Hua Lu's Selected Categorized Publications within Five Years [DBLP, Google Scholar]


AI4DB
  1. P. Li, Y. Zhang, W. Wei, R. Zhu, B. Ding, J. Zhou, S. Hu, H. Lu: GRELA: Exploiting Graph Representation Learning in Effective Approximate Query Processing. VLDB J. 34(3):35, 2025. (Data and code)
  2. P. Li, W. Wei, R. Zhu, B. Ding, J. Zhou, H. Lu: ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on Dynamic Workloads. VLDB 2024. (Data and code)
  3. P. Li, H. Lu, R. Zhu, B. Ding, L. Yang, G. Pan: DILI: A Distribution-Driven Learned Index. VLDB 2023. (Data and code)
  4. M. Liu, X. Wang, J. Xu, H. Lu: NALSpatial: An Effective Natural Language Transformation Framework for Queries over Spatial Data. ACM SIGSPATIAL/GIS 2023.
  5. X. Wang, M. Liu, J. Xu, H. Lu: NALMO: Transforming Queries in Natural Language for Moving Objects Databases. GeoInformatica 27(3):427-460, 2023.
  6. X. Wang, J. Xu, H. Lu: NALMO: A Natural Language Interface for Moving Objects Databases. SSTD 2021.
  7. P. Li, H. Lu, Q. Zheng, L. Yang, G. Pan: LISA: A Learned Index Structure for Spatial Data. ACM SIGMOD 2020. (Data and code)
IoT and Sensor Data
  1. X. Li, H. Li, H. Lu, C. S. Jensen, V. Pandey, V. Markl: Missing Value Imputation for Multi-attribute Sensor Data Streams via Message propagation. VLDB 2024. (Data and code)
  2. X. Li, H. Li, H. K.-H. Chan, H. Lu, C. S. Jensen: Data Imputation for Sparse Radio Maps in Indoor Positioning. ICDE 2023. (Data and code)
  3. H. Li, H. Lu, C. S. Jensen, B. Tang, M. A. Cheema: Spatial Data Quality in Internet of Things: Management, Exploitation, and Prospects. ACM Computing Surveys 55(3):57:1-57:41, 2023. (DOI)
  4. H. Li, L. Yi, B. Tang, H. Lu, C. S. Jensen: Efficient and Error-bounded Spatiotemporal Quantile Monitoring in Edge Computing Environments. VLDB 2022. (Data and code)
Spatial Data and Location Based Services Applied Machine Learning for Other Data Types
  1. Y. Yang, D. Zhang, Y. Liang, H. Lu, G. Chen, H. Li: Not All Data are Good Labels: On the Self-supervised Labeling for Time Series Forecasting. NeurIPS 2025. (Data and code)
  2. Z. Lai, D. Zhang, H. Li, C. S. Jensen, H. Lu, Y. Zhao: LightCTS*: Lightweight Correlated Time Series Forecasting Enhanced with Model Distillation. TKDE (accepted in June 2024).
  3. Z. Lai, D. Zhang, H. Li, D. Zhang, H. Lu, C. S. Jensen: ReCTSi: Resource-efficient Correlated Time Series Imputation via Decoupled Pattern Learning and Completeness-aware Attentions. KDD 2024
  4. Z. Lai, D. Zhang, H. Li, C. S. Jensen, H. Lu, Y. Zhao: LightCTS: A Lightweight Framework for Correlated Time Series Forecasting. SIGMOD 2023.
  5. F. Yu, L. Cui, H. Chen, Y. Cao, N. Liu, W. Huang, Y. Xu, H. Lu: HealthNet: A Health Progression Network via Heterogeneous Medical Information Fusion. IEEE TNNLS 34(10):6940-6954, 2023.

Last updated: Dec. 2025