees of movement, preventing the gate from hitting the
wall at full speed. The speed values are different when
opening or closing, due to differences in water resistance. In
total four speeds settings are available and a rest position. It
is not possible to choose more than one setting. This behavior
is represented by the automaton in Figure 12.

fast_c slow.c
c_fcoff c_sc.off
c-fc_on c_sc-on
—> off
c-fo_on C_so-on
c_fo_off c_so_off
fast_o slow_-o
Fig. 12. Model of the gate speed actuator.

Additionally, six position sensors measure the extension
of the cylinder. This is to differentiate between the two
end positions, the acceleration points and the break points.
The automaton given in Figure 13 shows all possible sensor
positions. Positions ‘bclosed’ and ‘bopen’ indicate the points
where the speed should change from fast to slow. Similarly,
positions ‘fclosed’ and ‘fopen’ indicate where the pressure
should be decreased. Fast speed and high pressure should be
chosen when the gate starts opening or closing.

U’S2’OE _ fclosed

O,

u-sl_on

closed _—__ _ bclosed _°Z
- -3y ~ -

OO

- N

—_——— e
u_sl off u_s2_off \\ \\UZ
Ne
N @
u-s3-0ff N\ \\
~ Y
mlddl/e;p
Ve /
u-s4_on 7/ 3
7 %
u_s6._on u_s5_on / 72
—_——— = ———— = _7 9
O I ec =0
open —-——— e
P us6.off POPER yg5off fOPED
Fig. 13. Model of the cylinder extension sensors.

6) Equal-water sensor: Two analog water-height sensors
measure the difference in water height over a gate. These
two sensors are modeled together as one equal-water sensor.
That is, the equal-water sensor is on if the water height
measurements are equal, within a certain error margin. This
behavior is modeled as an on-off sensor.

7) Graphical user interface: The graphical user interface
consists of

o 20 buttons to operate the lock in normal conditions,

o 4 buttons to stop the movement of the gates, paddles or
culverts, and

e an emergency button that immediately stops all move-
ments.

Every button is modeled as an automaton with two states,
the state where the button is pushed and the state where the
button is released. Initially, all buttons are released. Figure
14 shows the two-state automaton.

_push
released/ffu_ - pushed

&0

u.release

-~

Fig. 14. Model of the GUI button.

B. Requirement models

There are several requirements imposed on the lock to
guarantee its safe and correct behavior. The list of safety
requirements for the lock system is given below. The state-
based expression for the actuators at the upstream side of
the lock are given below each requirement. The naming
convention of the states in the requirements is as follows:
<subsystem>.<component>.<location>, referring to a lo-
cation in a plant model.

1) A paddle or a culvert is not allowed to open, see Figure

15, if:
a) a paddle/culvert at the opposite side is not closed
b) a gate at the opposite side is not closed

—pad-DN.Sl.closed
—pad.DN.S3.closed

V —pad.DN.S2.closed
\%
—pad.DS.Sl.closed V
\%
\%
\%

pad-DN.A.opening
—pad.DS.S2.closed

—pad-DS.S3.closed pad-DS.A.opening

< < < <KL

—gateDN.S.closed gate DN.A.opening

—gateDS.S.closed gate.DS.A.opening

disables {culvert_UN.c.open, culvert.US.c.open}

Fig. 15. Model of requirement 1: opening the upstream culverts.

2) A gate is not allowed to open, see Figure 16, if:
a) there is no equal water over the gate
b) a paddle/culvert at the opposite side is not closed
c) a gate at the opposite side is not closed

equal U.S.off
—pad.DN.Sl.closed
—pad-DN.S3.closed
—pad-DS.Sl.closed
—pad-DS.S3.closed

—pad.DN.S2.closed V
padDN.A.opening V
—pad-DS.S2.closed V
pad.DS.A.opening V

\Y

< < K< K< <K< KL

—gate_DN.S.closed
—gate.DS.S.closed V

gate DN.A.opening
gate DS.A.opening
disables {gate_UN.c.open, gate.US.c_open}

Fig. 16. Model of requirement 2: opening the upstream gates.

3) A gate is not allowed to close, see Figure 17, if:
a) an incoming traffic light does not display the red
or red-red aspect
b) an outgoing traffic light does not display the red
aspect

—(in.UN.S.red V 1in.UN.S.redred) V
—(in.UN.A.red V 1in.UN.A.redred) V
—(inUS.S.red V in.US.S.redred) V
—(in.US.A.red V in.US.S.redred) V

—out UN.S.red V —out_UN.A.red Vv
—outUS.S.red V -out.US.A.red

disables {gate.UN.c.close, gate.US.c_close}

Fig. 17. Model of requirement 3: closing the upstream gates.

4) An incoming traffic light is not allowed to display the
green aspect, see Figure 18, if:

a) an outgoing traffic light displays the green aspect

b) the gates at the same side are not completely open

out_.UN.S.green V out.UN.A.green \Y
out_.US.S.green V out.US.A.green V
—gate.UN.S.open V gate.UN.A.closing V

—gate_.US.S.open V gate.US.A.closing

disables {in_UN.c_green, in_US.c_green}

Fig. 18. Model of requirement 4: enabling the green aspect for the upstream
incoming traffic lights.

5) An outgoing traffic light is not allowed to display the
green aspect, see Figure 19, if:

a) an incoming traffic light displays the green aspect

b) the gates at the same side are not completely open

in.UN.S.green V 1in.UN.A.green \Y
inUS.S.green V in.US.A.green \Y
—gate.UN.S.open V gate.UN.A.closing V

—gate_.US.S.open V gate US.A.closing

disables {out_UN.c_green, out.US.c.green}

Fig. 19. Model of requirement 5: enabling the green aspect for the upstream
outgoing traffic lights.

Aside from the safety requirements, there are additional
requirements that add functionality to the GUI buttons and
requirements for enabling and disabling certain actuators in
te gates.

The function of the GUI buttons is to enable an actuator
when the corresponding button is pushed. These require-
ments can again be modeled using state-based expressions,
like: ‘X .act.c_on needs button.pushed’, where X is
the relevant subsystem. The following actions are restricted
via the GUI buttons: switching traffic light aspects and
opening and closing of the gates, culverts and paddles.

Another type of requirement is stopping an actuator
when its end position is reached, or when the stop com-
mand is given. These requirements are modeled similar
to the GUI requirements, e.g., ‘X.act.c_stop needs
X.sen.closed V stop.pushed’, where X is the as-
sociated subsystem.

Finally, when opening or closing a gate, the corresponding
pressure and speed valves need to be controlled (direc-
tion valve is controlled via GUI). Table I shows when

to activate or deactivate the pressure and speed actua-
tors during closing of the gate, depending on the sen-
sor state (Figure 13). These requirements can be mod-
eled straightforward from the table. For instance, the ac-
tivation of the slow._c speed actuator can be modeled
by: ‘X.actSpe.c_sc_on needs X.sen.bclosed A
X.actDir.closing’, where X is a gate subsystem.

TABLE I
REQUIREMENTS FOR CORRECT BEHAVIOR OF THE GATE WHILE
CLOSING.
Pressure Speed
Sensor | high low | fast.o slow_o fast.c slow_c
open 1 0 0 0 1 0
bopen 1 0 0 0 1 0
fopen 1 0 0 0 1 0
middle | 1 0 0 0 1 0
fclosed | 0 1 0 0 1 0
bclosed | 0 1 0 0 0 1
closed 0 0 0 0 0 0

IV. SYNTHESIS OF THE CONTROLLER

A supervisory controller has been synthesized from the
plant and requirement models, specified in Section III. The
models are implemented in the CIF toolset [11], which
supports automata and state-based expression models. The
synthesis algorithm implemented in CIF is based on the algo-
rithm proposed in [12]. This algorithm uses binary decision
diagrams (BDDs) to efficiently store and do computations
even for large state-space models. The computations are
done on a network of automata and state-based expressions,
without unfolding the complete state-space. Hence, this al-
gorithm allows for the synthesis of supervisory controllers
for industrial-size problems.

The uncontrolled state-space size of the plant, is 6.0x 1032
In the control specification, 234 state-based requirements are
involved. Synthesizing the supervisor takes a few seconds
on an i7, 2.60GHz, 8GB laptop. The resulting network of
automata represents a supervisor containing 6.0 x 1024 states,
which is a reduction of a factor 108.

The synthesized supervisor coordinates the system such
that it is guaranteed to satisfy the following properties.

o Safety: the system cannot reach states that are forbidden

by the requirements.

o Controllability: the supervisor only restricts controllable

events, if needed.

o Non-blockingness: the supervisor does not prevent the

system from reaching a marked state.

o Maximal permissiveness: the supervisor imposes the

minimal restriction on the plant to satisfy safety, con-
trollability and non-blockingness.

V. SIMULATION OF THE CONTROLLED SYSTEM

Although the system is guaranteed to behave according to
the requirements, the resulting closed-loop behavior might
not be as expected. For example, requirements could be too
strict and as a results, the supervisor could prevent a part of
the desired behavior. Another cause for unexpected behavior

can be due to inadequate modeling. Hence, the resulting
supervisor has to be validated. Simulation is used to validate
whether the model of the controlled system is consistent with
the intended behavior.

The CIF simulator supports real-time, interactive simula-
tion and animation, by combining the controlled system with
an image in the Scalable Vector Graphics (SVG) format, as
shown in Figure 20. The state of the lock is visualized on the
left hand side. On the right hand side, an interactive control
panel is placed, which is used to simulate commands given
by the lock operator via the GUL

| open close
paddie paddie

Open[[Gate Closed Open Gate Closed

Downstream Upstream

enter

Fig. 20. SVG image for simulation-based visualization.

A hybrid uncontrolled system model (hybrid plant) is
created for the simulation. The hybrid plant is obtained
by extending the discrete-event plant model with additional
continuous behavior, e.g., a model of the behavior of the
water inside the lock and timing information for cylinder
movements. This allows for animation in the simulation.

Normal operations as well as illegal operation of the lock
are simulated. All desired behavior, i.e., facilitating raising
and lowering vessels between the different water levels, is
present. The illegal operation, i.e. giving unsafe operating
commands, did not influence the system’s state. This is as
expected, as these illegal operations are all restricted by the
safety requirements.

VI. IMPLEMENTATION OF THE CONTROLLER

Supervisory controllers in industry are often implemented
on a programmable logic controller (PLC), as is the case
for the lock system. A downside of PLCs is that they
only support sequential programming languages and do not
allow event synchronization. This makes it impossible to
directly implement the synthesized supervisor as a network
of automata. In order to implement the supervisor, all syn-
chronizations have to be removed.

A straightforward solution is to unfold the whole con-
trolled state space, containing all behavior of the system in
a single automaton without synchronization. However, most
often the state space becomes too large to compute, here
6.0 x 10%%. In [13], an algorithm is described that removes
synchronization while avoiding a state-space explosion. The
elimination of synchronization is accomplished by normal-
izing states and events and removing synchronous behavior.
Nevertheless, the behavior of the original and the adapted su-
pervisor is the same. The final result does not contain events

that synchronize different automata, making implementation
in a sequential programming language possible.

In CIF, a code generation algorithm [14] is implemented
to generate structured text (ST) PLC code that adheres to the
IEC 61131-3 industrial standard. For the supervisor of Lock
III this generation results in 1.2 x 10* lines of ST.

While Lock I is still under construction, testing the
generated PLC code on the hardware is not yet possible.
Therefore, an experimental set-up has been used to check
for the correct implementation of the supervisor, see Figure
21. This set-up is a simplified model of Lock III, but it still
includes all essential functions described in Section II. Thus,
the subsystems modeled in Section III are all present in the
set-up. The main differences between the set-up and Lock
III are:

o The gate subsystem consists of a single direction actu-
ator and two end-position sensors.

o There are no traffic light feedback sensors.

e There is no differentiation between north and south
subsystems.

These differences are only of minor importance. Therefore,
the set-up is representative for the lock III behavior.

Fig. 21. Experimental set-up, simplified version of Lock III.

The set-up consists of a display where the lock is visual-
ized, and a control interface with 14 buttons. The actuators,
sensors and buttons are connected to 44 1/0O contacts. The I/O
contacts are connected to a TwinCAT softPLC from Beck-
hoff. A laptop is connected to the softPLC to run ST code.
The ST code for the set-up is generated from the supervisor
synthesized from a subset of plant and requirement models
defined in Section III. The result contains 4,900 lines of
code. Implementation of the generated code on the PLC is
straightforward, as it can be uploaded without alterations.
The only manual process is assigning the events to the
corresponding I/O contacts.

While testing the behavior of the closed-loop system, no
anomalies were observed. The behavior matches the exact
behavior as in the simulation. This is in line with the claim
that errors are found earlier in the design process and a lot
less during the testing and integration phase.

VII. CONCLUDING REMARKS

The results achieved in this case study deliver a proof of
concept for the applicability of the procedure for supervisor

synthesis and automatic PLC code generation for industrial-
size systems. It has been shown that the current tooling can
deal with the large state space of this industrial-size system,
both when synthesizing and generating PLC code.

Future work will focus on investigating if SCS can be
incorporated in the existing design process for locks. To this
end, implementation and testing of the generated PLC code
on the lock system hardware has to be considered.

ACKNOWLEDGMENTS

We would like to thank Rijkswaterstaat, part of the Dutch
Ministry of Infrastructure and the Environment, which has
provided funding for this research. In particular we would
like to thank Han Vogel, Maria Angenent, Robert de Roos
and John van Dinther for their enthusiastic involvement in
this project. We thank Hubert Hoen from Zuyd Hogeschool
in Heerlen, the Netherlands, for providing the experimental
set-up.

REFERENCES

[1] J. Fitzgerald, P. G. Larsen, and J. Woodcock, “Foundations for model-
based engineering of systems of systems,” in Complex Systems Design
& Management. Springer, 2014, pp. 1-19.

[2] J. C. M. Baeten, J. M. van de Mortel-Fronczak, and J. E. Rooda,
“Integration of supervisory control synthesis in model-based systems
engineering,” in Complex Systems. Springer, 2016, pp. 39-58.

[3] A. P. van der Meer, R. Kherrazi, and M. Hamilton, “Using formal
specifications to support model based testing ASDSpec: a tool com-
bining the best of two techniques,” arXiv preprint arXiv:1403.7257,
2014.

[4] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM computing surveys (CSUR),
vol. 41, no. 4, p. 19, 2009.

[5] P.J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206-230, 1987.

[6] R. J. M. Theunissen, M. Petreczky, R. R. H. Schiffelers, D. A. van
Beek, and J. E. Rooda, “Application of supervisory control synthesis
to a patient support table of a magnetic resonance imaging scanner,”
IEEE Transactions on Automation Science and Engineering, vol. 11,
no. 1, pp. 20-32, 2014.

[71 S. T. J. Forschelen, J. M. van de Mortel-Fronczak, R. Su, and J. E.
Rooda, “Application of supervisory control theory to theme park
vehicles,” Discrete Event Dynamic Systems, vol. 22, no. 4, pp. 511-
540, 2012.

[8] C.R. C. Torrico, A. B. Leal, and A. T. Y. Watanabe, “Modeling and
supervisory control of mobile robots: A case of a sumo robot,” IFAC-
PapersOnLine, vol. 49, no. 32, pp. 240-245, 2016.

[9]1 C. Ma and W. M. Wonham, “Nonblocking supervisory control of state
tree structures,” IEEE Transactions on Automatic Control, vol. 51,
no. 5, pp. 782-793, 2006.

[10] J. Markovski, D. A. van Beek, R. J. M. Theunissen, K. G. M. Jacobs,
and J. E. Rooda, “A state-based framework for supervisory control
synthesis and verification,” in Conference on Decision and Control.
IEEE, 2010, pp. 3481-3486.

[11] D. A. Van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp,
J. Markovski, J. M. Van De Mortel-Fronczak, and M. A. Reniers,
“CIF 3: Model-based engineering of supervisory controllers,” in In-
ternational Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2014, pp. 575-580.

[12] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory
synthesis of large systems,” Control Engineering Practice, vol. 14,
no. 10, pp. 1157-1167, 2006.

[13] L. Swartjes, D. A. van Beek, and M. A. Reniers, “Towards the removal
of synchronous behavior of events in automata,” IFAC Proceedings
Volumes, vol. 47, no. 2, pp. 188—194, 2014.

[14] CIF. (2017) PLC code generation.
http://cif.se.wtb.tue.nl/tools/cif2plc/index.html.

[Online]. Available:

