Testing Real-Time Embedded Software using UPPAAL-TRON
an industrial case study

Kim G. Larsen and Marius Mikucionis and Brian Nielsen and &8kou

Center of Embedded Software Systems, CISS
Aalborg University
Fredrik Bajersvej 7B
DK-9220 Aalborg, Denmark

Email: {kgl | marius | bnielsen | ask}@s. aau. dk

Abstract tool which means that it, at the same time, both generates
and executes tests event-by-eventin real-time. TRON rep-

UPPAAL-TRON is a new tool for model based onlingesents a novel approach to testing real-time systems, and

black-box conformance testing of real-time embeddgfibased on recent advances in the analysis of timed au-

systems specified as timed automata. In this paper wygata. Applying TRON on small examples has shown

present our experiences in applying our tool and technigst@mising error detection capability and performance.

on an industrial case study. We conclude that the tool anq, ;g paper we present our experiences in applying

technique is applicable to practical systems, and thasit Rl&aoN on an industrial case study. Danfoss is a Danish
promising error detection potential and execution peer‘,’()mpany known world-wide for leadership in Refrigera-
mance. tion & Air Conditioning, Heating & Water and Motion
Controls [2]. The IUT, EKC 201/301, is an advanced
1 Introduction electronic thermostat regulator sold_ world-wide in high
volume. The goal of the case study is to evaluate the fea-

Model-based testing is a promising approach for impro%i-bility of our technigue on a practical example.

ing the testing of embedded systems. Given an abstract RON replaces the environmentofthe IUT. It performs
formalized behavioral model (ideally developed as the d#o logical functions, stimulation and monitoring. Based
sign process) of aspects of the implementation under t@8tthe timed sequence of input and output actions per-
(IUT), a test generation tool automatically explores tHérmed so far, it stimulates the IUT with input that is
model to generate test cases that can be executed agéggined relevant by the model. At the same time it mon-
the IUT. itors the outputs and checks the conformance of these
UPPAAL is a mature integrated tool environment forgainst the behavior specified in the model.

modeling, verification, simulation, and testing of real- To perform these functions TRON computes the set of
time systems modeled as networks of timed automata [States that the model can possibly occupy after the timed
UpPPAAL-TRON (TRON for short) is a recent additiortrace observed so far. Thus, central to our approach is the
to the UPPAAL environment. It performs model-basedea of symbolically computing the current possible set of
black-box conformance testing of the real-time comstates. For timed automata this was first proposed by Tri-
straints of embedded systems. TRON isomtinetesting pakis [15] in the context of failure diagnosis. Later that

work has been extended by Krichen and Tripakis [8] taf input and output actions performed so far, it stimulates
online testing from timed automata. The monitoring athe IUT with input that is deemed relevant by the envi-
pect of this work has been applied to NASA's Mars Roveonment part of the model. Also in real-time it checks
Controller where existing traces are checked for confdhe conformance of the produced timed input output se-
mance against given execution plans translated into tingagence against the IUT part of the model. We assume
automata [14]. In contrast, the work presented in this pghat the IUT is a black-box whose state is not directly ob-
per performs real-time online black-box testing (both+ealervable. Only input/output actions are observable. The
time stimulation and conformance checking) for a real iadaptor is an IUT specific hardware/software component
dustrial embedded device consisting of hardware and sdifiat connects TRON to the IUT. Itis responsible for trans-
ware. lating abstract input test events into physical stimuli and
Our approach, previously presented in [4, 12, 10]; aahysical IUT output observations into abstract model out-
abstract appeared in [11]), uses the maturPAAL lan- puts.
guage and model-checking engine to perfoetativized
timed input/output conformanceneaning that we take ...

H H i~ : ! T-UPPAAL engine "ip' finput .
environment assumptions e>§pI|C|tIy into account. | Environment © implementation u Implementation
Online testing based on timed CSP specifications hgs assumptions ., specification WLARAMLLE under Test
3|
—/

)

ut? | out!

been proposed and applied in practice by Peleska [13]; 00 Tt Vin? oﬁg—ﬁ\o

In Section 2 we introduce the concepts behind our tes _ : 1
ing framework. Section 3 describes the case, Section-4-------- Simulated Environment <. :
our modeling experiences, and Section 5 performance re-

Physical API

sults. Section 6 concludes the paper. For the keen re- Figure 1: TRON test setup.
viewer the entire model is included as an appendix avail-
able at [9].

We extended the input/output conformance relation
ioco [16] between a formal specification and its black-
2 Testi ng Framewor k bo>§ implem_entation to the timed setting and relatively to

a given environment.
The most important ingredients in our framework is rela- Relativized timed input/output conformance
tivized conformance, timed automata, environment mogtioco [5] is defined formally in Equation 1.
eling, and the test generation algorithm.

2.1 Relativized Conformance Testing

irtioco, s = Vo € (s,¢). out((i,e) after o) C

The goal of (relativized) conformance testing is to check out((s, ¢) after o)

whether the behavior of the IUT is correct according to 1)

its specification under assumptions about the behavior ofntuitively rtioco. means that after executing any

the actual environment in which it is supposed to workmed input/output trace that is possible in the composi-

In general only the correctness in this environment neditmn of the system specificationand environment spec-

to be stabilized, or it may be too costly or ineffective tiication e, the implementation in environmente may

achieve for the most general environment. It further turnaly produce outputs and timed delays which are included

out that explicit environment models have further pracin the specifications under environment. The output

cal applications. inclusion in the relation guarantees both functional and
Figure 1 shows the test setup. The test specification israe-wise correctness. The IUT is not allowed produce

network of timed automata partitioned into a model of treny output actions (including the special output of letting

environment of the IUT and the IUT. TRON replaces thi@me pass and not producing outputs in time) at a time they

environment of the IUT, and based on the timed sequernoaild not be done by the specification.

2.2 Timed Automata 2.3 Environment Modeling

e Cfor testing purposes we construct closed timed automata

We assume that a formal specification can be modelle a3 : e .]
a network of timed automata. We explain timed automn(—a works which are partitioned into two separate parts:
ton by example. and refer to ['1] forforr)mal svntax and Se_e IUT and its environment, both required to be input en-
y pie, ; al syntax ?bled. The test specification also specifies which actions

mantics. A timed automaton is essentially a finite state . ;
) L : 2 are observable inputs and outputs. These must be consis-
machine with input/output actions (distinguised respec-_, . L
tEnt with the partitioning.

tivelyt by ? and !) augmented with a set of special real- _. . .
valued clock variables that may be used to guard WhenF|gures 2(b) to 2(d) shows three possible environment

transitions may take place. Figure 2(a) shows @PAAL assumptions fo€”. Figure 2(b) shows the universal (most

automaton of a simple cooling controlléf wherez is general) and completely unconstrained environn&nt

:) .. where room temperature may change unconstrained and
real-valued clock andis an integer constant. Its goal is to

control and keep the room temperaturdladrange. The may change (d|scre.t ely) with any rate. However, this may
. . : .~ not reflect the reality as temperature normally evolves
controller is required: 1) to tur®n the cooling device : . X
I S slowly and continuously, e.g., it cannot change drasticall
within an allowed reaction time when the room temper-

ature reachebligh range, and 2) to turn i©Off within » ”0”." Lowto High and back unlless throug¥ied
Figure 2(c) shows the environment model where the
when the temperature dropsltow range.

temperature changes throulgled range and with a speed

In the encircled initial locatioroff, it forever awaits pounded byd. Figure 2(d) shows an even more con-
temperature input sampléow, Med andHigh. When gtrained environmerdt, that tests the controller under the
C" receivesHigh it resets the clock: to zero and moves ggsumption that the cooling device works, e.g., tempera-
to locationup, where the location invariant < r allows tyre never increases when cooling is on. More restrictive
it to remain for at most time units. Edges may also havenyironments reduce the effort and cost for testing, but
guards which define when the transition is enabled (S€&ice thats, and&, have less discriminating power and
e.g. in Figure 2(c)). At latest whenreaches: time units thys may not reveal faults found under more discriminat-
the outputon is generated. If dow is received in the jng environments. However, if the erroneous behavior is
mean time it must go back off. Transitions are taken ifinpossible in the actual operating environment the error
stantaneously and time only elapses in locations. may irrelevant.

In location off the automaton reacts non- For example, supposg is implemented by a timed
deterministically to inputMed C" may choose either gutomaton equal t6”, except the transitionp Low, 1n
to take a loop transition and stay in locatia@ff or s missing. This error can be detected undgrand
move to locationup. When(C" is used as a specifica—giﬁd@ but not underé, by executing the timed trace
tion a relativised input/output conforming controllef.Med! d-High!-d-Med!d-Low!-= and observing output
implementation may choose to perform either. Thisn shortly aftere < r instead ofOff. Of course, if the
non-determinism gives the implementation some fregplementation can be fast enough to is€rejust after
dom. There are two sources of non-determinism in tlmﬁ(ﬂg firstMedto break our trace, then On& is Capab|e of
automata: 1) in the timing (tolerances) of actions agifficiently fast tracesligh!-Low!-¢ to test that transition.
allowed by location invariants and guards, and 2) in the|n the extreme the environment behavior can be so re-
possible state after an action. stricted that it only reflects a single test scenario that
Timed automata may be composed in parallel, comn&hould be tested. In our view, the environment assump-
nicate via shared variables and synchronize on matchiins should be specified explicitly and separately.
input/output transitions. In elosedtimed automata net-
work all output action transitions have a correspondirzg4 Online Testing Algorithm.
input action transition. BPAAL supports timed automata
networks with additional integer variable types, broaticadere we outline the algorithm behind TRON informally.
(one-to-many) synchronizations and other extensions. In order to simulate the environment and monitor the im-

y>=d
Low!
y:=0

OffMed OnMed

) on? y<=step y<=step
High? ‘ J/ Hight y>=d
! Med!
Off? y:=0

‘ Med! OffHigh OnHigh

! Low! y<=step

d d,
(b) &o. (©) &4. (d) £&.

Figure 2: Timed automata of simple controller and varioudrenments.

plementation, TRON computes and maintains the set3f The Danfoss EK C-201 Refriger a-
symbolic states that can be reached in the (composed) 4;
specification model after the timed trace observed so far tion Controller

by using the U’PAAL engipg to traverse ir_1terna|, ,delaxNe applied WPAAL-TRON on a first industrial case

and observed action transitions. A symbolic state is a pg{ady provided by Danfoss Refrigeration Controls Divi-
ticular set of inequations on clock variables thatdenotegign The EKC controls and monitors the temperature
potentially infinite set of concrete states. of industrial cooling plants such as cooling and freezer

rooms and large supermarket refrigerators.
Based on this state-set, TRON checks whether the ob-

served output actions and timed delays are permitted_in —
the specification. In addition TRON computes the set 811 Control Objective

possible inputs that may be offered to the implementre main control objective is to keep the refrigerator room
tion. TRON randomly chooses between letting time pagg emperature at a user defined set-point by switching a
by some (random) amount and silently observing the IUdympressor on and off. It monitors the actual room tem-
or offering a randomly selected relevant input. perature, and sounds an alarm if the temperature is too
high (or too low) for too long a period. In addition it offers
Consider the systerfC”,£%). The initial state-set is a myriad of features (e.g. defrosting and safety modes in
the single symbolic state((off, L,z = 0,y = 0)}. After case of sensor errors) and approximately 40 configurable
a delay ofd or more,{ Med} is the set of possible inputs.parameters.
Suppose that TRON issuéded afterd time units. The The EKC obtains input from a room air temperature
state-set now consists of two stat¢soff, M,z = §,y = sensor, a defrost temperature sensor, and a two-button
0,t = 0d), (up, M,z =0,y = 0)}. If Onis received later keypad that controls approximately 40 user configurable
the first element in the state-set will be eliminated. parameters. It delivers output via a compressor relay, a de-
frost relay, an alarm relay, a fan relay, and a LED display
Currently TRON is available to download via the Internit showing the currently calculated room air tempera-
net free of charge for evaluation, research, education dnce as well as indicators for alarm, error and operating
other non-commercial purposes [9]. TRON supports atlode.
UppAAL modeling features including non-determinism, Figure 3 shows a simplified view of control objective,
provides timed traces as test log and a verdict as the aamely to keep the temperature withgetPoint and
swer to rtioco relation. setPoint-differential degrees. The regulation is to be

based on an weighted averaged room temperdfijre software by accessing the parameter database using the
calculated by the EKC by periodically sampling the aprovided interface. However, RPAAL-TRON only ex-
temperature sensor such that a new sarfipleweighted ists in UNIX versions, and thus it required a second host
by 20% and the old averadg,_, by 80%: computer connected using a TCP/IP connection properly
configured to prevent unnecessary delaying of small mes-
sages. The adaptation software thus consists of a “thin”
T, = Tn1x44+T (2) visualBasic part, and a C++ part interfacing to the TRON

5 native adaptation API. It is important to note that this long

A certain minimum duration must pass between restagigain adds both latency and uncertainty to the timing of
of the compressor, and similarly the compressor must [&zants.

main on for a minimum duration. An alarm must sound if \jore seriously it turned out that the parameters repre-
the temperature increases (decreases) above (Delg) senting sensor inputs are read-only, meaning that the test
AlarmLimit (lowAlarmLimif for alarmDelaytime units. host cannot change these to emulate changes in sensor-

All time constants in the EKC specification are in the ofpyyts, Therefore some functionality (temperature based

der of seconds to minutes, and a few even in hours. gefrosting, sensor error handling, and door open control)
related to these is not modeled and tested. The main sen-

highalarm 4 sor, the room temperature, is hardwired to a fixed setting
“m“gw.:,ml o o via a resistor, but the sensed room temperature can be

Temperature

‘‘‘‘‘‘‘ start compressor

compressor changed indirectly via a writable calibration parameter in

e the ranget20 °C.
It quickly became evident to us that the monitoring
Y/

e s software was meant for “coarse grained” event logging

”””””””” normal i restart i cooling =™ and supervision by an operator, not as a (real-time) test

il LS AL SRS interface. An important general lesson learned is that an
> IUT should provide an test interface with suitable means
Time for control and observation. We are collaborating with

Figure 3: EKC Main Control Objective. Danfoss to provide a better test interface for future ver-

sions of the product.

setpoint

stop

alarm delay

3.2 Test Adaptation. 3.3 Model Structure

A few comments are necessary about the test adaptoride modeled a central subset of the functionality of the
the EKC since it determines what and how precise the IEEKC as a network of BPAAL Timed Automata, namely
can be controlled and observed. basic temperature regulation, alarm monitoring, and de-
Internally, the EKC is organized such that nearly evefgost modes with manual and automatic controlled (fixed)
input, output and important system parameter is stoneeriodical defrost (de)activation. The allowed timing- tol
in a so-called parameter database in the EKC that cenances and timing uncertainties introduced by the adap-
tains the value, type and permitted range of each vagtion software is modeled explicitly by allowing output
able. The parameter database can be indirectly accesseazhts to be produced within a certain error envelope.
from a visual Basic APl on a MS Windows XP PC hodtor example, a tolerance of 2 seconds is permitted on
via monitoring software provided by Danfoss. The EK@e compressor-relay. In general, it may be necessary to
is connected to a MS Windows XP PC host, first viarmodel the adaptation layer as part of the model for the
LON network from the EKC to a EKC-gateway, and fromsystem under test. The abstract input/output actions are
there via a RS-232 serial connection. The required hadipicted in Figure 4.
ware and software were provided by Danfoss. As rec-From the beginning it was decided to challenge our
ommended by Danfoss we implemented the adaptatiool. Therefore we decided that the model should be re-

ekcResetf | compressorRelayon! 4,5 TheHigh Temperature Alarm component moni-
manualDefrostOn? Meisome"':‘yom tors the alarm state of the EKC, and triggers the alarm
manualDefrostOff7 -%e:a‘yg;; relay if the temperature is too high for too long. The-
CT(int 2020 Y CeTrostzelayDIE frost component controls the events that must take place
setpoint(int -50..60 alarmRelayOn! i i B}
t-50..60)1 ' during a defrost cycle. When defrosting the compres
setAlarmDelay(int 0..90)P | alarmRelayOff! ic di o\ AF-
ahhiiia v highAlarmDisplayOn! sor is disengaged, and alarms suppressed dekdyAf
Wmmsplayoﬁi terDefrosttime units after completion. Defrosting may
N A— be started manually by the user, and is engaged automat-

ically with a certain period. It stops when the defrosting
time has elapsed, or when stopped manually by the user.
The Auto Defrost component implements automatic pe-
sponsible of tracking the temperature as calculated by tfagic time based defrosting. It automatically engages the
EKC and base control actions on this value. To makkefrost mode periodically. ThRelay component mod-
this work, the computation part of the model and algis a digital physical output (compressor relay, defrost re
its real-time execution must be quite precise. This pday, alarm relay, alarm display) that when given a com-
of the model thus approximates the continuous evolmand switches on (respectively off) within a certain time
tion of a parameter, and almost approaches a modebotind. Thelemper ature Generator is a part of the envi-
a hybrid system, which is on the limit of the capabilitponment that simulates the variation in room temperature,
of timed automata. An alternative would be to monitsurrently alternatingly increases the temperature ligear
the precision of the calculated temperature in the adagi@tween minimum and maximum temperature, and the re-
tion software and let that generate events (@lgrmLim- verse. Finally, th®efrost Event Generator environment
itReached) to the model as threshold values are crosse®mponentrandomly issues user initiated defrost start and
This would yield a simple and more abstract “pure” evetop commands.
driven model.

The model consists of 18 concurrent components
(timed automata), 14 clock variables, and 14 discrete - Component Modeling and Re-
teger variables, and is thus quite large. The main compo- . .
nents and their dependencies are depicted in Figure 5 and verse Engl neering
explained below.

Figure 4: Model inputs and outputs.

The modeling effort was carried out by computer scien-
tists without knowledge of that problem domain based on
the EKC documentation provided by Danfoss. It only
consisted of the internal requirements specification and
the users manual, both in informal prose. In addition we
had access to questioning the Danfoss Engineers via email
and two meetings, but no design documents or source
code were available. In addition we were given documen-
tation about the EKC PC-monitoring software and associ-
ated API allowing us to write the adaptation software.

In general the documentation was insufficient to build
the model. In part this was due to a lack of a detailed un-

The Temperature Measurement component period- derstanding of the implicit engineering knowledge of the
ically samples the temperature sensor and calculategrablem domain and how previous generations of con-
new estimated room air temperature. T@empres- trollers worked. But more importantly much functional
sor component controls the compressor relay based lmehavior and especially timing constraints were not ex-
the estimated room temperature, alarm and defrost gifieitly defined. In general the requirements specification

IUT-Model

tempMeasurement

newTemp

Environment

TemperatureGenerator
defrostEventGen

newTemp

autoDefrost

ﬁutput [compressor | «-[-highTempatatin J:: [defrost |

on/off i on/off. M/ad') an/o¢
alarm alarm defrost
Relay | | Display Relay

Figure 5: Main Model Components

Relay

did not state any timing tolerances, e.g, the allowed ldoser inspection showed that the EKC was still indicat-

tency on compressor start and stop when the calculaiteg high temperature alarm in its display, even though the

temperature crosses the lower or higher thresholds. alarm was cleared by the user. The explanation given by
Therefore the modeling involved a lot of experimerDanfoss was that clearing the alarm only clears the alarm

tation to deduce the right model and time constraintglay (stopping the alarm noise), not the alarm state which

which to some extent best can be characterized as nemains in effect until the temperature drops below the

verse engineering or model-learning [3]. Typically theritical limit. The model was then refined, and includes

work proceeded by formulating a hypothesis of the b#tenoSoundDisplayinglocation in Figure 7.

havior and timing tolerances as a model (of the selected

aspect/sub functionality), and then executing TRON ®3 Defrosting and Alarm Handling.

check whether or not the EKC conformed to the model.

If TRON gave a fail-verdict the model was revised (eithék similar discrepancy between expected and actual be-

functionally, or by loosening time tolerances). If it pagsehavior detected by TRON was in the way that the alarm

the timing tolerances were tightened until it failed. Thand defrost functions interacts. After a defrost the room

process was then iterated a few times, and the Danftamperature naturally risks being higher than the alarm

engineers were consulted to check whether the behavimit, because cooling has been switched off during the

of the determined model was acceptable. defrost activity for an extended period of time. Therefore
In the following we give a few examples of this procea high temperature alarm should be suppressed in this sit-
dure. uation which can be done by configuring the EKC param-

eteralarmDelayAfterDefrostHowever, reading different

sections of the documentation gives several possible in-

terpretations:

The EKC estimates the room temperature from Equa-

tion 2 based on periodically samples of the room temperl. When defrosting stops and the temperature is high,

ature sensor, and bases most control actions like switch- alarms must be postponed fatarmDelayAfterDe-

ing the compressor on or off on this value. However, the frost in addition to the originalalarmDelay i.e.,

requirements only requires a certain precision on the sam- hever alarms during a defrost.

pling accuracy of the temperature sensaf8.6 °C) and a

sensor sampling period of at most 2 seconds, and nothing

about how frequently the temperature should be reevalu-

ated. This led to a series of tests where the temperature

change rate, the sampling period, and temperature toleg, When defrosting stops and the temperature is high,

ance were changed to determine the best matching config- alarms must be suppressed fdarmDelayAfterDe-

uration. The model now uses a period of 1.2 seconds, and frost, i.e.,alarmDelayAfterDefrosteplaces the orig-

allows+ 2 seconds tolerance on compressor start/stop. inal alarmDelayafter a defrost until the the temper-
ature becomes below critical, after which the normal

4.2 Alarm Monitoring alarmDelayis used again.

4.1 Room Temperature Tracking.

Same as above (1) except it is measured from the
time where the high alarm temperature is detected,
even during a defrost.

Executing TRON using our first version of the high tem- The engineering department could not give an imme-
perature alarm monitor caused TRON to give a faithate answer to this (without reluctantly consulting old
verdict: The EKC did not raise alarms as expected. Theurce code), but based on their experiences and require-
model shown in Figure 6 assumed that the user’s clearmgnts for other products they believed that 3 is the correct
of the alarm would reset the alarm state of the EKC cornmterpretation. Note that we are not suggesting that the
pletely. The consequence of this is that the EKC shoyldoduct was implemented without a clear understanding
raise a new alarm withimlarmDelayif the temperature of the intended behavior, only that it was not clear from
remained above the critical limit. However, it did not, aniis documentation.

IUT_calcTemp<=
IUT_setPoint+diff+highAlarmDev-err &lanmoOff

clearHighAlarm?

newTemp?
IUT_calcTemp<=

IUT_setPoint+diff+highAlarmDev-err

ta:=0

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
?
IUT_calcTemp> clearHighAlarm? newTemp?

IUT_setPoint+diff+highAlarmDev- ta==IUT TADela
newTemp? - y
ta:=0 AOn!

Sounding
ta:=0 triggered ta:=0
tag=IUT_TADelay

clearHighAlarm?

newTemp?

clearHighAlarm?
IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err

newTemp

AOff! C) sb
ta:=0

Figure 6: First High Temperature Monitor.

newTemp?
IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err

newTemp?
JUT _calcTemp> CclearHighAlarm? IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
- X I clearHighAlarm?
InUe'I\;I_Ts:[InF;Jq;an|ff+h|ghAIarmDev— noDefrostDeEyg - sounding_Displaying
ta:=0 ta>=IUT_TADelay AOn! HADOR!
alarmOff triggered

ta<=IUT_TADelay postPoned
initDone?
ta: newTemp?

IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err newTemp? clearHighAlarm?

ta:=0 IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err
newTemp?

IUT_calcTemp<=IUT_setPoint+diff+hi

noSound_Displayin

newTemp?
IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err

Figure 7: Second High Temperature Monitor

4.4 Defrost Time Tolerance. the model does not “know” if the compressor-relay is in

on-state or off-state, resulting in a larger state-set. The

Another discrepancy TRON found was that defrostingste.set size then decreases again, only to increase again

started earlier than expected or was disengaged latera(l§3 seconds at which a manual defrost period is started.

turned out that the internal timer in the EKC responsibig, o next major jump occurs at 120 seconds and corre-
for controlling the defrost period has a very low precigieg nicely with the time where the temperature crosses
sion (probably because defrosting is rare (€.g.,0nce R dg¥in_ajarm limit and the alarm monitor component should
and has along duration (lasts several hours)). The defaifltich intotriggeredstate. Similarly, 260 second into the
tolerance used in the model on the relays thus had O 4§ he temperature drops below the threshold, and there

further relaxed. is no uncertainty in the alarm state. The fluctuations inside
this period is caused by a manually started and stopped
. . . defrost session. In fact 5 defrost cycles are started and
S Quantltatlve Evaluation stopped by the tester in this test run. The largest state-set
size (960 states) occurs at 450 seconds and correlates to
During a test-run, the testing algorithm computes, on a RRE time-out of a defrost cycle. There is a large tolerance
timed event basis, the set of symbolic states in the mogglthe timer controlling defrosting, and hence the model
that can be reached after the timed event trace obserygd exhibit many behaviors in this duration.
so far, and generates stimuli and checks the validity ofrpe state-set contains most of the time less than a few
IUT-outputs based on this state-set. hundred states. Exploring these is unproblematic for a
Since we use a non-deterministic model to capture thydern model-checking engine employed by TRON. Fig-
timing and threshold tolerances of the IUT and since ifjre 9 and plots the the cpu-time required to update the
ternal events in a concurrent model may be executedsiate-set for delay-actions (typically the most expensive
(possibly combinatorically many) different orders, thé$ Spperation) for 5 test-runs of our model on a modern PC
will usually contain numerous possible states. The statBual Pentium Xeon 2.8 GHz CPU (one utilized)). It can
set reflects the allowed states and behavior of the IUT, %@Seen that the far majority of state set sizes are reason-
intuitively, the larger the state-set, the more uncertaé taply small. Updating even medium sized state-sets with
tester is about the state of the implementation. around a 100 states requires only a few milli-seconds of
Since we generate and execute tests in real-time fgi-time. The largest encountered state-sets (around 3000
state-set must also be updated in real-time. Obviousliates) are very infrequent, and requires around 300 milli-
the model and the state-set size affects how much cofaconds.
putation time this takes, and one might question wheterReal-time online testing thus appear feasible for a
doing this is feasible in practice. In the following we infarge range of embedded systems, but also that very non-
vestigate whether real-time online testing is realistic f@eterministic model such as the EKC-model may limit the
practical cases, like the Danfoss EKC. granularity of time constraints that can be checked in real-
Figure 8 plots the evolution of the state-set size (nufime.
ber ofsymbolic statgsfor a sample test run. Also plotted
in the graph is the input temperature, temperature thresh-
old value for high temperature (compressor must swit§h Conclusions and Future Wor k
on) and high temperature alarm (the alarm must sound if
it remains high for more thaalarmDelay(120 sec) time Our modeling effort shows that it is possible to accurately
units. model the behavior of EKC like devices as Timed Au-
It is interesting to observe how the state-set size demata and use the resulting model as a test specification
pends on the model behavior. For instance, the first larder online testing.
increase in state-set size occurs after 55 seconds. At thikt is possible to model only selected desired aspects of
time the temperature crosses the limit where the comprége system behavior, i.e. a complete and detailed behav-
sor should switch on. But due to the timing toleranceisral description is not required for system testing. Thus,

1200 -

1000 -

800 -

0

=3

S
L

Number of states

200 -

400 +

State set plot __State-set

—— High Temp Limit| 25
= Temperature

—=Alarm Limit

r20

T T T T T T T
100 200 300 400 500 600 700 800 900 1000
time (sec)

seconds

Average afterDelay CPU time, micro:

50000 100000 150000 200000 250000 300000

0

Figure 8: Evolution of State-set.

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Initial state set size

Figure 9: Cost of State-set Update: Delay action

model based testing is feasible even if a clear and com-
plete formal model is not available from the start, al-
though it will clearly benefit from more explicit modeling
during requirements analysis and system design.

In the relative short testing time, we found many dis-
crepancies between our model and the implementation.
Although many of these were caused by a wrong model
due to incomplete requirements or mis-interpretations of
the documentation, and not actual implementation errors,
our work indicates that online testing seems an effec-
tive technique to find discrepancies between the expected
model behavior and actual behavior of the implementa-
tion under test. Thus there are also reasons to believe that
it is effective in detecting actual implementation errors.

It should be mentioned that the EKC is a mature prod-
uct that has been produced and sold for a number of years.
Future work includes testing a less mature version of a
EKC like controller.

Performance-wise we conclude that real-time online
testing appear feasible for a large range of embedded sys-
tems. To target even faster real-time systems with even
time constraints in the (sub) milli-second range we plan
to separate our tool into two parts, an environment emu-
lation part, and a IUT monitoring part. Monitoring need
not be performed in real-time, and may in the extreme be
done offline. The model that will need to be interpreted
in real-time is thus much smaller and can be done much
faster.

We are currently extending our tool with coverage mea-
surements, coverage based guiding, and features for er-
ror diagnosis. These features include importing the trace
collected during a test run into RPAAL and from here
running it against the IUT model. It can also be re-
played against the actual IUT(within the limits of its non-
determinism).

Acknowledgments

We would like to thank Danfoss for providing the case-
study and especially to Finn Andersen, Peter Eriksen, and
Sgren Winkler Rasmussen from Danfoss for engagement
and constructive information and help during the project.

10

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

R. Alur and D. Dill. A Theory of Timed Au-
tomata. Theoretical Comput. S¢i126(2):183-235, [11]
Apr. 1994,

D A/S. Danfoss

. internet
http://mww.danfoss.dk.

website,

T. Berg, B. Jonsson, M. Leucker, and M. S. Au-
gust. Insights to Angluin’'s Learning. Imterna- [12]
tional Workshop on Software Verification and Vali-
dation (SVV 2003003.

E. Brinksma, K. Larsen, B. Nielsen, and J. Tret-
mans. Systematic Testing of Realtime EmbeddgrB]
Software Systems (STRESS), March 2002. Re-
search proposal submitted and accepted by the
Dutch Research Council.

K. Larsen, M. Mikucionis, and B. Nielsen. Online[14]
testing of real-time systems usingPAAL. In For-
mal Approaches to Testing of Softwaténz, Aus-
tria, September 21 2004. Lecture Notes in Computer
Science.

[15]
K. Larsen, M. Mikucionis, and B. Nielsen. Online
Testing of Real-time Systems using Uppaal: Status
and Future Work. In E. Brinksma, W. Grieskamp,
J. Tretmans, and E. Weyuker, editdbsgstuhl Sem-
inar Proceedings volume 04371: Perspectives Bk6]
Model-Based Tes tingschloss Dagstuhl, D-66687
Wadern, Germany., September 2004. IBFI gem.
GmbH, Schloss Dagstuhl.

K. Larsen, P. Pettersson, and W. Yi. UppAal in a
Nutshell. International Journal on Software Tools
for Technology Transfef (1):134-152, 1997.

M. Krichen and S. Tripakis. Black-box Confor-
mance Testing for Real-Time Systems. Nuodel
Checking Software: 11th International SPIN Work-
shop volume LNCS 2989. Springer, April 2004.

M. Mikucionis. Uppaal tron internet page,
http://www.cs.aau.dk/"marius/tron.

M. Mikucionis, K. Larsen, and B. Nielsen. Online
on-the-fly testing of real-time systems. Technical

11

Report RS-03-49, Basic Research In Computer Sci-
ence (BRICS), Dec. 2003.

M. Mikucionis, B. Nielsen, and K. Larsen. Real-
time system testing on-the-fly. lime 15th Nordic
Workshop on Programming Thegryumber 34 in B,
pages 36—38, Turku, Finland, October 29-31 2003.
Abo Akademi, Department of Computer Science,
Finland. Abstracts.

M. Mikucionis and E. Sasnauskaite. On-the-fly test-
ing using WPPAAL. Master’s thesis, Department of

Computer Science, Aalborg University, Denmark,
June 2003.

J. Peleska. Formal Methods for Test Automation -
Hard Real-Time Testing of Controllers f or the Air-
bus Aircraft Families. Inntegrated Design and Pro-
cess Technology (IDPT-2002002.

M. K. S. Bensalem, M. Bozga and S. Tripakis. Test-
ing conformance of real-time applications with au-
tomatic generation of ob servers. Runtime Verifi-
cation 2004 2004.

S. Tripakis. Fault Diagnosis for Timed Automata.
In Formal Techniques in Real-Time and Fault Tol-
erant Systems (FTRTFT'Q2yolume LNCS 24609.
Springer, 2002.

J. Tretmans. Testing concurrent systems: A formal
approach. In J. Baeten and S. Mauw, edit@®N-
CUR’99 — 10" Int. Conference on Concurrency
Theory volume 1664 of_ecture Notes in Computer
Sciencepages 46—65. Springer-Verlag, 1999.

A Mode WalkThrough in the environment part of the model under the name
CT_eny “calibrated Temperature, environment”. Recall

This section offers detailed technical model doghat the room temperature can only be controlled in-
umentation and is organized by a by-componetivectly via the temperature calibration feature of the
walk-through of the model. Each subsection d&KC. The value of this variable is communicated to the
scribes one component (or closely related compiat part of the model using value passing into the vari-
nents). First the channels, variables and constaatsie CT iut along withCT. The value passing is realised

used in the component is defined, and then the hgr the two componentENV_TemperatureReporteand

havior is explained. One model time unit correspon@gT_TemperatureReceivehown in Figure 10
to 0.1 seconds of real-time. The model is available at

http://ww. cs. aau. dk/ ~bni el sen/ conpr essor . xm . s2

A.1 Calibrated Temperature Communica-
tion A

CT!, CT? Communicates a change in callibration tem-
perature+20 °C between ENV model and IUT
mOdel. reportDpne!

cT! receivedTemp!
CT?
IUT| CT:=ENV_CT

reportTemp?, reportDone!Used to synchronize the
communication of environment temperature
with other environment components, specifically s15©)
ENV_TemperatureSinus (a) (b)

Figure 10: Communicating Calibrated Temperature be-

. | -
receivedTemp! Used o |r'1d|cate o thetween ENV and IUT. (agNV_TemperatureReporte(b)
temperature calculation componequ TemperatureReceiver

IUT _TemperatureMeasurementErrthat a new
temperature value has been received.

fixedTemp The actual physical temperature sensor of thig. 2 Temperature Calculation

EKC is hardwired via a resistor to a fixed value of o
16.6 °C. receivedTemp?Used to indicate to the temperature cal-

culation component that a new temperature sample
CT_env. The room temperature stored by the environ- has been received.

ment model (or more precisely, the callibration offset o
from the fixed input temperature sensor). newTemp! Broadcast channel used to indicate to other

IUT components that a new temperature estimate
CT.iut: The room temperature sensed by the EKC. has been calculated, and that they should re-evaluate

) their state.
IUT_calcTemp The weighted averaged room tempera-

ture. Each new sample is weighted 20% compartigedTemp The actual physical temperature sensor of the
to the previous calculated value. EKC is hardwired via a resistor to a fixed value of
16.6 °C.
t: Alocal clock used to constrain the allowable slack in
the input of a new temperature. CT.iut: The room temperature sensed by the EKC. l.e.,
the temperature idixedTempCT_IUT in the IUT
The environment model emulates changes in room model, andixedTempCT_ENV in the environment
temperature. The actual room temperature is stored model.

12

IUT_calcTemp The weighted averaged room temperddT_setPoint diff: The temperature should be regulated
ture. Each new sample is weighted 20% compared to be withinIUT _setPoint °C andIUT _setPoint+

to the previous calculated value. diff °C.

t: A local clock controlling the periodic sampling ofon: global boolean variable (shared with component
the'CT_lut variable and fO”OWlng calculation of the IUT _defros) to store the compressor state, ie. tracks
weighted average. whether cooling is currently on or off.

samplingPeriod Constant sampling period (1.2 secélefrosting boolean

onds). global variable (shared with

IUT _defros) to store the defrosting state.

The calculation of the weighted averaged room ter‘gfr_
perature is done by th&/T_MeasurementErcomponent =~
in Figure 11. It periodically samples the received (cal-
ibrated) temperature, and based on this value compy@sRrestartTime A minimum amount of time must
the weigted average, and broadcasts the change via the elapse before the compressor may be switched back

Error tolerance on the threshold values of the calcu-
lated temperature

newTempzction. on (default value is 0 seconds).
newTemp! -y minCoolingTime A minimum amount of time must
O elapse before the compressor may be switched back
IUT_calcTemp:=(fixedTemp+(IUT_CT*100) off (default value is 0 seconds).

+lUT_calcTemp*4)/5
receivedTemp? Sio Xcompr Local clock used to restrict the speed which the

t==samplePeriod c compressor engages/disengages.

t==samplePeriod
t:=0
This component models the compressor functionality

of the EKC. It is triggered by theewTempaction peri-

() t<=samplePeriod odically generated by th&JT_TemperatureMeasurement
t=0 component. Generally cooling must be on when the cal-
initDone?

culated temperature exceeds se¢Pointplusdifferential

and off when below theetPoint Because the exact pre-

cision of the EKC is unknown, the models allows some

Figure 11:lUT_MeasurementErrSampling Temperaturetoleranceterr on the threshold values of the calculated

Sensor. temperature. In consequence, when the calculated tem-
perature is “around” a threshold value, the exact cooling
state of the EKC is unknown. This is modeled through a

A.3 [UT_Compressor non-deterministic choice between switching on (off) the

. compressor or leaving it off (on), see Figure 12.
newTemp? The compressor state is re-evaluated when- P g (on) 9

ieilvdei(r:;rtls dﬁgﬁggg;ﬁ?gﬁﬁ?g:ﬁ changed. This 's If the EKC is defrosting it may not switch on the

compressor.

COn!, COffl: Actions used to switch the compressor re-

lay on or off. e The compressor is switched on by issuing @@n

to the Compressor Relaif it is not defrosting, not
IUT_calcTemp The weighted averaged room tempera- already on, the calculated temperature exceeds the
ture. Each new sample is weighted 20% compared setPointplusdifferential minuserror tolerance, and
to the previous calculated value. minRestartTiméas elapsed.

13

e The compressor is switched off by issuing @eff A.4 [UT_Relay

to the Compressor Relaif it is not defrosting, not
already off, the calculated temperature is below P
setPointplus pluserror tolerance, ananinCooling-

Timehas elapsed.

e Otherwise the state is unchanged.

IUT_calcTemp<IUT_setPoint+err,
on==1,

IUT_calcTemp<IUT_setPoint+ert,

on==1,

Xcompr>= minCoolingTime
Offl!

on:=0,
Xcompr:=0
IUT_calcTemp<IUT_setPoint+err,
on==0

defrosting==0

defrosting==1 newTemp?

newTemp?

initDone?
on:=1

IUT_calcTemp>IUT_setPoint+diff-err,
on==0,
Xcompr>=minRestartTime
COn!

on:=1,
Xcompr:=0

IUT_calcTemp>IUT_setPoint+diff-err,
on==0,
Xcompr<minRestartTime

Figure 12: Compressor Control Mod#&UT_Compressar

N? ROFF triggers the relay to go on, or off respec-

tively.

realOn!, realOffl: controls the physical outputs of the
relay.

t: Local clock used to limit the switching speed of the
relay.

switchDelay models the uncertainty in the exact switch-
ing time of the relay, or time delay through the adap-
tation software.

This template in Figure 13 models a generic on/off
switch (relay) with some time tolerancexitchDelay on
the switching time. It is parameterized through four chan-
nels: inputsRONandROFFare used to trigger the relay
to go on, or off respectively. The outpuealOnandre-
alOff are the physical output actions. Initially the relay
may be on or off. ThegwitchDelay is used to model un-
certainty in the exact swithching time of the relay, or time
delay through the adaptation software. Note that the re-
lay is input enabled such that if instructed to go back off
while in locationOnTriggered(but has not yet fired the
physicalrealOnl) it will go off without changing physical
output state.

There exists four instances of the relay-
template: IUT_compressorRelay IUT_alarmRelay
IUT _defrostRelay and IUT_highAlarmDisplay The
IUT_highAlarmDisplaydoes not correspond to a physical
relay of the EKC but controls an alarm-on/alarm-off
indication in its display.

A.5 High Temperature Alarm Monitoring

newTemp? Input channel used to trigger temperature de-
pendent transitions.

clearHighAlarm User input to acknowledge high alarm
status.

AOnN!, AOffl: Used to switch alarm relay on and off.

HAON!, HAOff!l: Used to switch display alarm indication
on and off.

14

ROFF? the alarm monitor cancels the alarm and moves back
to locationalarmOft

OffTriggered postponed The temperature has now neen too high for
too long, and the alarm should sound unless it has

realOff!
switchDe occured after a defrost cycle. The component will
only stay in thepostponedf this is the case; other-
wise thelUT_Defrostcontroller will be able to syn-
ealOn! CON chronize urgently on thaoDefrostDelay?channel,
t<=switchDelay(_) t=0 after which the alarm sound and display indication
relayOn==1 OnTriggered relayOn==0 are switched on.
initDone? initDone?
soundingDisplaying In this state the alarm is both
RON? sounding and being displayed on the EKC. It remains
in this state until the alarm is cleared manually by the
S28 . .
o) operator. When cleared, the alarm sound is switched
off, but it remain indicated on the display.

Figure 13: Relay Template.
noSoundDisplaying When cleared the alarm remains

indicated in the display until a temperature reading
noDefrostDelay? Input channel used postpone the high ndicates that it has droped below the alarm thresh-
temperature alarm, if raised during or shortly aftera g|q.
defrost cycle.

ta: Clock variable used locally to control time constraintd.6 Defrost Control

in the high alarm monitor. . i]
In the time controlled defrost modithe EKC is defrosting

IUT_calcTemp Global variable containing the averagéhe cooler (evaporator) by activating the defrost relay for
temperature calculated by the EKC. a fixed amount of time. A defrost cycle can be started

i e) manually by the user through key presses on the EKC,
IUT_setPoint+diff+highAlarmDev High alarm threshold - 5, 1omatically periodically. During a defrost cycle the

constant {err) for high alarm status. compressor must remain off, no temperature alarm may

IUT_TADelay Alarm must sound when the temperatur@® 9iven, and high temperature alarms must be postponed
exceeds the high alarm threshold value for more th§AMe amount of time after completion of the defrost cycle.

IUT_DADelaytime units.
. .] A.6.1 IUT_AutoDefrost
The alarm status may be in 5 different locical states
each modeled by a location in the high alarm monitdihe componentUT_AutoDefrosiperiodically starts a de-

component in Figure 14: frost cycle by issuing autoDefrostOnaction, see Fig-
ure 15
alarmOff The temperature is below the high alarm
threshold.

A.7 Defrost Control

triggered The temperature is detected to be above the .
gghigh alarm thrlzzshold but the alarm should not l{ganualDefrostOff,?manuaIDefrostOn?mput channels

raised untilUT_DADelaytime units have elapsed (as used to stop/start a manual defrost cycle.

controlled by the location invariant)- If the tempe_:ra- 1Recall that in the current model temperature and real-titnekc
ture drops to below the threshold in the mean timiegsed defrosting is not possible to test using the avaikdplégpment.

15

newTemp?
IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err

i ?
clearHighAlarm? T caloTemp> clearHighAlarm?
|UT_setPoint+diff+highAlarmDev-
newTemp?
ta:=0

newTemp?

newTemp?
IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
clearHighAlarm?

sounding_Displaying

DefrostDelay?
noDefrostDelay? S5 |, Soun
AOn!

ta>=IUT_TADelay

IUT_calcTemp<=
IUT_setPoint+diff+highAlarmDev-err
ta:=0

alarmOff trigger

ed
ta<=|UT_TADelay
newTemp?
IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err newTemp?

postPoned

clearHighAlarm?

ta:=0

newTemp?
IUT_calcTemp<=IUT_setPoint+diff+hi

IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err

hAlarmDev+En
noSound_Displayin

AOff!

ta:=0

newTemp?

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err

Figure 14: High Temperature Mo

t_defrostPeriod==defrostPeriod
autoDefrostOn!
t_defrostPeriod:=0

initDone? S’\22

YA

t_defrostPeriod<=defrostPeriod

S25

©

Figure 15: Auto-Defrost Control T_AutoDefros}.

autoDefrostOn input used to start an automatic periodi
defrost cycle.

DOffl, Don!: outputs used to switch the defrost relay o
and on.

COffl: output action used to switch compressor off.

nitolT_HighTemperatureAlarin

defrostTime A constant indicating the duration of a de-
frost cycle.

afterDefrostDelay A constant indicating how long high
temperature alarms must be postponed after a defrost
cycle.

The state of the EKC during defrosting is controlled
by the IUT_Defrost component in Figure 16. Initially,
defrosting is off (locationrOFF). When engaged, either
manually or automatically, the component switches off
the compressor relay and switches on the defrost relay,
&nd enters state defrosting (compressor state vargable
is 0, boolean variablelefrostingis 1, and the clock vari-

ﬁblet defrostDurationcontrolling the defrost duration is

reset. The controller remains in defrost modedefrost-
Timetime plus minus some tolerance, or until disengaged
manually through thenanualDefrostOffThen the defrost
relay is swithced off, and the controller enters location

noDefrostDelay!Urgent output channel used to allovfterDefrostDelaythat it occupies for approximatelje-

high temperature alarms.

on: global variable (shared with
IUT_compressorto store the compressor state.

defrosting boolean global variable
IUT_compressorto store the defrosting state.

t_defrostDuration clock used to control the duration of a

frostAlarmDelaytime units. The purpose of this location
is to prevent high temperature alarms from being raised

componerfor at leastdefrostAlarmDelayime units after the system

has defrosted. In contrast ti@FF allows high temper-
ature alarms by allowing synchronization on the urgent

(shared wittthannehoDefrostDelay

A.8 ENV_TempGen

defrost cycle, and the duration of high alarm delaykhis environment component controls execution of the

after a defrost.

main scenarie being tested. It consists of variying the tem-

16

manualDefrostOff? noDefrostDelay!

autoDefrostOn?

autoDefrostOn?

manualDefrostOn?

S25

initDone? manualDefrostOn?

DOn!

24 COoffl S27
{C

OFF
autoDefrostOn?

t_defrostDuration>=
defrostAlarmDelay-20

manualDefrostOn?

S26
]
DOff! o2

afterDefrostDelay

Defrosting
defrosting:=1,

. _defrostDuration<=
L_nd.fgostDuratlon.—O, eflostTime+20

t_defrostDuration>=defrostTime-

defrosting:=0, O
t_defrostDuration:=0

t_defrostDuration<=

defrostAIarmDeIay+20
manualDefrostOff?

manualDefrostOff?

Figure 16: Defrost ControlyT_Defros).

perature linearly-20 degrees. When the temperature ha.9 ENV_TemperatureSinus
reached a maximum an user controliddrmResesignal

is sent, and the cycle continues, see Figure 17.

initDone?

highStop:=20,
lowStop:=-21

continue!

highDone?
t:=0

t>=50
inue!
t<=ENV_TADelay-+(10*2¢R3}inue!
alarmReset!
t:=0
t>=ENV_TADelay+(10%20)

Figure 17: Temperature GenerateNV_-TempGeh

This template belongs to the environment model, and it
simulates the room temperature through sequences of lin-
early increasing or decreasing temperature settings, see
Figure 18. It increases (or decreases, depending on the
direction contained in variablgir) the temperature in the
range fromminTdegrees tanaxTdegrees bgtepdegrees

with a step time of at leastelaytime units. It alternates
between generating the temperature samples in increasing
and decreasing order. When the temperature has changed
in issues areportTempaction and awaits acknowledge-
ment ¢eportDong.

The initiation and direction may be controlled by other
environment components through tbeection variable
and continueaction. Likewise, the temperature change
may be temporarlily suspended when a certain temper-
ature is reached (variabldghStopand lowStoprespec-
tively.

A.10 ENV_DefrostGen

The defrost generator in Figure 19 starts and stops man-
ual defrost with some minimum time seperation between
these relatively rare events.

17

A.11 Initialization

Before a test run the EKC must be brought to a known

initial state and it must be configured with the parameters
reportTemp! 2% used during testing. Those that differ from the default
£ settings must be changed explicitly. Figure 20 shows the

currentinitialization sequence. Firstthe EKCisresete Th

b, EKC then generates alarmRelayOftvent. To speedup
CT<=maxT-step. testing a number time parameters are changed:
_g¥::EN\/_CT+step

dir==1,
ENV_CT>=minT+step,

t>=delay
ENV_CT:=ZENV_CT-step

reportDone?
t:=0

ENV_CT>=highStop
highDone!

¢ the parameteslarmDelayis changed to 1 minute.

ENV_CT>lowStop,
ENV_CT<highStop

ENV_CT<=lowStop
lowDone!

dr=initbirection, e the default defrost period is 1 hour, the minimum al-

dir==0, t:=0
lowed value.

ENV_CT> maxT-step
dir:=1

e the duration of a defrost cycle is changed to 2 min-
utes.

(ENV_CT<=maxT-step) &&
(ENV_CT>=minT+step)

continue?

t:=0

dir==1,
ENV_CT<minT+step
dir.=0

o the alarm delay after defrost is changed to 2 mins.

The defrost mode is configured to be periodietEKC-
Figure 18: Room Temperature SimulatoPars). The setPoint set to 20 degrees. To allow the EKC
(ENV_TemperatureSinQs to settle and stabilize (eg. the weighted average temper-
ature calculation) some time elapses before testing starts
Finally, the testing begins by broadcasting th&éDone
event to all other components.

A.12 |UT_Action

The componentin Figure 22 is a “closure” component that
handles the actions that are so simple to handle that they to

t>=5*30*10 .) L
manualDefrostOn! require a dedicated component. After initialization these
t=0 includealarmResegtchanges irsetPointandalarmDelay

A.13 ENV_Action

The componentin Figure 22 is a “closure” component that
handles the actions that are so simple to handle that they
to require a dedicated component. All actions handled by
this component does not change the state of the environ-

830initDone’?

>=5*30710 ment model.
manualDefrostOff!
t:=0

Figure 19: Manual Defrost Event Generator

(ENV_DefrostGe.

18

A.14 Mode Declarations

1 //OBSERVABLE CHANNELS

chan CT; // 1, tenperature callibration send as input:

int[-20,20] ENV_CT;

chan setEKCPars; // 2, send the follow ng EKC paraneters as input:
5 int EKCPar13 := 1; //change default defrost period to 1hr

int EKCPar14 := 2; //change default defrost duration to 2 mns.
int EKCParl17 := 0; //we have no defrost tenp sensor
int EKCPar18 := 2; //change default defrost alarmdelay to 2 mins.

chan setPoint; // 3, send the target tenp. value as input:
10 int [-6000,5000] ENV_setPoint; //the target tenperature for regul ation
chan setAlarnDelay; // 4, send the tenp.alarmdelay as input:
int ENV_TADel ay: =1»10+*60;
chan nmanual Def r ost On, manual Defrost Of f, al arnReset; // 5, 6, 7
chan conpressor Rel ayOn, conpressorRelayOif; // 8, 9
15 chan defrostRel ayOn, defrostRelayOff; // 10, 11
chan al arnRel ayOn, al arnRel ayOff; // 12, 13
chan hi ghAl arnDi spl ayOn, hi ghAl arnDi spl ayoff; // 14, 15
chan | owAl ar nDi spl ayOn, | owAl arnDi splayCif; // 16, 17
chan EKCReset; // 18
20
/11 NTERNAL CHANNELS | UT MODEL
chan report Tenp, reportDone, recei vedTenp;
broadcast chan init Done;
br oadcast chan newTenp;
25 chan COn, COf; //internal conpressor on/off
chan AOn, AOf; //internal alarnRelay on/off
chan DOn, DOFf; //Internal defrostRelay on/off
chan HADOn, HADOf; //internal highAl arnDisplay On/ O f
chan clearHi ghAlarm //
30 chan autoDefrostOn; //internal channel to activate defrost periodically
urgent chan noDefrostDelay; //internal channel to prevent alarms going on untill defrost delay after defrost
/11 NTERNAL CHANNELS ENV MODEL
chan | owDone, hi ghDone, conti nue;

35 //FI XED CONSTANTS
const conpressor Swi tchDel ay 20;
const al arnBwi t chDel ay 30;
const defrostSwi tchDel ay 40;
const defrostPeriod 10x60+«60x1; //1 hrs

40 const defrostTinme 10«2x60; //2 nins
const defrostAl arnDel ay 10x2+60; //2 mins
const firstAutoDefrostDelay 100; //10 secs.
const sanpl ePeriod 12; //the sanpling frequency on calibration tenperature
const delay 50; //env tenperature change speed (5 sec)

45 const fixedTenp 1670; //The fixed setting of of the air tenperature sensor
const startupDelay 150; //Allow this amount of time to |let EKC stabilize after reset
const err 50; //Error tolerance on calculated tenp 1/5 degree
const diff 200; // the differential
const hi ghAl arnDev 1000; //10 degr.

50 const ninRestartTine 0;const minCoolingTime 0;

// 1UT MODEL VARI ABLES
int [0,90+60+10] | UT_TADelay; // 0-90 nmin
int[-20,20] IUT_CT; //1UT calibrated tenperature
55 int[-6000,5000] |UT cal cTenp;
int [-6000,5000] IUT_setPoint; //the target tenperature for regulation
clock t_defrostDuration; //tracks the duration of a defrost
clock t_defrostPeriod; // tracks the period between autostarts of defrost
cl ock Xconmpr; // ensures min cooling time and min time to restart
60 int [0,1] defrosting; //defrosting or not
int [0,1] on; //conpressor relay on
/1 ENVI RONMENT MODEL VARI ABLES
int [-22,22] highStop, | owstop;

Figure 23: Model Global Declarations.

19

S19

1 EKCReset?

alarmRelayOff!

5
C
IUT_setPoint:=300,

IUT_calcTemp:=fixedTemp,
IUT_TADelay:=10*60*30

S19

6
@ t<startupDelay*2
EKCReset!

t=0

alarmRelayOff?
=0 setAlarmDelay?

t_defrostPeriod:=0
t<startupDelay*2

t>=startupDelay
setAlarmDelay!
ENV_TADelay:=1*10*60,
t=0

t<startupDelay*2
t>=startupDelay
setEKCPars!

t=0

setAlarmDelay_1min

setNoDefrostSensor

setPoint?

setSetPoint_20grd t<startupDelay*2
t>=startupDelay
setPoint!
ENV_setPoint:=2000,
=0,

4 7Xcompr:=0

. t<=startupDelay*2
initbone?

7

initDone!
2

(a) (b)

Figure 20: Initialization Sequence EGvINIT (a), and
IUT_INIT (b)).

compressorRelayOff!
alarmReset?

compressorRelayOn!

setAlarmDelay? setPoint?
IUT_setPoint:=ENV_setPoint

setEKCPars?

highAlarmDisplayOn!

Figure 21:1UT _Action Handling of simple actions.

20

IUT_TADelay:=ENV_TADelay

IUT_setPoint:=ENV_setPoint

defrostRelayOff?

defrostRelayOn?

IarmDispIayOn?

alarmRelayOn

?
compressorRelayon? highAlarmDisplayOff?

Figure 22:ENV_Action Handling of simple actions.

