Model-Based Testing
--- Principles, Methods, and Tools

(based on the slides of Brian Nielsen and Jan Tretmans)

Agenda

- Qverview

* Finite State Machine (FSM)-based testing

* Labelled Transition System (LTS)-based testing

* Model-Based Real-time System Testing --- The Uppaal
Approach

» Tools for Model-Based Testing

* Summary

2/124

The Nature of Testing

Testing: the activity of - fmdeniionsr
checking or measuring some qualsiwag%racmmsncs
of an executing object (i.e. IUT) -~ not just by reasoning
by performing experiments
in a controlled way

w.r.t. a specification

to decide whether it
passes or fails

IUT: the Implementation Under Test
3/124

Towards Model-Based Testing

Increase in complexity, and quest for higher quality
software

- testing effort grows exponentially with complexity

- testing cannot keep pace with development

Ever-changing requirements
- model-based development

Checking software quality
- practice: testing - ad hoc, too late, expensive, lot of time

- research: formal verification - proofs, model checking, ...
, with disappointing practical impact

4/124

Towards Model-Based Testing
(cont'd)

* Model-based testing has potential to combine
- practice - festing
- theory - formal methods

* Model-Based Testing:

- generating tests from a (formal) model / specification

- state model, pre/post, CSP, Promela, UML, Spec#,
- testing with respect to a (formal) model / specification
- pr'omlses better, faster, cheaper testing:

- algorithmic generation of tests and test oracles, with tool
support

+ formal and unambiguous basis for testing
* measuring the completeness of tests
* maintenance of tests through model modification

5/124

A Model-Based Development Process

informal

——__-~
—

& requirements T ~< informal world
D.....'........ O 00000000000 OCO 00\.N&.\............................
\ S o world of models
~ ~ ~
validation ~ TS
Ry specification formalizable
- \
I \
\ .
\
N
formal " \\ o del
verification \ ! model-
S o « 1 ! based

\”' :'Tes‘ring

J]
D) O © 00000000000 0000000000000 0000000000000 9090 9 090 00"I.............
I, physical world

realization

6/124

Formal Verification

Yes

No

property
specification

sat

satt y
Riiededidss N : ... Weare verifying the properties of the models
real world 3 : rather than of the fmplemenfaﬁon!

[]
S []
P []
.
. .
K []
.
.
\J
.
.
*
’0
LA /

771124

Types of Testing

Level of detail

system
integration | | |
—"""_”_———"_—_—‘—/ The T°P|C5 ThIS l@CTUr‘e covers...
module—¢ Ay
unit
Accessibility
black box

portability

maintainability

efficiency £

usability £~
reliability £~

functionality /2

white box

still more dimensions ...

Characteristics
8 /124

A Taxonomy of Model-Based Testing

[Mark Utting 2006]

Subject

3 Environment
SUT

Redundancy

Model

$ Shared test&dev model
Separate test model

Deterministic / Non-Det.

e

Characteristics

Timed ! Lintimed

~—— Discrete / Hybrid / Continuous

— .Pre=Post
/ -—— Transition—Based

FParadigm

gf'f:__-——'— History-Based

~~—— Functional

~—— Operational

—— Structural Model Coverage

Test
Generation

Test Selection
Criteria

_—— Data Coverage

———— Requirements Coverage
" Test Case Specifications
~— Randomé&Stochastic

“— Fauit-Based

—— Manual
{f — Random generation

Technology

— Graph search algorithms

— Model-checkin

Test
Execution

—— Symbolic execution
—— Theoram proving

On/Offline

Online ! Offline

9/124

Automated Model-Based Testing

IUT confto model

TIUT passes tests : g
: TUT
- conforms-to
- model?

formal world

physical world _
Input

TUT

output

pass/fail

10/ 124

Finite State Machine
(FSM)-Based Testing

cof-bufl/ cof [/ tea

FSM example (Mealy machine)

cof-bu

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}

States: {q4,9,,03}

Initial state = q4

Transitions= {

(g4, coin, -, qy),

(g,, coin, -, gs),
(g5, cof-but, cof, q,),

(a3, tea-but, tea, q4)
}

condition effect
current | . next
state input output state
/ tea q1 Coin _ q2
q coin - q3
ds cof-but | cof d1
qds tea-but tea q;
Sample run:
coin/ - coin/- cof-but / cof coin/ -

oF

Qs

Qs

Q4

- cof-but / cof
QijmmL“'Q3 g4

12/124

A Formal Definition

The Mealy Machine is 5-tuple

M= (5T0,35,1)

S finite set of states

T finite set of inputs

O finite set of outputs

5: SxI » S transfer function

L SxI 5 O output function

Natural extension to sequences : 0: SxI* »> S

A: SxI* » O*

13/124

Basic Concepts

+ Two states s and t of FSM are (language)
equivalent iff

- s and 1 accept same language

- have same traces: tr(s) = tr(t)

+ Two Machines MO and M1 are equivalent iff
the two initial states of them are equivalent

« A minimized (or reduced) M is one that has no
equivalent states

- for no two states s,t, sl=t, s equivalent t

14 /124

Fundamental Results

+ Every FSM may be determinized accepting
the same language.

* For each FSM there exists a language-
equivalent minimal deterministic FSM.

- FSM's are closed under m and u

* FSM's may be described as regular
expressions (and vice versa)

15/124

Conformance Testing

test

Spec. ‘ sequence SUT

FSM M, | Tester FSM M,

Given: a specification FSM M,
a (black-box) implementation FSM M;

Task: To determine whether M; conforms fo M
i.e., M; behaves in accordance with M

i.e., whether outputs of M; are the same as of M.
i.e., whether the reduced M; is equivalent to M,

Today we assume:
Deterministic Specifications

SUT is an (unknown) deterministic FSM (the testing hypothesis)
16/ 124

Some Restrictions

FSM restrictions: M= (51104 21)

- deterministic

5: SxI > S and L:SxI — O are functions
(rather than ordinary "relations")

- completely specified
5: SXxI - S and L:SxI — O are complete functions
(empty output is allowed; sometimes implicit completeness)
- strongly connected

from any state any other state can be reached

- reduced

there are no equivalent states

17 /124

Type of Faults
@

/ vodka

cof-b tea-but / tea cof-bu

correct model

"transition fault)
to other state”
to hew state

18 /124

Desired Properties

» Nice, but rare / problematic

- "status” message: Assume that tester can enquire
implementation for its current state (reliablyl!)
without changing state

- reset: reliably bring TUT to the initial state
- set_state(): reliably bring IUT to a specified state

status?

cu rrgntState=S1 O!

IUT

reset? R Grey-box
FSM M,

set_state(S10)?

19/124

FSM Testing

-+ Test with paths of the (specification) FSM

- A path is a sequence of inputs with expected outputs

- (cf. path testing as white-box technique)

Infinitely many paths : how to select ?

. i e To find a path or a set of paths to cover
Different strategies : all the states in the FSM

- test every state : state coverage (of specification!)

- test every transition : fransition coverage 1o find apath or a set of paths to
cover all the transitions in the FSM
test output of every transition

test output + resulting state of every transition

20/124

A Coffee Machine FSM (Mealy)
J coin? / -

coffee? / - coffee? / -

21/124

State Coverage

* Make State Tour that covers every state (in spec)

coffee? / -

2 I coinl
coffee? / coffee! oken? / coin!

token? / tokert

Test sequence : coin? token? coffee?

22 /124

Transition Coverage

* Make Transition Tour that covers every transition (in spec)

coffee? / -

coffee? / coffee!

Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?

23 /124

FSM Transition Tour

Make Transition Tour that covers every transition (in spec)

coffee? / -

coffee? / coffee!

Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?

Y Y A A N M AN A

+ check expected output and target state by “status” message
24/ 124

FSM Transition Testing

* Make test case for every transition in SPEC
separately:

a?/x!

Test transition "S1 --a?/xl--> S2"

1. Go to state Si

2. Apply input a?

3. Check output x!

4. Verify state S2 (optionally)
Test purpose: "Test whether the system, when in state S1,
produces output x! oninput a? and goes to state S2"

25/124

Transition Testing - 1

*To test token? / coin! :
== q0 to State 5 : set state(5)
give input token? check output coin!
verify state: status? currentState=10

coin? / -

coffee? / - coffee? / -

coffee? / coffee!

o

token? / token? coin? / coin!

Testcase: set state(5)/* - token?/coin! - status? /10!

26/124

Transition Testing - 1

+ "go to state SB5" depends on the "set_state()’

method

* What if no "set_state()" method available?

- use the "reset"” method if available

+ go from SO to S5 (always possible because of
determinism and completeness)

- or, use synchronizing sequence to bring machine to
a particular known state, say SO, from any state
- (but synchronizing sequence may not exist *°)

A synchronizing sequence of state s brings the FSM
from any state to state s.

)

271124

Transition Testing - 1

coffee? / coffee

token? / token! coin? / coin!

To test token?/coin!: goto state 5 by : token? coffee? coin?

28 /124

Transition Testing - 2

*To test :
1.go to state 5 by : "token? coffee? coin?”

2. give input

3. check output
==l 4. verify that machine is in state 10 by: "status? currentState=10!"

coffee? / - coffee? / -

coffee? / coffee!

token? / token! coin? / coin!

29 /124

Transition Testing - 2

“status” message: Assume that tester can ask implementation
for its current state (reliably!l)

coffee? / - coffee? / -

status? / “S0”!

2 | coin!
coffee? / coffee! token? / coin!

status? / “S10” Q@'
token? / token!

coin? / coin!

30/124

Transition Testing - 2

* No "status” message??
- State identification: What state am I in?
- State verification: Am I in state s?

- Apply sequence of inputs in the current state of the FSM
such that from the outputs we can
identify that state where we started (state identification), or

verify that we were in a particular start state (state verification)

- Different kinds of sequences
UIO sequences (Unique Input Output sequence)
Distinguishing sequence (DS)
W-set (characterizing set of sequences)
UIOv
SUIO
MUIO
Overlapping UIO

31/124

Transition Testing - 2

UIO: each state has its own input sequence that produces
State check: different outputs when applied in other states.

+ UIO sequences (verification)

- sequence x, that distinguishes state s from all other states:
forall t=s: As, x) = Mt x,)

- each state has its own UTLO sequence

- UIO sequences may not exist
DS: special UIO such that it is a

- Distinguishing Sequence (identification) UIO for all states!

- sequence x that produces different output for every state :
for all pairs f, s with f=s: LA(s, x) = A(t, x)

- adistinguishing sequence may not exist
+ W - set of sequences (idenftification)

- set of sequences W which can distinguish any pair of states :
for all pairs f= s thereis xe W: A(s, x) = L (F x)

- W - set always exists for reduced FSM

32/124

Transition Testing- 2: VIO

UIO: each state has its own input sequence that produces
different outputs when applied in other states.

coffee? / - coffee? / -

2 1 coinl
coffee? / coffee! oken? / coin!

token? / tokeri

UIO sequences

state O : coin? / - coffee? / -
state 5: token? / coin!
state 10 : coffee? / coffee!

33/124

Transition Testing- 2: DS

DS: special UIO such that it is a UTO for all states!l16

coffee? / -

2 1 coinl
coffee? / coffee! oken? / coin!

token? / tokeri

output state 5: coin!
output state 10 : token!

34 /124

Transrhon Testing - 2: done

*To test
go to state 5 : token? coffee? coin?
give input check output
apply UIO of state 10 : coffee? / coffee!

coin? / -

coffee? / -

coffee? / coffee!
..

token? / token? coin? / coin!

Testcase: token?/* coffee?/* coin?/- coffee? / coffee!

35/124

Transition Testing - done

2 coinl
coffee? / coffee! oken? / coin!

token? / tokert

- 9 transitions / test cases for coffee machine

- if end-state of one test case corresponds with start-state of next test
case then concatenate

- different ways to optimize and remove overlapping / redundant parts
- there are (academic) tools to support this

\S A

124

FSM Transition testing: further results

Test transition "S1 --a?/xl--> S2".
1. 6o tostate Sl
2. Apply input a?
3. Check output x!
4. Verify state S2
Checks every output fault and transfer fault (to existing state)

If we assume that
the number of states of the implementation machine M;
/s less than or egual to
the number of states of the specification machine Mg
then testing all transitions in this way
leads to equivalence of reduced machines,
i.e., complete conformance

If not: exponential growth in test length in number of extra states
in M:.

1 I24

Labelled Transition System
(LTS)-Based Tetsing

Labelled Transition Systems

+ Labelled Transition System (LTS)

- Transition system labelled with (input, output, or internal)
actions

- A very basic model for describing system behavior

- Different from FSM
- FSM is required to be “deterministic” and “"complete”
- FSM has always alternation between inputs and outputs

TT--..__ though sometimes

- LTS is more fundamental, more naive and simpler they may be "-"

- LTS better supports the descriptions of non-determinancy,
concurrency and composition

- LTS serves as underlying semantics model for many other
formalisms (including timed models)

39/124

An example LTS

Labelled Transition System (S, L, T,

states / \
e S

actions transitions
TcSx (LU} xS

lcoffee

=
IDLE
?coin lalarm ?button

CHECK_COIN °?button

40 /124

Input-Output LTS (IOLTS)

Special kind of LTS:
Input-Output Labelled Transition System - TOLTS

- distinction between outputs (!) and always-enabled inputs (?)
- implementations modelled as TOLTS

IOLTS with variables - equation solver for y? =x :

? X (x <0)

41 /124

Conformance Relation

Assume that the Implementation Under Test
(IUT) is a black box

- The internal state and internal actions of IUT are

unobservable
- We can observe the external actions of IUT from
its interface

Whether the behavior of TUT conforms to
those specified by the specification model?

input/output conformance (“ioco”

- for the IUT:

- do what are required to do, and
* never do what are forbidden to do

42 /124

i conforms-to s ?? (a)

Implementation Under Test

Specification
S
coin?
\ 4
coffeel
ioco v
&
&

[Jan Tretmans]

43 /124

i conforms-to s ?? (b)

Implementation Under Test Specification

ioco

s,

[Jan Tretmaﬁi]/ 124

i conforms-to s ?? (c)

Implementation Under Test Specification

S
token?
coin?AZen?
coin?

coin?
token?
coffeel coffeel teal
i¢o

coin?
token?

[Jan Tretmans].
45/124

i conforms-to s ?? (d)

Implementation Under Test Specification

/ | | s
coin? coin?

coin?

coin? v

coin?

coffeel coffeel

) 4
O i¢o
coin?

[Jan Tretmans].

46 /124

Tretman's ioco-coformance

The conformance relation widely used for black-box
LTS-based testing of (untimed) reactive systems

iiocos =, Vo € Straces (s): out (i after 6) C out (s after G)

Straces (s) = {oce(Lu{o}) | Sé}

p after {(p| p==p}

D o > p iff Vol e LU U{T} D z : L, is the subset of output

actions of L
out(P) = {olely|p ——zpeP}
U{8|p—2>p, peP}

[Jan Tretmans]. 47/ 124

ioco: intuitively

Intuition:

| ioco-conforms to s, iff

- if i produces output x after trace o,
then s can produce x after o

- if i cannot produce any output after trace o,
then s cannot produce any output after o (guiescence)

48 /124

ioco-conformance (a)

iiocos =y: Vo e Straces(s): out(i after o) < out (s after o)

S
token?
coin?
N
tedl coffeel
C O ’
out (7 after coin?) = { coffeel} out (s after coin?) = { coffeel }
out (i after token?) = { teal} out (s after token?) = @

But token? ¢ Straces(s)

10co [Jan Tretmanﬂ./ 124

ioco-conformance (b)

iiocos =, Vo e Straces(s): out(i after o) < out (s after o)

S
out (7 after coin?) = { coffeel} out (s after coin?) = { coffeel }
out (/after token?) = { teal } out (s after token?) = { teal }
10CO J

[Jan Tretmans].
50/124

ioco-conformance (c)

iiocos =y: Vo e Straces(s): out(i after o) < out(s after o)

token?
coin?
coin?
token?
coffeel
coin?
token?

out (7 after token?) = {0}

igfo

coin? token?

coffeel teal

out (s after token?) = {teal}

[Jan Tretmans].
51/124

ioco-conformance (d)

iiocos =y: Vo e Straces(s): out(i after o) < out (s after o)

/ s
coin? coin?
coin?
coin?) 4
coin?
coffeel coffeel
O s
coin?
out (fafter coin?) = {9, coffee!} out (s after coin?) = { coffeel}

I¢O [Jan Tretmans].

52 /124

Test Generation Algorithm

Objective: To generate a test case 1(S) from a transition system specification.
// Here S is a set of states (initially S = {sy})

Algorithm:
Apply the following steps recursively, non-deterministically

® PASS

_ L rasE

I supply ?2a t(S after Ix)

(safter?) R E

—+
o
-3
o
Q
Q.
o
S
(o]
c
—+
©
c
—+
n

53/124

Test Generation Example

Equation solver for y2=x

specification test

g)’?X(X< 0) 19
¢ otherwise 't ?-3
e N
[
I Vx =x 1 4

FAIL pass

) 4
o

otherw‘isy ? -2

?2

To cope with non-deterministic behaviour, FAIL P.ASS PASS
tests are not linear traces, but trees

54 /124

Test Execution Examples

(coupling)
implementation ‘ ‘ test

®
19

otherwise ?-3
?3
o

FAIL pags |!'4

othemﬂz
I*:? 2

FAIL SS PASS

55/124

Validity of Test Generation

For every test t generated with the algorithm:

Soundness :
- T will never fail with correct implementation
i ioco s implies i passes t

or: ifailst implies inot(ioco) s

Exhaustiveness :
- each incorrect implementation can be detected

with a ﬁener‘a’red test t

56 /124

LTS Testing: The TorX Tool

* On-the-fly test generation and test execution
+ Implementation relation: ioco

+ Specification languages: LOTOS and Promela

user:
‘(manual or automatic mode)
next

it offer
inpu i
P o) input
specification .
check observe
output output
test verdict:
pass
fail
inconclusive

571124

TorX Tool Architecture

Concentrate on on-the-fly testing
On-the-fly

driver

|
|
|
i \ responsible for sending inputs to
j | ‘ and receiving outputs from the IUT
i \
|
|
|
|

\ on request of the driver

to control the progress of the ftesting process

/ to implement the test derivation algorithm (to generate inputs for
/ the implementation and to check outputs from the implementation)

to explore the transition-graph of the specification and to provide,
for a given state, the set of transitions that are enabled in this state 58/ 124

On-The-Fly Testing

Menu
I x (x<0) Choice Abstract actionConcrete action
I x (x >=0) 19 19 | 00001001

primer driver adapter

implementation

?x(x<0)

?x(x>=0)

? X

59/124

TorX Screenshot

_}{'Turx 1.2.0: Config: conf_jan.prom _ O] %] |
Eile »{ Message Sequence Chart: conf.jan.prom
(Re)start | | || wode: Aulo, AutoTrace, Depth: [LET5] | | [udp2 | [udp0 | ofl |[3
{uiescense)
Path

f 1 Py JorH ! 103 1 51 1f2 1 1
14 outputi): (Guiescense) o= =

13 inputiudpz): from_lower | PDU_JOIN 110315212 11 -
16 outputiudn2): to_lower | PDU_ANSWER 1 1021521112 LGulescense))
17 outputi): (uiescense)

yom lower ! BDUV LEAVE ! 103 ! 52 1 0! 1

I From uppexr ! JpIN ! 102 1 52

Current state ofers: from lpwer | POU DATA | 211 32 121 1

Inputs: out
to_luo I PO JOIN|! 102 ! K2 ! 12

from_upper | LEAVE | var_byte | var_byte Delta = H "1
from_upper | DREGH | var_byte | var_byte to lower ! pL" JOIK ! 1020 52111 0
from_lower | PDU_JOIN | var_byte | var_byte | var_byt g
fram_lower | PDU_DATA | var_byte | var_byte | var_byt from lower ! POV DATA ! 21(! 34! O ! 1
from_lower | PDU_LEAWE | var_byte | var_hyte | var_h

| tu_lurarer!l!w;rnlll]!:l.ﬂzlﬁzl..l.!z
M] = i

| Randam Input | R | to_lower ! PLI! JOIN ! 102 8 521 11 0 N
| (ml.i.escense)'

Verdict:

(uiescense)
IUT Stderr: Debug: of_rt.c: Joining sender is not a pariner! from_logwer | POU ;me 1 1031 521|211

IUT Stderr: Debug: of_rt.c: Create a st answer unit!

IUT Stderr: Debug: cf_r.c: Send the st answer unit! to_lower | POV 1 102 | K2 Ll 12
IUT Stderr: Debuy: cf_st.c: Entering the st answer case!

IUT Stderr: Debug: cf_st.c: answer: Add ‘Hst’ user to parherl

from upper ! JEEqQ ! 21 1 31

(uiescense)
IUT Stderr: Debug: cf_st.c: answer: Insert partner!
IUT Stoerr: Debug: cof_st.c: Construct answer pdul
IUT Stderr: Debug: cf_st.c: Send answer-poul
IUT Stderr: Debug: me_st.c: Sending ANSWER-pdu (21 bytes) to user 3
I~ .
Clear Log Save Log to File... save in: msc-1.ps | Close |
=] l =

60 /124

Case Study

The Conference Protocol
Experiment

» TInitiated for test tool evaluation and comparison
Based on really testing different implementations
+ Simple, yet realistic protocol

+ Specifications in LOTOS, Promela, SDL, EFSM, ...

28 different implementations in C
- one of them (assumed-to-be) correct
- others manually derived mutants asingle error is injected deliberately

http://fmt.cs.utwente.nl/ConfCase “o outputs

- no internal checks
- no internal updates

62 /124

The Conference Protocol

user a user b user ¢

jOin["a
leave,
send,

receive

CEP: Conference Protocol Entity

UDP: User Datagram Protocol 63/ 124

Abstract Test Architecture

I
| PCO
test o I
context : tester
\ |
.| PCO
L I
|
I
I

The test context is the
environment in which the IUT is

PCO: Point of Control and Observation embedded and that is present
IAP: Implementation Access Point during testing, but it is not the aim
IUT: Implementation Under Test of conformance testing.

SUT: System Under Test (i.e., SUT = TUT + fest context)
64 /124

Conference Protocol:
Concrete Test Architecture

. Directly access to IAP

CPE

~UDP Layer

CPE: Conference Protocol Entity

C-5AP: Conference Service Access Point ~ Indirect access to IAP via the UDP layer
U-SAP: UDP Service Access Point

UT-PCO: Upper Tester Point of Control and Observation
LT-PCO: Lower Tester Point of Control and Observation 65/ 124

Test Results

miu- LOTON Fromela SDL
tant | verdict ateps vendict steps verdict steps
nr. min max min max min
‘correct’ implementation
okpEy - gms - jgmsy
Incorrect Implementations — No outputs
1 | fail 37 66 | fail o 51 ‘-- -
2 | fail 21 37 | fail 6 116 | timeout T
3| fail 63 78 | fail 24 498 | timeout T
4 | fail i 68 | fail 20 83 | timeout T
5 | fail 11 17 | fail 2 10 | timeout T
6 | fail 31 192 | fail 14 &1 | timeout T
Incorrect Implementations — No internal checks
7| fail 57 126 | fail 31 392 | timeout 12
g | fail 31 37 | fail 38 200 |GasD .
f - - ((PasD - - | timeout 12
10 % - - |@ass - - -
Incorrect Implementations — No internal updates

11 | fail 26 126 | fail 29 143 | timeout 12
12 | fail 21 44 | fail 6 127 | timeout T
13 | fail 21 45 | fail 6 19 | timeout T
14 | fail 57 76 | fail 28 146 | fail T
15 | fail 207 304 | fail 19 142 | fail 17
16 | fail 40 208 | fail 25 43 | fal 25
17 | fail 35 198 | fail 2 46 | timeout &
18 | fail 31 238 | fail 12 121 | timeout T
19 | fail 20 467 | fail) LG5 -
20 | fail 57 166 | fail 33 142 | timeout T
21 | fail 63 178 | fail 15 219 | fail T
22 | fail 57 166 | fail 31 144 | timeout T
23 | fail 21 35 | fail b 33 | fail T
24 | fail 60 126 | fail 31 127 |@ans ;
25 | fail 37 36 | fail T 31 | timeout T
26 | fail T 91 | fail 24 235 =
27 | fail 46 210 | fail 23 139 | faal 17

A A A I24

The Conference Protocol

Experiments

Reported experiments:

« TorX - LOTOS, Promela: on-the-fly ioco testing

Axel Belinfante et al.,

Formal Test Automation: A Simple Experiment
IWTCS 12, Budapest, 1999.

» TorX statistics (with LOTOS and Promela)

- all errors found after 2 - 498 test events
- maximum length of tests: > 500,000 test events

- 2 mutants react to PDU's from non-existent partners:

* no explicit reaction is specified for such PDU's,
so ioco-correct, and TorX does not test such behaviour

67 /124

LTS Testing vs. FSM Testing

FSM good at:

- FSM has "more intuitive” theory

- FSM test suite is complete
-- but only w.r.t. assumption on number of states

- FSM test theory has been around for a number (>40) of years

FSM bad at:

- Restrictions on FSM:
- deterministic
- completeness

- FSM has always alternation between input and output
- Difficult to specify interleaving in FSM
- FSM is not compositional

68 /124

Model-Based Real-time System Testing:
--- The Uppaal Approach

Uppaal Tool and it's Branches
for Testing

Uppaal is an integrated tool environment for
modeling, simulation and verification of

systems modeled as networks of timed automata,
extended with data types.

Uppaal's branches for testing:
- Uppaal-TRON
- Uppaal-Cover

70/124

Real-time Model-Based Testing

Plant Controller Program
Continuous Discrete

Test generati
(offline or
online) wrt.
Design Model

717124

Timed System Testing

- Model:

- Timed Input-Output Labelled Transition
System (Timed IOLTS)

- Conformance relation:

- Timed Input-Output Conformance (Timed
10CO)

72 /124

Timed IOLTS by Example

Iy

- Given a timed automaton:
- location: {Io, Il, lz, |3}
- actions:
* {coin?, reg?} --- input actions
« {thinCof!, strongCof!} --- output actions
- clock: {x}

- Semantic state:
- e.g.: (ly, x=0), (I, x=2), (I, x=4)
- Semantic transition:
- eg.: (I, x=0) --delay(2)--> (I, x=2),
(ly, x=2) --coin?--> (l;, x=0),

L%Such a transition system is a timed IOLTS
- as semantic interpretation of TA
- yypically infinite transition systems (because clocks are real variables)

731124

Timed Conformance: tioco

Derived from Tretman's ioco

Let I, S be two timed IOLTS's, P a set of states

- TTr(P): the set of timed traces from a state in P
* eg.: o = coin?.5.req?.2.thinCoffeel.9.coin?

- Out(P after o) = possible outputs and delays after o
* eg. out ({l,,x=1}): {thinCoffee, 0...2} - e

I tioco S =
- Vo e TTr(S): Out(I after) = Out(S after o), or

- TTr(ip) < TTr(sy), where iyand s, are the initial states of Tand S
respectively

Intuition
- TUT can accept all inputs for SPEC (and perhaps some other inputs)

- if TUT ever produces an output as required by SPEC, it should be
produced in time

- but IUT is not allowed to produce any illegal output (w.r.t. SPEC)
See also [Krichen&Tripakis, Khoumsi] 74 | 124

Does I, Conform-to S,?
S1 I1 @ 12 @

coin? coin? coin?
give? give? give?
x=0 X= x=0
<=5 <=5 ‘::5
X}=3 ¥X=>=
coffee! teal

17
= g
coin? Q§Efi
coin'’? in% '?
gﬁg? aive?
X= ¥=0
<=4
X== ¥ee=H K <=5
coffeel coffeal

751124

Does I, Conform-to S,?

S1

coin?

give?
x=0

-:.‘:5
X>=3
coffeel

give?

c=coin.give.10
ceTTr(Il), o ¢TTr(S1)

out(I1l after coin.give.3)={0... ©}

o4
out(S1 after coin.give.3)={coffee,0...2}

76 /124

Does I, Conform-to S,?

S1

coin?

give?
x=0

©-:

x>=3
coffeel

o=coin.give.7.coffee
ceTTr(I3), o ¢TTr(S1)

out(I3 after coin.give.7)={coffee,0}
oa

out(S1 after coin.give.7)={}

14
) B

coin?

give?

x=0
).

x>=1
coffeel

o=coin.give.1.coffee
ceTTr(I4), o ¢TTr(S1)

out(I4 after coin.give.1l)={coffee,0...4}
va

out(S1 after coin.give.1)={0...4}

771124

Does I, Conform-to S;?

I8 g

c=coin.give.5.tea
ceTTr(I7), o ¢TTr(S1)

out(I7 after coin.give.5)={tea, coffee,0}

va
out(S1 after coin.give.5)={coffee,0}

o=token.5.vodka
ceTTr(I8), o ¢TTr(S1)
But ¢ was not specified in S1

78 /124

Now, Back to Timed Coffee Machine

Specification

X>=1
thinCofl

X<=3

Example Traces

O
X>=3

strongCofl

coin?
=0

x<=5

Implementation 1

——O0~——

X==2 x==4
thinCof! strongCof!
coin?
x=0

X<=2 X<=4

oc?.2.r?.2.weakC
°Cc?.5.r?.4.strongC

I1 rt-ioco S

Implementation 2

——0——

X==2
thinCofl

X<=2

X==7
strongCof!

coin?

x<=/

oc?.2.r?.2.weakC
°C?.5.r?.7

12 rMoco S

79/124

Essence of “"Timed ioco”?

Speclflcatlon Implementation 1 Implementation 2

xn=1 sa x==2 w—=i
thinC ofl strangCofl thinCofl strongCofl
cain?

=
1]

K<=3 xe=F ST
Example Traces «C?.2.r?2.2. weakC =C?.2.1?7.2.weakC
«?2.5.r?2.4 . strongC «C2.5.r2.7
I1 rt-ioco S 12 rtfoco S

SPEC behavior

"’,57

inputs

_—

outputs

80/124

Explicit Environment Modelling

Recall that in "ioco" conformance...

I tioco S =
- Vo e TTr(S): Out(I after) = Out(S after o), or

- TTr(ip) € TTr(sy), where iyand s, are the initial states of Tand S
respectively

* Note that:
- TTr(S) is a very big (infinite) set

- We are usually interested in only a small portion of the
behavior

- A solution:

- To explicitly model the environment that the IUT will be
operated in

81/124

The Environment “Universe”

All (L*)

environment could be:
‘Other external systems (Dedicate / open protocols)
‘Other internal systems (eg powersupply, radio)
‘Human Users

‘Physical Plant via sensors / actuators 82 /124

Sample Cooling Controller

IUT-model Env-model

‘When T is medium cooling may be either on or of f (impl. freedom) 83 / 124

Environment Modelling -...

Hi

Ey Any action possible at any time
E, Only realistic temperature variations

E, Temperature never increases when cooling
E_ No inputs (completely passive)

on?__
-@-n

EL

(strict) (loose)

84 /124

Relativized Timed Input-Output
Conformance (m‘-loco)

— o = E ————I 80,10,8],11... r———— S ————I

|

r—-———--- >
| Environment System : IUT
|

.)) |
gssumptlons = 0n00Eror Model |
I SN e | (S %

E,S, I are input-enabled Timed IOLTS

Let P be a set of states

TTr(P): the set of timed traces from states in P

P after c = the set of states reachable after timed trace o

Out(P) = possible outputs and delays from states in P

Vo € TTr(E): Out((E,I) after o) < Out((E,S) after o)
or
I rt-iocog S iff TTr(I) n TTr(E) = TTr(S) n TTr(E) // input enabled

Intuition: for all assumed environment behaviors, the TUT
never produces illegal output, and

if ever produces required output, then produces it in time
See also [Larsen 04 FATES] 85/ 124

Off-line and On-line Testing

S

Model
\l//"
Test Test
requirements derivation
/
Reports TGSt.
execution
/
System
under test

off-line testing '

test suite II

Model

v

Test

requirements
/

Reports |<—

on-the-fly

test generation and execution

eene | | on-line testing l

86/124

Model-Based Off-line
Testing of Timed Systems

Automated Model-Based Off-line
Conformance testing

Model

Test suite

x>=2

click?
x<2

DBLclick!

Test
Generator
tool

Selection &
optimization

Implementation Relation

Does the behavior of the (black-box)

implementation comply to that of the specification?

execution

Test

tool

mapping

Event

Driver

88 /124

Touch-sensitive Light Controller

Interface
'
Dim
Switch
release starthold?
L.=0L,
endhold! an==0 N L<Max. >0,
@) touch? touch? w==ra|3 ==delay
¥==gpsilo _ ._ ._
H release? L=0L, oL=L, . =1,
on=1 L:=0, '—_-:'EI—” =0
relpase? on:=0 =
v==rglts DL::L,}{::D,DH::']
starthold £ _LightController ;|g|5||
~Light Controller

Timed Tests

Interface graspl
=0
P
release .
=20
Enohold! el
©
K x==200
release? . : ! ?'_'TH_""__'{';“
x==500 ,| X<=500 releasel end<gld?
starthold

EXAMPLE test cases for Interface

0-grasp!-210-release! - touch?.PASS FAIL PASS FAIL
0-grasp! -317-release! -touch?:2%-grasp! - -220-release! - touch?:PASS
1000-grasp!-517-starthold?-100-release! -endhold? - PASS

90/124

Test Selection?

* Infinitely many sequences...

» But testing practice should definitely be
finite

* To select finitely many out from an
infinitely large pool

- Test coverage criteria

- Test purposes

91/124

Test Generation by Model-
Checking

*Some
*Random
*Shortest
*Fastest

testConnectionEst. trc

» Use diagnostic trace as test case??!!

92/124

Controllable Timed Automata

- "DOUTA”-Model

- Deterministic: two transitions with same
input/output leads to the same state

- Output-Urgent: enabled outputs will occur
immediately

- Isolated Outputs: if an output is enabled,
no other output is enabled

- Input-Enabled: all inputs can always be
accepted

93/124

A DOUTA Timed Automaton

G§>€ T sw=4
T idle=20

Deterministic,
Output-Urgent,
Isolated Outputs, !
Input-Enabled : :

_ . = _X: : ight! \ BRIGHT

X<Tidlée

touch?
X:=0 x>=Tidle
touch?
X:=0 }© bright!

WANT: if touch is issued twice quickly
then the light will get brighter; otherwise the light is

turned off.

94 /124

Without Test Purpose

Interface
'
p—— Dim
WilC
ekl starthald?
L:=0L,
Endhold! J— —_— . -
@) touch? touch? || w==galz ==elay
el release? L=0L, oL =L, 3 =1,
on=1 L:=0, '—_-:'EI—” =0
Felease? on:=0 A=
w==delta OL =L x=0,0n=1
starthold
Epsilon=200ms
EXAMPLE test cases for Interface Delta=500ms

0-grasp! -210-release! - touch?.PASS
0-grasp! 317 -release! - -touch?-2%-grasp! - 220 -release! -touch? -PASS
1000-grasp! -517-starthold?-100- release! -endhold?-PASS

Infinitely many sequencesliil!|

95/124

Test Purpose #1

Test Purpose: A specific test objective (or observation) the tester wants o make on SUT

Environment model

System model

CramplUser 1 AR
- - I:-_. : ; Lim
| | ol faich
Wait=w S B .
minDelav=0 e - E b1 Fa N
¥ . Z==Walt N S i o
- © - i @
7==minDelay P . - . . . ;”; Hx
z==minDela) releasel Pz :fl : -
grasp! o b
= 7:=0

TP1: Check that the light can become bright:

E<> L==10
Shortest (and fastest) Test:

out(IGrasp);silence(500);in(OSetLevel,0);silence(1000);
in(OSetLevel,1);silence(1000);in(OSetLevel,2); silence(1000);
in(OSetLevel,3);silence(1000);in(OSetLevel,4);silence(1000);
in(OSetLevel,5);silence(1000);in(OSetLevel,6);silence(1000);
in(OSetLevel,7);silence(1000);in(OSetLevel,8);silence(1000);
in(OSetLevel,9);silence(1000);in(OSetLevel,10);
out(IRelease);

96 /124

Test Purpose #2

TP2: Check that controller can enter location 'DnPassive’
E<> Dim.DnPassive

Interface

release

¥.=0 touch!

Felease?

#==delta
starthold

Dim
Switch
starthold?
L:=0L,
an==0 an==1 e
touch? touch? w==rgl
L:=0L, oL =L, o
on=1 L:=0, =L
on:=0 =0

CrampUser

graspl
7:=0
Q) z<-wat
Z==minDelay
Zz=minDela) eentl
I
grasp z.=0

=0

oL =Lx:=0,0n:=1

If delay=1000
Shortest (and fastest) Test:

out (IGrasp) ;
silence (500) ;

in (OSetLevel,l0) ;
out (IRelease) ;
out (IGrasp) ;
silence (500) ;

97 /124

Test Purpose #2

TP2: Check that controller can enter location 'DnPassive:

E<> Dim.D

Interface

-~

release

Endhold!

G;) ¥==epsilo

Felease?

release?

#==delta
starthold

Passive
Dim
Switch
starthold?
L=0L,
on==0 an==1 L{:Ma:{l .‘Z‘='|:|I
touch? touch? || w==gels ==delay
L=0L, OL:=L, - ivie1
on=1 L:=0, L:=L+1 =0
an:=0 =0
OL:=Lx:=0,0m=1

If delay=407?

CrampUser

Q) z<-wat
Z==minDelay
Zr=minDels eentl
I
zg_rfgp. =0

Shortest Test:

Fastest Test:

out (IGrasp) ;
silence (500) ;

in (OSetLevel,l0) ;
out (IRelease) ;
out (IGrasp) ;
silence (500) ;

in (OSetLevel,l) ;silence (40) ;in (OSetLevel, 2) ;
in (OSetLevel, 3) ;silence (40) ;in (OSetLevel,K 4) ;
in (OSetLevel,5) ;silence (40) ;in (OSetlLevel, 6) ;
in (OSetLevel,7) ;silence (40) ;in (OSetlLevel, 8) ;

in (OSetLevel,9) ;silence (40) ;in (OSetLevel, 10) ;silence (40) ;

out (IGrasp) ;silence (500) ;in (OSetLevel, 0) ;silence (40) ;

silence (40) ;
silence (40) ;
silence (40) ;
silence (40) ;

98 /124

Test Purpose #3

TP3: Check that controller resets light
level to previous value after switch-on.

E<> Purpose3.goal

Purposed

out (IGrasp) ; //set level to 5
silence (500) ;

in (OSetLevel,0) ;
silence (1000) ;
in (OSetLevel,l);
silence (1000) ;
in (OSetLevel, 2) ;
silence (1000) ;
in (OSetLevel, 3) ;
silence (1000) ;
in (OSetLevel,K 4) ;
silence (1000) ;
in (OSetLevel,5) ;
out (IRelease) ;

out (IGrasp) ; //touch To Off
silence (200) ;

out (IRelease) ;

in (OSetLevel,0) ;

out (IGrasp) ; //touch To On
silence (200) ;

out (IRelease) ;

in (OSetLevel,5) ;

silence (2000) ;

99 /124

Coverage-Based Test
Generation

* Multi purpose testing
- Cover measurement

+ Examples:

- Location coverage,

- Edge coverage,
- Definition/use pair coverage

100/ 124

Location Coverage

* Multi purpose testing
- Cover measurement

+ Examples:

- Location coverage,

- Edge coverage,
- Definition/use pair coverage

101 /124

Edge Coverage

* Multi purpose testing
- Cover measurement

+ Examples:

- Location coverage,

- Edge coverage,
- Definition/use pair coverage

102 /124

Definition/Use Pair Coverage

* Multi purpose testing
- Cover measurement
+ Examples:

- Location Coverage,

- Edge Coverage,
- Definition/Use Pair Coverage

103/124

Implementing Location Coverage

- Test sequence traversing all locations

* Encoding:

- Enumerate locations 1, .., 1_

- Add an auxiliary variable 1, for each location

- Label each ingoing edge to location i with 1, :=true
- Mark initial visited 1,:=true

* Check: E<>(l,=true A .. A 1l =true)

UPPAAL COVER

1v=r / IL4

Implementing Edge Coverage

+ Test sequence traversing all edges
» Encoding:
- Enumerate edges e, ..., e,

- Add auxiliary variable e; for each edge
- Label each edge e; : =true

* Check: E<>(e,=true A .. A e =true)

105/124

Model-Based On-line
Testing of Timed Systems

Aut

Model Test suite

DBLclick! l
X>=2 Test i
Generator
tool /N
click?
1 x<2
Selection &

optimization

Implementation Relation

Does the behavior of the (black-box)
implementation comply to that of the specification?

d Model-Based Off-line
onformance testing

execution

Test

tool

mapping

Event

Driver

107 /124

Automated Model-Based On-line
Conformance testin

Model

pass
DBLlick! Test ‘
i, X ion
=2 | cickr Test executio
x:=0 Generator tool =)

tool
click?
1 xX<2

O_

Adaptor ‘

Selection &
optimization

Correctness Relation

- Test generated and executed
event-by-event (randomly)

-AKA. on-The-fly 1'651'“19 108 / 124

The Framework of Uppaal-TRON

UppAaI Timed Automata Network Env || IUT
Testing-UPPAAL

Environment | Implementation
I
model -2 model

Implementation

Under Test

o PR

Adapter API
Physical API

iulated Environment

“Relativized 1|'imed i/o Conforman}v\”’ Relation (rt-ioco)

Correct system behavior

Relevant input event
sequences Test_OracIe
| eLoad model Monitor

Complete and sound algorithm

Efficient symbolic reachability algorithms
Uppaal-TRON: Testing Real-time Systems ONline
Release 1.4 http://www.cs.aau.dk/~marius/tron/

109/124

On-line Testing

* Characteristica
- very imaginative, “ingenious” tests sequences
- long test sequences
- stressful load
- effective fault detection

+ Tools exists but mostly NON-real-time

110/ 124

State-set Computation

Compute all potential states the model can
occupy after the timed trace ¢,/,£,0,65150,,..

- Let Z be a set ofsfafes

Z after a: possible states
after a (and *)

/xj/

=0

@ @

X: =0

{ {ly,x=3) } after a =
{ </21X=3>I </4I X=3>I </3I X=O> }

Z after ¢ :possible states
after * and ¢, totaling a delay of &

-—EJI!I}axeO <::>

{ {/p,x=0)} after 4 =
{ </0IX=4>I </11 0<x< 4> }

1 3
Jo,x=0) = (fo,x=1)2 (l1,x=0)> (I1,x=3)
111/ 124

Algorithm Idea:
State-set tracking

» Dynamically compute all potential states that
the model M can reach after the timed trace

)) [Tripakis] Failure Diagnosis
80,10,8],0],52,12,02,...

» Z=Mafter (c,i,5,0,8515,05)

» If Z= O then IUT has made a computation not in
model: FAIL

* [is a relevant input in Env iff i & EnvOutput(Z)

112 /124

44 4dd d

Uppaal-TRON On-line Testing
Algorithm (skeleton)

Algorithm TestGenExe (S, E, IUT, T) returns {pass, fail}
Z :={(s0, e0)}.
while Z # & N #iterations < T do either randomly:
// offer an input
if EnvOutput(Z) +# &
randomly choose i & EnvOutput(Z)

send i to IUT
Z = Z After i

// wait d for an output
randomly choose d €Delays(Z)
wait (for d time units or output o at d' < d)
if o occurred then
Z .= Z After d

Z .= Z After o // may become & (=fail)

else
Z = Z Afterd // no output within d delay

restart:
Z = {(s0, e0)}, reset IUT //reset and restart
if Z = O then return fail else return pass

1137124

On-line Testing Example

Testing-UPPAAL

Implementation

Adapter | |

(decode)

z =1

strongCoffee!

strongCoffee!

(encode)

strongCoffee?

weakCoffee?

Symbolic state set:
{(k‘o[o,o St 0>}
EnvOutput: {coin}
Envinput: ()
ImpOutput: ()

Wait for output (delay)
or offer input?

114 /124

Tools for Model-Based
Testing

Academic MBT Tools

Tool name Tool provider Modeling notation ;Zi::g Short description
Lutess Lustre
Lurette Lustre
GATel Lustre CLP
Autofocus Autofocus CLP
Conflr‘.mance EFSM FSM
it
Phact EFSM FSM
TVEDA SDL, Estelle FSM
AsmL AsmL FSM?

116 /124

Academic

BT Tools (cont'd)

Tool name Tool provider Modeling notation ;3::3 Short description
Cooper LTS (Basic LOTOS) LTS
w | me | sagores |

France ’

o || pmwoos |
STG Irisa, France NTIF LTS
AGEDIS UML/AML LTS
Uppaal Tron uﬁs:::i?ry TA LTS
Uppaal Cover U;’f/fr‘;'l‘}ry TA TLTS

117 /124

ommercial

MBT Tools

Tool name :;?:el Manufacturer Web link A::fa ?i':g Short description
Telcordia aetgweb.argreenhou ‘Model of . -
AETG 1 Technologies se.com input data The AETG Web Service generates pairwise test cases.
9 ’ domain
. Diaz & . . Model of I .
Case Maker 1 Hilterscheid www.casemakerinter inout data CaseMaker uses the Pairwise method to compute test cases from input parameter
Unternehmensb national.com zomain domain specifications and constraints specified by business rules.
eratung GmbH
Conformi In Conformiq Test Generator, UML statecharts constitute a high-level graphical
Test q 3 Conformi www.conformig.com UML test script. Conformiq Test Generator is capable of selecting from the statechart
Generator g ’ e Statecharts models a large amount of test case variants and of executing them against tested
systems.
Pre-Post UniTESK technology is a technology of software testing based on formal
. . extensions of | specifications. Specifications are written using specialized extensions of
CTeskK, JTesk 3 UniTESK www.unitesk.com programming traditional programming languages. CTesK and J TesK can use a formal
languages representation of requirements as a source of test development.
LEIRIOS
Test 3 LEIRIOS www.leirios.com B notation LTG/B generates test cases and executable test scripts from a B model. Tt
Generator - Technologies) ’ supports requirements traceability.
LTG/B
LEIRIOS
Test 3 LEIRIOS www_leirios.com UML 2.0 LTG/UML generates test cases and executable test scripts from a UML 2.0 model.
Generator - Technologies ’ ’ ’ Tt supports requirements raceability.
LTG/UML
MaTelo > All4Tec www.all4tec.net Z\c;)i(':z:' tsscilge MaTelo is based on Statistical Usage Testing and generates test caes from a
: ’ Markov cha?n usage model of the system under test.
ronic derives tests from a design model of the system under test. This too
Qftronic derives tests f desigh model of the syst der test. This tool
Qtronic 3 Conformiq www.conformiq.com supports multi-threaded and concurrent models, timing constraints, and testing of

nondeterministic systems.

Legend for Tool Type Column:

Category 1: Generation of Test Input Data from a Domain Model

Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests

24

Commercial MBT Tools (cont'd)

Tool Manufactur . Modeling _—
Tool name type er Web link notation Short description
Tabular Rave generates test cases from a tabular model. The test cases are then
Rave 3 T-vEC www.1-vec.com notation transformed into test drivers.
. . Mathlab, . L .
. Reactive www.reactive- P Reactis generates tests from Simulink and Stateflow models. This tool targets
Reactis 3 Systems systems.com Simulink, embedded control software
4 14 ’ Stateflow)
Smartware www.smartwaretech Model of
SmartTest 1 Technologie | nologies.com/smartt input data The SmartTest test case generation engine uses pairwise techniques.
s estprod.htm domain
Statemate
Automatic Test g:g:fm] (:Ires
Generator / 3 i-Logix www.Tlogix.com and UML ATG is a module of Telelogic(I-Logix) Statemate and Rhapsody products. It allows
Rhapsody 9 logix. State test case generation from a statechart model of the System.
Automatic Test Machine
Generator (ATG)
www.telelogic.com/p
TAU Tester 4 Telelogic roducts/tau/tester/ TTCN-3 An integrated test development and execution environment for TTCN-3 tests
index.cfm
Model of . .
Testcover.c . The Testcover.com Web Service generates test cases from a model of domain
Test Cover 1 www.testcover.com input data . S .
om domain requirements. It uses pairwise techniques.
T-Vec Tester for
Simulink - T-Vec Simulink and Generates test vectors and test sequences, verifying them in autogenerated code
Tester for 3 T-Vec www.t-vec.com MATRIXx and in the modeling tool simulator.
MATRIXx
www.atssoft.com/pr - . .
. . Finite State ZigmaTEST uses an FSM-based test engine that can generate a test sequence to
ZigmaTEST Tools 3 ATS oducts/testingtool.h Machine cover state machine transitions.

tm

Legend for Tool Type Column:
Category 1: Generation of Test Input Data from a Domain Model

Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests

24

Summary

Benefits of Model-Based Testing

-Automated testing full automation : fest generation + execution + analysis

-Early testing design errors found during validation of model
-Systematic and rigorous testing

model is precise and unambiguous basis for testing

longer, cheaper, more flexible, and provably correct tests

. y; system under test
complexity]

software life cycle

121 /124

Obstacles to Model-Based Testing

Comfort factor
- This is not your parents’ test automation

Skill sets
- Need testers who can design

Expectations
- Models can be a significant upfront investment
- Will never catch all the bugs

Meftrics
- Bad metrics: bug counts, number of test cases
- Beftter meftrics: spec coverage, code coverage

122 /124

Main Readings

Gerard J. Holzmann. Desi%n and Validation of Computer
Protocols, Chapter 9 "Conformance Testing"

Jan Tretmans. Tes'rin? Concurrent System - a Formal
Acp(gr'oach. In Proc. 10th Int'l Conf. on Concurrency Theory

g NCUR'99), Eindhoven, The Netherlands, August 1999, LNCS
664. (http://www.springerlink.com/content/jf8b4tewecjlwrrq/)

Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian
Nielsen, Paul Pettersson, and Arne Skou. Formal Methods and
Testing, chapter "Automated Model-Based Conformance
Testing of Real-Time Systems". Springer-Verlag, 2006.

123 /124

PRACTICAL
MODEL-BASED
TESTING |

Further Readings

* Model-based testing website:

www.model-based-testing.org

- Books:

"Practical Model-Based Testing: A Tools Approach" by Mark
Utting and Bruno Legeard, Morgan-Kaufmann, 2007.

"Model-Based Testing of Reactive Systems", Advanced Lectures
edited by M. Broy et al., LNCS 3472, Springer, 2005.

"Black-Box Testing : Techniques for Functional Testing of
Software and Systems” by Boris Beizer

"Testing Object-Oriented Systems: Models, Patterns, and Tools"
by Robert Binder

"Software Testing: A Craftsman's Approach” by Paul Jorgensen

L BlackBox Testing

124 /124

