
Model-Based Testing
--- Principles, Methods, and Tools

(based on the slides of Brian Nielsen and Jan Tretmans)

2 / 124

Agenda

• Overview

• Finite State Machine (FSM)-based testing

• Labelled Transition System (LTS)-based testing

• Model-Based Real-time System Testing --- The Uppaal
Approach

• Tools for Model-Based Testing

• Summary

3 / 124

The Nature of Testing

Testing: the activity of
checking or measuring some quality characteristics

of an executing object (i.e., IUT)

by performing experiments

in a controlled way

w.r.t. a specification

IUT

tester

specification

IUT: the Implementation Under Test

not just on models (that's
formal verification or
simulation)

not just by reasoning

to decide whether it
passes or fails

4 / 124

Towards Model-Based Testing

• Increase in complexity, and quest for higher quality
software
– testing effort grows exponentially with complexity
– testing cannot keep pace with development

• Ever-changing requirements
– model-based development

• Checking software quality
– practice: testing - ad hoc, too late, expensive, lot of time
– research: formal verification - proofs, model checking, . . .
, with disappointing practical impact

5 / 124

Towards Model-Based Testing
(cont’d)

• Model-based testing has potential to combine
– practice - testing
– theory - formal methods

• Model-Based Testing:
– generating tests from a (formal) model / specification

• state model, pre/post, CSP, Promela, UML, Spec#,
– testing with respect to a (formal) model / specification
– promises better, faster, cheaper testing:

• algorithmic generation of tests and test oracles, with tool
support

• formal and unambiguous basis for testing
• measuring the completeness of tests
• maintenance of tests through model modification

6 / 124

A Model-Based Development Process

informal
requirements

specification

realization

design

code

formalizablevalidation

formal
verification

testing

model-
based

informal world

world of models

physical world

7 / 124

Formal Verification

model m

of i

sat

model
checker

Yes

sat

property
specification

implementation
i

formal world

real world

We are verifying the properties of the models
rather than of the implementation!

No

8 / 124

Types of Testing

unit

integration

system

efficiency

maintainability

functionality

white box black box

Level of detail

Accessibility

Characteristics

usability

reliability

module

portability

still more dimensions ...

the topics this lecture covers...

9 / 124

A Taxonomy of Model-Based Testing

[Mark Utting 2006]

10 / 124

Automated Model-Based Testing

model

IUT

IUT
conforms-to

model?

TTCNTTCNtest
cases

pass/fail

test

tool

test
generation

tool

test
execution

tool

IUT passes tests

IUT confto model

formal world

physical world
input

output

⇔⇔ ⇔⇔

Finite State Machine
(FSM)-Based Testing

q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

12 / 124

FSM example (Mealy machine)
q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

Inputs = {cof-but, tea-but, coin}

Outputs = {cof,tea}

States: {q1,q2,q3}

Initial state = q1

Transitions= {

(q1, coin, -, q2),

(q2, coin, -, q3),

(q3, cof-but, cof, q1),

(q3, tea-but, tea, q1)

}

q1teatea-butq3

q1cofcof-butq3

q3-coinq2

q2-coinq1

next
state

outputinput
current
state

effectcondition

Sample run:

coin/ - coin/- coin/ -cof-but / cof

coin/ -

q1 q2 q3
q1

q2

cof-but / cof
q1q3

13 / 124

A Formal Definition
The Mealy Machine is 5-tuple

M = (S, I, O, δ, λ)

S finite set of states

I finite set of inputs

O finite set of outputs

δ : S x I → S transfer function

λ : S x I → O output function

Natural extension to sequences : δ : S x I* → S
λ : S x I* → O*

14 / 124

Basic Concepts

• Two states s and t of FSM are (language)
equivalent iff
– s and t accept same language
– have same traces: tr(s) = tr(t)

• Two Machines M0 and M1 are equivalent iff
the two initial states of them are equivalent

• A minimized (or reduced) M is one that has no
equivalent states
– for no two states s,t, s!=t, s equivalent t

15 / 124

Fundamental Results

• Every FSM may be determinized accepting
the same language.

• For each FSM there exists a language-
equivalent minimal deterministic FSM.

• FSM’s are closed under ∩ and ∪

• FSM’s may be described as regular
expressions (and vice versa)

16 / 124

Conformance Testing

Given: a specification FSM MS

a (black-box) implementation FSM MI

Task: To determine whether MI conforms to MS,

i.e., MI behaves in accordance with MS

i.e., whether outputs of MI are the same as of MS

i.e., whether the reduced MI is equivalent to MS

SUT

FSM M
I

Tester
Spec.

FSM M
s

test

sequence

Today we assume:
• Deterministic Specifications
• SUT is an (unknown) deterministic FSM (the testing hypothesis)

17 / 124

Some Restrictions
FSM restrictions:

– deterministic

δ : S x I → S and λ : S x I → O are functions

– completely specified

δ : S x I → S and λ : S x I → O are complete functions

(empty output is allowed; sometimes implicit completeness)

– strongly connected

from any state any other state can be reached

– reduced

there are no equivalent states

M = (S, I, O, δ, λ)

(rather than ordinary "relations“)

18 / 124

Type of Faults
q1

q2

q3

coin / -
tea-but / vodka

cof-but / -

coin / -

•output fault (wrong outputs or missing outputs)

•extra or missing states

•transition fault
•to other state
•to new state

q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

q4

coin / -correct model
erroneous model

erroneous model

19 / 124

Desired Properties
• Nice, but rare / problematic

– “status” message: Assume that tester can enquire
implementation for its current state (reliably!!)
without changing state

– reset: reliably bring IUT to the initial state

– set_state(): reliably bring IUT to a specified state

IUT

Grey-box

FSM M
I

status?

currentState=S10!

reset?

set_state(S10)?

20 / 124

FSM Testing

• Test with paths of the (specification) FSM

– A path is a sequence of inputs with expected outputs

– (cf. path testing as white-box technique)

• Infinitely many paths : how to select ?

• Different strategies :

– test every state : state coverage (of specification !)

– test every transition : transition coverage

• test output of every transition

• test output + resulting state of every transition

– …

To find a path or a set of paths to cover
all the states in the FSM

To find a path or a set of paths to
cover all the transitions in the FSM

21 / 124

A Coffee Machine FSM (Mealy)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

22 / 124

State Coverage

• Make State Tour that covers every state (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Test sequence : coin? token? coffee?

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

23 / 124

Transition Coverage
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

24 / 124

FSM Transition Tour
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

+ check expected output and target state by “status” message

25 / 124

FSM Transition Testing
• Make test case for every transition in SPEC

separately:

S1 S2a? / x!

• Test transition “S1 –-a?/x!--> S2”:

1. Go to state S1

2. Apply input a?

3. Check output x!

4. Verify state S2 (optionally)

• Test purpose: “Test whether the system, when in state S1,

produces output x! on input a? and goes to state S2”

26 / 124

Transition Testing - 1

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :

go to state 5 : set_state(5)

give input token? check output coin!

verify state: status? currentState=10

Test case : set_state(5)/ * - token? / coin! - status? / 10!

27 / 124

Transition Testing - 1

• “go to state S5” depends on the “set_state()”
method

• What if no “set_state()” method available?
– use the “reset” method if available

• go from S0 to S5 (always possible because of
determinism and completeness)

– or, use synchronizing sequence to bring machine to
a particular known state, say S0, from any state
• (but synchronizing sequence may not exist)

A synchronizing sequence of state s brings the FSM
from any state to state s.

28 / 124

Transition Testing - 1
synchronizing sequence : token? coffee?

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -
coffee? / -

token? / token!

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

coffee? / -coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

To test token? / coin! : go to state 5 by : token? coffee? coin?

29 / 124

Transition Testing – 2

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :
1. go to state 5 by : “token? coffee? coin?”

2. give input token?

3. check output coin!

4. verify that machine is in state 10 by: “status? currentState=10!”

30 / 124

Transition Testing - 2
“status” message: Assume that tester can ask implementation
for its current state (reliably!!)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

status? / “S0”!

status? / “S10”!

status? / “S5”!

31 / 124

Transition Testing - 2

• No “status” message??

– State identification: What state am I in?

– State verification: Am I in state s?

– Apply sequence of inputs in the current state of the FSM

such that from the outputs we can

• identify that state where we started (state identification), or

• verify that we were in a particular start state (state verification)

– Different kinds of sequences

• UIO sequences (Unique Input Output sequence)

• Distinguishing sequence (DS)

• W-set (characterizing set of sequences)

• UIOv

• SUIO

• MUIO

• Overlapping UIO

32 / 124

Transition Testing - 2
State check :

• UIO sequences (verification)

– sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ(s, xs) ≠ λ(t, xs)

– each state has its own UIO sequence

– UIO sequences may not exist

• Distinguishing Sequence (identification)

– sequence x that produces different output for every state :
for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)

– a distinguishing sequence may not exist

• W - set of sequences (identification)

– set of sequences W which can distinguish any pair of states :
for all pairs t ≠ s there is x ∈W : λ (s, x) ≠ λ (t, x)

– W - set always exists for reduced FSM

UIO: each state has its own input sequence that produces
different outputs when applied in other states.

DS: special UIO such that it is a
UIO for all states!!

33 / 124

Transition Testing- 2: UIO

UIO sequences

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

state 0 : coin? / - coffee? / -

state 5 : token? / coin!

state 10 : coffee? / coffee!

UIO: each state has its own input sequence that produces
different outputs when applied in other states.

34 / 124

Transition Testing- 2: DS

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

output state 0 : -

output state 5 : coin!

output state 10 : token!

DS: special UIO such that it is a UIO for all states!!16

DS sequence: token?

35 / 124

Transition Testing – 2: done

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :

go to state 5 : token? coffee? coin?

give input token? check output coin!

apply UIO of state 10 : coffee? / coffee!

Test case : token? / * coffee? / * coin? / - token? / coin! coffee? / coffee!

36 / 124

Transition Testing - done

- 9 transitions / test cases for coffee machine

- if end-state of one test case corresponds with start-state of next test

case then concatenate

- different ways to optimize and remove overlapping / redundant parts

- there are (academic) tools to support this

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

37 / 124

FSM Transition testing: further results
• Test transition “S1 –-a?/x!--> S2”:

1. Go to state S1

2. Apply input a?

3. Check output x!

4. Verify state S2

• Checks every output fault and transfer fault (to existing state)

• If we assume that

the number of states of the implementation machine MI

is less than or equal to
the number of states of the specification machine MS,

then testing all transitions in this way

leads to equivalence of reduced machines,

i.e., complete conformance

• If not: exponential growth in test length in number of extra states

in MI.

Labelled Transition System
(LTS)-Based Tetsing

39 / 124

Labelled Transition Systems

• Labelled Transition System (LTS)
– Transition system labelled with (input, output, or internal)
actions

– A very basic model for describing system behavior

• Different from FSM
– FSM is required to be ”deterministic” and ”complete”
– FSM has always alternation between inputs and outputs

– LTS is more fundamental, more naive and simpler
– LTS better supports the descriptions of non-determinancy,
concurrency and composition

– LTS serves as underlying semantics model for many other
formalisms (including timed models)

though sometimes
they may be "-"

40 / 124

An example LTS

Labelled Transition System 〈〈〈〈 S, L, T, s0 〉〉〉〉

?coin

?button

!alarm ?button

!coffee

states

actions transitions
T ⊆ S × (L∪{τ}) × S

initial state
s0∈ S

IDLE

CHECK_COIN

BREWING

41 / 124

Input-Output LTS (IOLTS)

• Special kind of LTS:
Input-Output Labelled Transition System - IOLTS
– distinction between outputs (!) and always-enabled inputs (?)

– implementations modelled as IOLTS

• IOLTS with variables - equation solver for y2 =x :

? x (x >= 0)! √x

? x (x < 0)

? y

! -√x? x (x >= 0)! √x

? x (x < 0)

? y

42 / 124

Conformance Relation

• Assume that the Implementation Under Test
(IUT) is a black box
– The internal state and internal actions of IUT are
unobservable

– We can observe the external actions of IUT from
its interface

• Whether the behavior of IUT conforms to
those specified by the specification model?

model

IUT
• input/output conformance (”ioco”)

– for the IUT:
• do what are required to do, and
• never do what are forbidden to do

43 / 124

i conforms-to s ?? (a)

ioco

coin?

coin?
token?

coffee!

token?
i

tea! coffee!

coin?

s

[Jan Tretmans]

Implementation Under Test Specification

44 / 124

i conforms-to s ?? (b)

coin?

coin?
token?

coffee!

token?
i

tea!

ioco

s
coin?

coffee!

token?

tea!

[Jan Tretmans]

Implementation Under Test Specification

45 / 124

i conforms-to s ?? (c)

coffee!

coin?

i
token?

coin?
token?

coin?
token?

ioco

s
coin?

coffee!

token?

tea!

[Jan Tretmans].

Implementation Under Test Specification

46 / 124

i conforms-to s ?? (d)

ioco

coin?

coin?

coin?

coffee!

coin?

i

coin?

coffee!

coin?

s

[Jan Tretmans].

Implementation Under Test Specification

47 / 124

Tretman’s ioco-coformance

i ioco s =def ∀σ ∈∈∈∈ Straces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σ)

p p iff ∀∀∀∀ o! ∈∈∈∈ LU ∪∪∪∪ {ττττ} : p o!δδδδ

Straces (s) = { σ ∈∈∈∈ (L ∪∪∪∪ {δ })* | s }
σσσσ

p after σ = { p’ | p p’ }σσσσ

out (P) = { o! ∈∈∈∈ LU | p , p∈∈∈∈P }

∪∪∪∪ { δ | p p, p∈P }

o!

δ

[Jan Tretmans].

The conformance relation widely used for black-box
LTS-based testing of (untimed) reactive systems

Lu is the subset of output
actions of L

48 / 124

ioco: intuitively

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

Intuition:

i ioco-conforms to s, iff

• if i produces output x after trace σ,
then s can produce x after σ

• if i cannot produce any output after trace σ,
then s cannot produce any output after σ (quiescence)

49 / 124

ioco-conformance (a)

ioco

coin?

coin?
token?

coffee!

token?
i

tea! coffee!

coin?

s

out (i after coin?) = { coffee! }

out (i after token?) = { tea! }

out (s after coin?) = { coffee! }
out (s after token?) = ∅∅∅∅

But token? ∉∉∉∉ Straces (s)

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

[Jan Tretmans].

50 / 124

ioco-conformance (b)

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

coin?

coin?
token?

coffee!

token?
i

tea!

ioco

s
coin?

coffee!

token?

tea!

out (i after coin?) = { coffee! }

out (i after token?) = { tea! }

out (s after coin?) = { coffee! }
out (s after token?) = { tea! }

[Jan Tretmans].

51 / 124

ioco-conformance (c)

coffee!

coin?

i
token?

coin?
token?

coin?
token?

out (s after token?) = { tea! }out (i after token?) = { δ }

ioco

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

s
coin?

coffee!

token?

tea!

[Jan Tretmans].

52 / 124

ioco-conformance (d)

out (s after coin?) = { coffee! }out (i after coin?) = { δ, coffee! }

ioco

coin?

coin?

coin?

coffee!

coin?

i

coin?

coffee!

coin?

s

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

[Jan Tretmans].

53 / 124

Test Generation Algorithm
Objective: To generate a test case t(S) from a transition system specification.

// Here S is a set of states (initially S = {s0})

1 end test case

PASS

Algorithm:
Apply the following steps recursively, non-deterministically

2 supply input

supply ?a

t(S after ?a)

3 observe output

FAIL

t(S after !x)

FAIL

allowed outputs !xforbidden outputs !y

θ

to randomly terminate…

54 / 124

Test Generation Example

specification test

! 9

! 4

? -2
? 2

PASS PASS

otherwise

FAIL

PASS

otherwise

? 3

? -3

FAIL

? x (x >= 0)

! √x

? x (x < 0)

! -√x

To cope with non-deterministic behaviour,
tests are not linear traces, but trees

To cope with non-deterministic behaviour,
tests are not linear traces, but trees

Equation solver for y2=x

55 / 124

Test Execution Examples

? x (x >= 0)

! √x

? x (x < 0)

! -√x

? y

implementation test

! 9

! 4

? -2
? 2

PASS PASS

otherwise

FAIL

PASS

otherwise

? 3

? -3

FAIL

(coupling)

56 / 124

Validity of Test Generation

For every test t generated with the algorithm:

Soundness :
- t will never fail with correct implementation

i ioco s implies i passes t

Exhaustiveness :
- each incorrect implementation can be detected
with a generated test t

i ioco s implies ∃t : i fails t

or: i fails t implies i not(ioco) s

57 / 124

LTS Testing: The TorX Tool

• On-the-fly test generation and test execution

• Implementation relation: ioco

• Specification languages: LOTOS and Promela

TorX

next
input

specification IUT

observe
output

offer
input

check
output

test verdict:
pass
fail
inconclusive

user:
(manual or automatic mode)

58 / 124

TorX Tool Architecture

On-the-fly

explorer primer driver adapter IUT
bits

bytes

states

transitions

abstract

actionstransition

Concentrate on on-the-fly testing

to explore the transition-graph of the specification and to provide,
for a given state, the set of transitions that are enabled in this state

to implement the test derivation algorithm (to generate inputs for
the implementation and to check outputs from the implementation)

to control the progress of the testing process

responsible for sending inputs to
and receiving outputs from the IUT
on request of the driver

59 / 124

On-The-Fly Testing

explorer primer driver adapter IUTIUTIUT
bits

bytes

states

transitions

abstract

actionstransition

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x

Menu

! x (x < 0)

! x (x >= 0)
Choice

! 9

Abstract action

! 9

Concrete action

! 00001001

60 / 124

TorX Screenshot

Case Study

62 / 124

The Conference Protocol
Experiment

• Initiated for test tool evaluation and comparison
• Based on really testing different implementations
• Simple, yet realistic protocol
• Specifications in LOTOS, Promela, SDL, EFSM, …
• 28 different implementations in C

– one of them (assumed-to-be) correct
– others manually derived mutants

• http://fmt.cs.utwente.nl/ConfCase

a single error is injected deliberately

errors:
- no outputs
- no internal checks
- no internal updates

63 / 124

The Conference Protocol

CPE

UDP Layer

CPECPE

join,
leave,
send,
receive

CEP: Conference Protocol Entity
UDP: User Datagram Protocol

user a user b user c

64 / 124

Abstract Test Architecture

PCO: Point of Control and Observation
IAP: Implementation Access Point
IUT: Implementation Under Test
SUT: System Under Test (i.e., SUT = IUT + test context)

The test context is the
environment in which the IUT is
embedded and that is present
during testing, but it is not the aim
of conformance testing.

65 / 124

Conference Protocol:
Concrete Test Architecture

CPE

(IUT)

LT-PCO

UT-PCO = C-SAP

UDP Layer

U-SAP LT-PCO

Tester
TorX

B C

A

CPE: Conference Protocol Entity
C-SAP: Conference Service Access Point
U-SAP: UDP Service Access Point
UT-PCO: Upper Tester Point of Control and Observation
LT-PCO: Lower Tester Point of Control and Observation

Directly access to IAP

Indirect access to IAP via the UDP layer

66 / 124

Test Results

67 / 124

The Conference Protocol
Experiments

Reported experiments:

• TorX - LOTOS, Promela : on-the-fly ioco testing

Axel Belinfante et al.,

Formal Test Automation: A Simple Experiment
IWTCS 12, Budapest, 1999.

• TorX statistics (with LOTOS and Promela)
– all errors found after 2 - 498 test events

– maximum length of tests : > 500,000 test events

– 2 mutants react to PDU’s from non-existent partners:
• no explicit reaction is specified for such PDU’s,

so ioco-correct, and TorX does not test such behaviour

68 / 124

LTS Testing vs. FSM Testing

• FSM good at:
– FSM has “more intuitive” theory
– FSM test suite is complete
-- but only w.r.t. assumption on number of states

– FSM test theory has been around for a number (>40) of years

• FSM bad at:
– Restrictions on FSM:

• deterministic
• completeness

– FSM has always alternation between input and output
– Difficult to specify interleaving in FSM
– FSM is not compositional

Model-Based Real-time System Testing:
--- The Uppaal Approach

70 / 124

Uppaal Tool and it’s Branches
for Testing

• Uppaal is an integrated tool environment for
modeling, simulation and verification of real-time
systems modeled as networks of timed automata,
extended with data types.

• Uppaal’s branches for testing:
– Uppaal-TRON

– Uppaal-Cover

71 / 124

Real-time Model-Based Testing

sensors

actuators

Plant
Continuous

Controller Program
Discrete

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

inputs

outputs

Test generation
(offline or
online) wrt.
Design Model

Conforms-to?

72 / 124

Timed System Testing

• Model:
– Timed Input-Output Labelled Transition
System (Timed IOLTS)

• Conformance relation:
– Timed Input-Output Conformance (Timed
ioco)

73 / 124

Timed IOLTS by Example

• Given a timed automaton:
– location: {l0, l1, l2, l3}
– actions:

• {coin?, req?} --- input actions
• {thinCof!, strongCof!} --- output actions

– clock: {x}

• Semantic state:
– e.g.: (l0, x=0), (l0, x=2), (l1, x=4)

• Semantic transition:
– e.g.: (l0, x=0) --delay(2)--> (l0, x=2),

(l0, x=2) --coin?--> (l1, x=0),

l
0

l
2

l
3

l
1

Such a transition system is a timed IOLTS
- as semantic interpretation of TA
- yypically infinite transition systems (because clocks are real variables)

74 / 124

Timed Conformance: tioco

• Derived from Tretman’s ioco

• Let I, S be two timed IOLTS’s, P a set of states
– TTr(P): the set of timed traces from a state in P

• eg.: σ = coin?.5.req?.2.thinCoffee!.9.coin?
– Out(P after σ) = possible outputs and delays after σ

• eg. out ({l2,x=1}): {thinCoffee, 0...2}

l
0

l
2

l
3

l
1

• I tioco S =def
– ∀σ ∈ TTr(S): Out(I after σ) ⊆ Out(S after σ), or
– TTr(i0) ⊆ TTr(s0), where i0 and s0 are the initial states of I and S

respectively

• Intuition
– IUT can accept all inputs for SPEC (and perhaps some other inputs)
– if IUT ever produces an output as required by SPEC, it should be

produced in time
– but IUT is not allowed to produce any illegal output (w.r.t. SPEC)

See also [Krichen&Tripakis, Khoumsi]

75 / 124

Does In Conform-to S1?
I1 I2 I3 I4 I5

I6
I7

S1

?

I8

76 / 124

S1 I1

σ=coin.give.10
σ∈TTr(I1), σ ∉TTr(S1)

out(I1 after coin.give.3)={0... ∞ ∞ ∞ ∞}
⊄
out(S1 after coin.give.3)={coffee,0…2}

Does In Conform-to S1?

77 / 124

S1 I3 I4

σ=coin.give.7.coffee
σ∈TTr(I3), σ ∉TTr(S1)

out(I3 after coin.give.7)={coffee,0}

⊄
out(S1 after coin.give.7)={}

σ=coin.give.1.coffee
σ∈TTr(I4), σ ∉TTr(S1)

out(I4 after coin.give.1)={coffee,0...4}

⊄
out(S1 after coin.give.1)={0...4}

Does In Conform-to S1?

78 / 124

S1

σ=coin.give.5.tea
σ∈TTr(I7), σ ∉TTr(S1)

out(I7 after coin.give.5)={tea, coffee,0}

⊄
out(S1 after coin.give.5)={coffee,0}

I8

σ=token.5.vodka
σ∈TTr(I8), σ ∉TTr(S1)
But σ was not specified in S1

I7

Does In Conform-to S1?

79 / 124

Now, Back to Timed Coffee Machine

•c?.2.r?.2.weakC

•c?.5.r?.4.strongC

•c?.2.r?.2.weakC

•c?.5.r?.7

Example Traces

I2 rt-ioco S

Implementation 1 Implementation 2Specification

I1 rt-ioco S

80 / 124

Essence of ”Timed ioco”?

SPEC

IUT

inputs

behavior

behavior

outputs

81 / 124

Explicit Environment Modelling

• Note that:
– TTr(S) is a very big (infinite) set
– We are usually interested in only a small portion of the
behavior

• I tioco S =def
– ∀σ ∈ TTr(S): Out(I after σ) ⊆ Out(S after σ), or
– TTr(i0) ⊆ TTr(s0), where i0 and s0 are the initial states of I and S

respectively

Recall that in "ioco" conformance…

• A solution:
– To explicitly model the environment that the IUT will be
operated in

82 / 124

The Environment ”Universe”

Incorrect, plausible

All (L*)

Normal
use

Valid

Rare

•Other external systems (Dedicate / open protocols)
•Other internal systems (eg powersupply, radio)
•Human Users
•Physical Plant via sensors / actuators

environment could be:

83 / 124

Sample Cooling Controller
IUT-model Env-model

On!

Off!

Low?

Med?

High?

Cr

•When T is high (low) switch on (off) cooling within r secs.
•When T is medium cooling may be either on or off (impl. freedom)

84 / 124

Environment Modelling

EL
EM

E1E2

EL E2 E1 EM

Temp.

time

High!

Med!

Low!

�EM Any action possible at any time

�E1 Only realistic temperature variations

�E2 Temperature never increases when cooling

�EL No inputs (completely passive)

(strict) (loose)

85 / 124

Relativized Timed Input-Output
Conformance (rt-ioco)

•I rt-iocoE S =def

∀σ ∈ TTr(E): Out((E,I) after σ) ⊆ Out((E,S) after σ)
or

•I rt-iocoE S iff TTr(I) ∩ TTr(E) ⊆ TTr(S) ∩ TTr(E) // input enabled

•Intuition: for all assumed environment behaviors, the IUT
• never produces illegal output, and
• if ever produces required output, then produces it in time

•E,S, I are input-enabled Timed IOLTS

•Let P be a set of states

•TTr(P): the set of timed traces from states in P

•P after σ = the set of states reachable after timed trace σ

•Out(P) = possible outputs and delays from states in P

System
Model

Environment
assumptions

ε0’,o0,ε1’,o1…

ε0,i0,ε1,i1…E

IUT

S I

See also [Larsen 04 FATES]

86 / 124

Off-line and On-line Testing

Test
requirements

Model

Test
derivation

test suite

Test
execution

Reports

System
under test

on-the-fly
test generation and execution

on-line testingon-line testing

Test
requirements

Model

Test
derivation

test suite

Test
execution

Reports

System
under test

off-line testingoff-line testing

Model-Based Off-line
Testing of Timed Systems

88 / 124

Automated Model-Based Off-line
Conformance testing

Test
Gene-
rator
tool

Test
Gene-
rator
tool

click?

x:=0

click?

x<2

x>=2

DBLclick!

fail

pass

Test

execution

tool

Test

execution

tool

Event

mapping

Driver

Model Test suite

Test

Generator

tool

Test

Generator

tool

Implementation Relation

Selection &

optimization

Does the behavior of the (black-box)
implementation comply to that of the specification?

Implementation
Under

Test

89 / 124

Touch-sensitive Light Controller

•Patient user: Wait=∞
•Impatient: Wait=15

90 / 124

Timed Tests

Infinitely many sequences!!!!!!

0·grasp!·210·release!·touch?.PASS

1000·grasp!·517·starthold?·100·release!·endhold?·PASS

0·grasp!·317·release!·touch?·2½·grasp!·220·release!·touch?·PASS

EXAMPLE test cases for Interface

x<=200

x<=500x==500

x==200

91 / 124

Test Selection?

• Infinitely many sequences…

• But testing practice should definitely be
finite

• To select finitely many out from an
infinitely large pool
– Test coverage criteria
– Test purposes

92 / 124

Test Generation by Model-
Checking

Uppaal Model-
Checker

Test purpose
(Property)

System model

Diagnostic trace
(witness)

• Use diagnostic trace as test case??!!

•Some

•Random

•Shortest

•Fastest

E<> connection.Established

myProtocol.xml

testConnectionEst.trc

93 / 124

Controllable Timed Automata

• “DOUTA”-Model
– Deterministic: two transitions with same
input/output leads to the same state

– Output-Urgent: enabled outputs will occur
immediately

– Isolated Outputs: if an output is enabled,
no other output is enabled

– Input-Enabled: all inputs can always be
accepted

94 / 124

A DOUTA Timed Automaton
T_sw=4
T_idle=20

WANT: if touch is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

Deterministic,
Output-Urgent,
Isolated Outputs,
Input-Enabled

95 / 124

Without Test Purpose

T_sw=4
T_idle=20

EXAMPLE test cases for Interface

0·grasp!·210·release!·touch?.PASS

1000·grasp!·517·starthold?·100·release!·endhold?·PASS

•Epsilon=200ms

•Delta=500ms

0·grasp!·317·release!·touch?·2½·grasp!·220·release!·touch?·PASS

Infinitely many sequences!!!!!!

96 / 124

Test Purpose #1

TP1: Check that the light can become bright:

E<> L==10

Environment model System model

Test Purpose: A specific test objective (or observation) the tester wants to make on SUT

•Shortest (and fastest) Test:
out(IGrasp);silence(500);in(OSetLevel,0);silence(1000);

in(OSetLevel,1);silence(1000);in(OSetLevel,2); silence(1000);

in(OSetLevel,3);silence(1000);in(OSetLevel,4);silence(1000);

in(OSetLevel,5);silence(1000);in(OSetLevel,6);silence(1000);

in(OSetLevel,7);silence(1000);in(OSetLevel,8);silence(1000);

in(OSetLevel,9);silence(1000);in(OSetLevel,10);

out(IRelease);

Wait=∞
minDelay=0

97 / 124

Test Purpose #2

•Shortest (and fastest) Test:

TP2: Check that controller can enter location ‘DnPassive’:
E<> Dim.DnPassive

DnPassive

•If delay=1000 out(IGrasp);

silence(500);

in(OSetLevel,0);

out(IRelease);

out(IGrasp);

silence(500);

98 / 124

Test Purpose #2

DnPassive

•If delay=40?

out(IGrasp);silence(500);in(OSetLevel,0);silence(40);
in(OSetLevel,1);silence(40);in(OSetLevel,2); silence(40);
in(OSetLevel,3);silence(40);in(OSetLevel,4); silence(40);
in(OSetLevel,5);silence(40);in(OSetLevel,6); silence(40);
in(OSetLevel,7);silence(40);in(OSetLevel,8); silence(40);
in(OSetLevel,9);silence(40);in(OSetLevel,10);silence(40);

•Fastest Test:

•Shortest Test:

out(IGrasp);

silence(500);

in(OSetLevel,0);

out(IRelease);

out(IGrasp);

silence(500);

TP2: Check that controller can enter location ‘DnPassive’:
E<> Dim.DnPassive

99 / 124

Test Purpose #3
TP3: Check that controller resets light
level to previous value after switch-on.
E<> Purpose3.goal

out(IGrasp); //set level to 5

silence(500);

in(OSetLevel,0);

silence(1000);

in(OSetLevel,1);

silence(1000);

in(OSetLevel,2);

silence(1000);

in(OSetLevel,3);

silence(1000);

in(OSetLevel,4);

silence(1000);

in(OSetLevel,5);

out(IRelease);

out(IGrasp); //touch To Off

silence(200);

out(IRelease);

in(OSetLevel,0);

out(IGrasp); //touch To On

silence(200);

out(IRelease);

in(OSetLevel,5);

silence(2000);

100 / 124

Coverage-Based Test
Generation

• Multi purpose testing

• Cover measurement

• Examples:
– Location coverage,

– Edge coverage,

– Definition/use pair coverage

l
1

l
4

l
3

l
2

a? x:=0

x≥2 a?

x<2

b!

c!

101 / 124

Location Coverage

• Multi purpose testing

• Cover measurement

• Examples:
– Location coverage,

– Edge coverage,

– Definition/use pair coverage

l
1

l
4

l
3

l
2

a? x:=0

x≥2 a?

x<2

b!

c!

102 / 124

Edge Coverage

• Multi purpose testing

• Cover measurement

• Examples:
– Location coverage,

– Edge coverage,

– Definition/use pair coverage

l
1

l
4

l
3

l
2

a? x:=0

x≥2 a?

x<2

b!

c!

103 / 124

Definition/Use Pair Coverage

• Multi purpose testing

• Cover measurement

• Examples:
– Location Coverage,

– Edge Coverage,

– Definition/Use Pair Coverage

l
1

l
4

l
3

l
2

a? x:=0

x≥2

x<2

b!

c!

104 / 124

Implementing Location Coverage
• Test sequence traversing all locations

• Encoding:
– Enumerate locations l0,…,ln
– Add an auxiliary variable li for each location

– Label each ingoing edge to location i with li:=true

– Mark initial visited l0:=true

• Check: E<>(l0=true ∧∧∧∧ … ∧∧∧∧ ln=true)

lj

lj:=true

lj:=true

105 / 124

Implementing Edge Coverage

• Test sequence traversing all edges

• Encoding:
– Enumerate edges e0,…,en
– Add auxiliary variable ei for each edge

– Label each edge ei:=true

• Check: E<>(e0=true ∧∧∧∧ … ∧∧∧∧ en=true)

l
1

l
4

l
3

l
2

a? x:=0 e0:=1

x≥2

a? e2:=1

x<2

b! e1:=1
c!

e3:=1

e4:=1

Model-Based On-line
Testing of Timed Systems

107 / 124

Automated Model-Based Off-line
Conformance testing

Test
Gene-
rator
tool

Test
Gene-
rator
tool

click?

x:=0

click?

x<2

x>=2

DBLclick!

fail

pass

Test

execution

tool

Test

execution

tool

Event

mapping

Driver

Model Test suite

Test

Generator

tool

Test

Generator

tool

Implementation Relation

Selection &

optimization

Does the behavior of the (black-box)
implementation comply to that of the specification?

Implementation
Under

Test

Reca
ll...

108 / 124

Automated Model-Based On-line
Conformance testing

Test
Gene-
rator
tool

Test
Gene-
rator
tool

click?

x:=0

click?

x<2

x>=2

DBLclick!

input

fail

pass

Test

execution

tool

Test

execution

tool

Adaptor

Model

Test

Generator

tool

Test

Generator

tool output

Correctness Relation

Selection &

optimization

•Test generated and executed
event-by-event (randomly)

•A.K.A. on-the-fly testing

Implementation
Under

Test

inputinputinput

outputoutputoutput

109 / 124

The Framework of Uppaal-TRON

•Complete and sound algorithm

•Efficient symbolic reachability algorithms

•Uppaal-TRON: Testing Real-time Systems ONline

•Release 1.4 http://www.cs.aau.dk/~marius/tron/

Correct system behavior

•Test Oracle

•Monitor

•Relevant input event
sequences

•Load model

”Relativized Timed i/o Conformance” Relation (rt-ioco)

•UppAal Timed Automata Network: Env || IUT

110 / 124

On-line Testing

• Characteristica
– very imaginative, “ingenious” tests sequences

– long test sequences

– stressful load

– effective fault detection

• Tools exists but mostly NON-real-time
– So-far systematic and explicit handling of
real-time constraints missing

111 / 124

State-set Computation
• Compute all potential states the model can
occupy after the timed trace ε0,i0,ε1,o1,ε2,i2,o2,…

• Let Z be a set of states

l
0

τ, x:=0
l
1

{ 〈l0,x=0〉} after 4 =
{ 〈l0,x=4〉, 〈l1, 0 ≤ x ≤ 4〉 }

〈l0,x=0〉
1
→→→→ 〈l0,x=1〉 〈l1,x=0〉 〈l1,x=3〉

τ
→→→→

3
→→→→

Z after εεεε :possible states
after τ* and εi , totaling a delay of ε

l
0

x≥7, a

a

l
3

l
2

l
1

l
4

a,

x:=0

τ

{ 〈l0,x=3〉 } after a =
{ 〈l2,x=3〉, 〈l4, x=3〉, 〈l3, x=0〉 }

Z after a: possible states
after a (and τ*)

112 / 124

Algorithm Idea:
State-set tracking

• Dynamically compute all potential states that
the model M can reach after the timed trace
ε0,i0,ε1,o1,ε2,i2,o2,…

• Z = M after (ε0,i0,ε1,o1,ε2,i2,o2)

• If Z= ∅ then IUT has made a computation not in
model: FAIL

• i is a relevant input in Env iff i ∈ EnvOutput(Z)

[Tripakis] Failure Diagnosis

113 / 124

Uppaal-TRON On-line Testing
Algorithm (skeleton)

Algorithm TestGenExe (S, E, IUT, T) returns {pass, fail}

Z := {(s0, e0)}.

while Z ≠ ∅ ∧ ♯iterations ≤ T do either randomly:

1. // offer an input

if EnvOutput(Z) ≠ ∅
randomly choose i ∈ EnvOutput(Z)
send i to IUT
Z := Z After i

2. // wait d for an output

randomly choose d ∈Delays(Z)

wait (for d time units or output o at d′ ≤ d)

if o occurred then

Z := Z After d′

Z := Z After o // may become ∅ (⇒fail)
else

Z := Z After d // no output within d delay

3. restart:

Z := {(s0, e0)}, reset IUT //reset and restart

if Z = ∅ then return fail else return pass

114 / 124

On-line Testing Example

Tools for Model-Based
Testing

116 / 124

Academic MBT Tools

FSM?AsmLAsmL

FSMSDL, EstelleTVEDA

FSMEFSMPhact

FSMEFSM
Conformance

Kit

CLPAutofocusAutofocus

CLPLustreGATeL

LustreLurette

LustreLutess

Short description
Testing
method

Modeling notationTool providerTool name

117 / 124

Academic MBT Tools (cont’d)

TLTSTA
Uppsala

University
Uppaal Cover

TLTSTA
Aalborg
University

Uppaal Tron

LTSUML/AMLAGEDIS

LTSNTIFIrisa, FranceSTG

LTS
LTS (LOTOS,
Promela, FSP)

Twente
University

TorX

LTS
LTS-API (LOTOS,

SDL, UML)

Irisa and
Verimag,
France

TGV

LTSLTS (Basic LOTOS)Cooper

Short description
Testing
method

Modeling notationTool providerTool name

118 / 124

Commercial MBT Tools

Qtronic derives tests from a design model of the system under test. This tool
supports multi-threaded and concurrent models, timing constraints, and testing of
nondeterministic systems.

www.conformiq.comConformiq3Qtronic

MaTeLo is based on Statistical Usage Testing and generates test caes from a
usage model of the system under test.

Model usage
editor using
Markov chain

www.all4tec.netAll4Tec2MaTeLo

LTG/UML generates test cases and executable test scripts from a UML 2.0 model.
It supports requirements raceability.

UML 2.0www.leirios.com
LEIRIOS

Technologies
3

LEIRIOS
Test

Generator -
LTG/UML

LTG/B generates test cases and executable test scripts from a B model. It
supports requirements traceability.

B notationwww.leirios.com
LEIRIOS

Technologies
3

LEIRIOS
Test

Generator -
LTG/B

UniTESK technology is a technology of software testing based on formal
specifications. Specifications are written using specialized extensions of
traditional programming languages. CTesK and JTesK can use a formal
representation of requirements as a source of test development.

Pre-Post
extensions of
programming
languages

www.unitesk.comUniTESK3CTesK, JTesK

In Conformiq Test Generator, UML statecharts constitute a high-level graphical
test script. Conformiq Test Generator is capable of selecting from the statechart
models a large amount of test case variants and of executing them against tested
systems.

UML
Statecharts

www.conformiq.comConformiq3
Conformiq

Test
Generator

CaseMaker uses the Pairwise method to compute test cases from input parameter
domain specifications and constraints specified by business rules.

Model of
input data
domain

www.casemakerinter
national.com

Diaz &
Hilterscheid

Unternehmensb
eratung GmbH

1Case Maker

The AETG Web Service generates pairwise test cases.
Model of
input data
domain

aetgweb.argreenhou
se.com

Telcordia
Technologies

1AETG

Short description
Modeling
notation

Web linkManufacturer
Tool
type

Tool name

Legend for Tool Type Column:
Category 1: Generation of Test Input Data from a Domain Model
Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests

119 / 124

Commercial MBT Tools (cont’d)

ZigmaTEST uses an FSM-based test engine that can generate a test sequence to
cover state machine transitions.

Finite State
Machine

www.atssoft.com/pr
oducts/testingtool.h

tm
ATS3ZigmaTEST Tools

Generates test vectors and test sequences, verifying them in autogenerated code
and in the modeling tool simulator.

Simulink and
MATRIXx

www.t-vec.comT-Vec3

T-Vec Tester for
Simulink - T-Vec

Tester for
MATRIXx

The Testcover.com Web Service generates test cases from a model of domain
requirements. It uses pairwise techniques.

Model of
input data
domain

www.testcover.com
Testcover.c

om
1Test Cover

An integrated test development and execution environment for TTCN-3 testsTTCN-3
www.telelogic.com/p
roducts/tau/tester/

index.cfm
Telelogic4TAU Tester

ATG is a module of Telelogic(I-Logix) Statemate and Rhapsody products. It allows
test case generation from a statechart model of the System.

Statemate
Statcharts
and UML
State
Machine

www.Ilogix.comi-Logix3

Statemate
Automatic Test
Generator /
Rhapsody

Automatic Test
Generator (ATG)

The SmartTest test case generation engine uses pairwise techniques.
Model of
input data
domain

www.smartwaretech
nologies.com/smartt

estprod.htm

Smartware
Technologie

s
1SmartTest

Reactis generates tests from Simulink and Stateflow models. This tool targets
embedded control software.

Mathlab,
Simulink,
Stateflow

www.reactive-
systems.com

Reactive
Systems

3Reactis

Rave generates test cases from a tabular model. The test cases are then
transformed into test drivers.

Tabular
notation

www.t-vec.comT-VEC3Rave

Short description
Modeling
notation

Web link
Manufactur

er
Tool
type

Tool name

Legend for Tool Type Column:
Category 1: Generation of Test Input Data from a Domain Model
Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests

Summary

121 / 124

Benefits of Model-Based Testing

software life cycle

complexity

model

system under test

•Automated testing
•Early testing
•Systematic and rigorous testing

full automation : test generation + execution + analysis

model is precise and unambiguous basis for testing

design errors found during validation of model

longer, cheaper, more flexible, and provably correct tests

122 / 124

Obstacles to Model-Based Testing

• Comfort factor
– This is not your parents’ test automation

• Skill sets
– Need testers who can design

• Expectations
– Models can be a significant upfront investment
– Will never catch all the bugs

• Metrics
– Bad metrics: bug counts, number of test cases
– Better metrics: spec coverage, code coverage

123 / 124

Main Readings

• Gerard J. Holzmann. Design and Validation of Computer
Protocols, Chapter 9 “Conformance Testing”

• Jan Tretmans. Testing Concurrent System – a Formal
Approach. In Proc. 10th Int'l Conf. on Concurrency Theory
(CONCUR'99), Eindhoven, The Netherlands, August 1999, LNCS
1664. (http://www.springerlink.com/content/jf8b4tewecjlwrrq/)

• Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian
Nielsen, Paul Pettersson, and Arne Skou. Formal Methods and
Testing, chapter "Automated Model-Based Conformance
Testing of Real-Time Systems". Springer-Verlag, 2006.

124 / 124

Further Readings

•Model-based testing website:
www.model-based-testing.org

• Books:
"Practical Model-Based Testing: A Tools Approach" by Mark
Utting and Bruno Legeard, Morgan-Kaufmann, 2007.

"Model-Based Testing of Reactive Systems", Advanced Lectures
edited by M. Broy et al., LNCS 3472, Springer, 2005.

“Black-Box Testing : Techniques for Functional Testing of
Software and Systems” by Boris Beizer

“Testing Object-Oriented Systems: Models, Patterns, and Tools”
by Robert Binder

“Software Testing: A Craftsman's Approach” by Paul Jorgensen

