
CHALLENGES IN PERFORMANCE SIMULATION OF ICT SOLUTION STACKS

Martijn Goorden, Joanna v.d. Mortel-Fronczak and Michel Reniers
Department of Mechanical Engineering

Eindhoven University of Technology
De Groene Loper

Eindhoven
email: m.a.goorden@tue.nl

Matti Kinder and Willem van Veggel
Department of Information Technology

ASML
De Run 6501

5504 DR, Veldhoven

KEYWORDS
Computer systems, Computer networks, Performance
analysis, Discrete simulation, Queueing

ABSTRACT

Companies find themselves in a constant balancing act
to provide highly available and well performing informa-
tion technology services, while implementing and end-
less flow of potentially disrupting changes in business
requirements. The impact of changes on existing in-
formation and communication technology (ICT) solu-
tion stacks is poorly understood upfront. We propose a
method to create simulation models to analyze the end-
to-end performance of ICT solution stacks. Queueing
models of different components are implemented in the
simulation language χ and combined to form a network
representing the ICT solution stack. Challenges related
to the simulation of these models are discussed.

INTRODUCTION

ICT is becoming an integrated part of most business
models. ICT capabilities increasingly drive revenue, en-
able business critical operations and satisfy marketplace
initiatives. With this ICT dependence comes the risk of
a company being heavily impacted by failures within its
ICT infrastructure. Staying competitive requires flexi-
bility to scale, replace, upgrade and integrate new solu-
tions as they are being brought to the market.
In this paper, we define an ICT solution stack as a set of
software, middleware and hardware subsystems or com-
ponents needed to complete a particular task or appli-
cation. ICT solution stacks are becoming increasingly
complex by stacking and virtualizing hardware and soft-
ware components from various suppliers, using different
means of global delivery to different types of local de-
vices.
Expert knowledge turns out to be insufficient to find
the right balance due to the complexity of current ICT
solution stacks. Questions that ICT architects face are,
for example:

1. Given an ICT solution stack design, what is the
performance bottleneck? How can the bottleneck

be solved?

2. How many web / corporate / database servers are
needed to meet user requirements?

3. Which hardware is needed (e.g. number of CPUs,
RAM size, clock speed, server settings)?

To answer these questions, ICT architects would benefit
from a simulation model. This model should represent
a single, but complete ICT solution stack, such that re-
lationships between individual parameter settings and
the end-to-end performance can be simulated. Further-
more, the simulation model should be modular, such
that changes in the components can be incorporated
easily in the model. The simulation model should run
offline in the sense that no information is required of the
actual system during the simulation.
Several research projects are going on in the field of soft-
ware engineering with the focus on performance model-
ing of a complete solution stack or architecture or with
the focus of individual components within the ICT so-
lution stack. See (Goorden 2015, Goorden et al. 2016)
for a literature review.
None of the found studies describe models or model-
ing methods which can be directly used for our prob-
lem. A rich literature exists with models of individual
components, but there is a lack of integration between
these components into a single ICT solution stack. Fur-
thermore, currently available architecture-focused mod-
els are developed with the perspective of software engi-
neering, while we are interested in the performance of
given software together with middleware and hardware
components.
The main objective is to come up with repeatable, easy
to maintain and cost effective means to accurately simu-
late end-to-end performance and reliability of ICT solu-
tions, from data center floor to user device, while (part
of) the ICT solution has not yet been physically built.
The goal of this paper is to explain the simulation im-
plementation of the model developed in (Goorden 2015)
used as a proof of concept.
The contribution of this paper is to show how models of
ICT solution stacks can be implemented in a simulation
model and to point out challenges for further research
and tooling development.

Site 1

Teamcenter PRD

 Confidential

NLB

Client

Tier

Enterprise

Tier

Web

Tier

Resource

Tier

eVPN

D000130530: Version: 2015-04-10
VDH: All CI names in blue are in tenant 10 P (vlan 1281)

VDH: All CI names in green are outside tenant 10 P

Figure 1: A simplified functional design of an ICT solu-
tion stack.

SYSTEM DESCRIPTION

An ICT solution stack is a set of software and hardware
subsystems or components needed to complete a partic-
ular task or application. Examples of such components
are web servers, operating systems, databases, network
cables, firewalls and switches. Normally, the different
components of a solution stack are developed by differ-
ent architects independently. The architecture design of
an enterprise application can be split into three subde-
signs: the functional design, logical design and physical
design. In this paper, only the functional design is con-
sidered.
An example of a simplified functional design is shown
in Figure 1. In a functional design, components are
connected to each other by means of their functional
need. The functional design is drawn with multiple tiers
or layers, resulting in a n-tier design. In a tier, software
and hardware are grouped by function. For example,
the first tier is the client or user tier where either a thin
or rich client is running. The last tier is the resource
tier where the actual data is stored. Between those two
tiers, zero or more tiers can be added to provide more
functionality and/or flexibility.
The ICT solution stack as shown in Figure 1 is used
as a working example in this paper. Clients can send
requests to the web servers. A network load balancer
is used to direct the requests to the web server with
the lowest load. The request is then further redirected
to one of the corporate servers at the enterprise tier.
On these servers, the actual application runs. Finally,
(meta)data is stored at one or more database servers.
The 4-tier functional architecture is modeled as a net-
work of queueing models representing the individual
components of the functional architecture. These queue-
ing models are taken from the literature when possi-
ble. A detailed description of these models can be found
in (Goorden 2015).

Overview 𝜒 simulation model

Data Collector

Clients Web servers Corporate servers Database servers

⋮ ⋮ ⋮ ⋮

Figure 2: Overview of the used simulation model as im-
plemented in χ.

SIMULATION MODEL

In this section, the theoretical models are implemented
in the simulation language χ (van Beek et al. 2006).
Below motivation is given for this choice.
The hybrid simulation language χ is developed at Eind-
hoven University of Technology. This simulation lan-
guage allows the user to implement high-level behavior
of the individual components, while the simulation lan-
guage itself takes care of the continuous and discrete-
event bookkeeping behind the scenes. Furthermore, χ
allows the user to program processes from scratch rather
than using standardized blocks as in, for example, Math-
Works’ SimEvents, see (Gray 2007). Therefore, the
modeler can simulate more complex flows and processes
beyond standard queues and server models.
The simulation language χ allows the modeler to build
the simulation model in a modular way. This is a big
advantage for our problem. First, we can build the sim-
ulation model step by step and debug each module sep-
arately before integration. Secondly, in this way, we can
replace different models easily. First, process definitions
are programmed for each individual process. A process
may contain several other processes (encapsulation). In
the model definition, the processes are invoked and con-
nected with each other by communication channels. Fi-
nally, due to the stochastic nature of queueing models,
experiments can be defined which run a model multiple
times.
For a more thorough introduction and χ tutorial, one
is referred to the website of the language (Eindhoven
University of Technology 2015). The software is free to
use and licensed under the MIT open source license. χ
is implemented as a plug-in to Eclipse.

Implementation of the high-level structure

Figure 2 shows the overview of the implemented model
in χ. The four tiers can be clearly seen in this schematic
view. Each circle in this picture represents an instantia-
tion of a process definition, which may embed other pro-
cess definitions. So at the client tier, one or more client
processes, which can be different, may be instantiation.
The same situation applies to the web tier, corporate tier
and database tier. One additional process, the data col-
lector, collects data from the simulation and processes

Input from client

Output to client

Input from

corporate server

Output to

corporate server

TCP

connection

HTTP

processing

I/O

processing

Buffer

controller

Figure 3: Overview of the simulation model for the de-
tailed web server as implemented in χ.

it to analyze the simulated process. In Figure 2, due to
readability, only arrows are drawn from the clients to
the data collector. The data collector can also collect
data from all other processes.

As can be seen in the schematic view of the simulation
model, it is rather easy to remove or add tiers. Fur-
thermore, if one wants to include the communication
network between components explicitly, processes de-
scribing these communication networks can be inserted
into this model in a straightforward manner.

Implementation of the client

The implementation of the client model is based on the
standard generator and exit process definition as ex-
plained in the tutorial on the website of χ Eindhoven
University of Technology (2015). Furthermore, an addi-
tional buffer is needed between the generator and exit
process. This buffer is represented by a single integer
variable since only the number of requests inside the
buffer is of interest.

Implementation of web server

Figure 3 shows the overview of the process definition
for the web server model. The web server process can
be split into TCP connection setup, HTTP processing
and I/O processing. These three stages are implemented
in separate process definitions to keep the simulation
model modular. Four directed communication channels
cross the boundary of the web server process definition:
one input channel receives requests from the client, one
output channel sends requests back to the client (both
succeeded and failed requests), one output channel to
send requests further down the ICT solution stack and
one input channel to receive requests back from the
lower part of the ICT solution stack. Since multiple
HTTP threads can choose to connect with multiple I/O
buffers, a buffer controller is implemented to prevent
undesired actions.

Modeling a web server in χ may be tricky due to the pos-
sibilities of livelocks and undesired choices. A livelock

may arise in the I/O processing. The I/O processing
layer consists of multiple I/O buffers and an I/O con-
troller. The I/O controller visits the I/O buffers accord-
ing to some predefined rule, e.g. a round-robin fashion,
and tries to empty that I/O buffer as much as possible
at that moment. After sending some data onto the net-
work, according to the TCP protocol the I/O controller
needs to wait for an acknowledgement. In the mean-
time, it can serve other I/O buffers. In the case that
all I/O buffers are empty, the I/O controller is check-
ing all I/O buffers. Furthermore, when one assumes
that checking for emptiness can be done in neglecting
time, the χ simulation is in a livelock with no progress-
ing of time. The current solution requires a list keeping
track which I/O buffers need to be served and, if all
I/O buffers are empty, forces the I/O controller to stop
checking for non-empty I/O buffers.
Another simulation problem arises of choosing an I/O
buffer to place data which has to be send over the net-
work in. When HTTP threads have retrieved files from
the lower part of the ICT solution stack, the data has
to be transferred over the network to the client. An
HTTP thread can chose one of the empty I/O buffers.
Each file to be send has to be handled by the same I/O
buffer and an I/O buffer can start sending another file if
it has completely finished processing the previous one.
In this situation, each HTTP thread can select from all
I/O buffers to connect, and each I/O buffer can select
from all HTTP threads to connect. For each new file,
a match has to be found between a HTTP thread and
an I/O buffer. Without any form of control, this match
making process is not working well in χ. Only the match
between the first HTTP thread and the first I/O buffer
is established by the χ simulator. To solve this prob-
lem, a buffer controller process is initiated with keeps
track of which HTTP threads and I/O buffers want to
connect. On a first-come first-serve basis, matches are
made. In this way, all HTTP threads can connect with
all I/O buffers.

Implementation of corporate server

The queueing model of the corporate server (the server
on the enterprise tier) is an M/G/N queue. On the
tutorial page of the website of χ, this system is called a
parallel system. Therefore, the implementation of such
a queue can be found there. The only modification to
the standard server is that it is able to send a request
to the database tier and waits for an answer.

Implementation of database server

When a request arrives at the database server, a split-
ter process determines to which CPU the request is sent,
each with equal chance. After service at one of the par-
allel CPUs, the request moves on to the I/O process-
ing process. Finally, the request is sent back to the

corporate server. Both the CPU process definition and
the I/O processing process definition are standard sin-
gle server processes, which can be found at the tutorial
page at the website of χ.

STOCHASTIC SIMULATION DESIGN

In (Kelton and Law 2000) it is observed that most stud-
ies using simulation lack a proper simulation methodol-
ogy, such that the conclusions drawn may be erroneous.
First, one has to notice that the output data from sim-
ulations is not independent and identically distributed
(i.i.d.) (Nakayama 2008). Furthermore, a distinction has
to be made between transient (or terminating) perfor-
mance simulations and steady-state (or long-run) per-
formance simulations. For our problem, steady-state
simulations are performed.
Let the output stochastic process of a nonterminating
simulation be Y1, Y2, . . . Let Fi(y|I) = P [Yi ≤ y|I] for
i = 1, 2, . . . be the distribution function of Yi given the
initial conditions I. If Fi(y|I)→ F (y) as i→∞ for all
y and I, then F is called the steady-state distribution.
In practice, most of the time there is an index k after
which the distributions are approximately the same as
the steady-state distribution. Two problems arises with
steady-state simulations. The distribution functions Yi
differ from the steady-state distribution F , since it will
generally not be possible to choose the initial conditions
I to be representative of steady-state behavior (Kelton
and Law 2000). The second problem arises when the
central limit theorem is used to calculate the confidence
interval of the performance metric v = E[Y]. This re-
quires the knowledge of the time-average variance con-
stant σ (Nakayama 2008). Estimating this parameter by
the sample variance S2 is not valid for non-i.i.d. data.
Welch’s procedure is used to provide an estimation for
the warm-up period length k, see (Kelton and Law 2000,
Welch 1983). For each simulated model, 5 simulations
were used for Welch’s method, resulting in an estima-
tion l of k. The length of the performance simulations
m after determining the initial transient length is set
to m = 4l. To deal with non-i.i.d. data, the method of
multiple replications with initial-data deletion is used,
see (Kelton and Law 2000) for an introduction. We
make n′ = 5 replications for each simulated model, each
with length m = 4l. Furthermore, the first l observa-
tions are assumed to be contaminated with the initial
transient bias and all observations after l are not sig-
nificantly biased. Let Yji be the i-th observation of the
j-th run and let Xj be given by

Xj =

∑m
i=l+1 Yji

m− l
for j = 1, 2′, . . . , n′.

Then the Xj ’s are i.i.d. random variables(Kelton and
Law 2000). The sample mean X(n′) is then an approx-
imately unbiased point estimator for v and the approxi-
mate 100(1−α) percent confidence interval for v is given

●
●

●

●

●

●

●

●

Simulation time as function of the file size

Average file size [kB]

A
ve

ra
ge

 s
im

ul
at

io
n

tim
e

[s
]

1e+00 1e+01 1e+02 1e+03 1e+04

1
4

10
40

40
0

40
00

Figure 4: Average simulation time as a function of the
average file size. The file sizes are geometrically dis-
tributed.

by

X(n′)± tn′−1,1−α/2

√
S2(n′)

n′

where the value of tn′−1,1−α/2 can be found in any stan-
dard t-distribution table, for example in (Kelton and
Law 2000).

CHALLENGES

Several problems and challenges are related to simulat-
ing the ICT solution stack and is subcomponents. These
problems are described in this section.

Increase simulation speed

The simulation time becomes a problem when real life
ICT solution stacks are simulated. The simulation time
seems to be independent of the number of database
servers, scales linearly with the number of clients and the
number of web servers, but the simulation time scales
exponentially with the number of corporate servers,
see (Goorden 2015). Furthermore, the average simu-
lation time increases rapidly with the size of the files re-
trieved from the ICT solution stack, see Figure 4. The
reason for this dependency on the file size is due to the
way the TCP protocol is implemented in the simula-
tion model. Each individual packet send is simulated.
Stochastic fluid models may provide a solution to in-
crease the speed of the simulation (Olsén 2003).
Beside this, the stochastic output analysis requires mul-
tiple simulations, first to estimate the initial transient
period, then to generate output data to be analyzed.
Furthermore, with the method of multiple replications
in combination with initial data deletion discards in to-
tal ln′ data points. In (Whitt 1991) a comparison is
made between single-replication and multiple replica-

tion methods. Only when the initial transient period l
is large or when the covariance function decreases more
quickly, a single-replication method is preferred over a
multiple replication method. Otherwise, they are both
equally efficient.

Automatic initial transient period estimation

For most algorithms analyzing the stochastic output
process it is needed that the initial transient is filtered
out of the data. Most of the current techniques to do
this filtering require knowledge or intervention from the
modeler.

Automating this process of determining the initial tran-
sient period has two advantages. First, it allows the
modeler to fasten the simulation preparation process.
Secondly, it allows for automatic stochastic simulation
design. Therefore, the ICT architect does not need to
have a thorough knowledge of stochastic analysis.

This problem is known in the literature, see for exam-
ple (Hoad et al. 2010, Robinson 2005). Unfortunately,
both papers lack a clear solution for automatic initial
transient period estimation.

Rare event simulations

An interesting aspect of simulation is to consider several
what-if scenarios. One of these situations is failure be-
havior of the system. Failures do not occur often in the
system, so the simulation time of a standard simulation
to analyze the failure behavior would be high. The area
of rare event simulation focusses on developing efficient
simulation algorithms. The addition of rare event simu-
lations allows the ICT architect to analyze the reliability
of the current ICT solution stack design.

Good references are available in the literature. Two
introductions to this research area are (Bucklew 2013,
Görg et al. 2002). Some specific papers of different
rare event methods are (Garvels 2000, Glasserman et al.
1996, Lagnoux 2006, Rubinstein 1997).

CONCLUSION

A simple ICT solution stack model is implemented in
the simulation language χ. Small scale problems can be
simulated with the current implementation. Scaling the
simulation model to the size of a real life system poses
some challenges. Especially the way the TCP protocol
is implemented limits the simulation of transfer of large
files. To have an impact in the industry, the simulation
model should be developed further.

REFERENCES

Bucklew J., 2013. Introduction to rare event simulation.
Springer Science & Business Media.

Eindhoven University of Technology, 2015. Chi 3 home

page. http://chi.se.wtb.tue.nl/index.html. Accessed
on: 10-03-2015.

Garvels M.J.J., 2000. The splitting method in rare event
simulation. Universiteit Twente.

Glasserman P.; Heidelberger P.; Shahabuddin P.; and Zajic
T., 1996. Splitting for rare event simulation: analysis of
simple cases. In Proceedings of the 28th conference on
Winter simulation. IEEE Computer Society, 302–308.

Goorden M., 2015. End-to-End Performance Modeling of
ICT Solution Stacks. Masters thesis, Eindhoven Univer-
sity of Technology.

Goorden M.; van de Mortel-Fronczak J.; Reniers M.; Kinder
M.; and van Veggel W., 2016. End-to-end Performance
Modeling of ICT Solution Stacks. Submitted.

Görg C.; Lamers E.; Fuß O.; and Heegaard P., 2002. Rare
event simulation. Springer.

Gray M.A., 2007. Discrete event simulation: A review of
SimEvents. Computing in Science & Engineering, 9, no. 6,
62–66.

Hoad K.; Robinson S.; and Davies R., 2010. Automating
Warm-up Length Estimation. Journal of the Operational
Research Society, 61, no. 9, 1389–1403.

Kelton W.D. and Law A.M., 2000. Simulation Modeling and
Analysis. McGraw Hill Boston.

Lagnoux A., 2006. Rare event simulation. Probability in
the Engineering and Informational Sciences, 20, no. 01,
45–66.

Nakayama M.K., 2008. Statistical Analysis of Simulation
Output. In Proceedings of the 40th Conference on Winter
Simulation. Winter Simulation Conference, 62–72.

Olsén J., 2003. Stochastic modeling and simulation of the
TCP protocol. Ph.D. thesis, Mathematics and Computer
Science, Uppsala University.

Robinson S., 2005. Automated analysis of simulation output
data. In Proceedings of the Winter Simulation Conference.
IEEE, 8–pp.

Rubinstein R.Y., 1997. Optimization of computer simulation
models with rare events. European Journal of Operational
Research, 99, no. 1, 89–112.

van Beek D.A.; Man K.L.; Reniers M.A.; Rooda J.E.; and
Schiffelers R.R., 2006. Syntax and consistent equation se-
mantics of hybrid Chi. The Journal of Logic and Algebraic
Programming, 68, no. 1, 129–210.

Welch P.D., 1983. The statistical analysis of simulation re-
sults. The computer performance modeling handbook, 22,
268–328.

Whitt W., 1991. The efficiency of one long run versus inde-
pendent replications in steady-state simulation. Manage-
ment Science, 37, no. 6, 645–666.

