
Testing Real-Time Embedded Software using UPPAAL-TRON
an industrial case study

Kim G. Larsen and Marius Mikucionis and Brian Nielsen and Arne Skou

Center of Embedded Software Systems, CISS
Aalborg University

Fredrik Bajersvej 7B
DK-9220 Aalborg, Denmark

Email: {kgl | marius | bnielsen | ask}@cs.aau.dk

Abstract

UPPAAL-TRON is a new tool for model based online
black-box conformance testing of real-time embedded
systems specified as timed automata. In this paper we
present our experiences in applying our tool and technique
on an industrial case study. We conclude that the tool and
technique is applicable to practical systems, and that it has
promising error detection potential and execution perfor-
mance.

1 Introduction

Model-based testing is a promising approach for improv-
ing the testing of embedded systems. Given an abstract
formalized behavioral model (ideally developed as the de-
sign process) of aspects of the implementation under test
(IUT), a test generation tool automatically explores the
model to generate test cases that can be executed against
the IUT.

UPPAAL is a mature integrated tool environment for
modeling, verification, simulation, and testing of real-
time systems modeled as networks of timed automata [7].
UPPAAL-TRON (TRON for short) is a recent addition
to the UPPAAL environment. It performs model-based
black-box conformance testing of the real-time con-
straints of embedded systems. TRON is anonline testing

tool which means that it, at the same time, both generates
and executes tests event-by-event in real-time. TRON rep-
resents a novel approach to testing real-time systems, and
is based on recent advances in the analysis of timed au-
tomata. Applying TRON on small examples has shown
promising error detection capability and performance.

In this paper we present our experiences in applying
TRON on an industrial case study. Danfoss is a Danish
company known world-wide for leadership in Refrigera-
tion & Air Conditioning, Heating & Water and Motion
Controls [2]. The IUT, EKC 201/301, is an advanced
electronic thermostat regulator sold world-wide in high
volume. The goal of the case study is to evaluate the fea-
sibility of our technique on a practical example.

TRON replaces the environment of the IUT. It performs
two logical functions, stimulation and monitoring. Based
on the timed sequence of input and output actions per-
formed so far, it stimulates the IUT with input that is
deemed relevant by the model. At the same time it mon-
itors the outputs and checks the conformance of these
against the behavior specified in the model.

To perform these functions TRON computes the set of
states that the model can possibly occupy after the timed
trace observed so far. Thus, central to our approach is the
idea of symbolically computing the current possible set of
states. For timed automata this was first proposed by Tri-
pakis [15] in the context of failure diagnosis. Later that

1

work has been extended by Krichen and Tripakis [8] to
online testing from timed automata. The monitoring as-
pect of this work has been applied to NASA’s Mars Rover
Controller where existing traces are checked for confor-
mance against given execution plans translated into timed
automata [14]. In contrast, the work presented in this pa-
per performs real-time online black-box testing (both real-
time stimulation and conformance checking) for a real in-
dustrial embedded device consisting of hardware and soft-
ware.

Our approach, previously presented in [4, 12, 10]; an
abstract appeared in [11]), uses the mature UPPAAL lan-
guage and model-checking engine to performrelativized
timed input/output conformance, meaning that we take
environment assumptions explicitly into account.

Online testing based on timed CSP specifications has
been proposed and applied in practice by Peleska [13].

In Section 2 we introduce the concepts behind our test-
ing framework. Section 3 describes the case, Section 4
our modeling experiences, and Section 5 performance re-
sults. Section 6 concludes the paper. For the keen re-
viewer the entire model is included as an appendix avail-
able at [9].

2 Testing Framework

The most important ingredients in our framework is rela-
tivized conformance, timed automata, environment mod-
eling, and the test generation algorithm.

2.1 Relativized Conformance Testing

The goal of (relativized) conformance testing is to check
whether the behavior of the IUT is correct according to
its specification under assumptions about the behavior of
the actual environment in which it is supposed to work.
In general only the correctness in this environment needs
to be stabilized, or it may be too costly or ineffective to
achieve for the most general environment. It further turns
out that explicit environment models have further practi-
cal applications.

Figure 1 shows the test setup. The test specification is a
network of timed automata partitioned into a model of the
environment of the IUT and the IUT. TRON replaces the
environment of the IUT, and based on the timed sequence

of input and output actions performed so far, it stimulates
the IUT with input that is deemed relevant by the envi-
ronment part of the model. Also in real-time it checks
the conformance of the produced timed input output se-
quence against the IUT part of the model. We assume
that the IUT is a black-box whose state is not directly ob-
servable. Only input/output actions are observable. The
adaptor is an IUT specific hardware/software component
that connects TRON to the IUT. It is responsible for trans-
lating abstract input test events into physical stimuli and
physical IUT output observations into abstract model out-
puts.

ImplementationEnvironment
assumptions specification

Simulated Environment

in!

out!

in?

"in"

out? Under Test

Implementation

output

input

"out"

A
d

a
p

te
r

A
d

a
p

te
r

A
P

I

T−UPPAAL engine

P
h

y
s
ic

a
l
A

P
I

Figure 1: TRON test setup.

We extended the input/output conformance relation
ioco [16] between a formal specification and its black-
box implementation to the timed setting and relatively to
a given environment.

Relativized timed input/output conformance
rtioco [5] is defined formally in Equation 1.

i rtiocoe s = ∀σ ∈ (s, e). out
(

(i, e) after σ
)

⊆
out

(

(s, e) after σ
)

(1)

Intuitively rtiocoe means that after executing any
timed input/output traceσ that is possible in the composi-
tion of the system specifications and environment spec-
ification e, the implementationi in environmente may
only produce outputs and timed delays which are included
in the specifications under environmente. The output
inclusion in the relation guarantees both functional and
time-wise correctness. The IUT is not allowed produce
any output actions (including the special output of letting
time pass and not producing outputs in time) at a time they
could not be done by the specification.

2

2.2 Timed Automata

We assume that a formal specification can be modelled as
a network of timed automata. We explain timed automa-
ton by example, and refer to [1] for formal syntax and se-
mantics. A timed automaton is essentially a finite state
machine with input/output actions (distinguised respec-
tivelyt by ? and !) augmented with a set of special real-
valued clock variables that may be used to guard when
transitions may take place. Figure 2(a) shows an UPPAAL

automaton of a simple cooling controllerCr wherex is
real-valued clock andr is an integer constant. Its goal is to
control and keep the room temperature inMedrange. The
controller is required: 1) to turnOn the cooling device
within an allowed reaction timer when the room temper-
ature reachesHigh range, and 2) to turn itOff within r

when the temperature drops toLow range.

In the encircled initial locationoff, it forever awaits
temperature input samplesLow, Med and High. When
Cr receivesHigh it resets the clockx to zero and moves
to locationup, where the location invariantx ≤ r allows
it to remain for at mostr time units. Edges may also have
guards which define when the transition is enabled (see
e.g. in Figure 2(c)). At latest whenx reachesr time units
the outputon is generated. If aLow is received in the
mean time it must go back off. Transitions are taken in-
stantaneously and time only elapses in locations.

In location off the automaton reacts non-
deterministically to inputMed: Cr may choose either
to take a loop transition and stay in locationoff or
move to locationup. WhenCr is used as a specifica-
tion a relativised input/output conforming controller
implementation may choose to perform either. Thus
non-determinism gives the implementation some free-
dom. There are two sources of non-determinism in timed
automata: 1) in the timing (tolerances) of actions as
allowed by location invariants and guards, and 2) in the
possible state after an action.

Timed automata may be composed in parallel, commu-
nicate via shared variables and synchronize on matching
input/output transitions. In aclosedtimed automata net-
work all output action transitions have a corresponding
input action transition. UPPAAL supports timed automata
networks with additional integer variable types, broadcast
(one-to-many) synchronizations and other extensions.

2.3 Environment Modeling

For testing purposes we construct closed timed automata
networks which are partitioned into two separate parts:
the IUT and its environment, both required to be input en-
abled. The test specification also specifies which actions
are observable inputs and outputs. These must be consis-
tent with the partitioning.

Figures 2(b) to 2(d) shows three possible environment
assumptions forCr. Figure 2(b) shows the universal (most
general) and completely unconstrained environmentE0

where room temperature may change unconstrained and
may change (discretely) with any rate. However, this may
not reflect the reality as temperature normally evolves
slowly and continuously, e.g., it cannot change drastically
from Low to High and back unless throughMed.

Figure 2(c) shows the environment model where the
temperature changes throughMedrange and with a speed
bounded byd. Figure 2(d) shows an even more con-
strained environmentE2 that tests the controller under the
assumption that the cooling device works, e.g., tempera-
ture never increases when cooling is on. More restrictive
environments reduce the effort and cost for testing, but
notice thatE2 andE1 have less discriminating power and
thus may not reveal faults found under more discriminat-
ing environments. However, if the erroneous behavior is
impossible in the actual operating environment the error
may irrelevant.

For example, supposeCr is implemented by a timed

automaton equal toCr, except the transitionup
Low
−−−→ dn

is missing. This error can be detected underE0 and
E3d<r

1
but not underE2 by executing the timed trace

d·Med!·d·High!·d·Med!·d·Low!·ε and observing output
On shortly afterε ≤ r instead ofOff. Of course, if the
implementation can be fast enough to issueOn just after
the firstMed to break our trace, then onlyE0 is capable of
sufficiently fast tracesHigh!·Low!·ε to test that transition.

In the extreme the environment behavior can be so re-
stricted that it only reflects a single test scenario that
should be tested. In our view, the environment assump-
tions should be specified explicitly and separately.

2.4 Online Testing Algorithm.

Here we outline the algorithm behind TRON informally.
In order to simulate the environment and monitor the im-

3

off

up
x<=r

dn
x<=r

on

High?
x:=0

Med?

Med?
x:=0

On!
x:=0

Med?
x:=0

Low?

Low?
x:=0

High? Med?

Off!
x:=0

High?
x:=0

Low?
x:=0Med? Med?

High?Low?

(a) Cr.

On?

Off?

Low!

Med!

High!

(b) E0.

H

M

L

On?Off?

y>=d
Low!
y:=0

y>=d
Med!
y:=0

y>=d
High!
y:=0

y>=d
Med!
y:=0

Off? On?

Off? On?

(c) Ed
1

.

OnHigh
y<=step

OnMed
y<=step

OnLowOffLow
y<=step

OffMed
y<=step

OffHigh

On?

y>=d
Low!
y:=0

y>=d
Med!
y:=0

y>=d
High!
y:=0

y>=d
Med!
y:=0

Off?

On?

Off?

On?

Off?

(d) E
d,s
2

.

Figure 2: Timed automata of simple controller and various environments.

plementation, TRON computes and maintains the set of
symbolic states that can be reached in the (composed)
specification model after the timed trace observed so far
by using the UPPAAL engine to traverse internal, delay
and observed action transitions. A symbolic state is a par-
ticular set of inequations on clock variables that denotes a
potentially infinite set of concrete states.

Based on this state-set, TRON checks whether the ob-
served output actions and timed delays are permitted in
the specification. In addition TRON computes the set of
possible inputs that may be offered to the implementa-
tion. TRON randomly chooses between letting time pass
by some (random) amount and silently observing the IUT,
or offering a randomly selected relevant input.

Consider the system(Cr, Ed
i). The initial state-set is

the single symbolic state:{〈off ,L, x = 0, y = 0〉}. After
a delay ofd or more,{Med} is the set of possible inputs.
Suppose that TRON issuesMed after δ time units. The
state-set now consists of two states:{〈off ,M , x = δ, y =
0, t = δ〉, 〈up,M , x = 0, y = 0〉}. If On is received later
the first element in the state-set will be eliminated.

Currently TRON is available to download via the Inter-
net free of charge for evaluation, research, education and
other non-commercial purposes [9]. TRON supports all
UPPAAL modeling features including non-determinism,
provides timed traces as test log and a verdict as the an-
swer to rtioco relation.

3 The Danfoss EKC-201 Refrigera-
tion Controller

We applied UPPAAL-TRON on a first industrial case
study provided by Danfoss Refrigeration Controls Divi-
sion. The EKC controls and monitors the temperature
of industrial cooling plants such as cooling and freezer
rooms and large supermarket refrigerators.

3.1 Control Objective

The main control objective is to keep the refrigerator room
air temperature at a user defined set-point by switching a
compressor on and off. It monitors the actual room tem-
perature, and sounds an alarm if the temperature is too
high (or too low) for too long a period. In addition it offers
a myriad of features (e.g. defrosting and safety modes in
case of sensor errors) and approximately 40 configurable
parameters.

The EKC obtains input from a room air temperature
sensor, a defrost temperature sensor, and a two-button
keypad that controls approximately 40 user configurable
parameters. It delivers output via a compressor relay, a de-
frost relay, an alarm relay, a fan relay, and a LED display
unit showing the currently calculated room air tempera-
ture as well as indicators for alarm, error and operating
mode.

Figure 3 shows a simplified view of control objective,
namely to keep the temperature withinsetPoint and
setPoint+differential degrees. The regulation is to be

4

based on an weighted averaged room temperatureTn

calculated by the EKC by periodically sampling the air
temperature sensor such that a new sampleT is weighted
by 20% and the old averageTn−1 by 80%:

Tn =
Tn−1 ∗ 4 + T

5
(2)

A certain minimum duration must pass between restarts
of the compressor, and similarly the compressor must re-
main on for a minimum duration. An alarm must sound if
the temperature increases (decreases) above (below)high-
AlarmLimit (lowAlarmLimit) for alarmDelaytime units.
All time constants in the EKC specification are in the or-
der of seconds to minutes, and a few even in hours.

Basic Refrigeration Control
Temperature

Time

setpoint

setpoint
+differential

highAlarm
Deviation

lowAlarm
Limit

highAlarm
Limit

lowAlarm
Deviation

differential

start
compressor

stop
compressor

start
compressor

stop
compressor

start
alarm

normal min restart
time not elapsed

min cooling
time not elapsed

alarm delay

Figure 3: EKC Main Control Objective.

3.2 Test Adaptation.

A few comments are necessary about the test adaptor for
the EKC since it determines what and how precise the IUT
can be controlled and observed.

Internally, the EKC is organized such that nearly every
input, output and important system parameter is stored
in a so-called parameter database in the EKC that con-
tains the value, type and permitted range of each vari-
able. The parameter database can be indirectly accessed
from a visual Basic API on a MS Windows XP PC host
via monitoring software provided by Danfoss. The EKC
is connected to a MS Windows XP PC host, first via a
LON network from the EKC to a EKC-gateway, and from
there via a RS-232 serial connection. The required hard-
ware and software were provided by Danfoss. As rec-
ommended by Danfoss we implemented the adaptation

software by accessing the parameter database using the
provided interface. However, UPPAAL-TRON only ex-
ists in UNIX versions, and thus it required a second host
computer connected using a TCP/IP connection properly
configured to prevent unnecessary delaying of small mes-
sages. The adaptation software thus consists of a “thin”
visualBasic part, and a C++ part interfacing to the TRON
native adaptation API. It is important to note that this long
chain adds both latency and uncertainty to the timing of
events.

More seriously it turned out that the parameters repre-
senting sensor inputs are read-only, meaning that the test
host cannot change these to emulate changes in sensor-
inputs. Therefore some functionality (temperature based
defrosting, sensor error handling, and door open control)
related to these is not modeled and tested. The main sen-
sor, the room temperature, is hardwired to a fixed setting
via a resistor, but the sensed room temperature can be
changed indirectly via a writable calibration parameter in
the range±20 ◦C.

It quickly became evident to us that the monitoring
software was meant for “coarse grained” event logging
and supervision by an operator, not as a (real-time) test
interface. An important general lesson learned is that an
IUT should provide an test interface with suitable means
for control and observation. We are collaborating with
Danfoss to provide a better test interface for future ver-
sions of the product.

3.3 Model Structure

We modeled a central subset of the functionality of the
EKC as a network of UPPAAL Timed Automata, namely
basic temperature regulation, alarm monitoring, and de-
frost modes with manual and automatic controlled (fixed)
periodical defrost (de)activation. The allowed timing tol-
erances and timing uncertainties introduced by the adap-
tation software is modeled explicitly by allowing output
events to be produced within a certain error envelope.
For example, a tolerance of 2 seconds is permitted on
the compressor-relay. In general, it may be necessary to
model the adaptation layer as part of the model for the
system under test. The abstract input/output actions are
depicted in Figure 4.

From the beginning it was decided to challenge our
tool. Therefore we decided that the model should be re-

5

EKC

defrostRelayOn!

defrostRelayOff!

alarmRelayOn!

alarmRelayOff!

compressorRelayOn!

compressorRelayOff!

highAlarmDisplayOn!

highAlarmDisplayOff!

ekcReset?

manualDefrostOn?

manualDefrostOff?

CT(int -20..20)?

setpoint(int -50..60)?

setAlarmDelay(int 0..90)?

Figure 4: Model inputs and outputs.

sponsible of tracking the temperature as calculated by the
EKC and base control actions on this value. To make
this work, the computation part of the model and also
its real-time execution must be quite precise. This part
of the model thus approximates the continuous evolu-
tion of a parameter, and almost approaches a model of
a hybrid system, which is on the limit of the capability
of timed automata. An alternative would be to monitor
the precision of the calculated temperature in the adapta-
tion software and let that generate events (e.g.,alarmLim-
itReached!) to the model as threshold values are crossed.
This would yield a simple and more abstract “pure” event
driven model.

The model consists of 18 concurrent components
(timed automata), 14 clock variables, and 14 discrete in-
teger variables, and is thus quite large. The main compo-
nents and their dependencies are depicted in Figure 5 and
explained below.

Output

Input

IUT-Model

alarm
Relay

compressor
Relay

tempMeasurement

compressor

newTempnewTemp

on/off on/off

Environment

TemperatureGenerator

defrost
Relay

defrost

autoDefrost

on/off

defrostEventGen

alarm
Display

on/off

highTempAlarm

Figure 5: Main Model Components

The Temperature Measurement component period-
ically samples the temperature sensor and calculates a
new estimated room air temperature. TheCompres-
sor component controls the compressor relay based on
the estimated room temperature, alarm and defrost sta-

tus. TheHigh Temperature Alarm component moni-
tors the alarm state of the EKC, and triggers the alarm
relay if the temperature is too high for too long. TheDe-
frost component controls the events that must take place
during a defrost cycle. When defrosting the compres-
sor is disengaged, and alarms suppressed untildelayAf-
terDefrost time units after completion. Defrosting may
be started manually by the user, and is engaged automat-
ically with a certain period. It stops when the defrosting
time has elapsed, or when stopped manually by the user.
The Auto Defrost component implements automatic pe-
riodic time based defrosting. It automatically engages the
defrost mode periodically. TheRelay component mod-
els a digital physical output (compressor relay, defrost re-
lay, alarm relay, alarm display) that when given a com-
mand switches on (respectively off) within a certain time
bound. TheTemperature Generator is a part of the envi-
ronment that simulates the variation in room temperature,
currently alternatingly increases the temperature linearly
between minimum and maximum temperature, and the re-
verse. Finally, theDefrost Event Generator environment
component randomly issues user initiated defrost start and
stop commands.

4 Component Modeling and Re-
verse Engineering

The modeling effort was carried out by computer scien-
tists without knowledge of that problem domain based on
the EKC documentation provided by Danfoss. It only
consisted of the internal requirements specification and
the users manual, both in informal prose. In addition we
had access to questioning the Danfoss Engineers via email
and two meetings, but no design documents or source
code were available. In addition we were given documen-
tation about the EKC PC-monitoring software and associ-
ated API allowing us to write the adaptation software.

In general the documentation was insufficient to build
the model. In part this was due to a lack of a detailed un-
derstanding of the implicit engineering knowledge of the
problem domain and how previous generations of con-
trollers worked. But more importantly much functional
behavior and especially timing constraints were not ex-
plicitly defined. In general the requirements specification

6

did not state any timing tolerances, e.g, the allowed la-
tency on compressor start and stop when the calculated
temperature crosses the lower or higher thresholds.

Therefore the modeling involved a lot of experimen-
tation to deduce the right model and time constraints,
which to some extent best can be characterized as re-
verse engineering or model-learning [3]. Typically the
work proceeded by formulating a hypothesis of the be-
havior and timing tolerances as a model (of the selected
aspect/sub functionality), and then executing TRON to
check whether or not the EKC conformed to the model.
If TRON gave a fail-verdict the model was revised (either
functionally, or by loosening time tolerances). If it passed
the timing tolerances were tightened until it failed. The
process was then iterated a few times, and the Danfoss
engineers were consulted to check whether the behavior
of the determined model was acceptable.

In the following we give a few examples of this proce-
dure.

4.1 Room Temperature Tracking.

The EKC estimates the room temperature from Equa-
tion 2 based on periodically samples of the room temper-
ature sensor, and bases most control actions like switch-
ing the compressor on or off on this value. However, the
requirements only requires a certain precision on the sam-
pling accuracy of the temperature sensors (±0.5 ◦C) and a
sensor sampling period of at most 2 seconds, and nothing
about how frequently the temperature should be reevalu-
ated. This led to a series of tests where the temperature
change rate, the sampling period, and temperature toler-
ance were changed to determine the best matching config-
uration. The model now uses a period of 1.2 seconds, and
allows± 2 seconds tolerance on compressor start/stop.

4.2 Alarm Monitoring

Executing TRON using our first version of the high tem-
perature alarm monitor caused TRON to give a fail-
verdict: The EKC did not raise alarms as expected. The
model shown in Figure 6 assumed that the user’s clearing
of the alarm would reset the alarm state of the EKC com-
pletely. The consequence of this is that the EKC should
raise a new alarm withinalarmDelayif the temperature
remained above the critical limit. However, it did not, and

closer inspection showed that the EKC was still indicat-
ing high temperature alarm in its display, even though the
alarm was cleared by the user. The explanation given by
Danfoss was that clearing the alarm only clears the alarm
relay (stopping the alarm noise), not the alarm state which
remains in effect until the temperature drops below the
critical limit. The model was then refined, and includes
thenoSoundDisplayinglocation in Figure 7.

4.3 Defrosting and Alarm Handling.

A similar discrepancy between expected and actual be-
havior detected by TRON was in the way that the alarm
and defrost functions interacts. After a defrost the room
temperature naturally risks being higher than the alarm
limit, because cooling has been switched off during the
defrost activity for an extended period of time. Therefore
a high temperature alarm should be suppressed in this sit-
uation which can be done by configuring the EKC param-
eteralarmDelayAfterDefrost. However, reading different
sections of the documentation gives several possible in-
terpretations:

1. When defrosting stops and the temperature is high,
alarms must be postponed foralarmDelayAfterDe-
frost in addition to the originalalarmDelay, i.e.,
never alarms during a defrost.

2. Same as above (1) except it is measured from the
time where the high alarm temperature is detected,
even during a defrost.

3. When defrosting stops and the temperature is high,
alarms must be suppressed foralarmDelayAfterDe-
frost, i.e.,alarmDelayAfterDefrostreplaces the orig-
inal alarmDelayafter a defrost until the the temper-
ature becomes below critical, after which the normal
alarmDelayis used again.

The engineering department could not give an imme-
diate answer to this (without reluctantly consulting old
source code), but based on their experiences and require-
ments for other products they believed that 3 is the correct
interpretation. Note that we are not suggesting that the
product was implemented without a clear understanding
of the intended behavior, only that it was not clear from
its documentation.

7

alarmOff
triggered

ta<=IUT_TADelay

Sounding

S6

S7

IUT_calcTemp>
IUT_setPoint+diff+highAlarmDev-err
newTemp?
ta:=0

ta==IUT_TADelay
AOn!

ta:=0

clearHighAlarm?

AOff!
ta:=0

IUT_calcTemp<=
IUT_setPoint+diff+highAlarmDev-err

newTemp?

initDone?
ta:=0 IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err

newTemp?

ta:=0

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
newTemp?

clearHighAlarm? clearHighAlarm?

Figure 6: First High Temperature Monitor.

alarmOff triggered
ta<=IUT_TADelay

S5

S6

S7

sounding_Displaying

noSound_Displaying

S8

S29

postPoned

IUT_calcTemp>
IUT_setPoint+diff+highAlarmDev-err
newTemp?
ta:=0

noDefrostDelay?

clearHighAlarm?

AOff!

ta:=0

IUT_calcTemp<=
IUT_setPoint+diff+highAlarmDev-err

newTemp?

ta:=0 initDone?
ta:=0

IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err
newTemp?

ta:=0

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
newTemp?

clearHighAlarm? clearHighAlarm?

HADOn!

IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err

newTemp?

ta:=0

HADOff!
ta:=0

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
newTemp?

AOn!ta>=IUT_TADelay

IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err

newTemp?

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
newTemp?

clearHighAlarm?

Figure 7: Second High Temperature Monitor

8

4.4 Defrost Time Tolerance.

Another discrepancy TRON found was that defrosting
started earlier than expected or was disengaged later. It
turned out that the internal timer in the EKC responsible
for controlling the defrost period has a very low preci-
sion (probably because defrosting is rare (e.g.,ȯnce a day)
and has along duration (lasts several hours)). The default
tolerance used in the model on the relays thus had to be
further relaxed.

5 Quantitative Evaluation

During a test-run, the testing algorithm computes, on a per
timed event basis, the set of symbolic states in the model
that can be reached after the timed event trace observed
so far, and generates stimuli and checks the validity of
IUT-outputs based on this state-set.

Since we use a non-deterministic model to capture the
timing and threshold tolerances of the IUT and since in-
ternal events in a concurrent model may be executed in
(possibly combinatorically many) different orders, this set
will usually contain numerous possible states. The state-
set reflects the allowed states and behavior of the IUT, and
intuitively, the larger the state-set, the more uncertain the
tester is about the state of the implementation.

Since we generate and execute tests in real-time the
state-set must also be updated in real-time. Obviously,
the model and the state-set size affects how much com-
putation time this takes, and one might question wheter
doing this is feasible in practice. In the following we in-
vestigate whether real-time online testing is realistic for
practical cases, like the Danfoss EKC.

Figure 8 plots the evolution of the state-set size (num-
ber ofsymbolic states) for a sample test run. Also plotted
in the graph is the input temperature, temperature thresh-
old value for high temperature (compressor must switch
on) and high temperature alarm (the alarm must sound if
it remains high for more thanalarmDelay(120 sec) time
units.

It is interesting to observe how the state-set size de-
pends on the model behavior. For instance, the first larger
increase in state-set size occurs after 55 seconds. At this
time the temperature crosses the limit where the compres-
sor should switch on. But due to the timing tolerances,

the model does not “know” if the compressor-relay is in
on-state or off-state, resulting in a larger state-set. The
state-set size then decreases again, only to increase again
at 93 seconds at which a manual defrost period is started.
The next major jump occurs at 120 seconds and corre-
lates nicely with the time where the temperature crosses
high-alarm limit and the alarm monitor component should
switch intotriggeredstate. Similarly, 260 second into the
run, the temperature drops below the threshold, and there
is no uncertainty in the alarm state. The fluctuations inside
this period is caused by a manually started and stopped
defrost session. In fact 5 defrost cycles are started and
stopped by the tester in this test run. The largest state-set
size (960 states) occurs at 450 seconds and correlates to
the time-out of a defrost cycle. There is a large tolerance
on the timer controlling defrosting, and hence the model
can exhibit many behaviors in this duration.

The state-set contains most of the time less than a few
hundred states. Exploring these is unproblematic for a
modern model-checking engine employed by TRON. Fig-
ure 9 and plots the the cpu-time required to update the
state-set for delay-actions (typically the most expensive
operation) for 5 test-runs of our model on a modern PC
(Dual Pentium Xeon 2.8 GHz CPU (one utilized)). It can
be seen that the far majority of state set sizes are reason-
ably small. Updating even medium sized state-sets with
around a 100 states requires only a few milli-seconds of
cpu-time. The largest encountered state-sets (around 3000
states) are very infrequent, and requires around 300 milli-
seconds.

Real-time online testing thus appear feasible for a
large range of embedded systems, but also that very non-
deterministic model such as the EKC-model may limit the
granularity of time constraints that can be checked in real-
time.

6 Conclusions and Future Work

Our modeling effort shows that it is possible to accurately
model the behavior of EKC like devices as Timed Au-
tomata and use the resulting model as a test specification
for online testing.

It is possible to model only selected desired aspects of
the system behavior, i.e. a complete and detailed behav-
ioral description is not required for system testing. Thus,

9

Figure 8: Evolution of State-set.

0 500 1000 1500 2000 2500 3000 3500

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00

Initial state set size

A
ve

ra
ge

 a
fte

rD
el

ay
 C

P
U

 ti
m

e,
 m

ic
ro

se
co

nd
s

Figure 9: Cost of State-set Update: Delay action

model based testing is feasible even if a clear and com-
plete formal model is not available from the start, al-
though it will clearly benefit from more explicit modeling
during requirements analysis and system design.

In the relative short testing time, we found many dis-
crepancies between our model and the implementation.
Although many of these were caused by a wrong model
due to incomplete requirements or mis-interpretations of
the documentation, and not actual implementation errors,
our work indicates that online testing seems an effec-
tive technique to find discrepancies between the expected
model behavior and actual behavior of the implementa-
tion under test. Thus there are also reasons to believe that
it is effective in detecting actual implementation errors.

It should be mentioned that the EKC is a mature prod-
uct that has been produced and sold for a number of years.
Future work includes testing a less mature version of a
EKC like controller.

Performance-wise we conclude that real-time online
testing appear feasible for a large range of embedded sys-
tems. To target even faster real-time systems with even
time constraints in the (sub) milli-second range we plan
to separate our tool into two parts, an environment emu-
lation part, and a IUT monitoring part. Monitoring need
not be performed in real-time, and may in the extreme be
done offline. The model that will need to be interpreted
in real-time is thus much smaller and can be done much
faster.

We are currently extending our tool with coverage mea-
surements, coverage based guiding, and features for er-
ror diagnosis. These features include importing the trace
collected during a test run into UPPAAL and from here
running it against the IUT model. It can also be re-
played against the actual IUT(within the limits of its non-
determinism).

Acknowledgments

We would like to thank Danfoss for providing the case-
study and especially to Finn Andersen, Peter Eriksen, and
Søren Winkler Rasmussen from Danfoss for engagement
and constructive information and help during the project.

10

References

[1] R. Alur and D. Dill. A Theory of Timed Au-
tomata.Theoretical Comput. Sci., 126(2):183–235,
Apr. 1994.

[2] D. A/S. Danfoss internet website,
http://www.danfoss.dk.

[3] T. Berg, B. Jonsson, M. Leucker, and M. S. Au-
gust. Insights to Angluin’s Learning. InInterna-
tional Workshop on Software Verification and Vali-
dation (SVV 2003), 2003.

[4] E. Brinksma, K. Larsen, B. Nielsen, and J. Tret-
mans. Systematic Testing of Realtime Embedded
Software Systems (STRESS), March 2002. Re-
search proposal submitted and accepted by the
Dutch Research Council.

[5] K. Larsen, M. Mikucionis, and B. Nielsen. Online
testing of real-time systems usingUPPAAL. In For-
mal Approaches to Testing of Software, Linz, Aus-
tria, September 21 2004. Lecture Notes in Computer
Science.

[6] K. Larsen, M. Mikucionis, and B. Nielsen. Online
Testing of Real-time Systems using Uppaal: Status
and Future Work. In E. Brinksma, W. Grieskamp,
J. Tretmans, and E. Weyuker, editors,Dagstuhl Sem-
inar Proceedings volume 04371: Perspectives of
Model-Based Tes ting, Schloss Dagstuhl, D-66687
Wadern, Germany., September 2004. IBFI gem.
GmbH, Schloss Dagstuhl.

[7] K. Larsen, P. Pettersson, and W. Yi. UppAal in a
Nutshell. International Journal on Software Tools
for Technology Transfer, 1(1):134–152, 1997.

[8] M. Krichen and S. Tripakis. Black-box Confor-
mance Testing for Real-Time Systems. InModel
Checking Software: 11th International SPIN Work-
shop, volume LNCS 2989. Springer, April 2004.

[9] M. Mikucionis. Uppaal tron internet page,
http://www.cs.aau.dk/˜marius/tron.

[10] M. Mikucionis, K. Larsen, and B. Nielsen. Online
on-the-fly testing of real-time systems. Technical

Report RS-03-49, Basic Research In Computer Sci-
ence (BRICS), Dec. 2003.

[11] M. Mikucionis, B. Nielsen, and K. Larsen. Real-
time system testing on-the-fly. Inthe 15th Nordic
Workshop on Programming Theory, number 34 in B,
pages 36–38, Turku, Finland, October 29–31 2003.
Åbo Akademi, Department of Computer Science,
Finland. Abstracts.

[12] M. Mikucionis and E. Sasnauskaite. On-the-fly test-
ing using UPPAAL . Master’s thesis, Department of
Computer Science, Aalborg University, Denmark,
June 2003.

[13] J. Peleska. Formal Methods for Test Automation -
Hard Real-Time Testing of Controllers f or the Air-
bus Aircraft Families. InIntegrated Design and Pro-
cess Technology (IDPT-2002), 2002.

[14] M. K. S. Bensalem, M. Bozga and S. Tripakis. Test-
ing conformance of real-time applications with au-
tomatic generation of ob servers. InRuntime Verifi-
cation 2004, 2004.

[15] S. Tripakis. Fault Diagnosis for Timed Automata.
In Formal Techniques in Real-Time and Fault Tol-
erant Systems (FTRTFT’02), volume LNCS 2469.
Springer, 2002.

[16] J. Tretmans. Testing concurrent systems: A formal
approach. In J. Baeten and S. Mauw, editors,CON-
CUR’99 – 10th Int. Conference on Concurrency
Theory, volume 1664 ofLecture Notes in Computer
Science, pages 46–65. Springer-Verlag, 1999.

11

A Model WalkThrough

This section offers detailed technical model doc-
umentation and is organized by a by-component
walk-through of the model. Each subsection de-
scribes one component (or closely related compo-
nents). First the channels, variables and constants
used in the component is defined, and then the be-
havior is explained. One model time unit corresponds
to 0.1 seconds of real-time. The model is available at
http://www.cs.aau.dk/∼bnielsen/compressor.xml.

A.1 Calibrated Temperature Communica-
tion

CT!, CT?: Communicates a change in callibration tem-
perature±20 ◦C between ENV model and IUT
model.

reportTemp?, reportDone!: Used to synchronize the
communication of environment temperature
with other environment components, specifically
ENV TemperatureSinus.

receivedTemp!: Used to indicate to the
temperature calculation component
IUT TemperatureMeasurementErrthat a new
temperature value has been received.

fixedTemp: The actual physical temperature sensor of the
EKC is hardwired via a resistor to a fixed value of
16.6 ◦C.

CT env: The room temperature stored by the environ-
ment model (or more precisely, the callibration offset
from the fixed input temperature sensor).

CT iut: The room temperature sensed by the EKC.

IUT calcTemp: The weighted averaged room tempera-
ture. Each new sample is weighted 20% compared
to the previous calculated value.

t: A local clock used to constrain the allowable slack in
the input of a new temperature.

The environment model emulates changes in room
temperature. The actual room temperature is stored

in the environment part of the model under the name
CT env, “calibrated Temperature, environment”. Recall
that the room temperature can only be controlled in-
directly via the temperature calibration feature of the
EKC. The value of this variable is communicated to the
iut part of the model using value passing into the vari-
ableCT iut along withCT. The value passing is realised
by the two componentsENV TemperatureReporterand
IUT TemperatureReceivershown in Figure 10

S2

S15

S4

CT!

reportTemp?
t:=0

reportDone!

S2

S15

CT?
IUT_CT:=ENV_CT

receivedTemp!

(a) (b)

Figure 10: Communicating Calibrated Temperature be-
tween ENV and IUT. (a)ENV TemperatureReporter, (b)
IUT TemperatureReceiver

A.2 Temperature Calculation

receivedTemp?: Used to indicate to the temperature cal-
culation component that a new temperature sample
has been received.

newTemp!: Broadcast channel used to indicate to other
IUT components that a new temperature estimate
has been calculated, and that they should re-evaluate
their state.

fixedTemp: The actual physical temperature sensor of the
EKC is hardwired via a resistor to a fixed value of
16.6 ◦C.

CT iut: The room temperature sensed by the EKC. I.e.,
the temperature isfixedTemp+CT IUT in the IUT
model, andfixedTemp+CT ENV in the environment
model.

12

IUT calcTemp: The weighted averaged room tempera-
ture. Each new sample is weighted 20% compared
to the previous calculated value.

t: A local clock controlling the periodic sampling of
theCT iut variable and following calculation of the
weighted average.

samplingPeriod: Constant sampling period (1.2 sec-
onds).

The calculation of the weighted averaged room tem-
perature is done by theIUT MeasurementErrcomponent
in Figure 11. It periodically samples the received (cal-
ibrated) temperature, and based on this value computes
the weigted average, and broadcasts the change via the
newTempaction.

S9 t<=samplePeriod
S10

S13

S14
t<=samplePeriod

S5

receivedTemp?

IUT_calcTemp:=(fixedTemp+(IUT_CT*100)
+IUT_calcTemp*4)/5

t==samplePeriod
t:=0

initDone?
t:=0

newTemp!

receivedTemp?

Figure 11:IUT MeasurementErr: Sampling Temperature
Sensor.

A.3 IUT Compressor

newTemp?: The compressor state is re-evaluated when-
ever the calculated temperature has changed. This is
indicated via reception of this event.

COn!, COff!: Actions used to switch the compressor re-
lay on or off.

IUT calcTemp: The weighted averaged room tempera-
ture. Each new sample is weighted 20% compared
to the previous calculated value.

IUT setPoint, diff: The temperature should be regulated
to be withinIUT setPoint ◦C andIUT setPoint+
diff ◦C.

on: global boolean variable (shared with component
IUT defrost) to store the compressor state, ie. tracks
whether cooling is currently on or off.

defrosting: boolean global variable (shared with
IUT defrost) to store the defrosting state.

err: Error tolerance on the threshold values of the calcu-
lated temperature

minRestartTime: A minimum amount of time must
elapse before the compressor may be switched back
on (default value is 0 seconds).

minCoolingTime: A minimum amount of time must
elapse before the compressor may be switched back
off (default value is 0 seconds).

Xcompr: Local clock used to restrict the speed which the
compressor engages/disengages.

This component models the compressor functionality
of the EKC. It is triggered by thenewTempaction peri-
odically generated by theIUT TemperatureMeasurement
component. Generally cooling must be on when the cal-
culated temperature exceeds thesetPointplusdifferential,
and off when below thesetPoint. Because the exact pre-
cision of the EKC is unknown, the models allows some
tolerance±err on the threshold values of the calculated
temperature. In consequence, when the calculated tem-
perature is “around” a threshold value, the exact cooling
state of the EKC is unknown. This is modeled through a
non-deterministic choice between switching on (off) the
compressor or leaving it off (on), see Figure 12.

• If the EKC is defrosting it may not switch on the
compressor.

• The compressor is switched on by issuing theCOn
to theCompressor Relayif it is not defrosting, not
already on, the calculated temperature exceeds the
setPointplusdifferentialminuserror tolerance, and
minRestartTimehas elapsed.

13

• The compressor is switched off by issuing theCOff
to theCompressor Relayif it is not defrosting, not
already off, the calculated temperature is below the
setPointplus pluserror tolerance, andminCooling-
Timehas elapsed.

• Otherwise the state is unchanged.

S5 S11

S6

defrosting==0
newTemp?

IUT_calcTemp>IUT_setPoint+diff-err,
on==0,
Xcompr>=minRestartTime
COn!
on:=1,
Xcompr:=0

IUT_calcTemp<IUT_setPoint+err,
on==1,
Xcompr>= minCoolingTime
COff!

on:=0,
Xcompr:=0

(IUT_calcTemp>=IUT_setPoint-err) &&
(IUT_calcTemp<=IUT_setPoint+diff+err)

initDone?
on:=1

IUT_calcTemp<IUT_setPoint+err,
on==0

IUT_calcTemp>IUT_setPoint+diff-err,
on==1

defrosting==1
newTemp?

IUT_calcTemp<IUT_setPoint+err,
on==1,
Xcompr< minCoolingTime

IUT_calcTemp>IUT_setPoint+diff-err,
on==0,
Xcompr<minRestartTime

Figure 12: Compressor Control Model (IUT Compressor.

A.4 IUT Relay

RON?, ROFF: triggers the relay to go on, or off respec-
tively.

realOn!, realOff!: controls the physical outputs of the
relay.

t: Local clock used to limit the switching speed of the
relay.

switchDelay: models the uncertainty in the exact switch-
ing time of the relay, or time delay through the adap-
tation software.

This template in Figure 13 models a generic on/off
switch (relay) with some time tolerance (switchDelay) on
the switching time. It is parameterized through four chan-
nels: inputsRONandROFFare used to trigger the relay
to go on, or off respectively. The outputsrealOnandre-
alOff are the physical output actions. Initially the relay
may be on or off. The (switchDelay) is used to model un-
certainty in the exact swithching time of the relay, or time
delay through the adaptation software. Note that the re-
lay is input enabled such that if instructed to go back off
while in locationOnTriggered(but has not yet fired the
physicalrealOn!) it will go off without changing physical
output state.

There exists four instances of the relay-
template: IUT compressorRelay, IUT alarmRelay,
IUT defrostRelay, and IUT highAlarmDisplay. The
IUT highAlarmDisplaydoes not correspond to a physical
relay of the EKC but controls an alarm-on/alarm-off
indication in its display.

A.5 High Temperature Alarm Monitoring

newTemp?: Input channel used to trigger temperature de-
pendent transitions.

clearHighAlarm: User input to acknowledge high alarm
status.

AOn!, AOff!: Used to switch alarm relay on and off.

HAOn!, HAOff!: Used to switch display alarm indication
on and off.

14

RelayOn RelayOff

OffTriggered

t<=switchDelay

OnTriggered

t<=switchDelay

S28

ROFF?
t:=0

RON?

realOff!

ROFF?

ROFF?

RON?
t:=0

realOn!

RON?

relayOn==1

initDone?

relayOn==0

initDone?

RON?

ROFF?

Figure 13: Relay Template.

noDefrostDelay?: Input channel used postpone the high
temperature alarm, if raised during or shortly after a
defrost cycle.

ta: Clock variable used locally to control time constraints
in the high alarm monitor.

IUT calcTemp: Global variable containing the average
temperature calculated by the EKC.

IUT setPoint+diff+highAlarmDev: High alarm threshold
constant (±err) for high alarm status.

IUT TADelay: Alarm must sound when the temperature
exceeds the high alarm threshold value for more than
IUT DADelaytime units.

The alarm status may be in 5 different locical states
each modeled by a location in the high alarm monitor
component in Figure 14:

alarmOff: The temperature is below the high alarm
threshold.

triggered: The temperature is detected to be above the
high alarm threshold, but the alarm should not be
raised untilIUT DADelaytime units have elapsed (as
controlled by the location invariant). If the tempera-
ture drops to below the threshold in the mean time,

the alarm monitor cancels the alarm and moves back
to locationalarmOff.

postponed: The temperature has now neen too high for
too long, and the alarm should sound unless it has
occured after a defrost cycle. The component will
only stay in thepostponedif this is the case; other-
wise theIUT Defrostcontroller will be able to syn-
chronize urgently on thenoDefrostDelay?channel,
after which the alarm sound and display indication
are switched on.

soundingDisplaying: In this state the alarm is both
sounding and being displayed on the EKC. It remains
in this state until the alarm is cleared manually by the
operator. When cleared, the alarm sound is switched
off, but it remain indicated on the display.

noSoundDisplaying: When cleared the alarm remains
indicated in the display until a temperature reading
indicates that it has droped below the alarm thresh-
old.

A.6 Defrost Control

In the time controlled defrost mode1 the EKC is defrosting
the cooler (evaporator) by activating the defrost relay for
a fixed amount of time. A defrost cycle can be started
manually by the user through key presses on the EKC,
or automatically periodically. During a defrost cycle the
compressor must remain off, no temperature alarm may
be given, and high temperature alarms must be postponed
some amount of time after completion of the defrost cycle.

A.6.1 IUT AutoDefrost

The componentIUT AutoDefrostperiodically starts a de-
frost cycle by issuing aautoDefrostOnaction, see Fig-
ure 15

A.7 Defrost Control

manualDefrostOff?, manualDefrostOn?: input channels
used to stop/start a manual defrost cycle.

1Recall that in the current model temperature and real-time clock
based defrosting is not possible to test using the availableequipment.

15

alarmOff triggered
ta<=IUT_TADelay

S5

S6

S7

sounding_Displaying

noSound_Displaying

S8

S29

postPoned

IUT_calcTemp>
IUT_setPoint+diff+highAlarmDev-err
newTemp?
ta:=0

noDefrostDelay?

clearHighAlarm?

AOff!

ta:=0

IUT_calcTemp<=
IUT_setPoint+diff+highAlarmDev-err

newTemp?

ta:=0 initDone?
ta:=0

IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err
newTemp?

ta:=0

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
newTemp?

clearHighAlarm? clearHighAlarm?

HADOn!

IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err

newTemp?

ta:=0

HADOff!
ta:=0

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
newTemp?

AOn!ta>=IUT_TADelay

IUT_calcTemp<=IUT_setPoint+diff+highAlarmDev+err

newTemp?

IUT_calcTemp>IUT_setPoint+diff+highAlarmDev-err
newTemp?

clearHighAlarm?

Figure 14: High Temperature Monitor (IUT HighTemperatureAlarm).

S20

t_defrostPeriod<=defrostPeriod

S25 initDone?

t_defrostPeriod==defrostPeriod
autoDefrostOn!

t_defrostPeriod:=0

Figure 15: Auto-Defrost Control (IUT AutoDefrost).

autoDefrostOn: input used to start an automatic periodic
defrost cycle.

DOff!, Don!: outputs used to switch the defrost relay off
and on.

COff!: output action used to switch compressor off.

noDefrostDelay!Urgent output channel used to allow
high temperature alarms.

on: global variable (shared with component
IUT compressor) to store the compressor state.

defrosting: boolean global variable (shared with
IUT compressor) to store the defrosting state.

t defrostDuration: clock used to control the duration of a
defrost cycle, and the duration of high alarm delays
after a defrost.

defrostTime: A constant indicating the duration of a de-
frost cycle.

afterDefrostDelay: A constant indicating how long high
temperature alarms must be postponed after a defrost
cycle.

The state of the EKC during defrosting is controlled
by the IUT Defrost component in Figure 16. Initially,
defrosting is off (locationOFF). When engaged, either
manually or automatically, the component switches off
the compressor relay and switches on the defrost relay,
and enters state defrosting (compressor state variableon
is 0, boolean variabledefrostingis 1, and the clock vari-
able t defrostDurationcontrolling the defrost duration is
reset. The controller remains in defrost mode fordefrost-
Timetime plus minus some tolerance, or until disengaged
manually through themanualDefrostOff. Then the defrost
relay is swithced off, and the controller enters location
afterDefrostDelaythat it occupies for approximatelyde-
frostAlarmDelaytime units. The purpose of this location
is to prevent high temperature alarms from being raised
for at leastdefrostAlarmDelaytime units after the system
has defrosted. In contrast theOFF allows high temper-
ature alarms by allowing synchronization on the urgent
channelnoDefrostDelay.

A.8 ENV TempGen

This environment component controls execution of the
main scenarie being tested. It consists of variying the tem-

16

OFF

S24S25

Defrosting

t_defrostDuration<=
defrostTime+20

S26

S27

afterDefrostDelay
t_defrostDuration<=
defrostAlarmDelay+20

initDone?

DOff!

defrosting:=0,
t_defrostDuration:=0

manualDefrostOn?
DOn!

manualDefrostOff?

manualDefrostOn?

t_defrostDuration>=defrostTime-20

manualDefrostOff?

COff!

defrosting:=1,
t_defrostDuration:=0,
on:=0

autoDefrostOn?

autoDefrostOn?

t_defrostDuration>=
defrostAlarmDelay-20

noDefrostDelay!

manualDefrostOff?

manualDefrostOn?

autoDefrostOn?

Figure 16: Defrost Control (IUT Defrost).

perature linearly±20 degrees. When the temperature has
reached a maximum an user controlledalarmResetsignal
is sent, and the cycle continues, see Figure 17.

S5

S6

S7

S8

t<=ENV_TADelay+(10*20*2)

S23

t<=60

initDone?

highStop:=20,
lowStop:=-21

continue!

highDone?
t:=0

t>=ENV_TADelay+(10*20)

alarmReset!

t:=0

t>=50

continue!

Figure 17: Temperature Generator (ENV TempGen).

A.9 ENV TemperatureSinus

This template belongs to the environment model, and it
simulates the room temperature through sequences of lin-
early increasing or decreasing temperature settings, see
Figure 18. It increases (or decreases, depending on the
direction contained in variabledir) the temperature in the
range fromminTdegrees tomaxTdegrees bystepdegrees
with a step time of at leastdelaytime units. It alternates
between generating the temperature samples in increasing
and decreasing order. When the temperature has changed
in issues areportTempaction and awaits acknowledge-
ment (reportDone).

The initiation and direction may be controlled by other
environment components through thedirection variable
and continueaction. Likewise, the temperature change
may be temporarlily suspended when a certain temper-
ature is reached (variablehighStopand lowStoprespec-
tively.

A.10 ENV DefrostGen

The defrost generator in Figure 19 starts and stops man-
ual defrost with some minimum time seperation between
these relatively rare events.

17

S3

t<=50

S4

S17

S18S19

S5

S6

dir==0,
ENV_CT<=maxT-step,
t>=delay
ENV_CT:=ENV_CT+step

dir==1,
ENV_CT>=minT+step,
t>=delay

ENV_CT:=ENV_CT-step

reportTemp!

t:=0

reportDone?
t:=0

continue?

dir:=initDirection,
t:=0dir==0,

ENV_CT> maxT-step
dir:=1

dir==1,
ENV_CT<minT+step
dir:=0

(ENV_CT<=maxT-step) &&
(ENV_CT>=minT+step)

ENV_CT>=highStop
highDone!

continue?

t:=0

ENV_CT<=lowStop
lowDone!

ENV_CT>lowStop,
ENV_CT<highStop

Figure 18: Room Temperature Simulator
(ENV TemperatureSinus).

S29S30

t>=5*30*10
manualDefrostOn!

t:=0

t>=5*30*10
manualDefrostOff!
t:=0

initDone?

t:=0

Figure 19: Manual Defrost Event Generator
(ENV DefrostGen).

A.11 Initialization

Before a test run the EKC must be brought to a known
initial state and it must be configured with the parameters
used during testing. Those that differ from the default
settings must be changed explicitly. Figure 20 shows the
current initialization sequence. First the EKC is reset. The
EKC then generates analarmRelayOffevent. To speedup
testing a number time parameters are changed:

• the parameteralarmDelayis changed to 1 minute.

• the default defrost period is 1 hour, the minimum al-
lowed value.

• the duration of a defrost cycle is changed to 2 min-
utes.

• the alarm delay after defrost is changed to 2 mins.

The defrost mode is configured to be periodic (setEKC-
Pars). The setPoint set to 20 degrees. To allow the EKC
to settle and stabilize (eg. the weighted average temper-
ature calculation) some time elapses before testing starts.
Finally, the testing begins by broadcasting theinitDone
event to all other components.

A.12 IUT Action

The component in Figure 22 is a “closure” component that
handles the actions that are so simple to handle that they to
require a dedicated component. After initialization these
includealarmReset, changes insetPointandalarmDelay;

A.13 ENV Action

The component in Figure 22 is a “closure” component that
handles the actions that are so simple to handle that they
to require a dedicated component. All actions handled by
this component does not change the state of the environ-
ment model.

18

A.14 Model Declarations
1 //OBSERVABLE CHANNELS

chan CT; // 1, temperature callibration send as input:
int[-20,20] ENV_CT;
chan setEKCPars; // 2, send the following EKC parameters as input:

5 int EKCPar13 := 1; //change default defrost period to 1hr
int EKCPar14 := 2; //change default defrost duration to 2 mins.
int EKCPar17 := 0; //we have no defrost temp sensor
int EKCPar18 := 2; //change default defrost alarm delay to 2 mins.
chan setPoint; // 3, send the target temp. value as input:

10 int [-6000,5000] ENV_setPoint; //the target temperature for regulation
chan setAlarmDelay; // 4, send the temp.alarm delay as input:
int ENV_TADelay:=1*10*60;
chan manualDefrostOn,manualDefrostOff,alarmReset; // 5, 6, 7
chan compressorRelayOn, compressorRelayOff; // 8, 9

15 chan defrostRelayOn, defrostRelayOff; // 10, 11
chan alarmRelayOn, alarmRelayOff; // 12, 13
chan highAlarmDisplayOn, highAlarmDisplayOff; // 14, 15
chan lowAlarmDisplayOn, lowAlarmDisplayOff; // 16, 17
chan EKCReset; // 18

20
//INTERNAL CHANNELS IUT MODEL
chan reportTemp,reportDone,receivedTemp;
broadcast chan initDone;
broadcast chan newTemp;

25 chan COn, COff; //internal compressor on/off
chan AOn, AOff; //internal alarmRelay on/off
chan DOn, DOff; //Internal defrostRelay on/off
chan HADOn, HADOff; //internal highAlarmDisplay On/Off
chan clearHighAlarm; //

30 chan autoDefrostOn; //internal channel to activate defrost periodically
urgent chan noDefrostDelay; //internal channel to prevent alarms going on untill defrost delay after defrost
//INTERNAL CHANNELS ENV MODEL
chan lowDone, highDone, continue;

35 //FIXED CONSTANTS
const compressorSwitchDelay 20;
const alarmSwitchDelay 30;
const defrostSwitchDelay 40;
const defrostPeriod 10*60*60*1; //1 hrs

40 const defrostTime 10*2*60; //2 mins
const defrostAlarmDelay 10*2*60; //2 mins
const firstAutoDefrostDelay 100; //10 secs.
const samplePeriod 12; //the sampling frequency on calibration temperature
const delay 50; //env temperature change speed (5 sec)

45 const fixedTemp 1670; //The fixed setting of of the air temperature sensor
const startupDelay 150; //Allow this amount of time to let EKC stabilize after reset
const err 50; //Error tolerance on calculated temp 1/5 degree
const diff 200; // the differential
const highAlarmDev 1000; //10 degr.

50 const minRestartTime 0;const minCoolingTime 0;

// IUT MODEL VARIABLES
int [0,90*60*10] IUT_TADelay; // 0-90 min
int[-20,20] IUT_CT; //IUT calibrated temperature

55 int[-6000,5000] IUT_calcTemp;
int [-6000,5000] IUT_setPoint; //the target temperature for regulation
clock t_defrostDuration; //tracks the duration of a defrost
clock t_defrostPeriod; // tracks the period between autostarts of defrost
clock Xcompr; // ensures min cooling time and min time to restart

60 int [0,1] defrosting; //defrosting or not
int [0,1] on; //compressor relay on
//ENVIRONMENT MODEL VARIABLES
int [-22,22] highStop,lowStop;

Figure 23: Model Global Declarations.

19

S17

t<=startupDelay*2

S18

S19

t<startupDelay*2

setAlarmDelay_1min t<startupDelay*2

S21

setSetPoint_20grd t<startupDelay*2

setNoDefrostSensor t<startupDelay*2

initDone?

EKCReset!
t:=0

alarmRelayOff?
t:=0,
t_defrostPeriod:=0

t>=startupDelay
setAlarmDelay!
ENV_TADelay:=1*10*60,
t:=0

setPoint!
ENV_setPoint:=2000,
t:=0,
Xcompr:=0

t>=startupDelay

setEKCPars!
t:=0

t>=startupDelay

S15

S16

S17

S19

S21

S22

S29

IUT_setPoint:=300,
IUT_calcTemp:=fixedTemp,
IUT_TADelay:=10*60*30

setPoint?

IUT_setPoint:=ENV_setPoint

EKCReset?

alarmRelayOff!

initDone!

setAlarmDelay?

IUT_TADelay:=ENV_TADelay

(a) (b)

Figure 20: Initialization Sequence. (Env INIT (a), and
IUT INIT (b)).

S2S14

S5

setPoint?
IUT_setPoint:=ENV_setPoint

alarmReset?

setAlarmDelay?

initDone?
clearHighAlarm!

setEKCPars?

compressorRelayOff!

compressorRelayOn!

highAlarmDisplayOn!

highAlarmDisplayOff!

Figure 21:IUT Action: Handling of simple actions.

S2

S14

compressorRelayOff?

alarmRelayOn? alarmRelayOff?

defrostRelayOn?defrostRelayOff?

compressorRelayOn?

initDone?

highAlarmDisplayOff?

highAlarmDisplayOn?

compressorRelayOff?

compressorRelayOn?

highAlarmDisplayOn?

highAlarmDisplayOff?

Figure 22:ENV Action: Handling of simple actions.

20

