
DEPARTMENT OFCOMPUTERSCIENCE, AALBORG UNIVERSITY

FREDRIK BAJERSVEJ 7B, 9220 AALBORG ØST, DENMARK

On-the-fly Testing Using UPPAAL

Master thesis
ou

t..

UppAal

input
under

 te
stGat

e

Test Gen

adapter

by
Marius Mikucionis and Egle Sasnauskaite

Supervisors: ass.prof. Brian Nielsen, co-supervisor prof. Kim G. Larsen

{ marius | eglese | bnielsen | kgl } @cs.auc.dk

June 11, 2003

Title:

On-the-fly Testing Using UPPAAL

Subject:

Methods and Tools for Validation

Project group:

SSE-4

Participants:

Marius Mikucionis
Egle Sasnauskaite

Supervisors:

Brian Nielsen
Kim Guldstrand Larsen

Abstract

The goal of the project is to provide a test tool-
box T-UPPAAL together with a sample random-
ized test algorithm for real time systems. A real
time system model checker UPPAAL is an effi-
cient symbolic state estimator and is chosen to
be the base platform for the testing extensions.
The test setup idea is inspired by the un-timed
system testing tool TORX. T-UPPAAL allows
different environments to be specified in order
to test the implementation under different con-
ditions.

Time of writing:

The3rd February 2003 - the11th June 2003

Copies:

7

Pages:

87

Preface

This Master thesis is submitted by a master group of Software Systems Engineering for the
research unit of Distributed Systems and Semantics at the Department of Computer Science, the
Faculty of Engineering and Science, Aalborg University, spring semester 2003. The purpose
of the project is to investigate, design and integrate an automatic test generation algorithm into
timed automata model checker tool UPPAAL .

Marius Mikucionis Egle Sasnauskaite

2

Resume

Testing is important subject in a software developing process for assuring and evaluating quality
of a product. A testing theory for non time systems exists but testing of real time systems require
special approach because of timing aspects. Therefore notations and formal methods used for
testing should be reconsidered. This challenging task expands for one who want to develop or
expand an existing tool for testing real time systems.

Our one year project was related to fields of semantics and verification and the main goal is
to design and implement a test generation and execution algorithm foron-the-flytesting of real
time systems. At the first step one should get familiar with the testing subject and we start with
introduction to the main concepts of testing. They include purpose of testing, classification of
testing strategies and uses as well as testing aspects of real time systems especially possibility
of on-the-fly testing. In another step we introduce label transitions systems which are used
for writing specifications and serve for expressing underlying formalism of the specification
languages.

We introduce a part of the testing theory - conformance testing. The concept of the imple-
mentation relation is acquainted as a notation for correctness of an implementation towards a
specification. Theioco implementation relation is used in a testing tool TORX and we present
the main parts of the tools architecture and the test generation and execution algorithm used for
non-timed testing.

We continued with formulating testing concepts for real time systems. Definitions and se-
mantics of timed automata theory are introduced and extended with testing concepts. We add to
the definition of LTS information for expressing time issues and introduce TLTS notations for
using them later in time generation and execution algorithms.

We refer to the definition of a timed automata and explain semantics of a timed automata
network. It is necessary to introduce symbolic techniques for representing infinite number of
clock values in a compact way. Therefore we define the concept of a zone and operations on
zones.

We need a correctness criterion for testing real time systems thereforeioco implementation
relation is extended to thert-ioco implementation relation. We explain the use of such a relation
in pictures and later consider it in the test generation and execution algorithms.

Theon-the-flytest generation and execution algorithm is presented and outlined in two ways.
At first the algorithm is described for timed automata using timed labeled transition system states
to get a pure theoretical background explaining the core of the testing process. However this
algorithm is not applicable in practice and we introduc another one using symbolic states. The
UPPAAL toolbox and its purpose were also described.

Having the fundamental background of testing theory and the notion of timed automata we
continued with real time testing concepts. We described a physical system setup with a distin-
guished implementation and environment and the way they communicate through observable
actions and shared variables. Test specification concepts for a UPPAAL automata network are
introduced and the architecture of a T-UPPAAL tool is outlined as a part of a real time test-
ing framework. We identify the assumptions and requirements for the real-time testing using
timed automata network as specification. We propos ideas for designing and implementing the
algorithm in the UPPAAL tool reusing the existing libraries.

Class diagrams were used to explain about UPPAAL tool design components: system model,
symbolic state representation and algorithms. Those components were used as a base for a test
specification, the algorithm implementation and the test configuration format.

Before implementing the test generation and execution algorithm we get familiar with a

3

pipeline paradigm used in UPPAAL . Later we introduce separate algorithm parts and describe
their behavior and implementation details. Behavior of the algorithm is visualized in a message
chart and explained in details referencing a test execution on a sample implementation. Imple-
mentation status shows what parts of code we needed to modify and create to implement the
testing extensions.

We make several sessions of experiments with different implementations. Experiment mod-
els are used for testing the algorithm and for gathering the algorithm performance data. We also
measure performance of the program using profiling the toolgprof and explain the results.

We introduce new ideas that we obtain during the project but could not implement due to
project time constraints. After out work we conclude that real time system testing is a wide and
interesting subject where research can be provided in several directions and this project gives an
additional input into the field of this research.

4

Acknowledgments

We thank our supervisors for proposing such an interesting and challenging mission with many
various paths to be traversed, many things to learn and even to develop something peculiar of
our own.

We owe the most of our success to Brian Nielsen for giving us the right directions during
the project work as well as for help in finding proper information, for constant broadening our
horizons and especially for patience in reviewing our drafts.

We are grateful to Kim G. Larsen for putting his interests in our work and sharing his expe-
rience, ideas and solutions to hot issues.

It is hard to imagine our work materializing into something substantial without the one of
UPPAAL architects, Gerd Behrmann, who guided us through internals and was a great help
when putting our hands into the source code of this magnificent tool.

5

CONTENTS

Contents

1 Introduction 8
1.1 Types of Testing . 9
1.2 Testing Strategies . 9
1.3 On-the-fly Testing for Real Time Systems . 10
1.4 Transition Systems . 11
1.5 Input Output Transition System . 12
1.6 Conformance Testing . 13

1.6.1 Test Purpose and Characteristics . 13
1.6.2 Test Execution . 14
1.6.3 Input Output Conformance Relation 14

1.7 TORX . 15
1.8 Contributions . 17
1.9 Structure of the Report . 17

2 Test Specification 18
2.1 Timed Automata . 18

2.1.1 Timed Labeled Transition System . 18
2.1.2 Definition and Semantics . 19

2.2 Symbolic Techniques . 22
2.3 Implementation Relation for Real Time Systems 24
2.4 Physical System Setup . 26
2.5 Real Time Testing Framework . 26
2.6 Input Enableness and Specification Completeness 27
2.7 UPPAAL . 30
2.8 UPPAAL Network Specification . 31
2.9 Test Specification Grammar . 32

3 Algorithms 36
3.1 Test Execution on Reachable States . 37

3.1.1 Closure Algorithms . 38
3.1.2 Test Primitive Algorithms . 40

3.2 Test Execution on Reachable Symbolic States 41

4 Implementation 47
4.1 Assumptions, Requirements and Desired Features 48
4.2 UPPAAL Design . 49

4.2.1 System Model Representation . 50
4.2.2 Symbolic System State Representation 52
4.2.3 Time Zone Representation . 53
4.2.4 Pipeline Architecture . 54

4.3 Specific Testing Extensions . 56
4.3.1 After Action Filter . 56
4.3.2 After Delay Filter . 57
4.3.3 Buffered Filter . 58
4.3.4 Driver Implementation . 58
4.3.5 Test Generation and Execution Algorithm 61

6

CONTENTS

4.4 Implementation Status . 64

5 Experiments 64
5.1 Single Mouse Button . 65

5.1.1 Model of the Implementation for the Mouse-button system 66
5.1.2 Models of the Environment for the Mouse button 67
5.1.3 Sample Test Specification of the Mouse-button 67
5.1.4 Implementation of the mouse button 68
5.1.5 Multi-Button Mouse . 70
5.1.6 Experiment Results of Mouse-click systems 72

5.2 Train Gate Controller . 72
5.2.1 Model of the IUT in the Train-gate system 74
5.2.2 Models of the Environment in the Train-gate System 75
5.2.3 Test Specification of the Train-Gate 76
5.2.4 Implementation of the Train-Gate . 77
5.2.5 Train-gate Experiment Results . 79

5.3 Performance Issues . 80

6 Epilogue 83
6.1 Conclusions . 84
6.2 Future Work . 85

A Source Code 87

7

On-the-fly Testing Using UPPAAL 1 Introduction

1 Introduction

Testing is a part of a software development process which includes the system execution with
a goal of evaluating the quality of the product. One of the main product quality measures is
the amount and importance of errors found. Testing is performed thoroughly in every mission
critical project and typically consumes more than 30% project resources. Testing of real-time
systems requires special attention to the timing aspects: the time at which events are supplied or
expected and the timing relationship between separate events.

Our emphasis is on techniques for testing technical software systems such as communication
software, control systems and embedded software. Those systems are event-driven systems in
which stimulus/response behaviour is important as well as concurrency, distribution and non-
deterministic behaviour [2].

Formal methodsmay be used to design detailed models, verify them and later derive im-
plementations. However licensing constraints may not allow to walk through the source of
implementation and/or physical nature of the implementation may still hide the potential errors.
Therefore independent third-party testing is important to increase confidence in the quality of
a computing system and formal methods have obvious advantages in system analysis when ap-
plying techniques from mathematics and logics. Formal languages are easier manageable to
automatic processing. Formal methods assure preciseness and formal reasoning about systems
or their relations, and protects from misinterpretation during the testing process. Therefore we
use formal models as a specification for our implementations under test.

In our case testing is an operational way to check the correctness of a system implementation
with respect to specification by experimenting with it. The correctness criterion is expressed
by an implementation relation which formally defines when an implementation conforms to a
specification. The specification is written in a formal language and formally defines functional
behavior of a system. The specification prescribes what the system shall do, what should not
do and in such a way constitutes the basis for any testing activity [2]. The success of testing
depends also on correctness of the specification, i.e. a test is always as good as a specification,
thus a formal verification of a specification is still needed.

The above suggests the testing scheme presented in Figure 1, where a test verdicttrue (test
passed) orfalse(test failed) tells whether a system implementation conforms to a specification.

Specification

Implementation
TRUE | FALSE

Conformance verdictTesting

Figure 1: Testing framework.

In our project we propose an extension of automated test generation for model checking tool
UPPAAL . We locate our testing aspects (type and strategy) in the Section 1.1 and Section 1.2 and
land with the on-the-fly testing in Section 1.3. We define formal testing concepts in Section 1.4
and Section 1.5. Section 1.6 describes the idea of conformance testing which we use. We
observe a closely related tool TORX in Section 1.7. The goal of the project is defined more
precisely in the Section 1.8.

8

On-the-fly Testing Using UPPAAL 1.1 Types of Testing

1.1 Types of Testing

A testing considers different aspects of system’s behavior. Therefore, conformance, perfor-
mance, robustness, stress testing, reliability, availability, security testing are different sort of
testing and they reveal different properties and behavior of a system [2].

Two main accessibility strategies are used for testing.White Box Testingstrategy tests
whether an implementation conforms to a design since the internal structure of the system is
know. Black Box Testingstrategy tests functional aspects of a system under test and finds out
whether an implementation conforms to a specification. Testing can be performed in different
levels of a system and therefore we distinguish Unit, Integration and System levels. The variaty
of types of testing is showed in Figure 2.

Level

Accessibility

Aspect

White box

Unit

Integration

Black box

System

robustness
performance

usability

functionality
reliability

Figure 2: Testing types.

We are interested in testing the correctness of a system whose model is defined in a test
specification, and we believe that the most of other criteria can be formulated in the test specifi-
cation giving it an exact test purpose. Therefore our main focus is on functional or conformance
system testing which refers to theBlack Box Testingstrategy.

1.2 Testing Strategies

Testing is an expensive activity in respect to time and resources of the project. Testing activities
are repeated each time a system is modified. Therefore it is relevant to improve effectiveness
of the test generation, execution and test coverage. There is a wide range of testing strategies
which tend to implement a sound trade-off between coverage of testing and amount of time
allocated to testing. We will give a short overview of dynamic versus static and batch testing
versus on-the-fly.

Static testing encompasses program proving, symbolic execution, inspections and code
walk-throughs. The purpose of the static strategy is to analyze whether the implementation
code operates logically to the design decisions.

Different from static,dynamictesting requires that software is executed with test data. The
key objective of the dynamic analysis is to experiment with the behaviour of the software in
order to detect errors. Adequate test data sets are developed so that they activate errors and
different strategies are used to develop such data sets.

9

On-the-fly Testing Using UPPAAL 1.3 On-the-fly Testing for Real Time Systems

Batch testing uses test cases that are generated completely and stored in a test notation
language. Then the test case is executed against an implementation under test. The output is
compared with the expected output and a decision is made according to the verdict of the test.
Derivation of a test case may require exploration of all the state space and which is computa-
tionally expensive.On-the-flytesting is used to reduce complexity by combining test generation
and test execution: tests are generated while they are executed. Instead of deriving a complete
test case, the test derivation process only derives the next test event from the specification and
this test event is immediately executed.

Figure 3 depicts the principle of on-the-fly testing. TheTesterdecides whether to trigger an
input to implementation under test(IUT) or to wait for the output produced byIUT. In the case
of triggeringIUT, theTesterlooks into theSpecification modulefor a valid triggering stimulus.
In the case of output observation theTesterchecks whether the response is valid according to
the specification. A time-out is observed when there is no output.

or quiescence
Observe output

or quiescence
Check output

Under Test
Implementation

Offer input

Tester
module

Specification
Next input

Figure 3: On-the-fly testing [2].

There are advantages and disadvantages for bothBatchandOn-the-flytesting. A fiew are
mentioned below:

• Batch testing is suited for manual and for semi-automated suite preparation. “Humans are
good at test selection but they are not fast enough to do it at run-time which is required
for on on-the-fly testing” [11].

• In batch testing the tester encodes all the mapping details from the abstract test cases into
concrete test cases and test implementation becomes easier. In the on-the-fly approach
translation has to be done at a runtime and test cases should be generic enough to allow
reuse [11].

• The on-the-fly testing requires to do all computations at run-time, i.e. a run-time translator
must meet timing constraints. The batch testing allows some of the work to be moved to
compile time and then it is easier to satisfy the run-time requirements [11].

• In the batch testing precomputing of the test steps leads to test-suites of enormous size.
The amount of pre-computation work and the storage demand should also be considered.
On-the-fly testing help to avoid those problems [11].

• On-the-fly testing does not require to explore all the states but consider only the actual
responses from the IUT. However, on-the-fly test execution requires more run-time re-
sources of a processor for computing a set of reachable states from a given set compared
to batch testing.

1.3 On-the-fly Testing for Real Time Systems

The above mentioned problems for batch testing are even more actual for testing real time
systems. Specifications of systems behavior should cover real time constraints and then the

10

On-the-fly Testing Using UPPAAL 1.4 Transition Systems

specifications become very complex. Moreover continuity of time leads to infinite states set
when a tested real time system is modeled as timed automata.

The automatic test generation and execution allows to reduce manual work which is used
for preparing test cases. On-the-fly execution of tests combines automatic test generation and
execution and just a part of state space has to be explored. On-the-fly testing reduces the number
of states to be explored at a certain event of the system but does not solve the problem of state
explosion completely. Therefore symbolic techniques are also used along with the on-the-fly
testing. The following four sections describe how the untimed on-the-fly testing is done in
TORX.

1.4 Transition Systems

A labeled transition system(LTS) is used to write specifications that capture the behavior of
implementations, even tests cases and serve an underlying formalism for many specification
languages. A LTS consist of nodes and transition between nodes that are labeled with actions.
Definition 1.1 describes formally what is a labeled transition system.

Definition 1.1 A labeled transition systemoverL is a 4-tuple〈S, s0, Actτ ,→〉 where

• S is a (countable), non-empty set ofstates,

• s0 ∈ S is theinitial state,

• Act is a set of observable actions, andActτ = Act ∪ {τ} the actions including the
distinguished internal actionτ ,

• →⊆ S ×Actτ × S is thetransition relation;

2

The special actionτ 6∈ Act represent anunobservable(or internal, or silent) action. An
element→ is called atransition. A transition system isrigid if it can not do a silent action.

coffee tee

coin

l2

l1

l3

l0

Figure 4: LTS of a coffee vending machine.[4]

Figure 4 gives an example of a simple LTS for a coffee vending machine:

〈{l0, l1, l2, l3}, l0, {coin, coffee, tea}, {〈l0, coin, l1〉, 〈l1, coffee, l2〉, 〈l1, tea, l3〉}〉

We denote the class of LTS overAct asLT S(Act). Transition systems without infinite
sequences of transitions with only internal actions are calledstrongly converging. For technical
reasons we restrictLT S(Act) to strongly converging transition systems.

11

On-the-fly Testing Using UPPAAL 1.5 Input Output Transition System

A computationis a (finite) sequence of transitions:

s0
α1−→ s1

α2−→ s2
α3−→ ...

αn−1−−−→ sn−1
αn−−→ sn

A trace σ is a sequence of observable actions of a computation; that notation defines the
observable aspect of a computation. The finite set of all sequences over a set of actionsAct
is denoted byAct∗ with ε denoting the empty sequence. Ifσ1, σ2 ∈ Act, thenσ1 · σ2 is the
concatenation ofσ1 andσ2.

Definition 1.2 presents some handy notations over LTS which we will used further in the
definition of Timed Label Transitions in Section 2.1.

Definition 1.2 A LTS notationfor a given LTS〈S, s0, Act,→〉 wheres, s′ ∈ S, S′ ⊆ S and
ai ∈ Act, αi ∈ Actτ , σ ∈ Act∗.

s
α−→ s′ =def (s, α, s′) ∈→

s
σ−→ s′ =def ∃s0...sn: s0

α1−→ s1
α2−→ ...

αn−−→ sn

wheres = s0, s′ = sn, σ = (α1α2 . . . αn)
s

σ−→ =def ∃s′ : s
σ−→ s′

s 6 σ−→ =def 6 ∃s′ : s
σ−→ s′

s
ε⇒ s′ =def s = s′ or s

τ...τ−−→ s′

s
a⇒ s′ =def ∃s1, s2: s

ε⇒ s1
a−→ s2

ε⇒ s′

s
σ⇒ s′ =def ∃s0, sn: s0

a1⇒ s1
a2⇒ · · · an⇒ sn,

wheres = s0, s′ = sn, σ = (a1a2 . . . an)
s

σ⇒ =def ∃s′ : s
σ⇒ s′

traces (s) =def {σ ∈ Act∗ | s σ⇒}
safterσ =def {s′ | s′ ∈ S′, s

σ⇒ s′}
2

In a non-formal way the first notation in the Definition 1.2 must be read as: “when the
system is in the states it performs the actionα and goes tos′”.

In Figure 4 we have:
traces (l0)={ε, coin, coffee, tea, coin · coffee, coin · tea}
l0 after coin={l1} andl0 after coin · tea={l3}

1.5 Input Output Transition System

An input/output transition system(IOTS) is used to model systems for which the set of actions
Act can be partitioned intoinput actionsActin andoutput actionsActout: Act = Actin∪Actout

andActin∩Actout = ∅. We consider our system as IOTS because we need to distinguish inputs
and outputs between the implementation and the environment, and the inputs and outputs are
the only observable events when we consider the implementation as a black box. In Section 2.5
we explain how the implementation and the environment communicate through input and output
actions.

Definition 1.3 An input-output transition systemP is a LTS wherep is initial state, the set of
actions partitioned into input actionsActin and output actionsActout (Act = Actin ∪ Actout

andActin ∩Actout = ∅) and all inputs are enabled in any state [2]:

wheneverp
σ⇒ p′ then∀ a ∈ Actin: p′

a⇒

12

On-the-fly Testing Using UPPAAL 1.6 Conformance Testing

IOTS allows input enabling via internal transitions (as opposed to strong input enablingp′
a→).

The class of IOTS overActin andActout is denoted byIOT S(Actin, Actout) ∈ LT S(Actin∪
Actout). 2

We note that a certain kind of traces are distinguished in IOTS. A trace, which ends in a
quiescentstate from which no outputs or internal actions are possible, is called aquiescent
trace.

The special actionδ /∈ Act indicates the absence of an output action, i.e. it becomes an
observable event when there are no output from a state.

If δ can appear in a trace at any place, then we have traces with repetitive quiescence where
outputs are refused and inputs after such outputs can occur. Such traces are calledsuspension
traces.

We introduce definitions of aquiescentstate and asuspensiontrace in the Definition 1.4.
The concepts are formulated using [2].

Definition 1.4 Let p ∈ IOT S(Actin, Actout), a quiescence actionδ /∈ Act ands ∈ S:

s
δ−→ s =def ∀α ∈ Actout ∪ {τ}: s 6 α−→

Straces (s) =def {σ ∈ (Act ∪ {δ})∗ | s σ⇒}
where

σ⇒ includesδ transitionss
δ−→ s.

2

We use IOTS for introducing conformance relation in Section 1.6.3, but before we present
conformance testing concepts.

1.6 Conformance Testing

Conformance testing is used for testing the functionality of a system with respect to systems
specification. A test is used to define whether an implementation conforms to the specification
by performing experiments on the implementation and observing reactions. “The specification
of such an experiments is called atest case, and the process of applying a test to an implemen-
tation under test is calledtest execution”[2].

In the next three sections we formalize testing concepts and definitions in details.

1.6.1 Test Purpose and Characteristics

A test case is derived from the test specification which depicts the behavior of a tester. The test
is then executed on the implementation. A test verdict -passor fail - indicates conformance (or
not) of the implementation to the specification. The verdictpassindicates that the test execution
did not reveal non-conformance;fail indicates that an error occurred during the test execution [2]
(we will definefail more precisely in next section).

A test case must be deterministic, therefore a choice of at most one input action to be offered
and one edge for each output action is determined. A test should also have a finite behavior and
last for a finite time [2]. A test casedeterminismandfinite behaviorare required formally in
Definition 1.5. Definition 1.5 defines a test case overLTS(Actin ∪ Aout ∪ {δ}) where the
absence of outputs is noted as quiescenceδ.

Definition 1.5 [2] A test caseθ is a LTS〈S, s0, Ain ∪Aout ∪ {δ},→〉 such that:

13

On-the-fly Testing Using UPPAAL 1.6 Conformance Testing

• θ is deterministic and has finite behavior

• S contains the only permitted terminal statespass andfail wheres = pass or s = fail
and@a: s

a−→

• for any statet ∈ S of the test case,t 6= pass, fail if t
a=⇒ for somea ∈ Ain, or

a ∈ Aout ∪ {δ}

• A test suiteΘ is a set of test cases.

2

1.6.2 Test Execution

A test run of an implementation with a test case is modeled by the synchronous parallel exe-
cution of the test case with the implementation under test. Execution continues until no more
interaction is possible. Absence of an interaction indicates a deadlock, i.e. a test case is in a
terminal statefail or pass.

An implementation passes a test run if the test run ends in the statepass. A test case have
several test runs if the implementation behaves nondeterministically. Different runs might lead
to different terminal states and different verdicts. Therefore a test case must be executed several
times to ensure better model coverage. An implementation passes a test case if all test runs from
a test suite end in a statepass. A test suite issoundif correct implementations and possibly
some incorrect implementation will pass the suite while any erroneous implementation is indeed
non conforming. A test suite iscompleteif no erroneous implementation can pass it.

We refer to theσ trace when we discuss a test run representation in order to have definitions
for a formal testing framework.

Definition 1.6 [2] Let θ be a test case from a test suiteΘ, a state of a test caset ∈ θ, an imple-
mentationi ∈ LTS(Act) andθe|i is a synchronous parallel composition whose execution leads
to a terminal state ofθ, then:
σ is a test run =def ∃i′: θe|i σ=⇒ passe|i′ or θe|i σ=⇒ faile|i′

ipasses θ =def ∀σ, ∀i′: θe|i
σ
6=⇒ faile|i′

ipassesΘ =def ∀θ ∈ Θ: ipasses θ
i failsΘ =def ∃θ ∈ Θ: ipa6sses θ

2

During test execution the verdict is drawn from observations. Occuring events and responses
are observed and logged.

1.6.3 Input Output Conformance Relation

The aim of the conformance testing is to define the correctness of implementation with the
respect to a specification. Animplementation relationis the notation of correctness which has a
sound theoretical background for expressing what is a correct implementation of a specification
[5]. The intuition behind the implementation relation is that an implementation may show only
behavior which is specified in the specification, i.e any possible behavior of an implementation
refers to a possible behavior of the specification.

We focus on theioco implementation relation (also called a suspension or delay confor-
mance relation [2]). The argument for using such a relation definition is that the relation only

14

On-the-fly Testing Using UPPAAL 1.7 TORX

requires an implementation to react correctly to the traces that are explicitly specified in the
specification. It leaves freedom to an implementation to react in any manner to traces not spec-
ified in the specification.

The behavior of a system can be expressed in term of traces of observable actions. Thus
the implementation relation can be expressed through trace preorder between an implementa-
tion and a specification. We will consider suspension traces in the definition 1.7 of theioco
implementation relation.

This relation assumes that the specifications exists as a LTS with distinguished input and
output (but not necessarily as an IOTS). The implementation behavior is modeled as an IOTS
(Section 1.4):ioco⊆ IOT S(Actin, Actout) ∈ LT S(Actin ∪Actout).

We define theioco relation which uses collected outputs that a system may produce after
a suspension trace, including quiescent actions. Theioco definition requires that any possible
output of the implementation should be possible output in the specification after any suspension
trace of the specification.

To avoid misundestanding we use notationp for a state instead ofs andP stands for a set
of states.

Definition 1.7 [2] Let p ∈ P be a state of a LTS, an implementationI ∈ IOT S(Actin, Actout)
with initial statei and a specificationS ∈ LT S(Actin ∪Actout) with initial states, then:

out(p) =def {α ∈ Actout ∪ {δ}| p
α−→}

out(P) =def
⋃
{out(p)| p ∈ P}

I iocoS =def ∀σ ∈ Straces(s) : out(iafterσ) ⊆ out(safterσ)

2

The ioco relation restricts inclusion ofout-sets to suspension traces of the specification and
it is used as a formal notation of what a correct implementation should and should not do. The
intuition behind theioco implementation relation implies what a correct implementationI of a
specificationS is:

• after the same suspension trace an implementationI may only produce outputs which are
allowed by a specificationS, i.e. any output produced byI must be producible byS [2];

• if S refines some output event thenI must produce some output, i.e. ifδ 6∈ out(safterσ)
thenI must produce some output. [2].

The tool TORX employs theioco relation for test derivation and integrated execution. In the
next section we introduce the tool and the algorithm that it used for testing.

1.7 TORX

The tool TORX is developed in the Dutch Ĉote de Resyste project. The tool is based on a formal
model of conformance testing. TORX accepts specifications written in the formal specification
languagesLOTOS, PROMELA and SDL. The semantics of the languages is expressed in terms
of labeled transition systems. The test generation algorithm of the TORX tool can be used for
on-the-fly or manually driven testing [2].

Figure 5 depicts the main subparts of the tool TORX. The Explorer is a component, de-
pendent on the specification language, which offers functions to explore a specification. The
Primer computes test primitives - the events of the tests that has to be executed. The primer
drives the test generation algorithm using the state exploration functions of theExplorer. The

15

On-the-fly Testing Using UPPAAL 1.7 TORX

Explorer and thePrimer manipulate specification to generate the tests. TheDriver keeps the
on-the-fly test running and controls the flow of a testing process in real-time. TheAdapteris an
implementation specific part which encodes and decodes abstract primitives of test events from
and to application specific formats. Theadapterprovides communication between TORX and
an implementation. The encoding and decoding functions have to be written manually once for
every implementation. TheImplementationis a real system that should be tested - a piece of
software, hardware, or a combination of both [2].

Specification DriverPrimer

actions
abstract

bits

bytescheck output

next input

transitions

states transitions

ImplementationAdapterExplorer

Figure 5: TORX - automated testing tool.

TORX uses theiocorelation for test derivation and execution for un-timed systems. Later we
adapt this idea for testing real-time systems, which are modeled by timed automata. Therefore
we describe the test generation algorithm used by TORX and introduced by Tretmans [2].

The algorithm provides on-the-fly test generation and execution. “The aim of on-the-fly test-
ing is to reduce a number of states and transitions to be considered by using the actual responses
of the implementation under test. From a certain state of the specification we need to derive the
possible input actions, the expected output actions and the possibility of quiescence”[6]. These
are calledtest primitives.

Definition 1.8 Let S be a set of states in which the specification may be after a particular partial
test run,a ∈ Actin ∪ Actout ∪ {τ}. A test primitiveis any member of the set{a | s ∈ S, s

a−→
} ∩Actin ∪ out(s). 2

Algorithm 1 describes the test generation and execution in TORX. Let S be a specification
with initial states0 ands0 after ε is a non empty set of states. Initially the set ofS states is
S = {s0}. An implementation under test isI ∈ IOTS(Actin, Actout) andi, i′ are states ofI.

Algorithm 1 Test generation and execution in TORX: TestGenExe(S).

• While not (TERMINATE or FAILURE) the tester has choices:

– Offer an inputa ∈ {a | s ∈ S, s
a−→} ∩Actin: wheni

a−→ i′ then:

- S :=S after a andi := i′

- if S = ∅ then FAILURE:=true

– React on quiescence: wheni
δ−→ i then

- if δ ∈ out(S) thenS :=S after δ

- else FAILURE:=true

– React on an output: whenx ∈ Actout andi
x−→ i′ then

- if x ∈ out(S) thenS :=S afterx andi := i′

- else FAILURE:=true

– Stop testing: TERMINATE:=true

• if FAILURE then return FAIL else return PASS

16

On-the-fly Testing Using UPPAAL 1.8 Contributions

Algorithm 1 performs on-the-fly testing: it derives test primitives from the specification and at
the same time executes these actions on the attached implementation under test. A test case is
generated and executed by selecting one of the choices: to offer an input, to react on quiscence
or to produce an output.

An implementation is assumed to beioco-conforming to the specification when the algo-
rithm terminates with FAILURE=false. If the algorithm terminates with FAILURE=false then
we have a test run which did not produce test failure, i.e. the generated test suite can test for
non-conformance, but can not assure conformance.

The algorithm reduces the state space because only the part of the test case used during
test execution is derived during on-the-fly testing. The state space although increase during the
derivation of test primitives.

We skip the procedures describing how to obtain test primitives and states after input or
output events while performingδ-, input-, output-transitions. For the procedures refer to [6].
We describe the corresponding functions and algorithms for state and test primitive computation
for timed LTS and symbolic states in 3.2.

1.8 Contributions

The following list presents our objectives in this project:

• Generalize testing concepts for real-time systems.

• Extend the idea of automated test generation and execution to be suitable for timed au-
tomata. We refer to the TORX tool which provides the test generation and execution based
on theioco implementation relation for non-timed system.

• Design a test generation and execution algorithm for on the fly testing for real-time sys-
tems.

• Extend the UPPAAL model-checker toolbox with functions for automated test generation
for timed automata.

• Adopt and present several examples of testing to assess the test algorithm functionality in
a simulated environment.

• Evaluate and present test algorithm performance measurements based on our test exam-
ples.

• Discuss the problems of the first test generation and execution algorithm prototype.

1.9 Structure of the Report

The remainder of the report is organized as follows. In Section 2 we discuss the test specifica-
tion structure, properties and theory necessary for the real-time on-the-fly testing. We describe
algorithms used in test generation and execution process in Section 3. In Section 4 we discuss
the implementation details and issues. Section 5 presents the experiments on chosen virtual
implementations under test together with their model descriptions. Finally we summarize our
work by outlining the conclusions of this project and further ideas for future in Section 6.

17

On-the-fly Testing Using UPPAAL 2 Test Specification

2 Test Specification

In this section we extend the timed automata theory with testing concepts. However the testing
theory for timed automata is not developed yet and is still an un-opened research issue [12].
We explain how we interpret theioco implementation relation for timed systems in Section
2.3. A system setup is introduced in Section 2.4 for a timed automata before continuing with
concepts of testing framework for UPPAAL tool. We propose the real time testing framework
in Section 2.5, discuss the input enableness assumptions for the systems to be tested in Sec-
tion 2.6, discuss the testing specific extensions for timed automata networks, and present the
test specification language as an extended UPPAAL timed automata specification language. The
on-the-fly test generation and execution algorithms are presented in Section 3 for non-symbolic
and symbolic states.

Our work is closely related to TORX and UPPAAL . TORX is an automated test generator for
labeled transitions systems. However TORX does not take into account any timing requirements.
On another hand UPPAAL deals with timed systems but does not have a capability of generating
tests for them.

2.1 Timed Automata

Timed automata are used to model finite state real time systems [3]. In this section we present
the definition of the timed automaton, explain the semantics of it and introduce a parallel com-
position operation on timed automata and networks. We stick to the definitions presented in [1].

In order to give the semantics of timed automaton we need to extend LTS (Definition 1.1)
with time. Definition 2.1 defines an infinite state timed labeled transition system where the
progress of time is modeled by a set of specialdelay actionsδ ∈ R+. Execution of delay
δ-action means the passage ofδ time units.

2.1.1 Timed Labeled Transition System

Definition 2.1 Timed Labeled Transition Systems[1] (TLTS) is a tuple〈S, s0, Actτδ,→〉, where

1. S is the set of states,

2. s0 ∈ S is the initial state,

3. Act is the set of observable actions, andActτδ = Act ∪ {τ} ∪ {δ | δ ∈ R+} (Actδ =
Act ∪ {δ | δ ∈ R+}) is the action set with the additional internalτ and delayδ actions.

4. →⊆ S × Actτδ × S is the transition relation satisfying the following consistency con-
straints:

Time Determinism: whenevers
δ−→ s′ ands

δ−→ s′′ thes′ = s′′.

Time Additivity: ∀s, s′′ ∈ S, ∃s′ ∈ S: s
δ1−→ s′

δ2−→ s′′ iff s
(δ1+δ2)−−−−−→ s′′.

Null delay: ∀s, s′ ∈ S. s
0−→ s′ iff s = s′.

5. We assume thatAct is equiped with a mappinḡ: Act 7→ Act such that for all actions
¯̄a = a. ā is said to be the complementary action ofa.

2

18

On-the-fly Testing Using UPPAAL 2.1 Timed Automata

We lift the notation given in Definition 1.1 for LTS to apply to timed LTS, with notable
additions. We define several notations that we use to express the state estimation functions for
timed labeled transition system.

Definition 2.2 TLTS notationfor given TLTS〈S, s0, Actτδ,→〉, wherea ∈ Act, α ∈ Actτδ,
d ∈ Actδ andS′ ⊆ S:

s
α−→ s′ =def (s, α, s′) ∈→

s
α−→ =def ∃s′: s

α−→ s′

s
σ−→ s′ =def ∃s1, s2 . . . sn: s

α1−→ s1
α2−→ s2 · · ·

αn−→ sn andsn = s′,
whereσ = α1 · · · · · αn, αi ∈ Actτδ

s
δ=⇒ s′ =def s0

α1−→ s1
α2−→ . . .

αn−−→ sn such thatsn = s′,
∀i ∈ [1, n]: αi = τ ∨ αi = δi, andδ =

∑
i | αi=δi

δi

s′ after δ =def {s | s ∈ S : s′
δ=⇒ s}

S′ after δ =def {s | s ∈ S, s′ ∈ S′, s′
δ=⇒ s}

τ−→
∗

=def the reflexive and transitive closure of
τ−→

s
ε=⇒ s′ =def s = s′ or τ

τ−→
∗

s′

s
a=⇒ s′ =def ∃s1, s2 ∈ S: s

ε−→ s1
a−→ s2

ε−→ s′

s
σ=⇒ s′ =def ∃s1, s2 . . . sn ∈ S: s

d1=⇒ s1
d2=⇒ s2 · · ·

dn=⇒ sn andsn = s′,
whereσ = d1 · · · · · dn anddi ∈ Actδ

s
σ=⇒ =def ∃s′ ∈ S: s

σ=⇒ s′, whereσ ∈ Actδ
∗

s
σ
6=⇒ =def @s′ ∈ S: s

σ=⇒ s′, whereσ ∈ Actδ
∗

s′ afterσ =def {s | s ∈ S : s′
σ=⇒ s}, whereσ ∈ Actδ

∗

S′ after a =def {s | s ∈ S : ∃s′ ∈ S′, s′
a=⇒ s}

2

2.1.2 Definition and Semantics

Informally a timed automaton is an automaton extended with a concept of a clock which defines
the timed behavior of the automaton.Clockshave positive realvaluationswhich evolve at the
same rate in the system. However any clock valuation can be reset to a positive integer value.
The set of clocks which valuations are to be reset is specified by the set of assignmentsR(X) of
the formx := c wherex ∈ X andc is a non-negative integer. We denote a new clock valuation
after a resetr ⊆ R(X) by v̄′ = r(v̄), wherev̄ and v̄′ are the valuation vectors of all clocks:
v̄ = 〈vx1 , . . . , vxn〉 andv′ = 〈v′x1

, . . . , v′xn
〉 wherev′xi

= ci if (xi := ci) ∈ r andv′xi
= vxi

otherwise. We also use a notationv̄′ = v̄ + δ to update clock valuations whenδ time passes:
〈vx1 + δ, . . . , vxn + δ〉 = 〈vx1 , . . . , vxn〉+ δ.

Timed automaton usesguardsG(X) over a set of clocksX to allow specification timing
constraints. A guardg ∈ G(X) is specified by grammarg ::= γ | g ∧ g whereγ is a constraint
of the formx1 ∼ c or x1 − x2 ∼ c with ∼∈ {<,≤,=,≥, >}.

Definition 2.3 A timed automatonT over actionsA is a tuple(L, l0, X,E, I), where [1]:

• L is a non-empty finite set of locations;

• l0∈L is the initial location;

• X is a finite set of real-valued clocks that evolve at the same rate;

19

On-the-fly Testing Using UPPAAL 2.1 Timed Automata

• E ⊆ L×G(X)×A× 2R(X) ×L is a super set of directed edges, whereG(X) is the set
of guards,A is a set of actions andR(X) is the set of assignment operations. We write
l

g, a, r−−−→ l′ if 〈l, g, a, r, l′〉 ∈ E to represent a transition from locationl to locationl′ with
guardg ∈ G(X), actiona ∈ A and assignmentsr ⊆ R(X).

• I : l 7→ G(X) is the location invariant mapping that gives an invariantg ∈ G(X) for
each locationl ∈ L.

• Let ā denote the complementary action of actiona ∈ A such that̄a! = a? andā? = a!

2

The semantics of a timed automatonT is defined by associating a timed label transition
systemST with T . A states of a timed automaton is a pair〈l, v̄〉 wherel∈L is a location and
v is a valuation of all clocks inX. The valuationv must always satisfy the invariant constraints
in automatons current locationl: v̄ � I(l). There are two types of transitions inST :

Definition 2.4 TheTransitionsfor timed automata systemST :

• let δ ∈ R+. We say that〈l, v̄〉 δ−→ 〈l, v̄′〉 is aδ-delaytransition, if and only if̄v + δ′ � I(l)
∀δ′ ≤ δ andv̄′ = v̄ + δ.

• let a ∈ A. We say〈l, v̄〉 a−→ 〈l′, v̄′〉 is an a-action transition, if and only if an edge
e = 〈l, g, a, r, l′〉 exists such that̄v � g, v̄′ = r(v̄) andv̄′ � I(l′).

2

A networkof timed automataN = (T1‖ . . . ‖Tn) is a collection of concurrent timed au-
tomataTi composed by aparallel composition. Next we give a semantical meaning to parallely
composed networks. Astate of a networkis modeled by a configuration〈l̄, v̄〉. The first compo-
nent is a location vector̄l = 〈l1, . . . , ln〉 whereli is a location of automatonTi. We writel̄[l′i/li]
to denote the location vector where thei-th element of̄l has been replaced byl′i. The second

component̄v ∈ R|X|
+ is the current clock valuation. Theinvariant on a location vectoris the

conjunction of the invariants on the individual locations:I(l̄) =
∧

1≤i≤n I(li). The evaluation
of a location vector invariant with clock valuation̄v is written v̄ � I(l̄). The initial state of the
network is〈l̄0, 0̄〉, wherel̄0 is the vector of initial locations, and̄0 is the clock valuation with all
clocks being zero.

We define rules for three types of transitions in a network of timed automata in Defini-
tion 2.5. Note, that we introduce an internal actionτ ∈ A for each pair of synchronized transi-
tions, which is important when computing a set of reachable states. We will return to explanation
about internal actions after an action definition.

Definition 2.5 TheTransitionsfor timed automata networkN = (T1‖ . . . ‖Tn) are defined by:

• Action: If li
g, a, r−−−→ l′i is an action transition in thei-th automaton withg(v̄), v̄′ � I(l̄′) and

a ∈ A then〈l̄, v̄〉 a−→ 〈l̄′, v̄′〉 is an action transition inN , wherel̄′ = l̄[l′i/li] andv̄′ = r(v̄).

• Synchronization: if li
g1, a, r1−−−−→ l′i andlj

g2, ā, r2−−−−→ l′j is synchronized transitions ini-th and

j-th (i 6= j) automata with̄v � (g1 ∧ g2) andv̄′ � I(l̄′) then〈l̄, v̄〉 τ−→ 〈l̄′, v̄′〉 is an internal
action transition inN , wherea, τ ∈ A, l̄′ = l̄[l′i/li, l

′
j/lj] andv̄′ = (r1 ∪ r2)(v̄).

20

On-the-fly Testing Using UPPAAL 2.1 Timed Automata

• Delay: if δ ∈ R+ is a delay with condition∀d < δ : (v̄+d) � I(l̄) then〈l̄, v̄〉 δ−→ 〈l̄, v̄+δ〉
is aδ-delay transition inN .

2

The network synchronizes with the environment via a set ofobservable actionsAO ⊆ A.
The set of observable actionsAO is partitioned into input and output actions sets:AO = Ain ∪
Aout andAin∩Aout = ∅. The observable action setAO together with partitioningAin andAout

is called aninterfaceof the timed automata network. The network synchronizes internally only
via hiddenunobservable actionτ /∈ AO and, i.e. no internal communication is permitted over
external, observable actions. Note that the smallest network contains a single automaton and its
interface matches all the automaton observable actions.

UPPAAL distinguishesurgentandnon-urgentactions in a network of timed automata. Two
automata synchronize over urgent actions immediately whenever the automata are ready for
synchronization. Non-urgent actions synchronize at an undefined time, i.e. the time may pass,
unless invariants trigger synchronization earlier. As we can see later, urgent actions are not used
in our examples (Section 5), we consider urgent action support a low priority and the urgent
action implementation in T-UPPAAL remains untested in this project.

Another UPPAAL feature of a timed automaton iscommitted locations. An automata net-
work is forced to perform next action from that location, i.e. a committed location must be left
immediately without any interruptions of other transitions. Committed locations are useful for
modeling atomic sequences or atomic multi-channel synchronizations.

We denoteT ∈ N if T = Ti for somei = 1 . . . n, i.e. automatonT is in networkN
if and only if there exist equal (by specification) automatonTi which participates in parallel
composition of networkN .

We extend the parallel composition for timed automata networks. Givenn timed automata
networks{Ni | i = 1 . . . n} whereNi = (T1,i‖ . . . ‖Tmi,i), we define the following asparallel
composition on timed automata networkswhich is also a timed automata network:

N = (N1‖ . . . ‖Nn) = (T1,1‖ . . . ‖Tm1,1

∥∥∥T1,2‖ . . . ‖Tm2,2

∥∥∥ . . .
∥∥∥T1,n‖ . . . ‖Tmn,n)

In general the set of observable actions for a new network is a union of all observable actions:
AO =

⋃n
i

⋃mi
j Aij

O whereAij
O is the set of observable actions for timed automatonTi,j . One

may want to hide some observable actions by declaring them unobservable, especially those
which are already paired with their complements inside the composition of network:AO =
(
⋃n

i

⋃mi
j Aij

O)\Ah whereAh is a set of hidden actions which became unobservable after parallel
composition. Such explicit action hiding is not supported by UPPAAL and the idea of hidden
actions remain only in the theoretical level of the model. We do not introduce a new function for
separating the hidden actions after parallel composition, but instead we require the observable
actions to be declared in test specification (further discussion in Section 2.9).

We say that a networkN is closed if all observable actions and their complements are
handled inside the network, i.e.∀a, ā ∈ AO : ∃〈la, g, a, r, l′a〉 ∈ ETa and〈lā, g, ā, r, l′ā〉 ∈
ETā in some automataTa, Tā ∈ N . Such network closing does not necessarily mean that
all observable actions must be hidden. Normally you are interested in modeling the closed
timed automata networks in UPPAAL , sinceopenaction synchronizations (only action or its
complement is handled inside network) can never be triggered without its complement.

21

On-the-fly Testing Using UPPAAL 2.2 Symbolic Techniques

2.2 Symbolic Techniques

A timed automata network model has an infinite number of states because of dense real valued
clocks. We can see in Figure 6 that an automata passes many states with different clock values
and we are interested in all clock values between0 and2. Therefore we need compact finite

0 2

1.101301

0.801
0.40101

0.1123

1.2362

1.63223

1.900019

Figure 6: Explanation about a dense clock values.

structures to represent infinite number of clock values. Thesymbolic techniquesare used to
handle the problem of the infinite state space. For reachability analysis UPPAAL usessymbolic
statesof the form〈l̄, z〉, wherēl is a location vector〈l1, . . . , ln〉 of n timed automata andz ⊆ Z1

is a set of clock valuations called azone. A finite set of automata states is calledsymbolic states
setZ = {〈l̄1, z1〉, . . . , 〈l̄n, zn〉}.

Informally zone is a solution area for the set of inequalities that are the clock constraint
representation. Graphically viewed, the zone can be represented by an-dimensionalpolyhedron,
wheren is the number of clocks. The polyhedron on a finite set of variables is a set of clock
valuations. A formal definition of a zone is given in Definition 2.6.

Definition 2.6 Let X = x1, . . . , xn be a set of clocks. Azonez [1] over clocks inX is a
constraint system consisting of conjunctions of clock constraints of the following form:{xi −
xj ≺ cij | i, j ≤ n} ∪ {ai ≺ xi} ∪ {xi ≺ bi}, where≺∈ {<,≤}, cij , ai, bi are integers
Z ∪ {∞}, andxi, xj ∈ X. 2

Note that zones are always convex since all constraints cut the area by straight line and the
final zone is constructed using intersection of convex zones which gives also a convex zone.

Zones can be represented and manipulated effectively by adifference bound matrix(DBM),
first applied by Dill in [9]. A DBM represents a clock difference constraints by(n+1)×(n+1)
matrix, wheren is the number of clocks. Constraints are in the formxi − xj ≤ cij , where
xi, xj are clocks andcij is a constraint overxi andxj difference. A special zero clock0 with
constant value of0 is used in DBM. Constraints with zero clock represent constraints of the
form xi ≤ ci0. Hence, the representation ofxi ≤ ci0 is xi − 0 ≤ ci0. Note that the lower bound
constraints of the formxi−xj ≥ cij are rewritten asxj −xi ≤ −cij to fit into DBM. Similarly,
xi ≥ c0i is rewritten as0−xi ≤ −c0i. Figure 7 shows an example DBM for given constraints on
clock values. Closer inspection of the inequalities reveals that other constraints in Figure 7(a)
can also be strengthened. We require that identical zones should have identical DBMs to be
able to compare zones, such DBMs are calledcanonicaland they are unique in a set of DBMs
representing the same zone. The canonical DBM constraints have the tightest bounds for all
constraints, but still represent the same solution set. Figure 7(b) shows a canonical form for the
same constraint and Figure 7(c) shows the filled zone bounded by actual constraints (solid lines)
and striped zone bounded by additional constraints (dotted lines) in canonical form.

1Z ⊆ R|X| is the maximum zone used for extrapolation in reachability analysis. This maximum is limited by
the equipment used in verification.

22

On-the-fly Testing Using UPPAAL 2.2 Symbolic Techniques

0 x1 x2

0 × −5 0
x1 ∞ × 4
x2 3 ∞ ×

(a) Straightforward form.

0 x1 x2

0 × −5 −1
x1 7 × 4
x2 3 −2 ×

(b) Canonical form.

���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

x2

x1

(c) Zone.

Figure 7: DBM representation of the constraintz = [(x1 − x2 ≤ 4) ∧ (x2 ≤ 3) ∧ (x1 ≥ 5)].

We specify several operations over zones in Definition 2.7 in order to be able to apply
symbolic actions on them. The operationz ∧ z′ is simply anintersectionof two zones. z↑

contains thefutureof z, i.e. the clock value that eventually can be reached fromz after unlimited
delay. Thelimited futureoperationz↑d gives a zone which corresponds to reachable clock
valuations within a bounded delayd. Thestrict futureoperationz+d gives the expected clock
valuations after a given bounded delayd. The resetof zonez on a clockxi is a new zone
z′ = (zxi:=0) wherexi is set to zero and other clocks are unchanged. UPPAAL also supports a
clock reset to any non-negative value for convenience purposes.

Definition 2.7 Let v̄ be the automatons current clock valuation of clocks inX andz, z′ ∈ R|X|

be solution zones of constraints over clocks inX, then:

Intersection: z ∧ z′ =def z ∩ z′ = {v̄ | v̄ ∈ z ∧ v̄ ∈ z′}
Future: z↑ =def {v̄ + δ | v̄ ∈ z, δ ∈ R+}

Bounded future afterδ ∈ R+: z↑δ =def {v̄ + d | v̄ ∈ z, d ≤ δ}
Strict future afterδ ∈ R+: z+δ =def {v̄ + δ | v̄ ∈ z}

Reset: zr =def {r(v̄) | v̄ ∈ z} wherer ⊆ R(X)
Containment: z ⊆ z′ =def ∀v̄ ∈ z, v̄ ∈ z′

Emptiness: z = ∅ =def @v̄ ∈ R|X| such that̄v ∈ z

2

All operations except bounded future and strict future are already efficiently implemented in
UPPAAL . Figure 8 illustrates these operations over zones forn = 2 clocks as operations on a
2-dimensional polyhedra.

�����
�����
�����

�����
�����
�����

x1

x2

z

(a) Sample
zone.

���
���
���

���
���
���
���
���
���

���
���
���

�
�
�

�
�
�

x1

z1

x2

z2

z1 ∧ z2

(b) Intersec-
tion.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���

���
���
���

x1

x2 z↑

(c) Future.

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����x2 z↑δ

x1

δ

δ

(d) Limited
future.

���
�

������
���
������
���
������
���
������
���

x1

x2 z+δ

δ

δ

(e) Strict
future.

���
���
���

���
���
���

x2

x1

zx2:=0

(f) Reset.

Figure 8: Operations on zones.

We define the semantics of transitions over a symbolic states〈l̄, z〉 in Definition 2.8. We
refer to [8] for the proof of correctness and soundness of symbolic action transition semantics.

23

On-the-fly Testing Using UPPAAL 2.3 Implementation Relation for Real Time Systems

Definition 2.8 Symbolic transitionsfor timed automata networkN with γ ∈ A andδ ∈ R+:

Action: 〈l̄, z〉
γ

� 〈l̄′, (z∧g)r∧I(l̄′)〉 if l̄
g,γ,r−−−→ l̄′ is an (internal, observable or synchronized)

γ-action transition inN , z ∧ g 6= ∅ and(z ∧ g)r ∧ I(l̄′) 6= ∅.
Delay: 〈l̄, z〉

δ
� 〈l̄, z+δ ∧ I(l̄)〉 if z+δ ∧ I(l̄) 6= ∅.

whereI(l̄) is the invariant condition on the location vectorl̄. 2

Later in Section 3.2 we use the notations on symbolic states defined in Definition 2.9. The
first two notations helps to define next four. Theafter notations are used to denote the reachable
symbolic states after observable event in the test generation and execution algorithm andclosure
functions are needed to computeafter functions.

Definition 2.9 Let 〈l̄, z〉 and〈l̄′, z′〉 be symbolic states andZ be a set of symbolic states:

〈l̄, z〉 a=⇒ 〈l̄′, z′〉 =def ∃〈l̄1, z1〉, 〈l̄2, z2〉 : 〈l̄, z〉
τ1
� · · ·

τm
� 〈l̄1, z1〉

a
� 〈l̄2, z2〉

τm+1

�

· · ·
τn
� 〈l̄′, z′〉, whereτi ∈ AU anda ∈ AO.

〈l̄, z〉 σ=⇒ 〈l̄′, z′〉 =def ∃〈l̄0, z0〉 . . . 〈l̄n, zn〉 such that〈l̄0, z0〉 = 〈l̄, z〉, 〈l̄n, zn〉 = 〈l̄′, z′〉
and〈l̄i−1, zi−1〉

ai=⇒ 〈l̄i, zi〉, whereσ = a1a2 . . . an with ai ∈ Z+

or ai ∈ AO.
Z after a =def {〈l̄′, z′〉 | 〈l̄, z〉 ∈ Z, 〈l̄, z〉 a=⇒ 〈l̄′, z′〉}.
Z after δ =def {〈l̄′, z′〉 | 〈l̄, z〉 ∈ Z, 〈l̄, z〉 σ=⇒ 〈l̄′, z′〉, ∀σ = γ1γ2 . . . γn :

γi ∈ AU ∨ γi ∈ Z+ andδ =
∑

γi∈Z+
γi}.

τ -closure(Z) =def {〈l̄′, z′〉 | 〈l̄, z〉 ∈ Z, 〈l̄, z〉
τ1
� · · ·

τn
� 〈l̄′, z′〉, τi ∈ AU}.

δτ -closure(Z) =def {〈l̄′, z′〉 | 〈l̄, z〉 ∈ Z, 〈l̄, z〉 σ=⇒ 〈l̄′, z′〉, ∀σ = γ1γ2 . . . γn :
γi ∈ AU ∨ γi ∈ Z+}.

2

Using symbolic states we get a finite set of symbolic states after an action or a delay. We can
explain that as follows:

• we get finite tracesσ as they consists of delays which are sums of integer valued intervals
γ;

• we do not allow Zeno traces, i.e. during a bounded time interval a system can perform a
bounded number of actions.

Note that the “Z after ” definition for a symbolic state set is compatible with the “S after ”
definition for a state set, i.e. if the symbolic state setZ includes the state setS – ∀〈l, v〉 ∈
S ∃〈l, z〉 ∈ Z.(v ∈ z) – then (Z after δ) includes(S after δ) and (Z after a) includes
(S after a).

2.3 Implementation Relation for Real Time Systems

Testing of real time systems requires a different approach of testing theory than the one for
non-timed systems, because of additional time sensitive constraint in a model. We describe a
testing relation for a timed automata network and illustrate the properties for the implementation
relation that would allow us to discriminate real time systems for testing them.

An implementation relationis the correctness criterion used in automated testing theory. It
defines the correctness for an implementation with respect to a given specification. We interpret
the implementation relation as follows: an implementationi ∈ IOT S(Actin ∪Actout) is only

24

On-the-fly Testing Using UPPAAL 2.3 Implementation Relation for Real Time Systems

allowed the behavior, in terms of timed traces of observable actions, which is prescribed by the
specifications ∈ T LT S(Act ∪ {δ}).

In the untimed systems quiescence can be approximated and implemented as a finite time-
out [2]. In the timed case we can only observe that the implementation was quiescent for a
bounded amount of time, corresponding to observing the passage of finite delays. We define
timed traces andrt-ioco implementation relation expressed in terms of output sets after timed
traces where a delayδ ∈ R+ is non-negative real number.

Definition 2.10 Letp ∈ S be a state of a TLTS, an implementationi ∈ T IOT S(Actin, Actout)
and a specifications ∈ T LT S(Actin ∪Actout ∪ {δ}) whereδ ∈ R+ is a time delay, then
ttraces(p) =def {σ ∈ (Act ∪ {δ})∗ | p σ⇒}
out(p) =def {α ∈ Actout ∪ {δ} | p

α−→}
out(S) =def

⋃
{out(p) | p ∈ S}

i rtioco s =def ∀σ ∈ ttraces(s): out(iafterσ)⊆ out(safterσ)
2

From the definition 2.10 follows thatσ ∈ ttraces(p) iff δ ∈ out(pafterσ) or out(pafterσ)
6= ∅. We show through the examples in Figure 9 how thertioco implementation relation can
be applied for real time systems as a relation between timed traces of the implementation and
the specification. Any erroneous behavior is non-conforming and any correct is not necessary
conforming.

i rti 6oco s

2 ≤ x ≤ 3

a?
x := 0

b!
3 ≤ x ≤ 4

SpecificationImplementation

b!

x := 0
a?

(a) Implementation exceeds time bound-
aries allowed by Specification.

3 ≤ x ≤ 4x = 3

i rtioco s

SpecificationImplementation

b!

x := 0
a?a?

x := 0

b!

(b) Implementation allows only certain be-
havior defined in Specification.

b!

i rti 6oco s

SpecificationImplementation

c!

x := 0
a?a?

x := 0

(c) Implementation produced a wrong out-
put

i rti 6oco s

b! b!
x ≤ 3x ≤ 4

x := 0
a? a?

SpecificationImplementation

x := 0

(d) Implementation allows a longer delay
than defined in Specification.

Figure 9: Examples withrtioco relation for TLTS.

In Figure 9(a) we illustrate that the sample implementation does not conform to the spec-
ification. The specification require to produce the outputb when x ∈ [3; 4] but in the im-

25

On-the-fly Testing Using UPPAAL 2.4 Physical System Setup

plementation the outputb is permitted only whenx ∈ [2; 3]. The implementation can do
an output transition earlier than it is defined in the specification, e.g.out(iafter a.δ(2)) 6⊆
out((safter a.δ(2)). In Figure 9(b) there is a timed trace when outputb is produced when
x = 3 andout(iafter a.δ(3))⊆ out((safter a.δ(3)) therefore the implementation is in the
rtioco relation with the specification.

In Figure 9(c) the implementation does not conform to the specification because the im-
plementation does not produce the permissible output. In Figure 9(d) the relation is non-
conforming because the implementation can produce the outputb whenx = 4, while the speci-
fication requires to produce the output not later thanx ≤ 3.

Based on the examples we declare that we considerrtioco implementation relation, which
implies that:

• an output from the implementation is erroneous if the specification does not allow the
output;

• timed traces of an implementation with delay transitions which violates the maximum or
minimum delay defined in the specification show non-conforming behavior of the imple-
mentation.

The above implications assure that the implementation behaves safe, i.e. does not do more
than required by the specification and the outputs required by a specification are also produced
by an implementation. Before continuing with testing framework concepts we describe a phys-
ical system setup in the next section.

2.4 Physical System Setup

Figure 10 shows a real system setup where an implementation fits in its environment. The im-
plementation communicates with its environment through observable actions: inputAin ⊆ AO

and outputAout ⊆ AO, whereAO = Ain ∪ Aout andAin ∩ Aout = ∅. We name actions as
input or output from the implementations point of view if it is not noted otherwise. In our case
theoutput actionsare the actions controlled by the implementation (Aout in Figure 10) and the
input actionsare controlled by the environment (Ain). In practice environment and implementa-

Environment Implementation
Aout

Ain

Figure 10: Real physical system setting.

tion automata and variables are isolated from each other (if they exist at all) and access to them
is limited. The only way to communicate with the implementation areAin andAout channel
synchronizations combined with shared global variables. To make this communication real, we
extend the UPPAAL notion of an action with data transmition in Section 2.9.

The goal of the testing is to verify the implementation conformance to the specification by
using these input/output actions together with the timing specification, i.e. by simulating the
behavior of the environment.

2.5 Real Time Testing Framework

An implementation under test may have an unspecified environment. If the test specification
omits the model of the environment we assume a fully permissive environment. Afully per-

26

On-the-fly Testing Using UPPAAL 2.6 Input Enableness and Specification Completeness

missiveenvironment may offer any input defined in the implementation interface at any time.
We also consider an option to model a specific environment since we might be interrested in
the implementation behavior only under specific environmental conditions. The model of the
environment may also be used to guide a test to some specific situations like a specific use case
of the system.

The above implies the UPPAAL tool extension to the on-the-fly test generation tool which
we call T-UPPAAL (Testing-UPPAAL) with a following test setup shown in Figure 11:

Implementation
Model of

Environment
Model of

Test Specification:

Environment

Under Test
Implementation

A
da

pt
er

T−UppAal
in

out

abs_in

abs_out

Figure 11: Automated test generation setup with T-UPPAAL .

1. TheTest Specificationis a model of the environment and the implementation written in
the UPPAAL timed automata’s language with test specific extensions which are discussed
further in this section.

2. The T-UPPAAL reads the test specification and controls the automated testing: offers an
input and receives an output to and from adapter in abstract encoded form, e.g. character
strings “insert coin”, “give coffee”. T-UPPAAL corresponds toExplorer, Primer and
Driver in TORX (see Figure 5).

3. TheAdapteris an implementation dependent event encoder/decoder which immediately
translates the abstract encoded actions (e.g. character string “insert coin”) to a physical
input to the implementation (e.g. inserts a coin) and translates a physical output from
the implementation (e.g. coffee outcome) to their abstract encoded representation (e.g.
character string “give coffee”).

4. TheImplementation Under Test(IUT) is a physical subsystem or a device to be tested,
e.g. coffee machine. The IUT model is given in the test specification, several examples
are presented in Figure 9.

2.6 Input Enableness and Specification Completeness

In this section we discuss our assumptions on the implementation model properties. We as-
sume that the implementation is always capable of synchronizing with an input offered by the
environment. The first requirement comes that a model of implementation should not contain
internal action cycles, which would allow infinite loops ignoring the input action transitions.
In other words we require that a timed labeled transition system for implementation is strongly
converging. The formal definitions for stable state and strongly converging TLTS are given in
Definition 2.11 and Definition 2.12.

Definition 2.11 Let N be a timed automata network andT LT S(N) = 〈S, s0, Actτδ,→〉 is a
TLTS for N . A states ∈ S is calledstableif no internalτ transition is specified for it. The set
of stable statesis denoted byStableStates(S) = {s ∈ S | s τ9}. 2

27

On-the-fly Testing Using UPPAAL 2.6 Input Enableness and Specification Completeness

Definition 2.12 TLTS 〈S, s0, Actδτ ,→〉 is strongly convergingif only a finite sequence of in-
ternal transitions is possible to take beginning with any state, i.e. a stable states′ is reached
eventually:∀s ∈ S ∃τi ∈ AU . s

τ1−→ · · · τn−→ s′ and@τ ∈ AU . s′
τ9. 2

Definition 2.13 Let N be a timed automata network andT LT S(N) = 〈S, s0, Actτδ,→〉 is a
TLTS for N . The networkN is strongly input enabledif it specifies all input action transitions
for all possible states:∀s ∈ S,∀a ∈ Ain. s

a−→. 2

Definition 2.14 Let N be a timed automata network andT LT S(N) = 〈S, s0, Actτδ,→〉 is a
TLTS for N . The networkN is weakly input enabledif it specifies all input action transitions
for all possible states within an arbitrary number of internalτ action transitions:∀s ∈ S,∀a ∈
Ain. s

a=⇒. 2

Theorem 2.1 Let N be a timed automata network andT LT S(N) = 〈S, s0, Actτδ,→〉 is a
strongly converging TLTS forN . The networkN is weakly input enabledif and only if all input
action transitions are specified for all stable states:∀s ∈ StableStates(S), ∀a ∈ Ain. s

a−→. 2

However not all specifications are (strongly or weakly) input enabled, but there are tech-
niques to make them input enabled. We say that timed automata network specification iscom-
pleteif it is (strongly or weakly) input enabled. To lower the requirement we allow the partially
defined specifications. We say that timed automata network ispartially defined if the specifica-
tion is not (strongly or weakly) input enabled but there are rules how to make such specification
complete.

Figure 12 shows four combinations of different input enabliness assumptions for TLTS
whereτ is internal transition anda, b ∈ Ain are input actions which are not bounded to any
data or clock variables:

b b b baaa

τττ

a

(a) Complete specification with
strongly input enabled states.

baa b b baa

τττ

(b) Partially defined specification
with strongly input enabled states.

b baa

τττ

(c) Complete specification
with weakly input enabled
states.

b baa

τττ

(d) Partially defined specification
with weakly input enabled states.

Figure 12: Four combinations of assumptions about TLTS states.

a) If we require the specification to be strongly input enabled then a complete specification
has to include all input action transitions for every possible state (see LTS example in
Figure 12(a)).

28

On-the-fly Testing Using UPPAAL 2.6 Input Enableness and Specification Completeness

b) If we do not define all the input action transitions for all possible states we assume that au-
tomaton ignores the input and stays in the same state (dotted transitions in Figure 12(b)).

c) If we require just weak input enabliness then the complete specification is required to
have input action transitions defined in stable states (Figure 12(c)).

d) And for the partially defined specification with weak input enabliness we assume that
only stable states ignores the unspecified input actions (dotted transition in Figure 12(d)).

In partial specifications we assume that the implementation is ignoring the input if the input
action transition is not specified: the implementation makes the input action transition to the
same location as it was before and only the certain variable values are overwritten with the
values transfered together with the input action. If the input actions are bounded to some clock
or data variables then the implementation will be forced to move to another state with the same
location vector and updated variable values (which is not the case in Figures 12(b) and 12(d)).

An implementation can not refuse input actions offered by the environment. In general
the implementation may ignore the input offered and no response is also a legal response. We
assume that the implementation synchronizes its input action transition immediately with an
input offered by the environment and we assume that implementation is complete and strongly
input enabled. Notice that any partially defined model of implementation can be easily converted
into complete strongly input-enabled one by adding a timed automaton which handles input
actions independently from the rest of the implementation. These additional automata can be
used to model monitors or display screens, but they should not be used in general since they
introduce additional non-determinism.

Models of implementation are rarely input enabled out of the box, therefore it is desired that
we can easily adapt them for a test specification. There are two choices for doing that according
to what kind of input enableness we want:

1. If we consider a model to be partially defined then

• we may choose methods shown in Figure 12(b) to make it strongly input enabled;

• we may use methods shown in Figure 12(d) if we want a weakly input enabled
model.

2. If we assume a model to be complete then the model creator should consider reviewing
the model when something goes wrong during testing (tool prompts that there are no
observable actions enabled). Model verification could be used to check whether some or
all inputs are enabled in all states.

We assume that the environment network synchronizes immediately with output produced
by the implementation. We allow the environment model not to be (strongly or weakly) input en-
abled, i.e. there might be a state of the environment where a transition on some implementation
output action is not specified. In practice, the test isinconclusiveif the implementation gives an
output which cannot be synchronized with an action transition in the environment model current
state at a current moment. Inconclusiveness may occur due to as-synchronization of clocks be-
tween an environment and the implementation therefore we assume that clocks are synchronous.
The verdictinconclusivemeans that the goal of the test was not reached due to unexpected (by
the environment) conditions, but it does not mean that implementation succeeded or failed to
comply with the specification.

29

On-the-fly Testing Using UPPAAL 2.7 UPPAAL

2.7 UPPAAL

UPPAAL [7] is a toolbox for symbolic simulation and automatic verification (via automatic
model checking) of real time systems modeled as networks of extended timed automata.

The tool provides reachability analysis (described in Section 2.2) for automatic verifica-
tion of properties for real-time systems. It contains a number of additional features including
graphical interfaces for editing and simulating system models.

The UPPAAL model checker tool consists of the programs (Figure 13): graphical user inter-
face (GUI) and the model checker engine (server). UPPAAL GUI provides cross-platform user

Simulation API

Uppaal Engine Server (C++)

Algorithms lib

State op. lib.

Time zone lib

module
Control

Comm.

Parsers

Graphical User Interface (java)

VerifierSimulatorSystem Editor

Figure 13: UPPAAL component architecture.

interaction build on Java. UPPAAL server provides an efficient computation of a system sym-
bolic state after given transition and verification result for a given property. The UPPAAL GUI
(re)starts the server program whenever user chooses to update simulator and/or verifier with a
new system model. The GUI and the server communicate through TCP/IP socket connection
established automatically after the server start. The UPPAAL GUI has three parts:

• TheSystem Editor allows the user to describe and edit the timed-automata system. The
system timed automata consists of global declarations, a timed-automaton templates, pro-
cess assignment and system definition sections.

• TheSimulator allows the user to virtually interact with the system described. The sim-
ulator shows the system state by displaying the states of compound automata and the
values of variables. The simulator allows the user to choose enabled transitions manually
or randomly. It also has a feature of displaying the history of events in sequence chart.

• TheVerifier accepts the user formulated properties to be verified on a particular timed-
automata model, and displays the result of verification: true or false depending on whether
the property was satisfied or not, and an event trace example if the property proof requires
one.

UPPAAL server consists of many libraries, but in particular our project overlaps with the
following:

• DBM library provides efficient operations on time zones.

• System state operation library used for timed automata network state and transitions rep-
resentation.

30

On-the-fly Testing Using UPPAAL 2.8 UPPAAL Network Specification

• Reachability algorithms used for property verification.

• Parser library provides dynamic loading and saving of the system specification to be ex-
tended with test specific additions.

• Communication (API) library used to connect GUI and transfer the system specification
with verification properties. The API library is to be reused for communication with real
implementation under test.

UPPAAL uses templates to construct a network of timed automata. A UPPAAL template
resembles a timed automaton with additional features: integer data variables and arrays of such
variables, urgent channels and committed locations.

Data variables [8] do not change their values at the delay-transitions as the clock variables
do; they can only be assigned to values from finite domains (bounded integers in our case), and
therefore they do not cause infinite-stateness. Data variables formnon-clock constraintswhich
are similar toclock constraints. G(D) is a set ofnon-clock constraints, whereD is a set of data
variables. Anon-clock constraintg is defined by grammarg ::= v(d) ∼ k | v(d) ∗ v(b) ∼ k |
g1 ∧ g2, wherev is the value of the data variableb, d ∈ D, k ∈ Z, ∼∈ {<,≤,=, 6=,≥, >} and
∗ ∈ {+,−,×, /}. We denoted ∈ g when variabled ∈ D participate in guardg ∈ G(D). A set
of assignment operationsR is also extended for data variables. We denoted ∈ r when variable
d ∈ D participate in assignment operationr ∈ R.

2.8 UPPAAL Network Specification

A UPPAAL timed automata specification describesclosedtimed automata networks where the
environment and the implementation models are embedded in a parallel composition. Both the
environment and the implementation models can also be timed automata composed in parallel,
forming separate networks even if the separation is not always obvious when looking at the
UPPAAL model specification. Figure 14 gives an example of UPPAAL timed automata network

out!
i! x:=2

out? out!

in! in?

Model of Environment Model of Implementation

v:=3
i?

in!y:=0
w:=5e?

out?e!

in?

Figure 14: Environment and implementation models embedded into a single network model.

model where the model of the environment and the model of the implementation are both in-
tegrated into a single network. The environment consists of three parallely composed timed
automata and the implementation consists of five automata. Both the environment and the im-
plementation networks synchronize throughAin andAout sets of channels and communicate
through shared global variables forming a complete system network model.

The concepts involved in a UPPAAL timed automata network model specification are shown
in a class diagram in Figure 15. Timed automata are treated as process definitions in UPPAAL ,
since they are used to model processes. A network specification consists of four sections: 1)
global variable, clock and channel declarations, 2) the process template section eases the mod-
eling task and lets user to specify a class of localy equal automata 3) the process instantiation

31

On-the-fly Testing Using UPPAAL 2.9 Test Specification Grammar

2

1

Relations:

"is a"

"has a"

"has a reference"

1*
Transition

1

*
State

1

1

*

11

Channel
*

Clock
*

Variable
*

Declaration

1

Local declaration
1

Process template

Global declaration

Uppaal model specification

*

Synchronisation
1

Label

Assignment
1

Guard
1

Invariant
1

System definition
1 1

*

Process instantiation
*

Figure 15: UPPAAL timed automata network specification class diagram.

which defines the final automata design and connectivity and finally 4) the system definition
tells what automata are involved in network.

Channels denote the actions which “connect” and synchronize automata. A process template
may have its own variables and clocks declared in the local declaration, however local channels
do not have meaning since local items are not accessible from outside of the automaton. The
process template specifies automaton’s states with invariants and transitions between them with
guards, action synchronizations and assignment statements. The process instantiation section
references the global declaration items and process templates and defines concrete automata.
System definition references constructed automata from the process instantiation and defines
the construction of a final automata network.

2.9 Test Specification Grammar

We assume that the only way to communicate with the implementation is its interface: action
setsAin andAout. The clocks and variables of the implementation are isolated from those of
the environment and values can be exchanged only by observable actionsAO = Ain ∪ Aout.
In our case each action is a channel synchronization associated with some variable values to
be transfered to the implementation and back to allow value passing. Having the assumptions
above we conclude that a test specification contains:

1. UPPAAL network specification as a parallel composition of implementation and environ-
ment networks.

2. Inputandoutput channelsynchronizations which form an interface of the implementation
to the environment.

3. Data variables associated withinput andoutput channels.

32

On-the-fly Testing Using UPPAAL 2.9 Test Specification Grammar

Network ::= <Declaration>* <Inst>* <System>
Inst ::= ID ’=’ ID ’(’ <ArgList> ’)’ ’;’

System ::= ’system’ ID (’,’ ID)* ’;’
Declaration ::= <VariableDecl> | <ProcDecl>

VariableDecl ::= <Type> <DeclId> (’,’ <DeclId>)* ’;’
DeclId ::= ID [’=’ <Expression>]

Type ::= <Prefix> (’clock’ | ’int’ | ’channel’)
Prefix ::= ([’urgent’] [’broadcast’] | [’const’])

ProcDecl ::= ’process’ ID <ParameterList> ’{’ <ProcBody> ’}’
ProcBody ::= <VariableDecl>* <States> [<Commit>] [<Urgent>]

<Init> [<Transitions>]

States ::= ’state’ <StateDecl> (’,’ <StateDecl>)* ’;’
StateDecl ::= ID [’{’ <Expression> ’}’]

Commit ::= ’commit’ StateList ’;’
Urgent ::= ’urgent’ StateList ’;’

StateList ::= ID (’,’ ID)*

Init ::= ’init’ ID ’;’

Transitions ::= ’trans’ <Transition> (’,’ <TransitionOpt>)* ’;’
Transition ::= ID ’->’ ID <TransitionBody>

TransitionOpt ::= Transition | ’->’ ID <TransitionBody>
TransitionBody ::= ’{’ [<Guard>] [<Sync>] [<Assign>] ’}’

Guard ::= ’guard’ <Expression> ’;’
Sync ::= ’sync’ <Expression> (’!’ | ’?’) ’;’

Assign ::= ’assign’ <ExprList> ’;’

Figure 16: UPPAAL network specification language core rules.

A UPPAAL specification includes global variables declaration without telling which vari-
ables actually belong to the implementation neither specifies which automata are used in the
implementation. To be able to simulate the environment we need to specify it explicitly to
separate the implementation from the environment. We split the UPPAAL network model
N = (T1‖ . . . ‖Tn) into following parts:

1. Implementation networkNI is a parallel composition ofi timed automata which specify
the model of the implementation under test:NI = (TI1‖ . . . ‖TIi).

2. Environment networkNE is a parallel composition ofj timed automata which specify the
model of the environment for the implementation to be tested in:NE = (TE1‖ . . . ‖TEj).

3. Implementation variablesDI are controlled (assigned) by the implementation automata:
DI = {d | ∃T = (L, l0, X,D,E, I) ∈ NI , ∃e = 〈l, g, a, r, l′〉 ∈ E : (d := exp) ∈ r},
whereexp is an integer expression, i.e. the implementation variable is the variabled for
which there exists an automatonT in the implementation network of timed automata with
an edgee containing an assignemt tod.

4. Environment variablesDE are controlled (assigned) by the environment automata:DE =
{d | ∃T = (L, l0, X,D,E, I) ∈ NE , ∃e = 〈l, g, a, r, l′〉 ∈ E : (d := exp) ∈ r}, where

33

On-the-fly Testing Using UPPAAL 2.9 Test Specification Grammar

exp is an integer expression, i.e. the environment variable is the variabled for which
there exists an automatonT in the environment network of timed automata with an edge
e containing an assignemt tod.

Notice that so far we do not care about the relations between setsNI andNE , DI andDE , we
consider it later when defining what is a separable UPPAAL network.

We have separated the implementation and the environment models and now we need to
make sure that shared variable values are synchronized in the implementation and the environ-
ment. There are two alternative approaches to synchronize the data values between the imple-
mentation and the environment:

1. Shared memory approachsuggests to synchronize variable values as soon as possible.i.e.
right after value assignment. For that purpose we attach a separate output channel syn-
chronization for each variable assignment inside the implementation model and send the
new variable value to the environment together with the output channel synchronization.
The same rule applies for the implementation model attaching an additional input channel
synchronization. This case explained in the train-gate example in Section 5.2.

2. Value passing approachsuggests to postpone data variable synchronization until next
channel synchronization and for each channel attach sets of variables which values are to
be transmitted just before synchronization. Look for explanation in Section 5.2.

The shared memory approach makes sure that variable values in the implementation and the
environment are the same at all times. It is not always possible to achieve that in practice
(variables may exist only in models) and the communication efficiency is considered to be poor
comparing with the second approach. The message passing approach minimizes the amount of
communications and enables only the final computation values to be transmitted.

Having discussed the options we choose to implement the second method. We are ready to
define what input and output data is actually transmitted during synchronizations.

1. Output variablesis a function∆out : Aout 7→ 2DI which assigns a subset of implementa-
tion variables to an observable output action from a setAout ⊆ AO.

2. Input variablesis a function∆in : Ain 7→ 2DE which assigns a subset of environment
variables to an observable input action from a setAin ⊆ AO.

Figure 17 describes the data transmission protocol during input action synchronization in four
basic steps:

1. The environment network of timed automataNE = TE = ({lE0 , lE1 }, lE0 , {da}, {lE0
in!−→

lE1 }, {I(lE0) = true, I(lE1) = true}) and implementation network of timed automata

NI = TI = ({lIa, lIb}, lIa, {da}, {lIa
in?−−→ lIb}, {I(lIa) = true, I(lIb) = true}). are in the

initial states. Variableda is bounded to the channela, i.e. ∆(a) = {da}.

2. The environment decides to take a transitionlE0
a!−→ lE1 and offers an inputa(da = 2).

3. The implementation receives actiona(da = 2), updates the variabled value to2 and
decides which transition to take.

4. The environment and implementation state after the synchronous transition.

34

On-the-fly Testing Using UPPAAL 2.9 Test Specification Grammar

dE
a = 2
lE0

lE1

a!

dI
a = 1

a?

lIb

lIa

(a) Before synchronization.

da = 2

a

dE
a = 2
lE0

lE1

a!

dI
a = 1

lIb

lIa

a?

(b) Environment offers an in-
put.

dE
a = 2
lE0

lE1

a!

dI
a = 2

lIb

lIa

a?

(c) Implementation updates
variables and decides which
transition to take.

dE
a = 2
lE0

lE1

a!

dI
a = 2

lIb

lIa

a?

(d) After synchronization.

Figure 17: Protocol of channel synchronization with data transmission.

The separation of the environment and the implementation becomes obvious after having
discussed the ownership of variables in a composed specification. Definition 2.15 summarizes
the conditions for the specification to be separable into models of the environment and the
implementation. The first two requirements are obvious: we want timed automata and data
variables to be strictly distinguished between models. The next two requirements restricts the
use of the implementation variables in the model of environment and vice a versa, i.e. in the
model of the environment the implementation variables can be used only in synchronized output
action transitions, otherwise we would risk to operate on the environment model with outdated
implementation variable data, the same must hold for the model of the environment.

Definition 2.15 We say that the UPPAAL networkN is separableinto the implementationNI

and the environmentNE sub-networks if the following criteria are fulfilled:

1. UPPAAL network is closedN = (NI‖NE) and automata belong either to the implemen-
tation or the environment:NI ∩NE = {T | T ∈ NI ∧ T ∈ NE} = ∅,

2. UPPAAL global variables belong exclusively to either the implementation or the environ-
ment:DI ∩DE = ∅.

3. The environment variable value can be accessed through dedicated action synchroniza-
tion. The same applies to the implementation variables.

4. The implementation network does use the value of the variable belonging to environment,
except during the dedicated action synchronization. The same applies to environment in
respect to the variables belonging to implementation.

35

On-the-fly Testing Using UPPAAL 3 Algorithms

2

Theorem 2.2 UPPAAL networkN is separableinto implementationNE and environmentNI

networks if and only if:

1. the value of a data variabled is transmited from implementation duringa-action synchro-
nization, i.e.∀d ∈ DI and∀e = 〈l, g, a, r, l′〉 ∈ EE whered is used in the guardg, the
invariantIE(l′) or the assignmentr of the edgee if and only if d ∈ ∆out(a).

2. ∀d ∈ DE , ∀e = 〈l, g, a, r, l′〉 ∈ EI whered is used in the guardg, the invariantII(l′)
or the assignmentr of the edgee if and only if the value ofd is sent to implementation
duringa-action synchronization:d ∈ ∆in(a).

2

Once we have the separable model of the implementation and the environment we are ready
to define what is a test specification:

Definition 2.16 A test specificationTestSpec for a given separatable timed automata network
N = (NE‖NI) is a tuple〈N,Ain, Aout,∆in,∆out, µ,Ω〉 where:

• Ain ∪Aout = AO andAO is an observable action set forN ,

• µ ∈ Q+ is the smallest time value in seconds, which corresponds to one time unit. We
allow the implementation to have up to±µ

2 seconds deviation in test execution.

• Ω ∈ N is the amount ofµ time units for a timeout.

2

We define theTestSpec language by extending the UPPAAL timed automata network lan-
guage to contain the test information in Figure 18.

TestSpec ::= <Network> <Interface> <Precision> <Timeout>
Interface ::= ’input’ [<Action> (’,’ <Action>)*] ’;’

’output’ <Action> (’,’ <Action>)* ’;’
Action ::= <Channel> ’(’ [<Variable> (’,’ <Variable>)*] ’)’

Channel ::= ID
Variable ::= ID

Precision ::= ’precision’ Rational ’;’
Timeout ::= ’timeout’ Integer ’;’

Figure 18: Test specification language grammar.

3 Algorithms

Given the test generation and execution algorithm for TORX in Section 1.7 and the description
of TLTS and timed automata in Section 2.1 we continue with the test generation and execution
algorithm for real time systems.

Our goal is to generate test runs that would effectively check whether the implementation
conforms to the specification, i.e. the implementation and the specification are in thertioco
implementation relation.

36

On-the-fly Testing Using UPPAAL 3.1 Test Execution on Reachable States

We present two versions of the test generation algorithms: 1) computing the reachable states
of TLTS (Section 3.1) and 2) computing the reachable symbolic states of timed automata net-
work. Actually the first version of the test generation and execution algorithm is not computable
in practice, but might be used to prove the correctness of the second one.

3.1 Test Execution on Reachable States

We introduce reachable stateestimation functions. The state estimation functions compute a set
of reachable states after applying a sequence of observable or unobservable actions, or delays.
In Figure 19 we show how a set of reachable states is computed in an LTS expressed as a graph.
Initially a set of statesS0 is computed before any observable action is observed consideringτ
transitionsS0 =s0 after ε= {s0, s1}. The next set of reachable statesS1 is derived applying an
observable actiona to the present setS0, S1 =S0 after a= {s3, s2, s4}.

a

a

τ

τ

s0

s4s3

s2s1

Figure 19: A graph of a LTS.

A statesn is reachablefrom s if there exists a finite test runσ, which starts at s, goes through
a set of reachable states and ends insn.

We notesafterσ= ∅ if no states can be reached from s, i.e.s
σ
6=⇒ (Definition 2.2).

We present the test generation and execution algorithm for TLTS and afterwards we define
several functions and algorithms for computing test primitives (possible input or expected output
actions) and a set of reachable statesS′ =S afterx after a particular action eventx which can
be a delayδ ∈ R+ or an actiona ∈ Act.

Algorithm 2 presents the steps for a test case generation and execution. There are two
choices depending whether the tester wants to send some outputa to the implementation or the
tester want to delay for some time units. For both choices a state set is estimated as described
by the state estimation functions later. We select the choices of test events randomly.

If we choose a delay then the functionChooseDelay() calculates a tester dependent delay
δ = ChooseDelay(). An algorithm for the function is presented later in Section 3.2. We wait
for an output forδ time units. If an output occurs beforeδ passes, i.e. the tester receives an
output atδ′ ≤ δ then it calculates an estimated set of reachable states and checks the validity of
the output. If afterδ time units it observes no output from the implementation model and the
estimated set of reachable states is empty then test generation and execution fails, otherwise it
proceeds on the estimated set of reachable states.

Theoretically, test cases should cover all transitions of a specification, but in practice it is
an infeasible task, because long delays complicate testing process. Therefore, we introduce a
time-out for test execution to obtain a finite test.

In the second step of the second choice we check whether the outputo ∈ Aout produced
by the implementation is allowed by a specification to produced such an output. If it is not
allowed then implementation does not conform to a specification and testing fails. The test

37

On-the-fly Testing Using UPPAAL 3.1 Test Execution on Reachable States

generation is inconclusive if the output is not in the set of inputs for the environment, i.e. we
can not state conformance nor non-conformance. The test generation proceeds with a new input
if the output is in both sets. Input: a set of states for the environment modelT LT S(E) and the
implementation modelT IOT S(S).

Algorithm 2 . TestGenExec(S, E).

• Choosea ∈ EnvOutput(E)

- senda to implementation

- TestGenExec(S after a, E after a)

• Chooseδ time units.ChooseDelay(S)

1. wait and listen forδ time units

2. if o occurs atδ′ then computeS′ =S after δ′, E′ =S after δ′, whereδ′ ≤ δ

- if o ∈ ImpOutput(S′) ando ∈ EnvInput(E′)
thenTestGenEx(S′ after o, E′ after o)

- if o /∈ ImpOutput(S′) then FAIL

- else ifo /∈ EnvInput(E′) then INCONCLUSIVE

3. else computeS′ =S after δ, E′ =S after δ

- if S′ = ∅ or E′ = ∅ then FAIL
elseTestGenEx(S′, E′)

In Algorithm 2 we compute a set of reachable states after a test run from a particular state,
S =safterσ, whereσ ∈ Act∗δ . The test primitives at a set of states S areout(S)∪Actin∪{δ}.
The next set of statesS′ after an actionα ∈ Act is noted asS′ =S afterα (see Definition 2.2).

Definition 3.1 a states, s′ ∈ S, S′ ⊆ S anda ∈ Actin ∪Actout:
Closureτ (S) =def {∃s′| s τ−→

∗
s′}

Closureδτ (S) =def {s′| δ ∈ R+, s
δ=⇒ s′}

EnvOutput(S′) =def {a | a ∈ Ain,∃s ∈ S, s
a!−→}

ImpOutput(S′) =def {a | a ∈ Aout,∃s ∈ S, s
a!−→}

EnvInput(S′) =def {a | a ∈ Aout,∃s ∈ S, s
a?−→}

2

3.1.1 Closure Algorithms

In the beginning we present Algorithm 3 for computingClosureτ (S), i.e. a set of states after
τ -closures

ε=⇒. Theτ -closure is computed before and after an observable action transition.
Let s ∈ S be a state,passed, waiting ⊆ S andτ ∈ ε.

38

On-the-fly Testing Using UPPAAL 3.1 Test Execution on Reachable States

Algorithm 3 Closureτ (S)

passed := ∅; waiting := S

While waiting 6= ∅

chose a states ∈ waiting

passed := passed ∪ {s}, waiting := waiting − {s}
for all s

τ−→ s′

if s′ /∈ passed thenwaiting := waiting ∪ {s′}

returnpassed

Closureδτ (S, δ) computes a set of states where a system can be after some delayS after δ
and internal actions as outlined in Algorithm 4. S is a set of states initiallyS = {s0}, δ ∈ R+,
andδ =

∑
di∈R+

di wheredi is the value of variabled in i-th recursive call level.
Globalpassed := ∅

Algorithm 4 Closureδτ (S, δ)

waiting := Closureτ (S), passed := ∅, result := ∅

if δ = 0 then returnwaiting

While waiting 6= ∅

chooses: waiting := waiting\{s}, passed := passed ∪ {s}
for all d ∈ (0, δ]

compute states′ after delay transition:s
d−→ s′

if s′ /∈ passed thenresult := result ∪ Closureδτ ({s′}, δ − d)

returnresult

S′ after a is s set of statesS′ after an action transitions
a−→ s′ and is computed using

Algorithm 5: let thes ∈ S be a state, a set of states after an input or output eventpassed ⊆ S,
a ∈ Actin ∪Actout.

Algorithm 5 After(S, a)

passed := ∅; waiting := Closureτ (S)

While waiting 6= ∅

waiting := waiting\{s}
for all transitionss

a−→ s′

if s′ /∈ passed thenpassed := passed ∪ Closureτ (s′)

returnpassed

39

On-the-fly Testing Using UPPAAL 3.1 Test Execution on Reachable States

In Figure 20 we visualize the closure algorithms. TheClosureτ (S) algorithm in Figure
20(a)is used in the next two algorithms. We did not display the condition for checking whether
a state has been reached or not, i.e. whether it is in thepassed list. That is why the states′3 gets
to the waiting list and a set of states is calculated afterτ transitions.

s′3s′′3s′2s′1

waiting := S

s2 s′3
s1 s3

passed

τ ττ τ

(a)Closureτ algorithm.

s1 s3s2

s1 s3s2
d = 0.22

d = 0.88

result

δ = 2

s′3

s′3s′2s′1

s′2s′1

waiting

Closureτ(s
′)

waiting

Closureτ(S)

(b) Closureτδ whereδ = 2

s2 s3s1

a a
s′3

a
s′1 s′2

Closureτ(s
′)

Closureτ(S)

waiting

passed

(c) After(S, a) al-
gorithm.

Figure 20: Closure algorithms.

TheClosureτδ(S, δ) algorithm is exemplified in Figure 20(b) withδ = 2 and with only two
recursive levels of real valued delays. After such a delay successor states are included into the
result list and in the next step aclosureτ is calculated from the successors. If a state is already
in the passed list then it is skipped as, for example, the states′2 which might has be reached
before from the states1. As we can see there can be infinitely many recursive iterations as every
delayd requires an iteration and there can be infinitely many such real valued delays and states
to which they lead.

In the After(S, a) algorithm in Figure 20(c) recursive iterations are in theClosureτ (S)
computations but not while computing a concrete action transition. If a state is already in the
passed list thenClosureτ is not calculated for that state as for example in the states′3.

3.1.2 Test Primitive Algorithms

EnvOutput(S′) function computes test primitives which are obtained on every transition from
a set of states after an input to the implementation from the environment wherea ∈ Actin and
S′ := Closureτ (S). The algorithm for the function is in Algorithm 6. Let thes ∈ S be a state.

40

On-the-fly Testing Using UPPAAL 3.2 Test Execution on Reachable Symbolic States

Algorithm 6 EnvOutput(S′)

S′ := Closureτ (S); Λ := ∅,

for all s ∈ S′

for all transitions

if s
a!−→ anda ∈ Actin thenΛ := Λ ∪ {a}

• returnΛ

ImpOutput(S′) procedure computes output actions produced by the implementation on
every transition from a set of states S’ (Algorithm 7). Let thes ∈ S be a state,a ∈ Actout.

Algorithm 7 ImpOutput(S′)

S′ =: Closureτ (S); Λ := ∅

for all s ∈ S′

for all transitionss
a!−→

if a ∈ Actout thenΛ := Λ ∪ {a}

• returnΛ

EnvInput(S′) procedure computes test primitives which are obtained on every transition
from a set of states S’ (Algorithm 8). Let thes ∈ S be a state,a ∈ Actin.

Algorithm 8 EnvInput(S′)

S′ =: Closureτ (S); Λ := ∅

for all s ∈ S′

for all transitionss
a?−→

if a ∈ Actout thenΛ := Λ ∪ {a}

• returnΛ

3.2 Test Execution on Reachable Symbolic States

In this section we repeat the test generation and execution algorithm rewriten for symbolic states.
At first we describe the algorithm for computing test primitives and additional functions used
and the test algorithm at the end, since the test algorithm structure is similar to the algorithms
presented in Section 3.1.

First of all we need an efficient predicateContains(Z, 〈l̄, z〉) algorithm which computes
true if the symbolic state〈l̄, z〉 is contained in the symbolic state setZ andfalse otherwise.
This predicate will be used almost in every algorithm dealing with sets of symbolic states.
Algorithm 9 outlines such predicate description: the algorithm assumes that it is possible to

41

On-the-fly Testing Using UPPAAL 3.2 Test Execution on Reachable Symbolic States

lookup for symbolic states for given location vectorl̄ via constant time (possibly having hash
index on location vectors), thus limiting the complexity of the algorithm even less thanO(|Z|).
However this algorithm is unable check the zone containment within the union of several given
zones (it is not always possible to compute a DBM for the union of zones). This leaves a gap for
further optimizations but does not harm the correctness of the algorithms where this predicate
is used.

Algorithm 9 Contains(Z, 〈l̄, z〉)

for each symbolic state〈l̄, z′〉 ∈ Z

if z ⊆ z′ then returntrue

returnfalse

We need to compute aτ -closure before and after computing the reachable symbolic states
while making an observable action. Algorithm 10 providesClosureτ (Z) function which com-
putesτ -closure for a given symbolic state setZ, i.e. Closureτ (Z) = {〈l̄′, z′〉 | 〈l̄, z〉 ∈
Z, 〈l̄, z〉 τ1→ · · · τn→ 〈l̄′, z′〉, τi ∈ AU , n ∈ N}.

Algorithm 10 Closureτ (Z)

passed := ∅, waiting := Z

while waiting 6= ∅

choose symbolic state〈l̄, z〉 ∈ waiting

waiting := waiting\{〈l̄, z〉}, passed := passed ∪ {〈l̄, z〉}

for each symbolic transition〈l̄, z〉
τ

� 〈l̄′, z′〉 whereτ ∈ AU

if not Contains(passed, 〈l̄′, z′〉) thenwaiting := waiting ∪ {〈l̄′, z′〉}

returnpassed.

After(Z, a) function computes reachable symbolic states after observing actiona ∈ AO

having initial states inZ, i.e. After(Z, a) = (Z after a). Algorithm 11 assumes that the given
set of symbolic states is closed under internal transitions, computes thea-action transition for
each symbolic state and returns theτ -closure of the computed symbolic states.

Algorithm 11 After(Z, a)

passed := ∅, waiting := Closureτ (Z)

for each symbolic state〈l̄, z〉 ∈ waiting

for each symbolic transition〈l̄, z〉
a

� 〈l̄′, z′〉
if not Contains(passed, 〈l̄′, z′〉) thenpassed := passed ∪ 〈l̄′, z′〉

returnClosureτ (passed)

We presentClosureδτ (Z, d) function in Algorithm 12. Algorithm computesδτ -closure

42

On-the-fly Testing Using UPPAAL 3.2 Test Execution on Reachable Symbolic States

for a given symbolic state setZ, i.e. all symbolic states reachable withind ∈ N time units.
UPPAAL uses extrapolation technique to handle unbounded delay, which may also be reused
here for computing unbounded delay closure, but we recommend not to waist the computing
power for looking far ahead (δ time units is enough in our case), since the symbolic state space
may grow very large and testing needs exact clock values anyway even if they are reasonably
large. Both Algorithm 12 and Algorithm 13 assume an additional clockt which is not defined
in the specification and used only for computational purposes.

Algorithm 12 Closureδτ (Z, d)

passed := ∅, waiting := ∅

for each symbolic state〈l̄, z〉 ∈ Z

z := (zt:=0)↑ ∧ (t ≤ d) ∧ I(l̄)

if not Contains(waiting, 〈l̄, z〉) thenwaiting := waiting ∪ {〈l̄, z〉}

while waiting 6= ∅

choose symbolic state〈l̄, z〉 ∈ waiting

waiting := waiting\{〈l̄, z〉}, passed := passed ∪ {〈l̄, z〉}

for each symbolic transition〈l̄, z〉
τ

� 〈l̄′, z′〉 whereτ ∈ AU

z′ := z′↑ ∧ (t ≤ d) ∧ I(l̄′)
if not Contains(passed, 〈l̄′, z′〉) thenwaiting := waiting ∪ {〈l̄′, z′〉}

returnpassed.

The idea behind the algorithm is to propagate a wave to all direction by making all enabled in-
ternal transitions to achieve the set of symbolic states which are reachable withind time units.
Later theafter d algorithm just cuts out the edge of zones witht = d from computed set of
reachable symbolic states forming a set of symbolic states which are reachable precisely afterd
time units.

Figure 21 demonstrates four variations ofδ andτ transitions computed byδτ -closure op-
eration: a) automaton stays in the same locationl0, thick segment shows the initial zone where
clockx has some constraints andt is set to zero, thus zone is expanding toward clock valuation
flow in both clocks in parallel limited by thet ≤ δ constraint; b) the zone is achieved after mak-

ing an internal transitionl0
x≥c,τ,∅−−−−→ l1 where the zone on locationl0 is taken from Figure 21(a);

c) shows an internal transition froml0 to l2 with invariantI(l2) = (x ≤ c) which limits the

zone from right side; d) demonstrates an internal transitionl0
true,τ,x:=c−−−−−−−→ l3 where the zone

from Figure 21(a) is projected into linex = c and expanded untilt = d.
After(Z, δ) computes the symbolic states reachable afterδ ∈ Z+ time units having the cur-

rent reachable symbolic state setZ. t is an additional clock in the system. A special constraint
t = c used in the algorithm can be reformulated as(t ≤ c) ∧ (−t ≤ −c). As mentioned ear-
lier, the idea of Algorithm 13 is to computeδτ -closure withinδ time units and then require the
precise moment ofafter δ. Figure 22 shows an example computation result ofAfter(Z, δ) for
corresponding zones in Figure 21.

43

On-the-fly Testing Using UPPAAL 3.2 Test Execution on Reachable Symbolic States

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

t

xl0

d

(a) Staying in the
same location.

���
���
���
���
���

���
���
���
���
���

l1 x

t

c

d

(b) After τ -
transition with
guardx ≥ c.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

l2 x

t

c

d

(c) After τ -
transition to a
location with
invariantx ≤ c.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

l3

t

xc

d

(d) After τ -
transition with
resetx := c.

Figure 21:δτ -closure computation on a sample symbolic state with two clocks.

Algorithm 13 After(Z, δ)

t := 0, Q := Closureδτ (Z, δ), Q′ = ∅

for each symbolic state〈l̄, z〉 ∈ Q

Q′ := Q′ ∪ {〈l̄, z ∧ (t = δ)〉}

returnQ′

l0 x

t

d

(a) Staying in the
same location.

l1 x

t

d

c

(b) After τ -
transition with
guardx ≥ c.

l2

t

xc

d

(c) After τ -
transition to a
location with
invariantx ≤ c.

l3

t

xc

d

(d) After τ -
transition with
resetx := c.

Figure 22:Z after δ computation on a sample symbolic state fromδτ -closure.

Algorithm 15, Algorithm 14 and Algorithm 16 compute possible observable actions for
current reachable symbolic state setZ. EnvOutput returns the set of output actions controlled
by the environment,EnvInput returns the set of actions acceptable by the environment and
ImpOutput returns the set of actions controlled by the implementation. The algorithms actually
compute the set{a | 〈l̄, z〉 ∈ Z, 〈l̄, z〉 a=⇒} assumming thatZ is closed underτ -closure.

44

On-the-fly Testing Using UPPAAL 3.2 Test Execution on Reachable Symbolic States

Algorithm 14 EnvOutput(Z)

actions := ∅

for each symbolic state〈l̄, z〉 ∈ Z

for each symbolic transition〈l̄, z〉
a!
� 〈l̄′, z′〉, wherea ∈ Ain.

actions := actions ∪ {a}

returnactions.

Algorithm 15 EnvInput(Z)

actions := ∅

for each symbolic state〈l̄, z〉 ∈ Z

for each symbolic transition〈l̄, z〉
a?
� 〈l̄′, z′〉, wherea ∈ Aout.

actions := actions ∪ {a}

returnactions.

Algorithm 16 ImpOutput(Z)

actions := ∅

for each symbolic state〈l̄, z〉 ∈ Z

for each symbolic transition〈l̄, z〉
a!
� 〈l̄′, z′〉, wherea ∈ Aout.

actions := actions ∪ {a}

returnactions.

Now we are able to compute reachable states and actions allowed in symbolic form after
any event, i.e. we have algorithms forZ after a andZ after δ wherea andδ is an action and
delay respectively. We present the procedure of the test generation and execution by performing
operations on symbolic states in Algorithm 17.

45

On-the-fly Testing Using UPPAAL 3.2 Test Execution on Reachable Symbolic States

Algorithm 17 TestGenExec(TestSpec) returns{pass, fail, inconc}.

Z = {〈l̄0, 0̄〉}, timeout := ChooseT imeout(TestSpec)

while timeout > 0 do switch toChooseEvent(Z)

action: // offer an input

a := ChooseAction(EnvOutput(Z))
senda to implementation

Z := After(Z, a)

delay: // wait for output

δ := ChooseDelay(Z)
sleep forδ time units and wake up on outputo ∈ AI

out

if o occurs atδ′ ≤ δ then

Z := After(Z, δ′)
if o /∈ ImpOutput(Z) then returnfail

else ifo /∈ EnvInput(Z) then returninconc

elseZ := After(Z, o)
timeout := timeout− δ′

else

Z := After(Z, δ)
if Z = ∅ then returnfail

timeout := timeout− δ

returnpass

Choose functions mentioned are test strategy dependent in Algorithm 17. The choice de-
cision might be based on the parameters passed to a function. To make the algorithm complete
we present sample randomized algorithms forTestSpec = 〈N,Ain, Aout,∆in,∆out, µ,Ω〉:

• ChooseT imeout(TestSpec): random({k·Ω, . . . , (k+1)·Ω}), wherek = random(N).

• ChooseEvent(Z): random({action, delay}).

• ChooseAction(A): random(A), whereA ⊆ Ain.

• ChooseDelay(Z): see Algorithm 18.

The universal functionrandom takes any type of set as a parameter and returns a member of a
set with equal probabilities.

46

On-the-fly Testing Using UPPAAL 4 Implementation

Algorithm 18 ChooseDelay(Z)

min := ∞, max := 0, dim := |X|

for each symbolic state〈l̄, z〉 ∈ Z

for eachi ∈ {0, . . . , dim} consider constraintsci0 andc0i in z:

if max < ci0 − c0i thenmax := ci0 − c0i

if min > ci0 − c0i thenmin := ci0 − c0i

if min− 1 < Ω thenmin := 1 elsemin := min− Ω

if max > Ω thenmax := Ω

returnrandom({min, . . . ,max})

Algorithm 18 aims to select time delays close to zone boundaries. The idea of Algorithm 18
is based on the length of intervals of reachable clock values. The function tries to pick delay
values wich are close to clock zone limits. The minimum value of delay to be chosen can be 1,
which means that Algorithm 17 will make a progress in time if a delay event was chosen. The
algorithm is expected to run onδτ -closed zones with additional clockt which tracks how much
time elapsed after the last observable action.

4 Implementation

The UPPAAL tool is constantly under development. Therefore it is very hard to keep up with
the newest and best code written for UPPAAL . This documentation is based on a January 2003
development source snapshot and there is a slight difference between the class names used in
that code and the concepts we have described. Hopefully the class names will be changed in
the future, but for now we keep them as they were in the beginning of the project implemention
phase.

The general idea for implementing the test generation and execution algorithm in UPPAAL

is to extend the UPPAAL library shown in Figure 13 with test specific extensions shown in
Figure 23:

• We reuse the time zone and symbolic state libraries intact as described in Section 4.2.

• We add structures and functions to handle sets of symbolic states since the test generation
algorithm is mainly dealing with them.

• We adapt the reachability analysis algorithms for our test generation purposes, design and
implement a driver to handle timing aspects during test execution in Section 4.3.

We append interesting parts of our code to Appendix A, and the implementation status is
described in Section 4.4. We describe only the most important classes, atributes and methods
for test generation and execution, since documenting entire T-UPPAAL code would take more
than 700 pages and this is not a project goal. We recommend first to read a description and get
the idea and purpose of a class and only then refer to the source code for actual details.

47

On-the-fly Testing Using UPPAAL 4.1 Assumptions, Requirements and Desired Features

Im
pl

em
.U

T

Time zone lib

Sys. State lib

Simulation API

Im
pl

. A
PI

Uppaal Engine Server (C++)

Test generatorAlgorithms lib

D
ri

ve
r

State set lib

System Editor Simulator Verifier

Graphical User Interface (java)

Parsers

Comm.

Control
module

A
da

pt
er

??
?

Figure 23: Test generator architecture.

4.1 Assumptions, Requirements and Desired Features

In this report we have mentioned numerous assumptions and requirements. In this section we
repeat them in order to have a consistent overview of the desired testing tool features.

So far we mentioned these assumptions:

1. The implementation model must be strongly input enabled, i.e. it must accept an input
offered by an environment. However we allow modeling of the environment that the
input enableness requirement may be lowered as much as the environment model allows.
One must be careful while modeling a system which is not strongly input enabled: any
ignorance of the input offered by the environment leads to unpredictable behavior of the
implementation.

2. The environment is fully permissive if the model of the environment is not provided.

3. The model of the environment and the model of implementation must be separable when
given the closed UPPAAL timed automata network with the environment and the imple-
mentation models embedded into a single parallel composition.

4. Assumptions about a specification:

• The specification must be strongly converging, i.e. it cannot contain 0-delay infinite
loops which allow the implementation to ignore the input infinitely.

• The specification is complete. We do not consider the possible rules for making
the specification complete. This assumption still allows the future extensions which
convert partially defined specifications into a complete ones.

However the automated test generation and execution on-the-fly is still impossible in prac-
tice if the reachability algorithms used do not comply with the following requirements:

1. The complexity of the algorithm must not exceed the time limits needed by testing on-the-
fly, i.e. the computation of reachable symbolic states one step ahead must not last longer
thanµ/2 time units specified in the test specification, otherwise the algorithm will not be
able to choose a delay as small as one time unit.

48

On-the-fly Testing Using UPPAAL 4.2 UPPAAL Design

2. The clock precision should be approximately±0.5 time units because in UPPAAL clock
constrains values on invariants and guards, or assignments use integer numbers.

3. The adapter to an implementation under test must not be a bottle neck, i.e. amount of
synchronizations and transfered data must not degrade the performance of the testing.

4. To satisfy the first and the second requirements, the test generation and execution must
be evaluated experimentally. The complexity of the test specification can be measured by
the maximum size of reachable symbolic states set during one test primitive computation.

To make testing tool more usable we need even more desired features:

1. Visualization options:

• Current symbolic state set displaywould be essential monitor of the actual testing
procedure taking place.

• Display atrace(history) of a test is essential while debugging real-time systems.

2. Verification properties for a test specification:

• A feature for checking a test specification to be well defined (the environment and
the implementation are separable) allows automatic migration from modeling real
time systems to testing them.

• verification for completeness.

• verification for the implementation to be weakly or strongly input enabled.

3. More advanced testing extensions:

• Extend testing for the partially defined specification where the implementation re-
acts on the input offered with specific rules. This feature requires at least converter
which converts partially defined specification into a complete one. However the
complete specification might appear too big for test execution on-the-fly, then the
test generation and execution algorithm must be reconsidered.

• Extend testing for weakly input enabled implementations. The design of the test
generation and execution algorithm must be reconsidered.

4. Features for a test process control and GUI:

• Save, load and reruna test case is useful when the test generation is too slow and a
preset version of test case is needed to run the test in full performance.

• Implementation simulation module in UPPAAL (Figure 24): load any implementa-
tion model and test it against the specification in order to evaluate the testing proce-
dure itself.

4.2 UPPAAL Design

UPPAAL architecture is split into three parts: system model representation (Section 4.2.1), sym-
bolic state representation (Section 4.2.2) and algorithms. Such configuration is easier to main-
tain, extend and even document. We give more detailed insight on symbolic state representation
in Section 4.2.3 which describes the time zone representation. Section 4.2.4 gives an overview
how the algorithms are ordered.

49

On-the-fly Testing Using UPPAAL 4.2 UPPAAL Design

Graphical User Interface (java)

Time zone lib

Sys. State lib

Simulation API

Im
pl

. A
PI

Uppaal Engine Server (C++)

Test generatorAlgorithms lib

D
ri

ve
r

Uppaal Engine Server
with model of
Implementation

State set lib

Simulation API

VerifierSystem Editor Simulator Verifier

Graphical User Interface (java)

Parsers

Comm.

Control
module

A
da

pt
er

??
?

Im
pl

em
.U

T

System Editor Simulator

Figure 24: General implementation under test plug-in.

4.2.1 System Model Representation

Figure 25 shows the class diagram of entities responsible for the system model representation.
ClassSystemcorresponds to a system definition section in UPPAAL system specification. Ob-
jects of a classSystemare responsible for holding the objects of classProcess. Processentity
correspond to an instantiated timed automaton template. If the UPPAAL specification instantia-
tion section does not include instantiation statement then a template is instantiated with defaults
when the template is mentioned in the system definition. The objects of classProcesshold the
structure of a timed automaton, i.e. the lists of locations and transitions. A timed automaton lo-
cation is represented byControlStateclass andTransitionclass corresponds to an edge between
two locations (ControlStateobjects).

The system model classes are int a tree-like hierarchy without loops (the leaves of the hi-
erarchy are alwaysControlStateobjects). All of these classes inherit two common interfaces:
ObjectandModelElement. TheObject interface handles reference counting and decentralized
memory deallocation. TheObjectalso provides an interface for setting and getting the named
properties. In this case anamed propertyis the data object which can be accessed using prop-
erty’s name. The property name and the property type are subject to classes which implement
the property interface. TheModelElementinterface is used to implement and maintain indepen-
dent algorithms that traverse the system model representation in a visitor design pattern. The
ModelElementinterface is mainly used for constructing and initializing the system model rep-
resentation, but could also be useful for other computations, such as checking whether the IUT
and environment models are separable (Definition 2.15).

Once the system model representation is built, it is kept constant, i.e. it does not change
during reachability analysis computations. Normally UPPAAL maintains a singleton of the
classSystemand uses it to compute symbolic state transitions onGlobalState(described in
Section 4.2.2) class objects. Therefore these methods are most commonly used in reachability
analysis when generating test on-the-fly:

System::getProcess(index)returns a reference to aProcesswhich has a given index in a list of
processes.

Process::getTransitionsFrom(GlobalState)returns a list of edges going from locations spec-
ified in GlobalStatevector of locations (one location per one timed automaton in the
system model).

Transition::getSync(GlobalState) returns a channel identifier if the edge contains a channel
synchronization and0 if there is no channel synchronization.

50

On-the-fly Testing Using UPPAAL 4.2 UPPAAL Design

«pointer.hh»
Object

+cnt: int
#remove()
+addReference()
+dropReference()
+setProperty(name:char*,val:void*)
+getProperty(name:char*): void*

«visitors.hh»
ModelElement

+accept(mv:ModelVisitor)

«ctrlstat.hh»
ControlState

-number: StateType
-committed: bool
-urgent: bool
-invariant: TCTLExpression
-name: char*
+getInvariant(): TCTLExpression
+isCommitted(): bool
+isUrgent(): bool
+getNumber(): StateType

«proc.h»
Process

-name: String
-states: vector<ControlState>
-transitions: vector<Transition>
-initial: int
-template: ElementTemplate
-states: vector<ControlState>
-fromTransitions: vector<vector<Transition> >
-toTransitions: vector<vector<Transition> >
-nrInSystem: int
+getNrOfStates(): uint32_t
+setNrInSystem(n:int)
+getNrInSystem(): uint32_t
+setInitial(s:StateType)
+getInitial(): StateType
+getTransitionsFrom(s:int): vector<Transition>
+getTransitionsTo(s:int): vector<Transition>

«system.h»
System

-processes: vector<Pointer<Process> >
+setProcess(i:int,p:Pointer<Process>)
+getProcess(index:int): Process
+hasUrgentTransitions(gs:GlobalState): bool
+isUrgentState(gs:GlobalState): bool
+committed(gs:GlobalState): int
+construct()
+calcInitial(): GlobalState
+evalInvariant(gs:GlobalState): bool
+canSync(gs:GlobalState,p1:int,p2:int): bool
+canDelay(gs:GlobalState): bool

«trans.h»
Transition

-procnr: int
-fromState: StateType
-toState: StateType
-syn: Expression
-clockGuard: TCTLExpression
-integerGuard: Expression
-reset: Expression
+getFrom(): State
+getTo(): State
+getSync(gs:GlobalState): SyncType
+evalIntGuards(ps:PublicState): bool
+evalClockGuards(ps:PublicState): bool
+resetAssigns(ps:PublicState)

StateType - is integer meaning the id (nr) of state
SyncType - is integer meaning the id of channel

Figure 25: Class diagram of system model representation in UPPAAL code.

Transition::evalIntGuards(PublicState) method evaluates the integer guards on a given sym-
bolic state, returns true if the guards are satisfied and false otherwise.

Transition::evalClockGuards(PublicState) method evaluates the clock guards on a given sym-
bolic state, returns true if the guards are satisfied and false otherwise. This method alters
the symbolic state by changing the zone according to the guards which is different than in
integer guard evaluation: integer tables are not modified during integer guard evaluation
as time zones are during clock guard evaluation.

Transition::resetAssigns(PublicState)method alters the given symbolic state according by
the assignments specified on the transition.

System::evalInvariant(GlobalState) method alters the symbolic state time zone by evaluating
the invariant conditions on locations in a given symbolic state.

Notice that most of the methods accept eitherPublicStateor GlobalState(described in Sec-
tion 4.2.2) which represent a symbolic system state and are separated from system model repre-
sentation.

51

On-the-fly Testing Using UPPAAL 4.2 UPPAAL Design

4.2.2 Symbolic System State Representation

Figure 26 shows theGlobalStateclass with context which represents the symbolic state in UP-
PAAL . Since there are a lot of sophisticated computations on large amounts of symbolic states
GlobalStatehas an interface of anObjectwhich decentralizes the deallocation of objects. A
generic separatedPublicStateis used also for other symbolic state operations like action record-
ing onPublicState. Such operations are irrelevant for our project. The lastStateInfot interface
is used to align symbolic states into traces which is relevant in reachability analysis when recre-
ating the possible run traces out of set of recorded symbolic states. TheGlobalStateusesRegion

«globstat.hh»
GlobalState

-nrOfProcesses: size_t
-r: Region*
-itab: IntegerTable
 StateType: typedef short
+setLocation(proc:uint32_t,s:StateType)
+setRegion(r:Region)
+getRegion(): Region
+setIntegerTable(itab:IntergerTable)
+delayAction()
+relation(gs:GlobalState): int
+equalState(gs:GlobalState): bool
+discEqual(gs:GlobalState): bool
+copy(): GlobalState*

«pointer.hh»
Object

+cnt: int
#remove()
+addReference()
+dropReference()
+setProperty(name:char*,val:void*)
+getProperty(name:char*): void*

«public.hh»
PublicState

+getIntegerReference(): int32_t*
+tighten(i:uint32_t,j:uint32_t,bound:int32_t)
+reset(clock:uint32_t,val:int32_t)
+getLocation(proc:uint32_t): uint32_t
+getGlobalState(): GlobalState*

«globstat.hh»
StateInfo_t

+traceId: int
+living: int = 0

«clock.hh»
Region

+relation(r:Region): int
+sp()
+tighten(i:int,j:int,l:int,s:bool): bool
+tightenRaw(i:int,j:int,b:int): bool
+isEmpty(): bool
+convexHull(ur:UnpackedRegion)
+copy(): Region

«clock.h»
UnpackedRegion (DBM)

-size: uint32_t
-end: uint32_t[]
#mat(): int*
+intersect(r:Region)
+reset(clock:uint32_t,value:int32_t)
+setBound(i:int,j:int,val:int)
+getBound(i:int,j:int): int
+setStrict(i:int,j:int,s:uchar)
+isStrict(i:int,j:int): bool
+getRawBnd(i:int,j:int): int
+setRawBnd(i:int,j:int,b:int)

«clock.h»
PackedRegion (CDS)

-dimension: uint32_t
-end: uint32_t[]
-bounds(): int*
+isSet(i:uint32_t,j:uint32_t): bool
+getBound(i:int): int
+setBound(i:int,b:int)
+isStrict(i:int): bool
+setStrict(i:int,s:bool)

Figure 26: Class diagram of symbolic system state representation.

objects to maintain the time zone constraints as described in Section 4.2.3. The integer guards
are saved in theGlobalState::itab IntegerTablewhich is an encapsulation of a dynamic inte-
ger array. The location vector is kept outside theGlobalStateclass and allocated by dedicated
memory allocator to save and to reuse the memory space more effectively. TheStateTypet
stands for a location index in a timed automaton. While computing symbolic state successors
the followingGlobalStatemethods are used:

setLocation(proc, s) transfers the symbolic state to another location specified by indexs in the
timed automaton with indexproc.

52

On-the-fly Testing Using UPPAAL 4.2 UPPAAL Design

getLocation(proc) returns the current location of the automaton with specified indexproc.

setRegion(r), getRegion()sets and returns the symbolic time zone representation.

setIntegerTable(itab), getIntegerReferencesets and returns the integer table array.

relation(gs) determines the inclusion relation to another symbolic stategs: noInclusion, argIn-
cludedIn, argIncludesor equal.

equalState(gs)determines whether the location vectors of two symbolic states are equal.

discEqual(gs) determines whether both the location vectors and integer tables of two symbolic
states are equal.

tighten(i, j, bound) applies (tightens)boundconstraint on clocks withi andj indexes.

reset(clock, value) resets the clock with indexclock to theval value.

copy() returns a new copy the symbolic state, usually used for further successor computation.

All operations on clocks are forwarded to operations in aRegionclass described in Section 4.2.3.

4.2.3 Time Zone Representation

As the class diagram from Figure 26 already depicts there are several implementations of time
zone representation in UPPAAL :

UnpackedRegion implements the classical difference bound matrix (DBM) with fundamental
operations described in Section 2.2.

PackedRegion implements thecompact data structure(CDS) which stores the minimal amount
of constraints while saving the memory space, e.g. only three bounds are stored for the
constraint system shown in Figure 7 and the constraint indexes marked in bitmap vector.
The memory space complexity is still quadratic as in DBM case, but it is believed that in
practice it is much better.

Beside these time zone implementations UPPAAL is also capable of using another compact
time zone representation structure calledclock difference diagraminstead of aPackedRegion.
“Packed” implementations of aRegionhave advantage of lower memory consumption when
used in huge passed-waiting symbolic state lists. In contrary, “unpacked” implementations re-
quire less processing efforts to compute the same operations. Therefore, thePackedRegion
objects are exclusively used when storing the symbolic states and the implementation of oper-
ations on constrains are omitted, such asup operation inspmethod.UnpackedRegionobjects
have full functionality implemented and used in symbolic state successor computations. We
concentrate on the most important properties and methods used in our test generation:

Region::relation(r) determines what is a relation of this time zone to a givenr: none, subSet,
superSetor equal.

sp() computes a future operator on a time zone.

tighten(i, j, l, s) applies a constraint oni andj clocks with a limitl. The constraint has a strict
form (less than) ifs is true, otherwise the constraint is weak (less or equal).

53

On-the-fly Testing Using UPPAAL 4.2 UPPAAL Design

tightenRaw(i, j, b) applies a constraint oni and j clocks where the strict bit and a limit is
encoded in a boundaryb.

isEmpty() method checks whether the constraint system represents an empty zone.

convexHull(ur) computes the smallest super set time zone which includes both this andur
zones. This method can be used to merge several symbolic states into one, thus reducing
the amount of symbolic states. Such over approximation is not desired in test generation
since we want to have a precise reachable symbolic state set.

copy() constructs and returns a copy of a zone for further successor computations.

UnpackedRegion::sizestores the amount of clocks in DBM, therefore the matrix is ofsize×size
size.

UnpackRegion::end stores the constraint values of DBM in a dynamic array. The array is
accessed via protected methodmat().

UnpackedRegion::intersect(r) computes an intersection of this andr time zones. The result
is kept in current (this) object.

UnpackedRegion:: setBound, getBound, setStrict, isStrictare simple setters and getters for
the differences on clocks.

UnpackRegion:: setRawBnd, getRawBndare a setter and a getter for clock value difference
limits where the strict bit is encoded in the bound.

4.2.4 Pipeline Architecture

UPPAAL contains a number of algorithms implemented for various kinds of property check-
ing, such as reachability checking, liveness checking, deadlock detection and other purposes
like trace simulation. The list is still growing, e.g. we want to extend the algorithm library to
handle test generation. Most of the algorithms share similar and sometimes the same opera-
tions on symbolic states and time zones. Therefore algorithms are put into separate components
and components are divided into shared sub-components to ease code management and to avoid
code duplication. The key for splitting the algorithms into their sub-parts is a pipeline paradigm,
where an algorithm is encapsulated into a component which consists of a line (sometimes of sev-
eral branching lines) of abstract smaller algorithms which are encapsulated in sub-components.
Note that any algorithm can become a sub-algorithm for bigger algorithms because of this algo-
rithm wrap into a component and sub-component.

Figure 27 shows the fundamental interfaces needed to implement the pipeline paradigm.
The interfaces provide pure virtual methods to ensure correct polymorphic behavior of the im-
plementations. The most abstract interfaces are:

Sink is a component which accepts data objects fetched by a general pointer to it. The method
tryPut(p)returnstrueupon successful operation andfalseotherwise.

Source is a component which provides the data objects on request and puts the data into a
memory location pointed by a general pointer (usually it is a pointer to an object pointer).
The methodtryGet(p)returnstrueupon success andfalseotherwise.

Generator is a component which provides the data objects without a request and puts the data
into Sinkselected by the methodsetSink(s).

54

On-the-fly Testing Using UPPAAL 4.2 UPPAAL Design

«interface.hh»
Sink

+tryPut(p:void*): bool

«pointer.hh»
Object

«interface.hh»
Generator

+setSink(s:Sink*)

«interface.hh»
PureSource

«interface.hh»
Source

+tryGet(p:void*): bool

«interface.hh»
Buffer

+getSize(): int

«interface.hh»
Filter

«sfilter.hh»
AbstractFilter
#sink: Sink*

«sfilter.hh»
NewCompoundFilter

-filters: map<char*,Pointer<Filter>>
#addObject(n:char*,obj:Pointer<Object>)
#getObject(name:char*): Object*
#getFilter(name:char*): Filter*
#getSink(name:char*): Sink*
#link(f:F*,s:Sink*): F*
#pipe(config:char*,...): Sink*

«reachability.cc»
ReachabilityFilter

«after.cc»
AfterActionFilter

«after.cc»
AfterDelayFilter

«interface.hh»
PWList

+enumSates(): PureSource

Figure 27: Class inheritance diagram of interfaces for algorithm pipelines.

Notice that the operation success and the type of the data fetched and received depend on the
context of the component implementing them.

The next level of abstract interfaces consists of the following:

Filter is an interface for a transitional component which accepts data as aSinkand produces
data as aGeneratorwhen given a chance to do that.

Buffer is an interface for intermediate data storage which accepts data as aSinkand provides
when requested as aSource.

The interfaces mentioned also require to implement theObjectinterface which serves for refer-
ence counting and setting and getting various properties that component algorithms may need.
Types and amounts of data processed through these interfaces are not restricted.

TheBuffer interface is used for storing the passed and waiting lists of symbolic states and
usually provides aPureSourceinterface to read the accumulated passed list.

The majority of UPPAAL algorithms consist of many pipe-lined filters and buffers, therefore
they implement theNewCompoundFilterinterface which helps to connect and manage the sub-
components in an organized fashion:

addObject(n, obj), getObject(name) enables the implementing class to store and access its
sub-components of typeObject.

getFilter(name), getSink(name)provide access to objects by name already with a prepared
interface ofFilter or Sink.

link(f, s) links the flow of data from specified filterf to specified sinks.

pipe(config, ...) links the flow of data through specified components in a varying argument list
according to a configuration scheme stringconfig.

55

On-the-fly Testing Using UPPAAL 4.3 Specific Testing Extensions

The NewCompoundFilterhas other advantages such that it broadcasts property settings to all
objects registered. Property broadcasting is convenient when using the same memory allocator
and trace storage.

In the following sections we explain our symbolic state estimation algorithms which are
based on aReachabilityFilteridea in UPPAAL .

4.3 Specific Testing Extensions

Having discussed the overall UPPAAL architecture we describe what testing specific exten-
sions we added. Section 4.3.1 describes the implementation of theafter actionalgorithm (Al-
gorithm 11). Section 4.3.2 describes the implementation of theafter delayalgorithm (Algo-
rithm 13). We describe how we attach IUT and handle the real-time events in Section 4.3.4.
And finally we show how the test generation and execution algorithm works in Section 4.3.5.

4.3.1 After Action Filter

Theafter actionestimation algorithm is implemented as a compound component calledAfterAc-
tionFilter. Figure 28 shows the containment scheme of sub-components inside the after action
algorithm. Arrows show the data flow among the filters, i.e. an arrow means that the source
component acts like aGenerator(or sometimes asSource) and is passing the data to a desti-
nation component acting like aSink. The label on an arrow indicates the type of data which is
passed among the components.

AfterActionFilter: NewCompoundFilter
prop: syncEnvIn, syncEnvOut, syncImpOut
prop: action

T
ra

ns
iti

on
*>

<
G

lo
ba

lS
ta

te
,

G
lo

ba
lS

ta
te

*

G
lo

ba
lS

ta
te

*

C
lo

su
re

T
au

C
lo

su
re

T
au

prop: syncEnvIn
prop: syncEnvOut
prop: syncImpOut
prop: action

collect external trans.
apply integer guards

G
lo

ba
lS

ta
te

*

G
lo

ba
lS

ta
te

*
ExternalTransitionFilter: ExternalSuccessorFilter:

NewSuccessorFilterNewTransitionFilter

Figure 28: Data flow diagram for after action algorithm.

The header of theAfterActionFilterindicates that it is acting similarly toNewCompoundFil-
ter, in this particular case theAfterActionFilterinherits the classNewCompountFilter. The main
component header also says that theAfterActionFilterhas several properties (prop): syncEnvIn
- available environment input synchronization channels;syncEnvOut- available environment
output synchronization channels;syncImpOut- available implementation output channels; and
action- specifies the action (channel synchronization with data variable values) to be applied on
symbolic states.

TheAfterActionFilteracceptsGlobalStateobjects and producesGlobalStateobjects mean-
ing the reachable symbolic states after a specified action in theaction property. TheAfterAc-
tionFilter has some use conventions: 1) it must reserve an entire symbolic state set before any
computations, 2) the owner of the filter may request what observable actions are available and
can be triggered from the current set of states, 3) the owner must set an action for successor

56

On-the-fly Testing Using UPPAAL 4.3 Specific Testing Extensions

symbolic states to be computed, 4) feed aNULL pointer and only then the successor symbolic
states will be produced to itsSink. The component consists of two internal filters:

ExternalTransitionFilter acts like a native UPPAAL NewTransitionFilterexcept that it collects
transitions containing only the observable channel synchronizations. We mention briefly
in Figure 28 that it also considers the integer guards on selected edges. A further transition
computation is done in the next filter passing a pair ofGlobalStateobject and a list of
potential edges (Transition*) for computing observably synchronized transitions.

ExternalSuccessorFilter acts like a native UPPAAL NewSuccessorFilterexcept that it main-
tains a lists of possible observable channel synchronizations, collects all possible suc-
cessors after any observable action and waits for aNULL object to pass the required
successors to itsSink. The filter applies the clock guards, assignment expressions and the
invariants defined on the destination locations during the successor computations.

The ClosureTaufilters mentioned in the Figure 28 are in dotted boxes meaning that these
components are not implemented, but for theAfterActionFilterto function correctly we require
and assume that a symbolic state set fetched is closed under unobservable transitions. For sim-
plicity purposes we omit theClosureTaufilter implementation and use theAfterDelayFilterwith
a zero delay instead, which is equivalent toτ -closure although not optimally implemented be-
cause of redundant computations inLimitedDelayFilterandStrictDelayFiltercomponents.

4.3.2 After Delay Filter

TheAfterDelayFiltercomponent is an implementation of theafter delayalgorithm. It is more
complex thanAfterActionFiltersince we have to compute a closure of internal transitions which
may occur in specified interval of time. TheAfterDelayFilterhas similar conventions: 1) it must
get the entire symbolic state set, 2) the owner must set the delay property, 3) the owner must
feed aNULL pointer and only then the actual computation starts, a new reachable symbolic state
set is produced and directed toSink. Figure 29 shows the internals of theAfterDelayFilter:

LimitedDelayFilter: DelayFilter

prop:int delay
AfterDelayFilter: NewCompoundFilter

G
lo

ba
lS

ta
te

*

Transition*>

<GlobalState,

<GlobalState,Transition*>

TraceStoreFilter

<
G

lo
ba

lS
ta

te
,T

ra
ns

iti
on

*>

W
ai

tin
gS

ta
te

G
lo

ba
lS

ta
te

*

GlobalStateReference

waitingList
table: passedList

HashingPWList: PWList:
apply future

NewSuccessorFilter
apply clock guards

apply integer guards
collect internal transitions

apply constraint t<=delay
apply invariants
prop:int delay

<GlobalState,Transition*>

prop:int delay
apply invariants
apply constraint t==delay

StrictDelayFilter: DelayFilter

NewTransitionFilter
InternalTransitionFilter:InternalSuccessorFilter:

apply invariants

1)loop

PureSource
(of GSRs)

ChunkGSR
(GlobalState):
GlobalStateReference

2)extract

N
ew

Su
cc

2W
ai

tin
gS

ta
te

Figure 29: Data flow diagram for after delay algorithm.

57

On-the-fly Testing Using UPPAAL 4.3 Specific Testing Extensions

LimitedDelayFilter is similar to native UPPAAL DelayFilter except it applies an additional
constraint for the time zone future to restrict the symbolic state estimation to actual period
of delay specified by the propertydelay, otherwise we may explore much bigger symbolic
state space than is needed at a given moment.

NewSuccessorToWaitingStateFilteris a native UPPAAL component which prepares the sym-
bolic state structure for storage in passed-waiting list.

HashingPWList is a native UPPAAL component implementing the passed-waiting list which
uses hashing techniques for quick check of symbolic state presents in the passed list.

InternalTransitionFilter is similar toNewTransitionFilterexcept it filters out the transitions
containing observable channel synchronizations.

InternalSuccessorFilter is a native UPPAAL NewSuccessorFilterfor now.

StrictDelayFilter is similar toDelayFilter except it omits the future operator and applies the
additional constraint instead. The constraint restricts that the additional clockt must be
equal todelayproperty.StrictDelayFilteralso applies a resett := 0, which prepares the
symbolic state for the next round of test generation and execution algorithm. The reset
ensures that the additional clock will never reach its maximum value and will not wrap-
over. However, this can be considered as redundant and might be changed to compute the
total length of the test (very few adjustments are needed).

Before theNULL pointer is fed toAfterDelayFilter, the symbolic states are processed in the
LimitedDelayFilterand stored in theHashingPWList. When aNULL pointer is fed, the pro-
cedure marked by big ellipse (Figure 29) is started. This procedure consists of two loops (two
smaller inner ellipses in Figure 29):

1. the first one fetches symbolic states from theHashingPWListwaiting list and fetches it
directly to theInternalTransitionFilter, thus eventually all symbolic states ends up in the
passed list ofHashingPWList;

2. the second one extracts the symbolic state enumerator from theHashingPWListpassed
list and feeds the symbolic states to the finalizingStrictDelayFiltercomponent.

4.3.3 Buffered Filter

BufferedFilteris used to store the symbolic states temporary between the applications ofAfter-
DelayFilter andAfterActionFilter. BufferedFilterbuffers the symbolic states it is receiving into
the list and outputs the contents whenNULL pointer is received. TheBufferedFiltercomponent
encapsulates thestd::list from C++ Standard Template Library. We assume that the intermediate
state sets are small enough (in respect to symbolic states in reachability algorithm) and we do
not do much computations while keeping them in a filter. Having astd::list in a Filter interface
proved to be convenient and transparent in a context of UPPAAL algorithms and structures.

4.3.4 Driver Implementation

We developedTestDriver-TestAdapterinterface for UPPAAL in order to be able to communicate
with an implementation under test. Figure 30 shows all test execution related classes.TestDriver
has several purposes:

58

On-the-fly Testing Using UPPAAL 4.3 Specific Testing Extensions

• Translates UPPAAL specific input and output data into transmittable shape and back. For
demonstration purposes the transmittable data type is a character string which encodes
the necessary information about input and output actions.

• Transmits and receives the information about input and output events to and fromTes-
tAdapter.

• Time-stamps the events. UPPAAL gets all the timing information about when the output
actually happened and how much time elapsed after last event.

• Maintains an independent log file about the input and output events during test execution.

«testdriver.hh»
TestDriver

-adapter: TestAdapter
-events: list<Action*>
-queue_m: pthread_mutex_t
-last_event: timespec
-clock: SimClock
-event_c: int
-out: ofstream
+start_test()
+offer_input(action:Action)
+waitfor_output(us:int64_t): Action*
+report_now(output:char*)
+resetDelay(): int64_t
+setAdapter(adapter:TestAdapter*)
-delayLog(delay:int64_t)
-inputLog(name:char*)
-outputLog(name:char*)

«testdriver.hh»
TestAdapter

-driver: TestDriver*
+start()
+perform(action:char*)
+setDriver(driver:TestDriver*)

«simclock.hh»
SimClock

-stop, received, leave: bool
-threads, arrivers, departers: int
-now, min: timespec
-tic_c, tac_c: pthread_cond_t
+registerThread()
+quitThread()
+timedwait(cond:int*,m:pthread_mutex_t,t:timespec): int
+wait(cond:int*,mutex:pthread_mutex_t): int
+post(cond:int*): int
+getTime(): timespec

«iut_button.hh»
MouseButton

-stop: bool
-click_m: pthread_mutex_t
-click_c: int
-clock: SimClock
-thr_id: pthread_t

«testdriver.hh»
Executable

+execute(): void*

«iut_mouse.hh»
Mouse

-button_count: int
-buttons: MouseButton[]

«iut_traingate.hh»
TrainGate

-train_list: list<int> «pointer.hh»
Object

«after.hh»
Action

-channel: int
-values: list<int>
-text: char*
-delay: int64_t
+Action(chanId:int)
+Action(delay:int64_t,txt:char*)
+toString(): char*
+addValue(val:int)
+getChanId(): int
+getValues(): list<int>
+getDelay(): int64_t

Figure 30: Class diagram of connection to implementation under test.

TestAdapteris responsible for the connection to a real implementation under test (IUT). De-
pending on the nature of the IUTTestAdaptertranslates the character strings into input actions,
translates output actions into character strings and passes them toTestDriver. As Figure 30
shows, we have implemented three adapters and put the IUT simulating code into these classes:
TrainGate, MouseButtonandMouse. Section 5 discusses the purpose and functionality details
of our simulated implementations under test.

The following describes the main attributes and methods involved in communication be-
tween UPPAAL and implementation under test:

setAdapter(adapter) is a setter for adapter field which attaches aTestAdapterwith IUT to the
driver and calls theTestAdapter::setDriver(this)method.

59

On-the-fly Testing Using UPPAAL 4.3 Specific Testing Extensions

start test() initializes the internal driver structures and callsTestAdapter::start()to acknowl-
edge the start of the test with a IUT.TestDriver just resetslast eventfield to a current
time, meaning that the first and still the last test event (start) occurred at that moment.

offer input(action) sends an input action to IUT via callingTestAdapter::perform(action).
Luckily the objects of typeAction are capable of converting themselves to a character
string which is written to a log file as well.

waitfor output(us) checks the event queueevents. If the queue is not empty the method takes
out and returns the first event from the queue. If the queue is empty it blocks and waits for
an output or the timeout inusmicroseconds, whichever occurs first. TheNULL pointer is
returned if no output was observed until timeout occurred.

resetDelay() is used by test generation algorithm to reset thelast eventtimer to current time.
This has sense when test generation algorithm chooses several times to wait for output
and the output is not produced. The method returns the amount of time passed from the
last event occurrence.

report now(output) method is called byTestAdapter. TestDriver constructs anAction ob-
ject, puts it intoeventsqueue and wakes up the thread potentially waiting in thewait-
for output(us)method.

The driver-adapter connection allows an implementation to be separated from T-UPPAAL

as much as possible. T-UPPAAL and an implementation are even not forced to share the same
clock. MouseButtonandTestDriveruses their own function calls to determine how much time
has passed. Although the very first testing attempts revealed clock synchronization issues be-
cause of delays during computation time. We have developed a simulated clock library which
aims at synchronizing T-UPPAAL and IUT clocks. The idea behind the simulated clock is that it
does not allow the simulated time to flow during the computations and increments the simulated
clock value only when all threads are waiting for it to do so. In order the simulated time to be
transparent to the IUT and T-UPPAAL we replaced all the time flow related functions calls to
SimClockmethod calls (see Figure 30):

timedwait(cond, m, t) replacespthreadcond timedwaitwhich waits either for conditioncond
or timeout att to occur. During the waiting time mutexm is released and regained when
some event has occurred. The integercondplays a role of a semaphore (counts the amount
of resources) rather than a condition variable inpthreadcond timedwait.

wait(cond, m) replacespthreadcondwait which waits for the conditioncond indefinitely.
During the waiting time the mutexm is released and regained when the condition is
reached.

post(cond) replacespthreadcondsignal which signals the thread waiting for condition. We
also count how many times the condition was signaled in case there are several resource
producers triggering the same condition or consumers waiting for the same condition.

gettime() replacesgettimeofday. The method returns the simulated clock value for given mo-
ment. The simulated clock value is set to zero initially.

registerThread() adds a new (current) thread. This method call increments the thread counter
and makes sure that all interested threads arrive into simulated clock monitor to be able
to increment the simulated clock value with respect to all interested threads.

60

On-the-fly Testing Using UPPAAL 4.3 Specific Testing Extensions

quitThread() removes a thread. This method call decrements the thread counter and makes
sure that all threads potentially waiting will not starve because one thread willing to leave.

Note that neithersleepnor usleepare used in our code, therefore the replacement forsleepis
not implemented.

Figure 31 shows an example use ofSimClockwhen waiting for resources in a simulated
time. At first all interest threads have to register themselves in aSimClockobject. The thread-

c=min(z)

c=c

registerThread()

SimClock

quitThread()

timedwait(b,m,z)

(got a)

(timeout)

Thread1 Thread2

post(a)

c=0

registerThread()

timedwait(b,m,y)

timedwait(a,m,x)

c=min(x,y)

(timeout)

Figure 31: Message chart of thread synchronization and resource sharing throughSimClock.

registration is done automatically when threads are accessing the simulated clock throughget-
GlobalClock()function, since the intention is to have a singleton ofSimClockin entire program.
The first call togetGlobalClockcreates a singleton object ofSimClockand set the clock valuec
to zero. When all threads are registered, they can start waiting for conditions.Thread2owns a
mutexmand is willing to wait forb until y. The clock releases the mutexmand adds the thread
into a queue waiting fortic c condition (see Figure 30).Thread1then acquires the mutexmand
is willing to wait for a until x. The clock releases the mutexm. Now the last registered thread
entered the clock monitor and is deciding to increment the time to valuey since it is less than
x (c = min(x, y)) and triggers thetic c condition which transfers all threads to another queue
waiting for tac c. The last thread entering totac c queue triggers conditiontac c to allow all
threads to re-acquire their mutex and test their conditions for leaving the clock monitor. Such
double barrier of thread queues is needed to make sure that threads do not enter the second
queue immediately after they left the monitor. The code between the queues contains the clock
value incrementation which should be executed only by the last thread. The code forSimClock
is in Appendix??

4.3.5 Test Generation and Execution Algorithm

The final implementation has two principal differences with respect to the one we described in
Section 3.2: 1) we check for potential outputs produced before we choose either a delay or an

61

On-the-fly Testing Using UPPAAL 4.3 Specific Testing Extensions

action and 2) we compute after delay closure before computing after action closure to ensure the
τ -closure. Figure 32 shows the message chart of T-UPPAAL component communication during
the MouseButtontesting. UppAal refers to all symbolic state estimation algorithms we use in

getOutputs()

afterDelay(t)

d

waitfor_output(0)

(NULL)

afterDelay(s)

(singleClick, t)

{singleClick}

after(singleClick)

MouseButtonDriverTestAlgorithmUppAal

tim
edw

ait(event, 30−
d)

singleClick

t
s

after(click)

w
ait(click)

tim
edw

ait(click, 200m
s)waitfor_output(30)

getInputs()

{click}

L

waitfor_output(0)

(NULL)

resetDelay()

(s)

offer_input(click)

initialize()

start_test()

start()

perform(click)

w
ait(click)

Figure 32: Test generation and execution message chart.

our test generation. Testing starts with the initialization of T-UPPAAL structures by reading a

62

On-the-fly Testing Using UPPAAL 4.3 Specific Testing Extensions

test specification.TestAlgorithmexecutes the following actions in a row according to Figure 32:

1. Sends a message to the IUT to acknowledge the start of the test.

2. Checks for potential outputs by callingwaitfor output(0)and receivesNULL meaning
that no outputs have been observed so far.

3. Decides to offer an input:

(a) Computes the afters delay closure by calling, wheres is the time delay from the
last event observed by theDriver.

(b) Computes the set of possible inputs:{click}.

4. Sends the inputclick and computes the reachable symbolic state set afterclick synchro-
nization.

5. Checks for potential outputs and observes nothing.

6. Decides to delay30 time units (30× 10ms = 300ms):

(a) Schedules the time out after30 − d and waits for output.d is a delay from the last
event.

(b) Driver receives the outputsingleClickaftert (from last event) and puts into a queue.

(c) TheTestAlgorithmthread wakes up and picks the output action from the queue.

7. Computes the aftert delay closure.

8. Computes the set of possible outputs{singleClick}.

9. Verifies that the actual output is in the set of possible outputs.

10. Computes the reachable state set aftersingleClick.

11. Continues the algorithm in a loop which starts by callingwaitfor output(0)... until the
testing time runs out.

The testing trace in Figure 32 reveals the following issues:

1. The time delay marked byL is lost, i.e. it is neither considered nor applied on the reach-
able symbolic state set. If the symbolic state set is quite large, the delayL can be large
enough to interfere with the test event run, e.g.MouseButtoncould be waiting for a sec-
ond click and produce asingleClickearlier thanTestAlgorithmexpects. The cause of the
problem lies in the test algorithm design, which “does before it thinks”, i.e. it is already
too late to compute another after delay closure when we have the set of possible inputs
already computed.

2. The time delay marked byd might be larger thanTestAlgorithmhas decided to wait.
This can be fixed by forcing the minimum for choosing the delay which can be extracted
from Driver, but then we put additional constraints which leave the potential IUT errors
untested.

63

On-the-fly Testing Using UPPAAL 4.4 Implementation Status

3. The computation time onUppAal axis depend on the system model, which is hard to
benchmark and plan ahead. On the other handTestAlgorithmandDriver code is almost
independent from the system model and rely only on the amount of possible inputs and
outputs, which has logarithmic complexity.

The first two issues do not appear when using the simulated clock, which means that the test
generation and execution algorithm has the desired functionality although the real-time handling
is poor. For better real-time handling we propose one-step ahead planning: the test primitive
should consist of one delay and input ahead; if the output is received before the input is offered,
the symbolic state set must be discarded and the output action applied on the old symbolic state
set.

4.4 Implementation Status

There have been numerous T-UPPAAL code files created and modified in order to provide au-
tomated test generation and execution capabilities. Table 1 summarizes the modifications in a
parser library: we added a new grammar for reading test specification files. The new grammar
is based on UPPAAL timed automata model specification, so only few rules needed to be added.
Note that we omit the files we did not modify. Table 2 shows what files we have changed to sup-
port our test extensions in UPPAAL data structures. Table 3 describes our contributed new files
to maintain reachable symbolic states, communicate with implementation under test, simulate
the clock and a few samples of IUT for testing our extensions.

File name Lines Modified Purpose of modification
utap.hh 46 4 Function header for parsing.
builder.hh 214 15 IUT interface structures.
libparser.hh 53 1 Test spec. grammar identifier.
system.hh 225 32 IUT interface structures.
system.cc 824 26 Methods for IUT interface structures.
typechecker.hh 378 14 IUT interface typecheck structures.
typechecker.cc 2379 98 IUT interface typecheck and build.
lexer.ll 204 5 Keywords, microseconds handling.
parser.yy 2038 97 Grammar rules added.
pretty.cc 824 38 Parser testing.
Total: 9052 330 Test specification parser.

Table 1: Modified parser files: test specification grammar added.

5 Experiments

In this section we describe how we make a system specification and how it looks like. We also
use the specification for testing the test generation and execution algorithm.

Section 5.1 describes the first example of a sample system of a mouse button, which is simple
to understand and test the basic functionality of the T-UPPAAL tool. The models of environment
and implementation each has one automaton which communicate through observable actions.
We make this example more complex by adding two or four buttons working in parallel where
each of them has a separate clock.

64

On-the-fly Testing Using UPPAAL 5.1 Single Mouse Button

File name Lines Modified Purpose of modification
chan.h 141 54 Channel I/O status information interface.
chan.cc 80 13 Channel I/O status information handling.
clock.h 583 1 Id of additional clock.
clock.cc 1432 1 Variable for id of additional clock.
integer.h 285 10 Variable name resolution to id.
integer.cc 454 2 Variable name index.
commonbuilder.cc 458 45 IUT interface transfer from parser to UPPAAL .
pw.hh 32 2 Interface of function creatingHashingPWList.
pw.cc 1604 5 Implementation of function creatingHashingPWList.
verifyta.cc 2235 292 Initialization and test algorithm implementation.
Total: 31501 425 IUT interface support and test algorithm.

Table 2: Modified UPPAAL engine files.

File name Lines Purpose
after.hh 104 State estimation interface.
after.cc 1496 State estimation implementation.
testdriver.hh 157 Test driver interface.
testdriver.cc 210 Test driver implementation.
simclock.hh 98 Simulated clock interface.
simclock.cc 291 Simulated clock implementation.
iut button.hh 45 Button IUT interface.
iut button.cc 139 Button IUT implementation.
iut mouse.hh 28 Mouse IUT interface.
iut mouse.cc 44 Mouse IUT implementation.
iut traingate.hh 28 Train gate IUT interface.
iut traingate.cc 42 Train gate IUT implementation.
Total: 2682 State estimation and communication with IUT.

Table 3: New files created for test generation and execution.

For the second example we will make a more complex specification with many observable
and unobservable actions. The implementation model has two automata and the environment
model is active, i.e. has a clock.

5.1 Single Mouse Button

In this section we consider a simple implementation of a controller which decides whether it
observed a single click or two clicks which form a double click. This combination is com-
mon using GUI. An operating system acts differently on a single or double-click. A single
click selects an object on a screen and a double click executes a program related to the object
(Figure 33).

A user presses a mouse button and each time the controller must interpret whether it was
a single click or a double-click. In our case the mouse controller is an implementation under
test and a user and an operating system forms the environment. To test whether the controller
works correct we start from making a model using UppAal modeling tool. The mouse model

65

On-the-fly Testing Using UPPAAL 5.1 Single Mouse Button

click
click controller

OS

User

Mouse−

on the icon

doubleclick

���
���
���

���
���
���

Figure 33: A general picture of a user and a mouse interaction.

contains an automaton or several automata which model behavior of the IUT and the general
environment. There can be several ways to model the system. System models will be described
in the following subsections.

5.1.1 Model of the Implementation for the Mouse-button system

The model of the IUT shows behavior of a controller in Figure 34. The first model has three
states, one clock variable and two channels (Figure 34(a)).

s1

s3

s2
x<=20

doubleClick!

click?

x:=0

click?
x<=20

x>=20

(a) With unobservable action.

s1

s3

s2
x<=20

doubleClick!

click?

x:=0

click?
x<=20

x>=20

singleClick!

(b) Without unobservable actions.

Figure 34: Mouse double-click IUT model.

The IUT accepts clicks from the general environment and detects a double-click if the IUT
received two clicks before 20 time units has passed. The automaton starts in the initial state in
the location s1 and moves to the second location after the first click. The automaton moves into
the third location s3 if the second click occurs before 20 time units have elapsed and produces
a double-click on the next transition. The automaton moves silently to the initial location if 20
time units elapse and no click has occurred.

There is no silent action in the second model (Figure 34(b)) where we added an additional
channelsingleClick!. We used this model during debugging the test generation algorithm and
wanted all actions to be observable. The implementation reveals time shift between the model
clock and the IUT clock because of computational time. ThesingleClickhelps to synchronize

66

On-the-fly Testing Using UPPAAL 5.1 Single Mouse Button

clocks between an implementation and the UppAal engine. The as-synchronization occurs and
becomes uncontrollable when we run the implementation and UppAal on the same machine
with other processes running. The time shift is not experienced when time delays are longer (in
order of seconds) and computation time is comparably short 3-4 milliseconds. A virtual clock
is used to ignore computational time for short delays.

5.1.2 Models of the Environment for the Mouse button

We distinguish two parts of the environment - a user which performs clicks and an operating
system, which observes a double click. The model of an OS is in Figures 35(a) and the user
model in Figure 35(b). In the OS model there is a restriction that the second click should
be produced at least within 30 time units. This invariant allows to proceed testing without long
delays between clicks and still gives time for a single click and for a double click to be produced.

We use a more general model where behavior of the environment is combined in one model.
The general environment model in Figure 35(c) has one state and two channel variables. It does
not have any restriction about when a click is generated. We assume that at some point in time
it will generate a click as well as a second click which would produce a double-click at the IUT.
This gives freedom for a tester to simulate the environment, generate clicks at any time and
observe output immediately when it is produced.

Generate

Generate2
y<=30

click!
y:=0

click!
y<20

y>=20

(a) OS model

Observe

doubleClick?

(b) User model.

s1

click!

doubleClick?

(c) General EM.

s1

click!

doubleClick?

singleClick?

(d) EM without unob-
servable actions.

Figure 35: Models of the environment.

The last model in Figure 35(d) has an additional input channel in case if only a single click
has been produced. The channel synchronizes with controller from Figure 34(b) and in such a
way the model contains only observable actions which are useful during debugging as it was
explained in the previous section.

Later a model description is used for a test specification. We need to be sure that the mod-
els are correct otherwise the specification will be erroneous and produce wrong test runs. We
verified whether the system model is deadlock free.

5.1.3 Sample Test Specification of the Mouse-button

We make a test specification from the system description file in .ta format which is used in
UPPAAL . We add additional information such as a timeout of testing, testing precision units,

67

On-the-fly Testing Using UPPAAL 5.1 Single Mouse Button

which stands for amount of microseconds used for one model time unit, testing inputs and
outputs. A test specification file has a .tta file extension, which has the following additions to a
.ta file:

input click();
output doubleClick();
precision 10000; // time in microseconds (0.01sec)
timeout 1000; // amount of precision units (1000x0.01sec=10sec)

We propose several potential test runs that can be used to test the correctness of the given
mouse double-click detector.

Runs Run1 Run2 Run3 Run4
Events click! click! click! click!

delay(1) delay(19) delay(21) delay(10)
click! click! click! doubleClick?

doubleClick? doubleClick?
Result Pass Pass Fail Fail

Table 4: Potential test runs

The first two test runs pass a test because a double-click is produced by the IUT (Figure 34)
after two clicks which occurred within a time period of 20 time units. The Run3 and Run4 fail
the test. In the third run the IUT produced no output singleClick? and the second click occurred
instead. In the fourth run the double click was produced after the first click which the model
requires two clicks before a double-click.

Infinite number of test cases can be generated from the specification because there can be
infinite number of delays. Therefore an event selection selection strategy becomes a very im-
portant issue and we do it by random choices.

5.1.4 Implementation of the mouse button

We display a part of a sample mouse implementation code in Figure 36. The whole file iutbutton.cc
code is displayed in the Appendix??.

A message sequence chart in Figure 37 shows 40 out of 1000 time units interval of a test
sequence. A time line of a global clock is displayed on the column Time. Delays are on the left
from the time line and on the right are displayed values of a global clock at a certain state of
testing. We assume that the initial state is left as soon as possible and there is no delay before
the first actionclick. An output occurs immediately, i.e. time is not allow to pass if an output is
available.

From the message chart diagram we can write a test sequenceclick? · 20 · click? · 0 ·
doubleClick! · 0 · click? · 20 · singleClick! · 0 · click?. This test sequence has delays which are
equal to maximum values of the invariant constrain in the controllers stateS2and on guards of
the transitions leading from that state.

We might want to use the sequence again for testing another IUT. Unfortunately there is
a small probability that the environment automaton repeats this sequence again because the
environment automaton can generate inputs at undefined moments. A solution of the problem
is writing another environment automaton which would simulate that particulate sequence as
proposed in [14].

68

On-the-fly Testing Using UPPAAL 5.1 Single Mouse Button

void* MouseButton::execute()
{

struct timeval now;
struct timespec timeout;
pthreadmutex lock(&click m);
sem post(&starteds);// acknowledge the start
while (!stop) {

pthreadcond wait(&click c, &click m);// wait for click
if (stop) break; // it was a signal to stop
else sem post(&click s); // acknowledge that we got the click 10
gettimeofday(&now, &tz);
now += 195000;
timeout.tv sec = now.tv sec;
timeout.tv nsec = now.tv usec*1000;
int res = pthreadcond timedwait(&click c, &click m, &timeout);

if (res == ETIMEDOUT) {
driver−>report now("singleClick()");

} else {
driver−>report now("doubleClick()"); 20
sem post(&click s);

}
}
pthreadmutex unlock(&click m);
return NULL ;

}

Figure 36: A mouse button implementation.

Time IUT

S1

S1

S1

S1

0

S220

20

40

0

40

click

S2 S1

0

40

20

0

20

20

Env

0 click?

click

doubleClick

S1

S3

S1

S1

S1

S2

singleClick

click

S1

Figure 37: Message sequence chart of the mouse with one button system.

This automaton is a test purpose automaton made for simulating one test sequence displayed
in Figure 38 and it replaces the environment model automaton. Channel names with a mark “?”
means outputs from IUT and “!” means inputs into IUT. An IUT passes the test run if it ends in

69

On-the-fly Testing Using UPPAAL 5.1 Single Mouse Button

the terminal statePass. The implementation fails a test run if it outputs a wrong output, i.e. the
automaton deadlocks in the stateFail.

F0
F1

y<=20
F2
y<=20

F4
y<=40

F3
y<=20

F5
y<=40

F6
y<=40

Fail

Pass

click! click!

y==20

doubleClick? click! singleClick?

y==40

click!

singleClick?

y<20

doubleClick? doubleClick?

y>40

y==40

y>20

singleClick?

y<20
y>40

Figure 38: A test purpose automata without clock resets for a test sequenceclick? · 20 · click? ·
0 · doubleClick! · click? · 20 · singleClick! · 0 · click?.

We use a test purpose automaton which has a separate clock. The clock simulates global
time and is never reset, and can track time passing during test execution in Figure 38.

Another possibility is to have resets on every transition as in Figure 38. In such a way we
do not need to remember what the global time is at a certain state or transition. It is easier to
keep track of delays by reseting a clock but resets may take some time and test execution takes
longer.

F0 F1
y<=20

F2
y<=0

F4
y<=20

F3
y<=0

F5
y<=0

F6
y<=20

Fail

Pass

click!
y:=0

click!

y==20

y:=0
doubleClick? click!

y:=0
singleClick?

y:=0
click!
y:=0

singleClick?

y<0

doubleClick? doubleClick?

y>20

y==20

y>0

singleClick?

y<20
y>20

Figure 39: A test purpose automata with clock resets for a test sequenceclick? · 20 · click? · 0 ·
doubleClick! · click? · 20 · singleClick! · 0 · click?.

In a next step we make a specification with the test automaton instead of the environment
automaton. During test execution we do not know in which location of a test automata testing
ends therefore we need a practical solution to identify a test verdict. We make aFail location
committed to identify failure right away if the system deadlocks in that state. A test is passes if
a timeout expires and no failures are detected, i.e. the system is deadlocked in thePasslocation
or a test is inconclusive if the system is deadlocked in a non terminal state.

5.1.5 Multi-Button Mouse

The single button experiment tests the basic functionality of T-UPPAAL where the tool uses only
one clock and one symbolic state in computations, therefore more elaborate tests are needed.
For experiment to be exhaustive and still simple to understand and implement we made a mouse
with several independent buttons, which does not have much sense in a real world but gener-
ates reachable symbolic states with several clocks. In addition, we add non-determinism when
choosing which button is receiving inputs and sending outputs, i.e. the environment is not aware
of which button is pressed when it sends a click, and which button is sending asingleClickor

70

On-the-fly Testing Using UPPAAL 5.1 Single Mouse Button

doubleClicknotification. In this case, the IUT network consists of several mouse-button au-
tomata and the environment network is the same as in Section 5.1.2. The simulation code for
IUT requires an additional classMousewhich encapsulates several objects of classMouseBut-
ton (see Figure 30). When a driver is calling the methodMouse::perform(action), the mouse
chooses randomly a button and passes the message to it. The output is produced by the objects
of classMouseButtonthemselves like in previous example. The mouse button properties (like
delay between clicks) are kept the same as in the single button example.

Figure 40(a) shows a test message sequence diagram for a mouse controller with four but-
tons. Delays are displayed on the left and values of the global clock on the right of the time line.
As we can see the environment sendsclick and one of the randomly chosen button accepts it. If
two clicks arrive within 20 time units into the same button then it produces an outputdoubleClick
and if the button gets just one click within 20 time units then asingleClickis produced.

Figure 40(b) shows the symbolic state estimation (without zones) as we expected it to be
growing. But in practice it is even worse: the symbolic state setS3 contains four symbolic

B2B1Time

singleClick!

doubleClick!

singleClick!

click?

click?

click?

click?

click?

click?

B3

45

20

0

30

40

40

5

0

0

10

10

0

0

20

0

EnvB4

(a) Message sequence chart.

s2|s2|s1|s2|s

s1|s2|s2|s2|s

s2|s1|s2|s2|s

.

.

.

s2|s2|s2|s1|s

s3|s1|s1|s2|s

s1|s2|s3|s1|s

s1|s3|s1|s2|s

s1|s3|s2|s1|s

s2|s1|s3|s1|s

s1|s1|s3|s2|s s1|s1|s2|s3|s

s2|s1|s1|s3|s

. . .

singleClick!

click?

delay 20

delay 10

click?

click?

click?

delay 10

S0:

S1:

S2:

S3:

S4:
. . .

.

s1|s3|s1|s1|s s1|s2|s1|s2|s s1|s1|s3|s1|s

s2|s1|s1|s2|s s1|s2|s2|s1|s s1|s1|s2|s2|s s1|s1|s1|s3|s

s1|s2|s1|s1|s

s1|s1|s1|s1|s

s1|s2|s1|s1|s s1|s1|s2|s1|s s1|s1|s1|s2|ss2|s1|s1|s1|s

s2|s1|s2|s1|s

s2|s2|s1|s1|ss3|s1|s1|s1|s

s1|s1|s2|s1|s

s1|s2|s1|s2|s

s2|s1|s1|s2|s s1|s2|s2|s1|s s1|s1|s2|s2|s

s3|s1|s2|s1|s

s2|s3|s1|s1|s

s1|s2|s1|s3|s

s3|s2|s1|s1|s

s2|s2|s1|s1|s

s1|s1|s1|s2|ss2|s1|s1|s1|s

s1|s1|s1|s1|s

s1|s2|s1|s1|s s1|s1|s2|s1|s s1|s1|s1|s2|ss2|s1|s1|s1|s

s2|s1|s2|s1|s

(b) Expected symbolic state set estimation.

Figure 40: Testing of 4-button mouse.

states instead of one, just because not all clocks in the system were reseted, i.e. all symbolic
states contain the same location vector〈s1, s1, s1, s1, s〉 (as shownS3 in Figure 40(b)), but the
zones are different because the first zone had a reset on clockB1.x, the second zone had a reset
on clockB2.x and so on. The situation goes even worse as the time elapses and more clicks are
produced (onlyclick resets the clock). The delay and the output ofsingleClickanddoubleClick
reduce this “clock reset” uncertainty (e.g. going from symbolic state setS5 to S6), but not so
dramatically as it grows after aclick. We may attempt to reset all clocks by sending series of
click inputs in a zero time, but this will not help since we have no control over which button

71

On-the-fly Testing Using UPPAAL 5.2 Train Gate Controller

receives aclick and there always is a positive probability that some clock was never reseted and
this is reflected on the symbolic state set.

Figure 41 shows how uncertain we are about clock value when we have the IUT network
of two equal timed automata with single location and single edge with action synchronization
and a reset on the local clockx. The clockt is our additional global clock for tracking the time.
The initial clock value is0. We apply a bounded future operator to estimate symbolic states
after a delay. Then we offer an input which resets one of the clocks, we do not know which,
therefore we remember both as potential. In such a way from a set with single symbolic state
we move the set of two symbolic states (the first has the first automatons clock reset, and on
second - the second automatons clock reset). After another delay and action round we add one
more symbolic state in the same fashion and so on. For the two clock reset problem we have

t

x

t

x

t

x x

initial after delay after action

and action step
after another delay

action step
after longer delay and

action step
after next delay and

t

x

t

x

t

Figure 41: Uncertainty in clockx value growing on a single location automaton with one ob-
servable action.

one additional symbolic state at first and the each following step adds two additional symbolic
states. For the problem with three potential clock resets we would add two additional symbolic
states after the first step and after second step we have 9 symbolic states in a set. However it is
difficult to generalize the formula now and we leave it for future.

5.1.6 Experiment Results of Mouse-click systems

We tried 2-button and 4-button mice and experiments showed that the test algorithm works with
many clock as well as with one, however the reachable symbolic state set grows exponentially
because of uncertainty in a button selection. As you may already noticed, T-UPPAAL has to
compute all possible combinations of each button receiving a click, thus oneclick multiplies the
symbolic state set by four in 4-button mouse experiment. It was observed during experiments
that uncertainty decreases when asingleClickor adoubleClickis received.

As time elapses, the symbolic state set grows and shrinks (but still grows more than shrinks)
and eventually the “simulated time” timeout is reached which means the test passes without
faults found. On one hand we reached our goal in testing the symbolic state set estimation
algorithm with thousands of states. On the other hand we know that simple models can trigger
exponential amount of reachable symbolic states. This state explosion remains an open issue.

5.2 Train Gate Controller

We take a more complex example of an implementation under test to evaluate the suitability of
T-UPPAAL to more practical problems, for example, bridge crossing. A more complex spec-
ification in terms of number of models, channels, variable sharing, etc. may reveal different
problems than the previous one during debug of the test generation and execution algorithm.

We take a demo system from the UPPAAL examples which is a model of a train gate con-
troller. For more details about this example see [13].

72

On-the-fly Testing Using UPPAAL 5.2 Train Gate Controller

A railroad bridge often has only one or two railroads and is a bottle neck for trains which
approach from different directions and from many railroads. Malfunctioning of the gate con-
troller system may cause unplanned train delays or even a collision and catastrophe. In a real
life the gate system assures that only one train can cross the bridge at a time (Figure 42). The
gate sends a signalStopto an approaching train if another train is crossing the bridge and signals
Go when the bridge is empty and available for crossing. Trains inform the gate when they are
approaching (Approaching) and leaving (Leaving) the bridge .

LEAVING!

APPROACHING!

�����������
�����������
�����������
�����������

���������
���������
���������
���������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

���������
���������
���������
���������

�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�����������
�����������
�����������

�����������
�����������
�����������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
����������� GO

STOP

Figure 42: A general picture of a train bridge system.

The system models show behavior of four trains on different railroads and one gate for a
bridge with one railroad. Our goal is to test behavior of the gate system. In the demo system
the implementation model of the gate system consists of two automata: a gate controller and a
queue (Figure 43). The environment model consists of four train automata.

The environment and the implementation models synchronize through observable actions
appr, leave, go, stopand they share a variablee for passing information about train sequence in
the queue (Figure 43). The implementation automata - gate and queue - synchronize internally
through actionsadd, rem, empty, nonempty. We will write actions or channel names in a small
letter and model locations names in a capital letter.

go! stop!

appr! leave! appr? leave?

empty!
nonempty!

rem?
add?

Train
x:=0
e:=1

id:=e

appr! leave!
go? stop?

appr? leave?
go! stop!

rem!
add!

Gate controller

nonempty?
empty?

go? stop?

Model of ImplementationModel of Environment

e:=2

Queue

Figure 43: The train demo system environment and implementation models in a single timed
automata network model.

We had to adapt the train-gate demo example to avoid shared variables between the envi-
ronment and the implementation because the variablee was assigned in both the queue and the
train model.

We could separate the environment and the implementation by separatinge variables into

73

On-the-fly Testing Using UPPAAL 5.2 Train Gate Controller

two, where one gets a new value during assignment in the queue model and another is assigned
in the train model. Variable value is passed as a parameter during synchronization on theappr
channel. This case was mentioned in Section 2.9 but it is not suitable for our implementation
of the test generation algorithm which at the present can not handle parameter passing through
channels.

We need to use an alternative way to model the data exchange. We introduce unique channel
names for every shared variable value and in such a way the variable is not used in the environ-
ment model. By doing that we follow the second suggestion for data variable synchronization
written in (Section 2.9).

The new model setting is shown in Figure 44. For the interface between the environment
and the implementation we introduce a unique channel name for every train. Now instead of
four we have sixteen observable channels and a separate automata for every train (Figure 44).
We use a shared variablee to pass information about a train identifier inside the gate system, i.e.
between the controller and the queue.

g_3! s_3!

e:=2
nonempty!

empty!
rem?
add?

e:=1
nonempty?

rem!
add!

empty?

Queue

Gate controller

Train4

Model of Environment

g_x! s_x!
a_x? l_x?

g_4?s_4?
a_4!l_4!

g_4! s_4!x:=15x:=9

Train2Train1

Train3
x:=0 x:=4

a_1! l_1! a_1? l_1?

a_2? l_2?

a_3! l_3! a_3? l_3?

a_4! l_4! a_4? l_4?

g_1? s_1? g_1! s_1!

g_2? s_2? g_2! s_2!

g_3? s_3?

g_4? s_4?
g_3?s_3?
a_3!l_3!

g_2?s_2?
a_2!l_2!

g_1?s_1?
a_1!l_1!

a_2! l_2!

Model of Implementation

Figure 44: The train bridge system environment and implementation models in a single network
model.

In the following sections we describe the train-gate system environment and implementation
models used in the demo example and adapted for our test specification.

5.2.1 Model of the IUT in the Train-gate system

As mentioned above our IUT is a gate system model consisting of a controllers and a queue
automata. It is responsible for letting the trains go if the bridge is available or stopping them if
another train is crossing the bridge.

We had to modify the controller automata to make it suitable to use for a specification.
Modifications concerns channel names, number of transitions and a train identification variable
e. The demo example controller is in Figure 45(a) and the modified controller in Figure 45(b)).
We use the same queue automata as in the demo example (Figure 46).

Only the controller model synchronizes with the environment, i.e. has observable actions:
input actionappr (for approaching),leaveand output actionsstopandgo (Figure 45(a)).

We can see in Figure 45(a) and 45(b) that both controller automata have five states. The
initial stateFree of the controller model indicates that the bridge is available for crossing. If
the list with waiting trains is empty then the controller moves to the stateReady1. When a train

74

On-the-fly Testing Using UPPAAL 5.2 Train Gate Controller

Remove

Add2

Add1

Ready1

Ready2

Stop

Occ

Free

Send

notempty?

empty?

appr?

leave?

stop!

go!

hd!

appr?

add!

add!

rem?

(a) Train gate demo controllers model.

RemoveAdd

Ready1

Ready2

Stop

Occ

Free

Send

notempty?

empty?

appr_1?

e:=1

leave_1?

stop_1!
e==1

go_1!
e==1

hd!

appr_1?
e:=1

add!

add!

rem!

appr_2?
e:=2

appr_3?
e:=3

appr_4?
e:=4

appr_2?

e:=2

stop_2!
e==2

appr_3?

e:=3

stop_3!
e==3

appr_4?
e:=4

stop_4!
e==4

go_2!
e==2

go_3!
e==3

go_4!
e==4

leave_2?

leave_3?

leave_4?

(b) Train gate controllers model with encoded chan-
nels.

Figure 45: Train gate IUT models.

approaches the gate, the controller gets anappr action from the train and immediately sends an
orderadd to the queue model to add the train identifier into a list. The controller signalsrem to
the queue only after the train has left the bridge and has sent aleavesignal to the controller.

If an approaching train is not the first in the queue then the controller is in the stateOcc. The
controller signalsstopto the train andadd to the queue for adding the trains identifier into the
list. The train is allowed togowhen the controller is in theSendstate. Before that the controller
sendshd action to the queue for updating the index of the train.

The number of transitions is different but behavior of controllers is equivalent. In our con-
troller model every channel is used for synchronizing only with a particular train on a separate
transition in Figure 45(b). The channel identify the train model to which the controller synchro-
nizes.

The queue is considered as entirely internal part of the IUT Figure 46. It assist to the gate
controller model by implementing a FIFO list of train identifiers. The gate controller and the
queue model synchronize through internal actionsadd, rem(for adding or removing from a list),
empty, nonemptyandhd (for checking the list and updating the train index variablee).

We use a shared variable between the controller and the queue model for passing a train
identifier number. This variable is used in transition guards in the controller to enable a syn-
chronization only with a certain train, which makes it different from the mouse button example.

5.2.2 Models of the Environment in the Train-gate System

The environment of the system consists of several trains which want to cross the bridge but first
they need to inform the gate when they approach or leave. They also have to obey the orders
from the gate to stop or to go. Trains have limited time for crossing the bridge and a certain
delays before they can start crossing the bridge.

75

On-the-fly Testing Using UPPAAL 5.2 Train Gate Controller

Start

Shiftdown

i < len list[i]:=list[i+1],
i:=i+1

len==i
list[i] := 0len>=1

rem?

len := len -1,
i := 0

len==0
empty!

add?
list[len]:=e,
len:=len+1

hd?

e:=list[0]

len>0

notempty!

Figure 46: Queue model.

Instead of one train model Figure 47(a) we made four - each for every train, see Figure 47(b).
Every train model has five states, one local clock variable and four channel variables which
identify a particular train, ex.:Appr 1 identify Train1 andAppr 3 identify Train3. The shared
train identifier variablee is not used anymore in our model and in such a way we avoid data
value passing during synchronizations between the environment and the IUT.

A train sends a signalappr to the gate and waits in the stateAppr up to 20 time units. The
train model moves to the stateStopwithin 10 time units if it gets an order to stop from the gate
model. It is important that the train gets stop before 10 time units if the crossing is not free.
After 10 time units the train can go from the stateAppr to theCrossstate. It can stay there up to
5 time units or leave the bridge at or after 3 time units by sending a signalleaveto the gate.

The train stays in theStopstate until the gate sends a permit togoand the train moves to the
Startstate. From this state the train moves to theCrossstate after 7 time units but not later than
15 time units elapses.

The train gate environment is specific because it can not offer any input defined in the
implementation interface at any time. A train can send a signalleaveonly after it has sent a
signalappr.

As we can see in Figures 47 the environment model allows delays within a certain interval
at different states or has clock guards on transitions. The IUT model outputs appropriate actions
immediately after synchronization with the train or the queue model. Therefore it does not need
clock variables and uses committed locations instead. Such behavior suites requirements and
possibilities in a realistic train-gate system. It takes some time for a train to start moving from
a place and that time is different from train to train because of a train length and weight. The
gate controllers have to respond as fast as possible and small delays during mechanical railroad
switches is not considered.

5.2.3 Test Specification of the Train-Gate

The test specification includes environment and IUT models. As we could see from train-gate
models this specification is more complex that the mouse button specification because the IUT
has the controller and the queue model which communicate internally. However IUT is simpler
because it does not have a clock and timing is not an important issue.

76

On-the-fly Testing Using UPPAAL 5.2 Train Gate Controller

Safe

Stop

Cross
 x<=5

Appr

 x<=20

Start

 x<= 15

x>=10

x:=0

x<=10,
e==id

stop?

x:=0

x>=3

leave!

e:=id,
x:=0

appr!

e:=id,
x:=0

x>=7

x:=0

e==id

go?

x:=0

(a) Train model with data variables.

Safe

Stop

Cross

 x<=5

Appr

 x<=20

Start

 x<= 15

x>=10

x:=0

x>=3

leave_1!

x:=0
appr_1!

x:=0
x>=7

x:=0

go_1?

x:=0

x<=10
stop_1?

x:=0

(b) Train model with encoded
channel variables.

Figure 47: The train models.

We add IUT interface part to the system model description (input and output actions), test
timeout and precision of time units information to the system description file and use it as a
system specification file for test generation. We name all observable actions for every train.

input appr_1(), appr_2(), appr_3(), appr_4(),
leave_1(), leave_2(), leave_3(),leave_4();

output go_1(), go_2(), go_3(), go_4(),
stop_1(), stop_2(), stop_3(), stop_4();

precision 1000000; // time in microseconds (1sec)
timeout 1200; // amount of precision units (1200x1sec=20min)

Even though the demo and our models differ slightly we wanted to keep them equivalent in
the sense that they satisfy the same properties. We verified the following properties:

A[] not(deadlock) // We verified if the model is deadlock-free

Train1.Appr --> Train1.Cross. // a train eventually crosses the
bridge if the train has approached.

A[] not((Train1.Cross and (Train2.Cross or Train3.Cross or Train4.Cross))
or (Train2.Cross and (Train3.Cross or Train4.Cross))
or (Train3.Cross and Train4.Cross)) // no collisions in the

critical section - the state Cross

We can consider the specification as partially defined with strong input enabling. There is a
stateReady1where inputleavewould not be accepted and then we need to add a transition for
channelleavegoing from and to the locationReady1. However we consider the specification as
completely defined with weekly input enabled states, because the environment behavior assures
that the same train can not send aleaveaction without sendingappr first.

5.2.4 Implementation of the Train-Gate

In this section we demonstrate the implementation of the train-gate system. This implementation
was used for debugging the algorithm.

77

On-the-fly Testing Using UPPAAL 5.2 Train Gate Controller

void TrainGate::perform(const char* action)
{

if (strncmp(action, "appr_" , 5) == 0) {
char stopmsg[] = "stop_x()" ;
stopmsg[5] = action[5];
if (train list.empty()) train list.push back(action[5]);
else {

driver−>report now(stopmsg);
train list.push back(action[5]);

} 10
} else if (strncmp(action, "leave_" , 6) == 0) {

assert(!train list.empty() && train list.front()==action[6]);
train list.pop front();
if (!train list.empty()){

char gomsg[] = "go_x()" ;
gomsg[3]=(char)train list.front();
driver−>report now(gomsg);

}
} else cout << "Train: unacceptable action, ignoring. ." << endl;

} 20

Figure 48: Train gate controllers implementation.

The implementation code for the member functionperformis displayed in Figure 48. Action
names are implemented in a string format, i.e.appr 1 = “appr 1”. When the implementation
gets an action then it looks for the last symbolx in the actions name. The symbol indicates a
train which sent the action. The implementation uses the symbol in combination with the action
for reply to the same train.

When a train sends an actionappr then a train list is checked. Thetrain list variable is of
a vector type variable therefore appropriate functions for a vector type variable are used. If the
train list is empty the action is pushed into the list otherwise a stop message is sent to the train
and only then theappr action is pushed into the list. Ifleave action is received then aappr
message with appropriate ending symbol is popped from the list. If the list is still not empty
then the train whose actionappr is the first in the list gets an actiongo .

Possible communication between the IUT and environment is displayed in the message se-
quence chart in Figure 49(a). Only observable actions are displayed in the chart and in this part
of a test run only 2 trains out of four communicate with the gate. The states that observable ac-
tions leads to are displayed in a bold-lined frame. Unobservable actions are displayed in a dotted
line. They change the state of the gate system as a result of internal communication between the
controller and the queue. Trains change the state during transitions without synchronization.

The Time column in the message sequence chart shows a time line of a global clock. Delays
are displayed on the left from the time line. Clock values at certain states are diplayed on the
left from the time line.

We can write a test sequence looking at the message sequence diagram and it isappr 2? ·
15 · appr 1? · 0 · stop 1! · 4 · leave 1? · 0 · go 2! , where 15 and 4 means delays between actions.

As we did in the mouse button example we make a test purpose automaton as proposed in
[14] and displayed in Figure 49(b). An IUT passes the test if it ends in the terminal statePass.
The implementation fails a test if it outputs a wrong output, i.e. the automaton deadlocks in the

78

On-the-fly Testing Using UPPAAL 5.2 Train Gate Controller

Fail state.

Safe

Safe

Appr

Safe

Safe

Cross

Cross

Appr

Safe

Safe

Stop

Safe

0

stop_1

Appr

Stop

Start

Safe

leave_2

19

0

0

15

15

0

15

4

19

0

go_1

appr_1

appr_2

Safe

Safe

Add

Remove

Stop

Occ

Add2

Free

Ready

Occ

Add2

Occ

Free

Ready2

Send

Train2Time Train4 GateTrain1 Train3

(a) Message sequence chart of the train-gate system
possible test run.

F
1

F
2

y<
=1

5
F

3
y<

=1
5

F
4

y<
=1

9
F

5
y<

=1
9

P
as

s

F
ai

l

ap
pr

_2
!

y=
=

15
ap

pr
_1

!
st

op
_1

?
y=

=
19

le
av

e_
2!

go
_1

?

st
op

_1
?

go
_1

?
go

_1
?

st
op

_2
?

st
op

_2
?

st
op

_3
?

st
op

_4
?

go
_1

?
go

_2
?

go
_3

?
go

_4
?

st
op

_1
?

st
op

_3
?

go
_2

?st
op

_4
?

go
_3

?
go

_4
?

go
_3

?
go

_4
?

st
op

_1
?

st
op

_2
?

st
op

_3
?

go
_2

?
go

_2
?

go
_3

?
go

_4
? st

op
_2

?
st

op
_3

?
st

op
_4

?
st

op
_4

?
y>

15
y>

19

(b) Test purpose automaton for se-
quenceappr 2? · 15 · appr 1? ·
stop 1! · 4 · leave 1? · go 2!.

Figure 49: Train-gate testing events and a test purpose extracted.

In train test automaton we have to think and model all faulty implementation outputs. It
becomes more complicated the more if an implementation has many different outputs. Non
acceptable delays should also be modeled in the test automaton as it is in the statesF3, F5.
From this test purpose we can also think of a test run which should produce a failure, ex.:
appr 2? stop 2 appr 1?. Such a test run reveals whether the algorithm reveals non-conforming
IUT.

5.2.5 Train-gate Experiment Results

As we mentioned before the train-gate system has a specific environment, i.e. one which has
clocks and is restricted to offer certain inputs only at specified moments in time. We expe-
rienced problems in test generation and execution when dealing with invariants and “greater
than” guards:

79

On-the-fly Testing Using UPPAAL 5.3 Performance Issues

minimum delay: when the environment is in a location where all outgoing transitions are re-
stricted by “greater than” guards T-UPPAAL must delay at least until one of the guards
is satisfied otherwise the set of possible inputs is empty. Therefore a test generation and
execution algorithm must compute aminimum delaybased on the environment model
before trying to offer any inputs. Unfortunately we did not foresee such situation and
T-UPPAAL throws away all the symbolic states which do not have observable input to
offer. A quick fix for this could be to postpone the input offer and choose another delay
action. The fix requires to backup the symbolic states set before putting it into destructive
AfterActionFilter.

maximum delay: when the environment is in a location with invariants specified, T-UPPAAL

must not delay longer than the invariants allow, otherwise we break a constraint for the
environment behavior and the state estimation engine will delete possibly the last legal
symbolic state. Therefore a test generation and execution algorithm must compute a
maximum delayallowed, which is the maximum of the minimums of differences of an
invariant constraint boundary and clock’s lower boundary, i.e. ifNE is the network of the
environment timed automata,Z is a set of symbolic states,[zi,j] is a matrix representing
zonez andInv(lk)i is an invariant constraint boundary for clocki on timed automatonk
locationlk, then:

δmax = max
{

min{Inv(lk)i − zi,0 | k ∈ NE ,∀i}
∣∣ 〈l̄, z〉 ∈ Z, l̄ = 〈lk〉

}
The minimum and maximum delay computation may seem complex and expensive but it should
be easy to integrate into aAfterDelayFilterredesigning it to maintain additional properties called
minDelayandmaxDelay. For example the following formula can be used to extract the maxi-
mum delay while computing a bounded future operator with additional clockt:

δmax = (((z ∧ I)t:=0)↑ ∧ I)t,0

which means that we intersect zonez with the invariant systemI on a given symbolic state
locations, reset the special clockt (which is already included in our earlier computations), apply
future operator, intersect with the invariant systemI and take thet, 0 constraint which is the
upper boundary for clockt. The calculations must be performed maintaining the canonical
form of the matrix. The later formula does not distinguish invariants on the environment from
invariants on the IUT, i.e. it will also consider when the IUT is supposed to produce the next
potential output, which does not interfere with the test generation and execution algorithm.

5.3 Performance Issues

We want to measure the UPPAAL code performance and for that purpose we use a program
execution profiling tool GNU profilergprof. We get a flat profile and a call graph of the pro-
gram which was run on a test specification file. A part of the flat profile files after running the
algorithm on the mouse system with one, two and four buttons are displayed in Tables 5, 6, 7.

The table has such a field:

• time- the percentage of the total execution time the program spent in this function. These
should all add up to 100.

• cumulative s- the cumulative total number of seconds the computer spent executing this
functions, plus the time spent in all the functions above this one in this table.

80

On-the-fly Testing Using UPPAAL 5.3 Performance Issues

Time Cummul Self Calls Self total name
sec. sec. ms/call ms/call

71.90 226.88 226.88 15e+04 1.52 1.52 PWListBase:: Enum::tryGet()
24.31 303.57 76.69 7e+04 1.03 1.03 PWListBase:: clear()
1.19 307.33 3.76 internalmcount
0.14 307.77 0.44 15e+04 0.00 0.00 SimClock::timedwait ()
0.10 308.07 0.30 ostream::operator¡¡ ()
0.09 308.36 0.29 7.4e+04 0.00 0.01 InternalTransitionFilter:: tryPut()
0.09 308.63 0.27 8.7e+04 0.00 0.01 ExternalSuccessorFilter:: tryPut()
0.09 308.90 0.27 1 270.00 3e+05 handleTestGeneration()
0.06 309.09 0.19 15e+05 0.00 2.05 AfterDelayFilter:: tryPut()
0.06 309.28 0.19 7e+04 0.00 0.00 ExternalTransitionFilter:: tryPut()

Table 5: Flat profile of testing execution for a one-button mouse

Time Cummul Self Calls Self total name
sec. sec. ms/call ms/call

69.80 161.96 161.96 3e+04 5.58 5.58 PWListBase::Enum:: tryGet()
22.08 213.19 51.23 4e+04 13.33 13.34 PWListBase:: clear()
1.70 217.13 3.94 internalmcount
0.37 217.99 0.86 3.8e+04 0.02 0.02 UnpackedRegion:: addClose()
0.27 218.62 0.63 3e+04 0.02 0.07 ExternalSuccessorFilter:: tryPut()
0.27 219.25 0.63 mcount
0.19 219.68 0.43 29e+04 0.00 0.00 UnpackedRegion:: isEmpty()
0.16 220.06 0.38 9e+04 0.00 0.00 UnpackedRegion:: unpackTo()
0.16 220.42 0.36 68e+04 0.00 0.00 Constant:: evaluate()
0.16 220.78 0.36 0.8e+04 0.05 0.05 SimClock::timedwait()
0.13 222.73 0.31 1 310.00 2.2e+05 handleTestGeneration(void)

Table 6: Flat profile of testing execution for a two-button mouse.

• self s- the number of seconds accounted for by this function alone. The flat profile listing
is sorted first by this number.

• calls - the total number of times the function was called.

• self ms/call- the average number of milliseconds spent in this function per call, if this
function is profiled. Otherwise, this field is blank for this function.

• total ms/call- the average number of milliseconds spent in this function and its descen-
dants per call. This field in also used in the call graph analysis (Figure 8).

• name- this is the name of the function. The flat profile is sorted by this field alphabetically
after the self seconds and calls fields are sorted.

As we can see in Table 5 most of the time takes functions for removing states from a store
with a PWLISTBASE::clear()function and enumeration nodes in a hash table. The handleTest-
Generation procedure takes a small amount of execution time but total ms/call is very big be-
cause a children functionAfterDelayFilter::tryPut() contains above mentioned functions. A

81

On-the-fly Testing Using UPPAAL 5.3 Performance Issues

Time Cummul Self Calls Self total name
sec. sec. ms/call ms/call

43.61 532.6 532.62 internalmcount
13.28 694.87 162.25 1.8e+09 0.00 0.00 PWListBase::clear()
6.95 899.21 84.83 1.8e+09 0.00 0.00 GlobalState::relation ()
6.75 981.64 82.43 1.4e+06 0.06 0.46 HashingPWList:: tryPut()
9.79 814.38 119.51 1.8e+09 0.00 0.00 UnpackedRegion::relation ()
6.95 899.21 84.83 1.8e+09 0.00 0.00 GlobalState::relation ()
3.94 1082.28 48.14 1.8e+09 0.00 0.00 IntegerTable::operator== ()
3.84 1129.15 46.87 1.8e+09 0.00 0.00 PWListBase::WaitingNode:: getNode()
3.51 1172.03 42.88 mcount
1.80 1193.99 21.96 1.8e+09 0.00 0.00 PWListBase::Node:: isWaiting()
0.00 1221.02 0.04 1 40.00 6.4e+05 handleTestGeneration(void)

Table 7: Flat profile of testing execution for a four-button mouse.

call-graph of the handleTestGeneration procedure is displayed in Table 8 and it shows perfor-
mance of every function and its children in terms of a time used and number of calls into a
certain function.

A similar flat-profile is obtained from test execution on a two-button mouse system in Table
6. Situation changes when we have a system with much bigger state grow as in the mouse
system with four buttons. The flat profile of this system is in Table 7. In such a system the most
time takes comparison of states (GlobalState::relation). We can say that hashing tables are more
useful when working with systems with many states. Hashing functions gives an obvious time
overhead when working with smaller systems.

Time Self Children Called Name
0.04 645.42 1/1 main [1]

54.8 0.04 645.42 1 handleTestGeneration(void) [3]
1.50 321.53 509/1017 BufferredFilter::tryPut(void *) [49]
0.99 213.51 338/1017 AfterDelayFilter::tryPut() [5]
0.50 107.39 170/1017 AfterActionFilter::tryPut() [82]
0.00 0.00 1/1 createAfterDelayFilter() [110]
0.00 0.00 1/1 createAfterActionFilter() [112]
0.00 0.00 553/723 Pointer¡Action¿::operator=(Action *) [109]
0.00 0.00 94/634 Pointer¡Action¿:: Pointer(void) [2583]
0.00 0.00 170/173 AfterActionFilter::setProperty() [118]
0.00 0.00 338/341 AfterDelayFilter::setProperty() [172]

Table 8: Call graph. Granularity: each sample hit covers 4 byte(s) for 0.01 sec.

A number in the brackets shows an index of a function. The columnCalled shows two
numbers: the first informs how many times a parent function called the child function and how
many times other functions called that child function.

BufferedFilter::tryPutandAfterDelayFilter::tryPut()functions takes most of the time com-
pare to other functions but it is a result of performance of their children function. Such a use of
time is unavoidable, but it may be optimized using optimization options of a compiler.

82

On-the-fly Testing Using UPPAAL 6 Epilogue

Another way for measuring performance of the program is how many time it takes to calcu-
late a set of states for different implementations with different set of states. In Table 9 we tried
to visualize dependency of a time consumed during an event and a set of states calculated.

IUT States Events User time Sec
mouse1 1 Input 0.01-0.02

Output 0.089-0.012
Delay 0.088-0.089

mouse2 1-8 Input 0.015-0.045
Output 0.024-0.042
Delay 0.085-0.091

mouse4 1-100 Input 0.01
Output 0.01
Delay 0.01

mouse4 100-1000 Input 0.01-0.05
Output 0.01-0.05
Delay 0.01-0.26

mouse4 1000-10000 Input 0.07-0.51
Output 0.07-0.53
Delay 0.12-12.6

mouse4 10000-103344 Input 0.59-2.44
Output 0.62-1.07
Delay 10.4-120

Table 9: Performance measuring states/sec.

As we can see from the Table 9 calculation of a state set after delays consumes most of the
time. Statistically the mouse click system which can be in bigger state set requires more time
for calculating a new state set than if it is in a fewer state set. Calculating a state set in a four
button mouse the user time deviates from 0 to 120 seconds or more because an expected state
set changes from 1 to 103344 or more as a result of an exponential grow of states showed in
Figure 40(b). However the performance measures do not scale as we expected, in contrary the
symbolic state set size cannot be used in foreseeing how much time it will take to compute a new
symbolic state set. We think that this is because of uncertainty in time zones, i.e. the symbolic
state set with the same location vectors but different time zones takes more computation time
than the symbolic state set of the same size but with different location vectors, because of hash
table lookups are based on location vectors and are useless when we lookup for symbolic states
where most of them have the same location vector.

6 Epilogue

Our aim of one year project was to introduce and implement an on-the-fly test generation and
execution module for UPPAAL tool. We needed to get familiar with basic issues related with
testing subject. We got acquainted with testing theory for non-timed systems and explained how
and what requires that conformance testing could be applied in testing real time systems.

We continued with testing concepts for real time systems. The notion of timed automata
and its semantics were introduced as well as test specification concepts for a UPPAAL automata

83

On-the-fly Testing Using UPPAAL 6.1 Conclusions

network. We formulatedon-the-flytest generation and execution algorithm and proposed ideas
for designing and implementing the algorithm in theUPPAAL tool.

Algorithm implementation details were visualized and explained through class diagrams and
algorithm behavior through message sequence charts. We made several sessions of experiments
with different implementations. Experiment models were used for testing the algorithm and for
gathering the algorithm performance data. We measured performance of the program using the
profiling toolgprof and explained the results.

We conclude this project accomplishments in Section 6.1. During the project work we found
a number of new ideas which were not implemented due to project time constraints and they are
summarized in Section 6.2.

6.1 Conclusions

The testing theory based on timed automata is not developed yet. The correctness criteria for
testing may vary widely depending on what is the actual aim of the testing. The phrase “to
ensure that the implementation behaves according the specification” can be interpreted in many
ways and we chose just one of them: the implementation is forbidden to do the unspecified
actions and everything that is allowed must be allowed by the specification.

Further investigations revealed the possibilities for detailed testing based on the specific
environment for the implementation which intrigues even more to investigate the possibilities
of testing based on timed automata theory. The application of timed automata theory in testing
is not expected to help in thorough testing with 100% error free guarantee, but rather automate
the on-the-fly testing based on the documents prepared in product design phases, which releases
many human hours, saves the testing memory and paper space and still smart and faithful in
revealing the implementation errors.

Implementation of the test algorithm required a thorough analysis of the existing UPPAAL

source code. We tested T-UPPAAL with three sample implementations under test: 1) single but-
ton for basic functionality, 2) multi-button mouse for many states and 3) train-gate for composite
networks with complex environment. The testing and performance measuring of T-UPPAAL re-
vealed the following issues:

Time synchronization between the IUT and the environment. The clocks are strictly internal
parts of the IUT and the environment, which makes it difficult to ensure that their values
match. This problem is common in distributed systems and in our case the solution de-
pends on how state estimation algorithms are quick: the state estimation is quick enough
if it computes symbolic states in half of the precision time, which assures that the test
algorithm is capable of reacting as soon as possible without the implementation noticing
a delay. As we see further, the performance depends on some system model properties.

Environment constraints are not properly handled in the test algorithm. The problem was
noticed very late in the project, therefore we could not implement a fix, but the solution
is described as computing the minimum and the maximum delay.

Exponential growth of symbolic states in non deterministic system models. The problem has a
combinatorial nature and is common in systems making the non deterministic choices, but
in addition we experienced the uncertainty in clock values which is successfully handled
in model verification. The problem is that our test algorithm is interested in concrete clock
values at concrete point in time and the model verification can handle many clock values
by putting them into abstract time zone whose interpretation is not clear for a concrete

84

On-the-fly Testing Using UPPAAL 6.2 Future Work

point in time. The later means that not entire potential of symbolic state estimation is
used in our algorithm and some radical changes may be needed, such as changing the
semantics of symbolic state set.

Performance of the test algorithm is as good as the UPPAAL algorithms perform. When the
symbolic state set is small (up to the order of ten) the hash table operations become the
main expense of computation. In contrary when the symbolic state set is large, the main
expense is the symbolic state comparison computation in passed and waiting lists. The
symbolic state estimation algorithms themselves are not that expensive as the temporary
storage. A simple solution could be to provide different versions of T-UPPAAL : one
optimized for small symbolic state sets and another for large and growing symbolic state
sets.

From the project steering point of view we learned that it is difficult to plan project activities
ahead when unexpected issues pop up during testing, which suggests that the field of the project
is still uncertain and under research.

The overall look of the T-UPPAAL is not fixed yet too, still many optional features must be
reviewed, evaluated and prioritized since there are still many directions to go further. In the next
section we outline the next steps for the future work.

6.2 Future Work

We have implemented the first test generation and execution algorithm prototype. Therefore the
natural next steps would be:

1. Fix the environment constraint issues found.

2. Optimize the passed and waiting list usage.

3. Solve the symbolic state explosion problem or prove that it cannot be solved in a frame-
work of testing.

4. Minimize the computation delays which are not included into symbolic state estimation.
This might require to change test generation and execution algorithm strategy, e.g. to
generate one delay and one input action ahead of execution.

5. Provide an automatic way of obtaining the test purpose of test run in a form of timed
automata. This feature may be useful for T-UPPAAL test run repetition when assisting in
a system debugging.

6. Provide an automatic calculation of an executed test coverage which shows how good
executed tests are.

7. Develop a graphical user interface to T-UPPAAL .

Further branches of the project may procede with the development of universal interface
to implementation under test involving shared library loading, operating system sockets etc.,
development of the test event visualization followed by the list of desired features mentioned in
Section 4.1.

There is also a room for proving the correctness of the test generation and execution algo-
rithm. So far we described three similar versions of this algorithm (Section 1.7, Section 3.1 and
Section 3.2) which increase the confidence and might provide a way of proving the correctness.

85

REFERENCES

The success of this project would open a great oportunity to work on concrete test strategies
involving the test primitive selection and optimization of test generation coverage of the test
specification. Yet another use of T-UPPAAL would be easy modelling of the real-time tests
(especially non-deterministic ones) while just specifying different models of the environment.

References

[1] Brian Nielsen. Specification and Test of Real-Time Systems. Ph.D. Thesis defended 10th

November 2000. ISSN 1399-8145.

[2] Jan Tretmans. Testing Techniques. Lecture notes. Formal methods & Tools Group, Faculty
of Computer science, University of Twente, The Netherlands, 2001.

[3] Joost-Pieter Katoen. Concepts, algorithms and tools for Model Checking. Lecture notes of
the course “Mechanised validation of paralel systems”. Course number 10359 1998/1999.

[4] Martha Gray, Alan Goldfine, Lynne Rosenthal, Lisa Carnahan. Conformance Testing. Na-
tional Institute of Standards and Technology. Information Technology Laboratory. USA
http://www.oasis-open.org/cover/conform20000112.html

[5] Jan Tretmans. Specification Based Testing with Formal Methods: From Theory via Tools
to Applications. Formal Methods and Tools group. University of Twente Enschede. The
Netherlands. http://www.cs.auc.dk/˜bnielsen/tomas/material/tretmans250401.pdf

[6] Rene de Vries, Jan Tretmans. On-the-Fly Conformance Testing Using Spin. University of
Twente. Formal Methods and Tools group, Department of Computer Science. P.O. Box
217, 7500 AE Enschede, The Netherlands

[7] Franck Cassez et al. Modeling and verification of parallel processes: 4th summer school,
MOVEP 2000 Nantes, France, June 19 - 23, 2000: revised tutorial lectures. LNCS 2067.
Berlin : Springer, 2001. UPPAAL website: http://www.docs.uu.se/docs/rtmv/uppaal/

[8] Paul Pettersson. Modelling and Verification of Real-Time Systems Using Timed Automata:
Theory and Practice. A dissertation in Computer Systems for the degree of Doctor of Phi-
losophy. Publicly examined in room X, Uppsala University, 19 February 1999. Technical
Report DoCS 99/101. ISSN 0283-0574.

[9] David L. Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems.
In International Workshop on Auto-matic Verification Methods for Finite State Systems,
Grenoble, France, June 1989. LNCS 407.

[10] Stavros Tripakis. Fault Diagnosis for Timed Automata. In FTRTFT, 2002

[11] R. de Vries, J. Tretmans, A. Belinfante, J. Feenstra, L. Feijs, S. Mauw, N. Goga, L.
Heerink, and A. de Heer. Ĉote de Resyste in PROGRESS. In STW Technology Foundation,
editor, PROGRESS 2000 - Workshop on Embedded Systems, pages 141-148, Utrecht, The
Netherlands, October 13 2000.

[12] H.Brinksma, K.G. Larsen, G.J.Tretmans, M.J.Plastmeijer, B.Nielsen. Systematic Testing
of Realtime Embedded Software Systems - STRESS. Proposal for the research project
2001-2005.

86

http://www.oasis-open.org/cover/conform20000112.html
http://www.cs.auc.dk/~bnielsen/tomas/material/tretmans250401.pdf
http://www.docs.uu.se/docs/rtmv/uppaal/

On-the-fly Testing Using UPPAAL A Source Code

[13] Wang Yi, Paul Pettersson and Mats Daniels. Automatic Verification of Real-Time Com-
municating Systems by Constraint Solving. In Proceedings of the 7th International Con-
ference on Formal Description Techniques, pages 223-238, North-Holland. 1994.

[14] Anders Hessel, Kim G.Larsen, Brian Nielsen, Paul Pettersson, Arne Skou. Time-optimal
Real-Time Test Case Generation using UPPAAL . Submitted to International Conference
on Software Engineering and Formal Methods, Australia, 2003.

A Source Code

[Confidential].

87

	Introduction
	Types of Testing
	Testing Strategies
	On-the-fly Testing for Real Time Systems
	Transition Systems
	Input Output Transition System
	Conformance Testing
	Test Purpose and Characteristics
	Test Execution
	Input Output Conformance Relation

	TorX
	Contributions
	Structure of the Report

	Test Specification
	Timed Automata
	Timed Labeled Transition System
	Definition and Semantics

	Symbolic Techniques
	Implementation Relation for Real Time Systems
	Physical System Setup
	Real Time Testing Framework
	Input Enableness and Specification Completeness
	UppAal
	UppAal Network Specification
	Test Specification Grammar

	Algorithms
	Test Execution on Reachable States
	Closure Algorithms
	Test Primitive Algorithms

	Test Execution on Reachable Symbolic States

	Implementation
	Assumptions, Requirements and Desired Features
	UppAal Design
	System Model Representation
	Symbolic System State Representation
	Time Zone Representation
	Pipeline Architecture

	Specific Testing Extensions
	After Action Filter
	After Delay Filter
	Buffered Filter
	Driver Implementation
	Test Generation and Execution Algorithm

	Implementation Status

	Experiments
	Single Mouse Button
	Model of the Implementation for the Mouse-button system
	Models of the Environment for the Mouse button
	Sample Test Specification of the Mouse-button
	Implementation of the mouse button
	Multi-Button Mouse
	Experiment Results of Mouse-click systems

	Train Gate Controller
	Model of the IUT in the Train-gate system
	Models of the Environment in the Train-gate System
	Test Specification of the Train-Gate
	Implementation of the Train-Gate
	Train-gate Experiment Results

	Performance Issues

	Epilogue
	Conclusions
	Future Work

	Source Code

