
Model-Based Testing
--- Principles, Methods, and Tools

( based on the slides of Brian Nielsen and Jan Tretmans )
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Agenda

• Overview

• Finite State Machine (FSM)-based testing

• Labelled Transition System (LTS)-based testing

• Model-Based Real-time System Testing --- The Uppaal
Approach

• Tools for Model-Based Testing

• Summary
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The Nature of Testing

Testing: the activity of
checking or measuring some quality characteristics

of an executing object (i.e., IUT)

by performing experiments

in a controlled way

w.r.t. a specification

IUT

tester

specification

IUT: the Implementation Under Test

not just on models (that's 
formal verification or 
simulation)

not just by reasoning

to decide whether it 
passes or fails
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Towards Model-Based Testing

• Increase in complexity, and quest for higher quality 
software
– testing effort grows exponentially with complexity
– testing cannot keep pace with development

• Ever-changing requirements
– model-based development

• Checking software quality
– practice:   testing - ad hoc, too late, expensive, lot of time
– research:  formal verification - proofs, model checking,  . . . 
, with disappointing practical impact
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Towards Model-Based Testing
(cont’d)

• Model-based testing has potential to combine
– practice - testing
– theory - formal methods

• Model-Based Testing:
– generating tests from a (formal) model / specification

• state model, pre/post,  CSP, Promela, UML, Spec#,  . . . . 
– testing with respect to a (formal) model / specification
– promises better, faster, cheaper testing:

• algorithmic generation of tests and test oracles, with tool 
support

• formal and unambiguous basis for testing
• measuring the completeness of tests
• maintenance of tests through model modification
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A Model-Based Development Process

informal
requirements

specification

realization

design

code

formalizablevalidation

formal
verification

testing

model-
based

informal world

world of models

physical world
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Formal Verification

model m

of i

sat

model
checker

Yes

sat

property
specification

implementation
i

formal world

real world

We are verifying the properties of the models
rather than of the implementation!

No
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Types of Testing

unit

integration

system

efficiency

maintainability

functionality

white box black box

Level of detail

Accessibility

Characteristics

usability

reliability

module

portability

still more dimensions ...

the topics this lecture covers...



9 / 124

A Taxonomy of Model-Based Testing

[Mark Utting 2006]
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Automated Model-Based Testing

model

IUT

IUT
conforms-to

model?

TTCNTTCNtest
cases

pass/fail

test

tool

test
generation

tool

test
execution

tool

IUT passes tests

IUT confto model

formal world

physical world
input

output

⇔⇔ ⇔⇔



Finite State Machine
(FSM)-Based Testing

q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -
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FSM example (Mealy machine)
q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

Inputs = {cof-but, tea-but, coin}

Outputs = {cof,tea}

States: {q1,q2,q3}

Initial state = q1

Transitions= {

(q1, coin, -, q2),

(q2, coin, -, q3),

(q3, cof-but, cof, q1),

(q3, tea-but, tea, q1) 

}

q1teatea-butq3

q1cofcof-butq3

q3-coinq2

q2-coinq1

next 
state

outputinput
current 
state

effectcondition

Sample run:

coin/ - coin/- coin/ -cof-but / cof

coin/ -

q1 q2 q3
q1

q2

cof-but / cof
q1q3
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A Formal Definition
The Mealy Machine is  5-tuple

M  =   ( S, I, O, δ, λ )

S finite set of states

I finite set of inputs

O finite set of outputs

δ :  S x I  → S transfer function

λ :  S x I  → O output function

Natural extension to sequences : δ :  S x I*  → S
λ :  S x I*  → O*
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Basic Concepts

• Two states s and t of FSM are (language) 
equivalent iff
– s and t accept same language
– have same traces: tr(s) = tr(t)

• Two Machines M0 and M1 are equivalent iff
the two initial states of them are equivalent

• A minimized (or reduced) M is one that has no 
equivalent states
– for no two states s,t, s!=t,  s equivalent t
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Fundamental Results

• Every FSM may be determinized accepting 
the same language.

• For each FSM there exists a language-
equivalent minimal deterministic FSM.

• FSM’s are closed under ∩ and ∪

• FSM’s may be described as regular 
expressions (and vice versa)
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Conformance Testing

Given: a specification FSM  MS

a  (black-box)  implementation FSM  MI

Task: To determine whether MI  conforms to  MS,

i.e., MI behaves in accordance with MS

i.e., whether outputs of  MI   are the same as of MS

i.e., whether the reduced MI   is equivalent to  MS

SUT

FSM M
I

Tester
Spec.

FSM M
s

test

sequence

Today we assume: 
• Deterministic Specifications
• SUT is an (unknown) deterministic FSM (the testing hypothesis)
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Some Restrictions
FSM  restrictions:

– deterministic

δ :  S x I  → S and  λ : S x I  → O are functions

– completely specified

δ :  S x I  → S and  λ : S x I  → O are complete functions

( empty output is allowed;  sometimes implicit completeness )

– strongly connected

from any state any other state can be reached

– reduced

there are no equivalent states

M  =   ( S, I, O, δ, λ )

(rather than ordinary "relations“)
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Type of Faults
q1

q2

q3

coin / -
tea-but / vodka

cof-but / -

coin / -

•output fault (wrong outputs or missing outputs)

•extra or missing states

•transition fault
•to other state
•to new state

q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

q4

coin / -correct model
erroneous model

erroneous model
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Desired Properties
• Nice, but rare / problematic

– “status” message: Assume  that tester can enquire 
implementation for its current state (reliably!!) 
without changing state

– reset: reliably bring IUT to the initial state

– set_state(): reliably bring IUT to a specified state 

IUT

Grey-box

FSM M
I

status?

currentState=S10!

reset?

set_state(S10)?
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FSM Testing

• Test with paths of the  (specification)  FSM

– A path is a sequence of inputs with expected outputs

– (cf.  path testing as white-box technique)

• Infinitely many paths :  how to select ?

• Different strategies :

– test every state :  state coverage ( of specification ! )

– test every transition :  transition coverage

• test output of every transition

• test output + resulting state of every transition

– …

To find a path or a set of paths to cover 
all the states in the FSM

To find a path or a set of paths to 
cover all the transitions in the FSM



21 / 124

A Coffee Machine FSM (Mealy)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 



22 / 124

State Coverage

• Make State Tour that covers every state (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

Test sequence :    coin?   token?   coffee?

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 
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Transition Coverage
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

Test input sequence :

reset? coffee?  coin?  coffee?  coin?  coin?  token?  coffee?  token?  coffee?  coin?  token?  coffee?

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 
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FSM Transition Tour
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

Test input sequence :

reset? coffee?  coin?  coffee?  coin?  coin?  token?  coffee?  token?  coffee?  coin?  token?  coffee?

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

+ check expected output and target state by “status” message
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FSM Transition Testing
• Make test case for every transition in SPEC 

separately:  

S1 S2a? / x!

• Test transition  “S1 –-a?/x!--> S2”:

1. Go to state  S1

2. Apply  input  a?

3. Check  output  x!

4. Verify  state  S2   ( optionally )

• Test purpose: “Test whether the system, when in state  S1, 

produces output  x!  on input  a?  and goes to state  S2”
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Transition Testing - 1

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

•To test  token? / coin! :

go to state 5 :   set_state(5)

give input token? check output coin!

verify state: status? currentState=10

Test case :     set_state(5)/ * - token? / coin! - status? / 10!
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Transition Testing - 1

• “go to state  S5” depends on the “set_state()”
method

• What if no “set_state()” method available?
– use the “reset” method if available

• go from  S0  to  S5 ( always possible because of 
determinism and completeness )

– or, use synchronizing sequence to bring machine to 
a particular known state, say S0, from any state  
• (but synchronizing sequence may not exist        )

A synchronizing sequence of state s brings the FSM 
from any state to state s.
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Transition Testing - 1
synchronizing sequence : token?  coffee?

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -
coffee? / -

token? / token! 

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

coffee? / -coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

To test  token? / coin! :   go to state 5 by :   token?  coffee? coin?
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Transition Testing – 2

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

•To test  token? / coin! :
1. go to state 5 by :   “token?  coffee?  coin?”

2. give input token?

3. check output coin!

4. verify that machine is in state 10 by: “status? currentState=10!”
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Transition Testing - 2
“status” message: Assume  that tester can ask implementation 
for its current state (reliably!!)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

status? / “S0”!

status? / “S10”!

status? / “S5”!
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Transition Testing - 2

• No “status” message??

– State identification: What state am I in?

– State verification: Am I in state s?

– Apply sequence of inputs in the current state of the FSM

such that from the outputs we can

• identify that state where we started (state identification),  or

• verify that we were in a particular start state (state verification)

– Different kinds of sequences 

• UIO  sequences  ( Unique Input Output sequence)

• Distinguishing sequence   ( DS )

• W-set ( characterizing set of sequences )

• UIOv

• SUIO

• MUIO

• Overlapping UIO
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Transition Testing - 2
State check :

• UIO  sequences   (verification)

– sequence  xs that distinguishes state  s from all other states :
for all  t ≠ s :   λ(s, xs)  ≠ λ(t, xs ) 

– each state has its own UIO sequence

– UIO sequences may not exist

• Distinguishing Sequence (identification)

– sequence  x that produces different output for every state :
for all pairs  t, s with  t ≠ s :   λ (s, x )  ≠ λ (t, x )

– a distinguishing sequence may not exist

• W - set of sequences (identification)

– set of sequences  W which can distinguish any pair of states :
for all pairs  t ≠ s there is  x ∈W :   λ (s, x )  ≠ λ (t, x )

– W - set always exists for reduced FSM

UIO: each state has its own input sequence that produces 
different outputs when applied in other states. 

DS: special UIO such that it is a 
UIO for all states!!
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Transition Testing- 2: UIO

UIO sequences

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

state 0 : coin? / - coffee? / -

state 5 : token? / coin!

state 10 : coffee? / coffee! 

UIO: each state has its own input sequence that produces 
different outputs when applied in other states. 
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Transition Testing- 2: DS

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

output state 0 : -

output state 5 :    coin!

output state 10 :  token!

DS: special UIO such that it is a UIO for all states!!16

DS sequence: token?



35 / 124

Transition Testing – 2: done

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

•To test  token? / coin! :

go to state 5 :   token?  coffee?  coin?

give input token?    check output coin!

apply UIO of state 10 :   coffee? / coffee!

Test case :     token? / *  coffee? / *   coin? / - token? / coin! coffee? / coffee!
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Transition Testing - done

- 9  transitions / test cases for coffee machine

- if end-state of one test case corresponds with start-state of next test 

case then concatenate

- different ways to optimize and remove overlapping / redundant parts

- there are (academic) tools to support this

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 



37 / 124

FSM Transition testing: further results
• Test transition “S1 –-a?/x!--> S2”:

1. Go to state  S1

2. Apply  input  a?

3. Check  output  x!

4. Verify  state  S2

• Checks every output fault and transfer fault (to existing state)

• If we assume that

the number of states of the implementation machine MI 

is less than or equal to
the number of states of the specification machine MS,

then testing all transitions in this way

leads to equivalence of reduced machines,

i.e.,  complete conformance

• If not: exponential growth in test length in number of extra states 

in MI.



Labelled Transition System 
(LTS)-Based Tetsing



39 / 124

Labelled Transition Systems

• Labelled Transition System (LTS)
– Transition system labelled with (input, output, or internal) 
actions

– A very basic model for describing system behavior

• Different from FSM
– FSM is required to be ”deterministic” and ”complete”
– FSM has always alternation between inputs and outputs

– LTS is more fundamental, more naive and simpler
– LTS better supports the descriptions of non-determinancy, 
concurrency and composition

– LTS serves as underlying semantics model for many other
formalisms (including timed models)

though sometimes 
they may be "-"
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An example LTS

Labelled Transition System    〈〈〈〈 S, L, T, s0 〉〉〉〉

?coin

?button

!alarm ?button

!coffee

states

actions transitions
T ⊆ S × (L∪{τ}) × S

initial state
s0∈ S

IDLE

CHECK_COIN

BREWING
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Input-Output LTS (IOLTS)

• Special kind of LTS:
Input-Output Labelled Transition System - IOLTS
– distinction between outputs (!) and always-enabled inputs (?)

– implementations modelled as IOLTS

• IOLTS with variables  - equation solver for y2 =x :

? x (x >= 0)! √x

? x (x < 0)

? y

! -√x? x (x >= 0)! √x

? x (x < 0)

? y
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Conformance Relation

• Assume that the Implementation Under Test 
(IUT) is a black box
– The internal state and internal actions of IUT are
unobservable

– We can observe the external actions of IUT from 
its interface

• Whether the behavior of IUT conforms to
those specified by the specification model?

model

IUT
• input/output conformance (”ioco”)

– for the IUT:
• do what are required to do, and
• never do what are forbidden to do
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i conforms-to s ?? (a)

ioco

coin?

coin?
token?

coffee!

token?
i

tea! coffee!

coin?

s

[Jan Tretmans]

Implementation Under Test Specification
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i conforms-to s ?? (b)

coin?

coin?
token?

coffee!

token?
i

tea!

ioco

s
coin?

coffee!

token?

tea!

[Jan Tretmans]

Implementation Under Test Specification
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i conforms-to s ?? (c)

coffee!

coin?

i
token?

coin?
token?

coin?
token?

ioco

s
coin?

coffee!

token?

tea!

[Jan Tretmans].

Implementation Under Test Specification
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i conforms-to s ?? (d)

ioco

coin?

coin?

coin?

coffee!

coin?

i

coin?

coffee!

coin?

s

[Jan Tretmans].

Implementation Under Test Specification
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Tretman’s ioco-coformance

i ioco s =def ∀σ ∈∈∈∈ Straces (s) :  out (i after σσσσ)  ⊆⊆⊆⊆ out (s after σ) 

p p iff ∀∀∀∀ o! ∈∈∈∈ LU ∪∪∪∪ {ττττ} :  p o!δδδδ

Straces (s) =    {  σ ∈∈∈∈ ( L ∪∪∪∪ {δ } )*  |  s       }
σσσσ

p after σ =    {  p’ |   p    p’ }σσσσ

out ( P ) =     {  o! ∈∈∈∈ LU |  p  ,  p∈∈∈∈P  }

∪∪∪∪ {  δ |  p   p,   p∈P  }

o!

δ

[Jan Tretmans].

The conformance relation widely used for black-box 
LTS-based testing of (untimed) reactive systems

Lu is the subset of output 
actions of L
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ioco: intuitively

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

Intuition:

i ioco-conforms to s, iff

• if  i produces output  x after trace  σ,
then  s can produce  x after  σ

• if  i cannot produce any output after trace  σ,
then  s cannot produce any output after  σ (quiescence)
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ioco-conformance (a)

ioco

coin?

coin?
token?

coffee!

token?
i

tea! coffee!

coin?

s

out (i after coin?)      =  { coffee! }

out (i after token?)  =   { tea! }

out (s after coin?)      =  { coffee! }
out (s after token?)  =  ∅∅∅∅

But  token?  ∉∉∉∉ Straces ( s )

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

[Jan Tretmans].
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ioco-conformance (b)

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

coin?

coin?
token?

coffee!

token?
i

tea!

ioco

s
coin?

coffee!

token?

tea!

out (i after coin?)      =  { coffee! }

out (i after token?)  =   { tea! }

out (s after coin?)      =  { coffee! }
out (s after token?)  =  { tea! }

[Jan Tretmans].
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ioco-conformance (c)

coffee!

coin?

i
token?

coin?
token?

coin?
token?

out (s after token?)   =   { tea! }out (i after token?)   =   { δ }

ioco

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

s
coin?

coffee!

token?

tea!

[Jan Tretmans].
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ioco-conformance (d)

out (s after coin?)   =   { coffee! }out (i after coin?)   =   { δ, coffee! }

ioco

coin?

coin?

coin?

coffee!

coin?

i

coin?

coffee!

coin?

s

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

[Jan Tretmans].
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Test Generation Algorithm
Objective: To generate a test case  t(S)  from a transition system specification. 

// Here  S is a set of states  ( initially S = {s0} )

1 end test case

PASS

Algorithm:
Apply the following steps recursively, non-deterministically

2 supply input

supply ?a

t(S after ?a)

3 observe output

FAIL

t(S after !x)

FAIL

allowed outputs !xforbidden outputs !y

θ

to randomly terminate…
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Test Generation Example

specification test

! 9

! 4

? -2
? 2

PASS PASS

otherwise

FAIL

PASS

otherwise

? 3

? -3

FAIL

? x (x >= 0)

! √x

? x (x < 0)

! -√x

To cope with non-deterministic behaviour, 
tests are not linear traces, but trees

To cope with non-deterministic behaviour, 
tests are not linear traces, but trees

Equation solver for y2=x
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Test Execution Examples

? x (x >= 0)

! √x

? x (x < 0)

! -√x

? y

implementation test

! 9

! 4

? -2
? 2

PASS PASS

otherwise

FAIL

PASS

otherwise

? 3

? -3

FAIL

(coupling)
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Validity of Test Generation

For every test  t generated with the algorithm:

Soundness :
- t  will never fail with correct implementation

i ioco s       implies        i passes t

Exhaustiveness :
- each incorrect implementation can be detected
with a generated test t

i ioco s       implies      ∃t :  i fails t

or:  i fails t   implies  i not(ioco) s
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LTS Testing: The TorX Tool

• On-the-fly test generation and test execution

• Implementation relation:  ioco

• Specification languages:  LOTOS  and  Promela

TorX

next
input

specification IUT

observe
output

offer
input

check
output

test verdict:
pass
fail
inconclusive

user:
(manual or automatic mode)
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TorX Tool Architecture

On-the-fly

explorer primer driver adapter IUT
bits

bytes

states

transitions

abstract

actionstransition

Concentrate on on-the-fly testing

to explore the transition-graph of the specification and to provide, 
for a given state, the set of transitions that are enabled in this state

to implement the test derivation algorithm (to generate inputs for 
the implementation and to check outputs from the implementation)

to control the progress of the testing process

responsible for sending inputs to 
and receiving outputs from the IUT 
on request of the driver
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On-The-Fly Testing

explorer primer driver adapter IUTIUTIUT
bits

bytes

states

transitions

abstract

actionstransition

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x

Menu

! x (x < 0)

! x (x >= 0)
Choice

! 9

Abstract action

! 9

Concrete action

! 00001001
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TorX Screenshot



Case Study
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The Conference Protocol
Experiment

• Initiated for test tool evaluation and comparison
• Based on really testing different implementations
• Simple, yet realistic protocol
• Specifications in LOTOS, Promela, SDL, EFSM, …
• 28 different implementations in  C

– one of them (assumed-to-be) correct
– others manually derived mutants

• http://fmt.cs.utwente.nl/ConfCase

a single error is injected deliberately

errors:
- no outputs
- no internal checks
- no internal updates
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The Conference Protocol

CPE

UDP Layer

CPECPE

join,
leave,
send,
receive

CEP: Conference Protocol Entity
UDP: User Datagram Protocol

user a user b user c
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Abstract Test Architecture

PCO: Point of Control and Observation
IAP: Implementation Access Point
IUT: Implementation Under Test
SUT: System Under Test (i.e., SUT = IUT + test context)

The test context is the 
environment in which the IUT is 
embedded and that is present 
during testing, but it is not the aim 
of conformance testing.
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Conference Protocol:
Concrete Test Architecture

CPE

(IUT)

LT-PCO

UT-PCO = C-SAP

UDP Layer

U-SAP LT-PCO

Tester
TorX

B C

A

CPE: Conference Protocol Entity
C-SAP: Conference Service Access Point
U-SAP: UDP Service Access Point
UT-PCO: Upper Tester Point of Control and Observation
LT-PCO: Lower Tester Point of Control and Observation

Directly access to IAP

Indirect access to IAP via the UDP layer
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Test Results
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The Conference Protocol
Experiments

Reported experiments:

• TorX - LOTOS,  Promela :  on-the-fly  ioco testing

Axel Belinfante et al.,

Formal Test Automation: A Simple Experiment
IWTCS 12, Budapest, 1999.

• TorX statistics (with LOTOS and Promela)
– all errors found after  2 - 498  test events

– maximum length of tests :   >  500,000  test events

– 2 mutants react to PDU’s from non-existent partners:
• no explicit reaction is specified for such PDU’s,

so ioco-correct, and TorX does not test such behaviour
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LTS Testing  vs.  FSM Testing

• FSM good at:
– FSM has “more intuitive” theory
– FSM test suite is complete
-- but only w.r.t. assumption on number of states

– FSM test theory has been around for a number (>40) of years

• FSM bad at:
– Restrictions on FSM:

• deterministic
• completeness

– FSM has always alternation between input and output
– Difficult to specify interleaving in FSM
– FSM is not compositional



Model-Based Real-time System Testing:
--- The Uppaal Approach
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Uppaal Tool and it’s Branches 
for Testing

• Uppaal is an integrated tool environment for 
modeling, simulation and verification of real-time
systems modeled as networks of timed automata, 
extended with data types.

• Uppaal’s branches for testing:
– Uppaal-TRON

– Uppaal-Cover



71 / 124

Real-time Model-Based Testing

sensors

actuators

Plant
Continuous

Controller Program
Discrete

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

inputs

outputs

Test generation
(offline or
online) wrt.
Design Model

Conforms-to?
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Timed System Testing

• Model:
– Timed Input-Output Labelled Transition 
System (Timed IOLTS)

• Conformance relation:
– Timed Input-Output Conformance (Timed
ioco)
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Timed IOLTS by Example

• Given a timed automaton:
– location: {l0, l1, l2, l3}
– actions:

• {coin?, req?} --- input actions
• {thinCof!, strongCof!} --- output actions

– clock: {x}

• Semantic state:
– e.g.: (l0, x=0), (l0, x=2), (l1, x=4)

• Semantic transition:
– e.g.: (l0, x=0) --delay(2)--> (l0, x=2),

(l0, x=2) --coin?--> (l1, x=0),

l
0

l
2

l
3

l
1

Such a transition system is a timed IOLTS
- as semantic interpretation of TA
- yypically infinite transition systems (because clocks are real variables)
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Timed Conformance: tioco

• Derived from Tretman’s ioco

• Let I, S be two timed IOLTS’s, P a set of states
– TTr(P): the set of timed traces from a state in P

• eg.: σ = coin?.5.req?.2.thinCoffee!.9.coin?
– Out(P after σ) = possible outputs and delays after σ

• eg. out ({l2,x=1}): {thinCoffee, 0...2}

l
0

l
2

l
3

l
1

• I tioco S =def
– ∀σ ∈ TTr(S): Out(I after σ) ⊆ Out(S after σ), or
– TTr(i0) ⊆ TTr(s0),  where i0 and s0 are the initial states of I and S 

respectively

• Intuition
– IUT can accept all inputs for SPEC (and perhaps some other inputs)
– if IUT ever produces an output as required by SPEC, it should be

produced in time
– but IUT is not allowed to produce any illegal output (w.r.t. SPEC)

See also [Krichen&Tripakis, Khoumsi]
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Does In Conform-to S1?
I1 I2 I3 I4 I5

I6
I7

S1

?

I8
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S1 I1

σ=coin.give.10
σ∈TTr(I1), σ ∉TTr(S1)

out(I1 after coin.give.3)={0... ∞ ∞ ∞ ∞}
⊄
out(S1 after coin.give.3)={coffee,0…2}

Does In Conform-to S1?
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S1 I3 I4

σ=coin.give.7.coffee
σ∈TTr(I3), σ ∉TTr(S1)

out(I3 after coin.give.7)={coffee,0}

⊄
out(S1 after coin.give.7)={}

σ=coin.give.1.coffee
σ∈TTr(I4), σ ∉TTr(S1)

out(I4 after coin.give.1)={coffee,0...4}

⊄
out(S1 after coin.give.1)={0...4}

Does In Conform-to S1?
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S1

σ=coin.give.5.tea
σ∈TTr(I7), σ ∉TTr(S1)

out(I7 after coin.give.5)={tea, coffee,0}

⊄
out(S1 after coin.give.5)={coffee,0}

I8

σ=token.5.vodka
σ∈TTr(I8), σ ∉TTr(S1)
But σ was not specified in S1

I7

Does In Conform-to S1?
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Now, Back to Timed Coffee Machine

•c?.2.r?.2.weakC

•c?.5.r?.4.strongC

•c?.2.r?.2.weakC

•c?.5.r?.7

Example Traces

I2 rt-ioco S

Implementation 1 Implementation 2Specification

I1 rt-ioco S
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Essence of ”Timed ioco”?

SPEC

IUT

inputs

behavior

behavior

outputs
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Explicit Environment Modelling

• Note that:
– TTr(S) is a very big (infinite) set
– We are usually interested in only a small portion of the
behavior

• I tioco S =def
– ∀σ ∈ TTr(S): Out(I after σ) ⊆ Out(S after σ), or
– TTr(i0) ⊆ TTr(s0),  where i0 and s0 are the initial states of I and S 

respectively

Recall that in "ioco" conformance…

• A solution:
– To explicitly model the environment that the IUT will be
operated in
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The Environment ”Universe”

Incorrect, plausible

All (L*)

Normal 
use

Valid

Rare

•Other external systems (Dedicate / open protocols)
•Other internal systems (eg powersupply, radio)
•Human Users
•Physical Plant via sensors / actuators

environment could be:
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Sample Cooling Controller
IUT-model Env-model

On!

Off!

Low?

Med?

High?

Cr

•When T is high (low) switch on (off) cooling within r secs.
•When T is medium cooling may be either on or off (impl. freedom)
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Environment Modelling

EL
EM

E1E2

EL E2 E1 EM

Temp.

time

High!

Med!

Low!

�EM Any action possible at any time

�E1 Only realistic temperature variations

�E2 Temperature never increases when cooling

�EL No inputs (completely passive)

(strict) (loose)
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Relativized Timed Input-Output 
Conformance (rt-ioco)

•I rt-iocoE S =def

∀σ ∈ TTr(E): Out((E,I) after σ) ⊆ Out((E,S) after σ)
or

•I rt-iocoE S iff TTr(I) ∩ TTr(E) ⊆ TTr(S) ∩ TTr(E) // input enabled

•Intuition: for all assumed environment behaviors, the IUT
• never produces illegal output, and
• if ever produces required output, then produces it in time

•E,S, I are input-enabled Timed IOLTS

•Let P be a set of states

•TTr(P): the set of timed traces from states in P

•P after σ = the set of states reachable after timed trace σ

•Out(P) = possible outputs and delays from states in P

System
Model

Environment
assumptions

ε0’,o0,ε1’,o1…

ε0,i0,ε1,i1…E

IUT

S I

See also [Larsen 04 FATES]
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Off-line and On-line Testing

Test
requirements

Model

Test
derivation

test suite

Test 
execution

Reports

System 
under test

on-the-fly
test generation and execution

on-line testingon-line testing

Test
requirements

Model

Test
derivation

test suite

Test 
execution

Reports

System 
under test

off-line testingoff-line testing



Model-Based Off-line
Testing of Timed Systems
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Automated Model-Based Off-line
Conformance testing

Test
Gene-
rator
tool

Test
Gene-
rator
tool

click?

x:=0

click?

x<2

x>=2

DBLclick!

fail

pass

Test

execution

tool

Test

execution

tool

Event  

mapping

Driver

Model Test suite

Test

Generator

tool

Test

Generator

tool

Implementation Relation

Selection &

optimization

Does the behavior of the (black-box)
implementation comply to that of the specification?

Implementation
Under 

Test
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Touch-sensitive Light Controller

•Patient user: Wait=∞
•Impatient: Wait=15
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Timed Tests

Infinitely many sequences!!!!!! 

0·grasp!·210·release!·touch?.PASS

1000·grasp!·517·starthold?·100·release!·endhold?·PASS

0·grasp!·317·release!·touch?·2½·grasp!·220·release!·touch?·PASS

EXAMPLE test cases for Interface

x<=200

x<=500x==500

x==200
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Test Selection?

• Infinitely many sequences…

• But testing practice should definitely be
finite

• To select finitely many out from an 
infinitely large pool
– Test coverage criteria
– Test purposes
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Test Generation by Model-
Checking

Uppaal Model-
Checker

Test purpose
(Property)

System model

Diagnostic trace 
(witness)

• Use diagnostic trace as test case??!!

•Some

•Random

•Shortest

•Fastest

E<> connection.Established

myProtocol.xml

testConnectionEst.trc
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Controllable Timed Automata

• “DOUTA”-Model
– Deterministic: two transitions with same 
input/output leads to the same state

– Output-Urgent: enabled outputs will occur 
immediately

– Isolated Outputs: if an output is enabled, 
no other output is enabled

– Input-Enabled: all inputs can always be 
accepted
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A DOUTA Timed Automaton
T_sw=4
T_idle=20

WANT: if touch is issued twice quickly 
then the light will get brighter; otherwise the light is 
turned off.

Deterministic,
Output-Urgent,
Isolated Outputs,
Input-Enabled
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Without Test Purpose

T_sw=4
T_idle=20

EXAMPLE test cases for Interface

0·grasp!·210·release!·touch?.PASS

1000·grasp!·517·starthold?·100·release!·endhold?·PASS

•Epsilon=200ms

•Delta=500ms

0·grasp!·317·release!·touch?·2½·grasp!·220·release!·touch?·PASS

Infinitely many sequences!!!!!! 
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Test Purpose #1

TP1: Check that the light can become bright: 

E<> L==10

Environment model System model

Test Purpose: A specific test objective (or observation) the tester wants to make on SUT

•Shortest (and fastest) Test:
out(IGrasp);silence(500);in(OSetLevel,0);silence(1000);

in(OSetLevel,1);silence(1000);in(OSetLevel,2); silence(1000);

in(OSetLevel,3);silence(1000);in(OSetLevel,4);silence(1000);

in(OSetLevel,5);silence(1000);in(OSetLevel,6);silence(1000);

in(OSetLevel,7);silence(1000);in(OSetLevel,8);silence(1000);

in(OSetLevel,9);silence(1000);in(OSetLevel,10);

out(IRelease);

Wait=∞
minDelay=0
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Test Purpose #2

•Shortest (and fastest) Test:

TP2: Check that controller can enter location ‘DnPassive’:
E<> Dim.DnPassive

DnPassive

•If delay=1000 out(IGrasp);

silence(500);

in(OSetLevel,0);

out(IRelease);

out(IGrasp);

silence(500);
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Test Purpose #2

DnPassive

•If delay=40?

out(IGrasp);silence(500);in(OSetLevel,0);silence(40);
in(OSetLevel,1);silence(40);in(OSetLevel,2); silence(40);
in(OSetLevel,3);silence(40);in(OSetLevel,4); silence(40);
in(OSetLevel,5);silence(40);in(OSetLevel,6); silence(40);
in(OSetLevel,7);silence(40);in(OSetLevel,8); silence(40);
in(OSetLevel,9);silence(40);in(OSetLevel,10);silence(40);

•Fastest Test:

•Shortest Test:

out(IGrasp);

silence(500);

in(OSetLevel,0);

out(IRelease);

out(IGrasp);

silence(500);

TP2: Check that controller can enter location ‘DnPassive’:
E<> Dim.DnPassive



99 / 124

Test Purpose #3
TP3: Check that controller resets light 
level to previous value after switch-on. 
E<> Purpose3.goal

out(IGrasp);   //set level to 5

silence(500);

in(OSetLevel,0);

silence(1000);

in(OSetLevel,1);

silence(1000);

in(OSetLevel,2);

silence(1000);

in(OSetLevel,3);

silence(1000);

in(OSetLevel,4);

silence(1000);

in(OSetLevel,5);

out(IRelease);

out(IGrasp);   //touch To Off

silence(200);

out(IRelease);

in(OSetLevel,0);

out(IGrasp);   //touch To On

silence(200);

out(IRelease);

in(OSetLevel,5);

silence(2000);
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Coverage-Based Test 
Generation

• Multi purpose testing

• Cover measurement

• Examples: 
– Location coverage, 

– Edge coverage, 

– Definition/use pair coverage

l
1

l
4

l
3

l
2

a?    x:=0

x≥2 a?

x<2

b!

c!
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Location Coverage

• Multi purpose testing

• Cover measurement

• Examples: 
– Location coverage, 

– Edge coverage, 

– Definition/use pair coverage

l
1

l
4

l
3

l
2

a?    x:=0

x≥2 a?

x<2

b!

c!
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Edge Coverage

• Multi purpose testing

• Cover measurement

• Examples: 
– Location coverage, 

– Edge coverage, 

– Definition/use pair coverage

l
1

l
4

l
3

l
2

a?    x:=0

x≥2 a?

x<2

b!

c!
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Definition/Use Pair Coverage

• Multi purpose testing

• Cover measurement

• Examples: 
– Location Coverage, 

– Edge Coverage, 

– Definition/Use Pair Coverage

l
1

l
4

l
3

l
2

a?    x:=0

x≥2

x<2

b!

c!
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Implementing Location Coverage
• Test sequence traversing all locations

• Encoding:
– Enumerate locations l0,…,ln
– Add an auxiliary variable li for each location 

– Label each ingoing edge to location i with li:=true

– Mark initial visited l0:=true

• Check: E<>( l0=true ∧∧∧∧ … ∧∧∧∧ ln=true )

lj

lj:=true

lj:=true
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Implementing Edge Coverage

• Test sequence traversing all edges

• Encoding:
– Enumerate edges e0,…,en
– Add auxiliary variable ei for each edge 

– Label each edge ei:=true

• Check: E<>( e0=true ∧∧∧∧ … ∧∧∧∧ en=true )

l
1

l
4

l
3

l
2

a?  x:=0  e0:=1

x≥2

a?  e2:=1

x<2

b! e1:=1
c!

e3:=1

e4:=1



Model-Based On-line
Testing of Timed Systems
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Automated Model-Based Off-line
Conformance testing

Test
Gene-
rator
tool

Test
Gene-
rator
tool

click?

x:=0

click?

x<2

x>=2

DBLclick!

fail

pass

Test

execution

tool

Test

execution

tool

Event  

mapping

Driver

Model Test suite

Test

Generator

tool

Test

Generator

tool

Implementation Relation

Selection &

optimization

Does the behavior of the (black-box)
implementation comply to that of the specification?

Implementation
Under 

Test

Reca
ll...
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Automated Model-Based On-line
Conformance testing

Test
Gene-
rator
tool

Test
Gene-
rator
tool

click?

x:=0

click?

x<2

x>=2

DBLclick!

input

fail

pass

Test

execution

tool

Test

execution

tool

Adaptor

Model

Test

Generator

tool

Test

Generator

tool output

Correctness Relation

Selection &

optimization

•Test generated and executed
event-by-event (randomly)

•A.K.A. on-the-fly testing

Implementation
Under 

Test

inputinputinput

outputoutputoutput
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The Framework of Uppaal-TRON

•Complete and sound algorithm

•Efficient symbolic reachability algorithms

•Uppaal-TRON: Testing Real-time Systems ONline

•Release 1.4 http://www.cs.aau.dk/~marius/tron/

Correct system behavior

•Test Oracle

•Monitor

•Relevant input event 
sequences

•Load model

”Relativized Timed i/o Conformance” Relation (rt-ioco)

•UppAal Timed Automata Network: Env || IUT
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On-line Testing

• Characteristica
– very imaginative, “ingenious” tests sequences

– long test sequences

– stressful load

– effective fault detection

• Tools exists but mostly NON-real-time
– So-far systematic and explicit handling of 
real-time constraints missing
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State-set Computation
• Compute all potential states the model can 
occupy after the timed trace ε0,i0,ε1,o1,ε2,i2,o2,…

• Let Z be a set of states

l
0

τ, x:=0
l
1

{ 〈l0,x=0〉} after 4 = 
{ 〈l0,x=4〉, 〈l1, 0 ≤ x ≤ 4〉 } 

〈l0,x=0〉
1
→→→→ 〈l0,x=1〉 〈l1,x=0〉 〈l1,x=3〉

τ
→→→→

3
→→→→

Z after εεεε :possible states 
after τ* and εi , totaling a delay of ε

l
0

x≥7, a

a

l
3

l
2

l
1

l
4

a,

x:=0

τ

{ 〈l0,x=3〉 } after a = 
{ 〈l2,x=3〉, 〈l4, x=3〉, 〈l3, x=0〉 } 

Z after a: possible states 
after a (and τ*)
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Algorithm Idea:
State-set tracking

• Dynamically compute all potential states that 
the model M can reach after the timed trace 
ε0,i0,ε1,o1,ε2,i2,o2,…

• Z = M after (ε0,i0,ε1,o1,ε2,i2,o2)

• If Z= ∅ then IUT has made a computation not in 
model: FAIL

• i is a relevant input in Env iff i ∈ EnvOutput(Z)

[Tripakis] Failure Diagnosis
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Uppaal-TRON On-line Testing
Algorithm (skeleton)

Algorithm TestGenExe (S, E, IUT, T ) returns {pass, fail}

Z := {(s0, e0)}.

while Z ≠ ∅ ∧ ♯iterations ≤ T do either randomly:

1. // offer an input

if EnvOutput(Z) ≠ ∅
randomly choose i ∈ EnvOutput(Z)
send i to IUT
Z := Z After i

2. // wait d for an output

randomly choose d ∈Delays(Z)

wait (for d time units or output o at d′ ≤ d)

if o occurred then

Z := Z After d′

Z := Z After o // may become ∅ (⇒fail)
else 

Z := Z After d  // no output within d delay

3. restart:

Z := {(s0, e0)}, reset IUT //reset and restart

if Z = ∅ then return fail else return pass
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On-line Testing Example



Tools for Model-Based
Testing
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Academic MBT Tools

FSM?AsmLAsmL

FSMSDL, EstelleTVEDA

FSMEFSMPhact

FSMEFSM
Conformance 

Kit

CLPAutofocusAutofocus

CLPLustreGATeL

LustreLurette

LustreLutess

Short description
Testing 
method

Modeling notationTool providerTool name
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Academic MBT Tools (cont’d)

TLTSTA
Uppsala 

University
Uppaal Cover

TLTSTA
Aalborg 
University

Uppaal Tron

LTSUML/AMLAGEDIS

LTSNTIFIrisa, FranceSTG

LTS
LTS (LOTOS, 
Promela, FSP)

Twente
University

TorX

LTS
LTS-API (LOTOS, 

SDL, UML)

Irisa and 
Verimag, 
France 

TGV

LTSLTS (Basic LOTOS)Cooper

Short description
Testing 
method

Modeling notationTool providerTool name
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Commercial MBT Tools

Qtronic derives tests from a design model of the system under test. This tool 
supports multi-threaded and concurrent models, timing constraints, and testing of 
nondeterministic systems.

www.conformiq.comConformiq3Qtronic

MaTeLo is based on Statistical Usage Testing and generates test caes from a 
usage model of the system under test.

Model usage 
editor using 
Markov chain

www.all4tec.netAll4Tec2MaTeLo

LTG/UML generates test cases and executable test scripts from a UML 2.0 model. 
It supports requirements raceability.

UML 2.0www.leirios.com
LEIRIOS 

Technologies
3

LEIRIOS 
Test 

Generator -
LTG/UML

LTG/B generates test cases and executable test scripts from a B model. It 
supports requirements traceability.

B notationwww.leirios.com
LEIRIOS 

Technologies
3

LEIRIOS 
Test 

Generator -
LTG/B

UniTESK technology is a technology of software testing based on formal 
specifications. Specifications are written using specialized extensions of 
traditional programming languages. CTesK and JTesK can use a formal 
representation of requirements as a source of test development.

Pre-Post 
extensions of 
programming 
languages

www.unitesk.comUniTESK3CTesK, JTesK

In Conformiq Test Generator, UML statecharts constitute a high-level graphical 
test script. Conformiq Test Generator is capable of selecting from the statechart
models a large amount of test case variants and of executing them against tested 
systems.

UML 
Statecharts

www.conformiq.comConformiq3
Conformiq

Test 
Generator

CaseMaker uses the Pairwise method to compute test cases from input parameter 
domain specifications and constraints specified by business rules.

Model of 
input data 
domain

www.casemakerinter
national.com

Diaz & 
Hilterscheid

Unternehmensb
eratung GmbH

1Case Maker

The AETG Web Service generates pairwise test cases.
Model of 
input data 
domain

aetgweb.argreenhou
se.com

Telcordia
Technologies

1AETG

Short description
Modeling 
notation

Web linkManufacturer
Tool 
type

Tool name

Legend for Tool Type Column:
Category 1: Generation of Test Input Data from a Domain Model
Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests
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Commercial MBT Tools (cont’d)

ZigmaTEST uses an FSM-based test engine that can generate a test sequence to 
cover state machine transitions.

Finite State 
Machine

www.atssoft.com/pr
oducts/testingtool.h

tm
ATS3ZigmaTEST Tools

Generates test vectors and test sequences, verifying them in autogenerated code 
and in the modeling tool simulator.

Simulink and 
MATRIXx

www.t-vec.comT-Vec3

T-Vec Tester for 
Simulink - T-Vec

Tester for 
MATRIXx

The Testcover.com Web Service generates test cases from a model of domain 
requirements. It uses pairwise techniques.

Model of 
input data 
domain

www.testcover.com
Testcover.c

om
1Test Cover

An integrated test development and execution environment for TTCN-3 testsTTCN-3
www.telelogic.com/p
roducts/tau/tester/

index.cfm
Telelogic4TAU Tester

ATG is a module of Telelogic(I-Logix) Statemate and Rhapsody products. It allows 
test case generation from a statechart model of the System.

Statemate
Statcharts
and UML 
State 
Machine

www.Ilogix.comi-Logix3

Statemate
Automatic Test 
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The SmartTest test case generation engine uses pairwise techniques.
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Reactis generates tests from Simulink and Stateflow models. This tool targets 
embedded control software.
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Rave generates test cases from a tabular model. The test cases are then 
transformed into test drivers.
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Legend for Tool Type Column:
Category 1: Generation of Test Input Data from a Domain Model
Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests
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Benefits of Model-Based Testing

software life cycle

complexity

model

system under test

•Automated testing
•Early testing
•Systematic and rigorous testing

full automation :  test  generation + execution + analysis

model is precise and unambiguous basis for testing

design errors found during validation of model

longer, cheaper, more flexible, and provably correct tests
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Obstacles to Model-Based Testing

• Comfort factor
– This is not your parents’ test automation

• Skill sets
– Need testers who can design

• Expectations
– Models can be a significant upfront investment
– Will never catch all the bugs

• Metrics
– Bad metrics: bug counts, number of test cases
– Better metrics: spec coverage, code coverage



123 / 124

Main Readings

• Gerard J. Holzmann. Design and Validation of Computer 
Protocols, Chapter 9 “Conformance Testing”

• Jan Tretmans. Testing Concurrent System – a Formal 
Approach. In Proc. 10th Int'l Conf. on Concurrency Theory 
(CONCUR'99), Eindhoven, The Netherlands, August 1999, LNCS 
1664. (http://www.springerlink.com/content/jf8b4tewecjlwrrq/)

• Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian 
Nielsen, Paul Pettersson, and Arne Skou. Formal Methods and 
Testing, chapter "Automated Model-Based Conformance 
Testing of Real-Time Systems". Springer-Verlag, 2006.
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Further Readings

•Model-based testing website:
www.model-based-testing.org

• Books:
"Practical Model-Based Testing: A Tools Approach" by Mark 
Utting and Bruno Legeard, Morgan-Kaufmann, 2007.

"Model-Based Testing of Reactive Systems", Advanced Lectures 
edited by M. Broy et al., LNCS 3472, Springer, 2005.

“Black-Box Testing : Techniques for Functional Testing of 
Software and Systems” by Boris Beizer

“Testing Object-Oriented Systems: Models, Patterns, and Tools”
by Robert Binder

“Software Testing: A Craftsman's Approach” by Paul Jorgensen


