
Languages and Compilation

Based on the Jean-Christophe Filliâtre’s Courses

given at École Polytechnique & École Normale Supérieure

Lecture 9 -

object-oriented languages

Léon Gondelman

aalborg univerisity | copenhagen | 2025

Léon Gondelman Languages and Compilers OO + fun 1

https://www.enseignement.polytechnique.fr/informatique/INF564/
https://www.lri.fr/~filliatr/ens/compil/

roadmap for today

today we focus on the compilation of object-oriented languages

• object layout

• dynamic dispatch

lab session: self-study / focus on projects

Léon Gondelman Languages and Compilers OO + fun 2

compiling OO languages

Léon Gondelman Languages and Compilers compiling OO languages 3

compiling OO languages

let us explain

• how an object is represented

• how a method call is implemented

let us use Java as an example (for the moment)

Léon Gondelman Languages and Compilers compiling OO languages 4

example

class Vehicle {

static int start = 10;

int position;

Vehicle() { position = start; }

void move(int d) { position += d; } }

class Car extends Vehicle {

int passengers;

Car() { super(); }

void await(Vehicle v) {

if (v.position < position)

v.move(position - v.position);

else move(10); } }

class Truck extends Vehicle {

int load;

Truck() { super(); }

void move(int d) {

if (d <= 55) position += d; else position += 55; } }

Léon Gondelman Languages and Compilers compiling OO languages 5

representing objects

an object is an heap-allocated block, containing

• its class (and a few other items of information)

• the values of its fields

the value of an object is a pointer to the block

key idea: simple inheritance allows us to store the value of some field x at
some fixed position in the block: own fields are placed after inherited fields

Vehicle

position

Car

position

passengers

Truck

position

load

note the absence of field start, which is static and thus allocated
elsewhere (for instance in the data segment)

Léon Gondelman Languages and Compilers compiling OO languages 6

example

Truck t = new Truck();

Car c = new Car();

c.passengers = 2;

c.move(60);

Vehicle v = c;

v.move(70);

c.await(t);

t

c

v

Truck
55
0

Car
130
2

position

load

position
passengers

Léon Gondelman Languages and Compilers compiling OO languages 7

field access

for each field, the compiler knows its position, which is the offset to add to
the object pointer

if for instance field position is at offset +4, then expression e.position

is compiled to

we compile the value of e in $t0 and then

lw $t1, 4($t0) # we store the content of the offset in $t1

this is sound, even if the compiler only knows the static type of e,
which may differ from the dynamic type (the class of the object)

it could even be a sub-class of Vehicule that is not yet defined!

Léon Gondelman Languages and Compilers compiling OO languages 8

terminology

overriding is the ability to redefine a method in a subclass
(so that objects in that subclass behave differently)

example: in class Truck

class Truck extends Vehicle {

...

void move(int d) { ... }

}

the method move, inherited from class Vehicle, is overridden

Léon Gondelman Languages and Compilers compiling OO languages 9

method call

the essence of OO languages lies in dynamic method call e.m(e1, . . . , en)
(aka dynamic dispatch / message passing)

to do this, we build class descriptors containing addresses to method
codes (aka dispatch table, vtable, etc.)

as for class fields, simple inheritance allows us to store the address of (the
code of) method m at a fixed offset in this descriptor

class descriptors can be allocated in the data segment; each object points
to its class descriptor

Léon Gondelman Languages and Compilers compiling OO languages 10

example

class Vehicule { void move(int d) {...} }

class Car extends Vehicule { void await(Vehicule v) {...}}

class Truck extends Vehicule { void move(int d) {...} }

descr. Vehicule

Vehicule move

descr. Car

Vehicule move

Car await

descr. Truck

Truck move

Léon Gondelman Languages and Compilers compiling OO languages 11

example

Truck t = new Truck();

Car c = new Car();

c.passengers = 2;

c.move(60);

Vehicle v = c;

v.move(70);

c.await(t);

t

c

v

55
0

130
2

Truck
Truck move

Car
Vehicule move
Car await

dynamic static

Léon Gondelman Languages and Compilers compiling OO languages 12

super class

in practice, the class descriptor for C also contains points to the class that
C inherits from, called the super class of C

this can be a pointer to the descriptor of the super class
(for instance stored in the very first slot of the descriptor)

this allows subtyping tests at runtime (downcast or instanceof)

Léon Gondelman Languages and Compilers compiling OO languages 13

class descriptors, schematically

Truck move

Car await
Vehicle move

Vehicle move
0

Léon Gondelman Languages and Compilers compiling OO languages 14

class descriptors, MIPS

.data

descr Vehicle:

.word 0

.word Vehicle move

descr Car:

.word descr Vehicle

.word Vehicle move

.word Car await

descr Truck:

.word descr Vehicle

.word Truck move

and the static field of Vehicle is put in the
data segment as well

static start:

.word 10

Truck move

Car await
Vehicle move

Vehicle move
0

Léon Gondelman Languages and Compilers compiling OO languages 15

Constructors

the constructor’s code is a function that assumes that a) the object has
been allocated and its address is in $a0 b) the first field (class descriptor)
is defined and c) the arguments are in $a1, $a2, $a3 and on the stack

class Vehicle {

Vehicle() { position = start; }

}

new Vehicle:

lw $t0, static start

sw $t0, 4($a0)

jr $ra

Léon Gondelman Languages and Compilers compiling OO languages 16

Constructors

for Car, the constructor just calls the one of its super class, that is
Vehicle in our example

class Car extends Vehicle {

Car() { super(); }

}

and since super(); is a tail call to the vehicle constructor, the
compilation consists of a mere jump:

new Car:

j new Vehicle

(similarly for the constructor of Truck)

Léon Gondelman Languages and Compilers compiling OO languages 17

Methods

for the methods, we adopt the same convention: the object is in $a0 and
the arguments of the method in $a1, $a2, $a3 (and stack if needed)

class Vehicle {

void move(int d) { position += d; }

}

Vehicle move:

lw $t0, 4($a0)

add $t0, $t0, $a1

sw $t0, 4($a0)

jr $ra

(similarly for the move method of Truck)

Léon Gondelman Languages and Compilers compiling OO languages 18

Method call

code with a dynamic call

class Car extends Vehicle {

void await(Vehicle v) {

if (v.position < position)

v.move(position - v.position);

else

move(10);

}

}

Car await:

lw $t0, 4($a1)

lw $t1, 4($a0)

bge $t0, $t1, L1

move $a0, $a1

sub $a1, $t1, $t0

lw $t0, 0($a0)

lw $t0, 4($t0)

jr $t0

L1:

li $a1, 10

lw $t0, 0($a0)

lw $t0, 4($t0)

jr $t0

note a jr jump (instead of jalr) since move(10) is a tail call

Léon Gondelman Languages and Compilers compiling OO languages 19

be careful

if we write

Truck v = new Truck();

((Vehicule)v).move();

this is the method move from class Truck that is called
since the call is always compiled the same way

the cast only has an influence on the static type
(existence of the method + overloading resolution; see lecture 6)

Léon Gondelman Languages and Compilers compiling OO languages 20

the main program

class Main {

public static void main(String arg[]) {

Truck t = new Truck();

Car c = new Car();

c.passengers = 2;

System.out.println(c.position); // 10

c.move(60);

System.out.println(c.position); // 70

Vehicle v = c;

v.move(70);

System.out.println(c.position); // 140

c.await(t);

System.out.println(t.position); // 65

System.out.println(c.position); // 140

}

}

Léon Gondelman Languages and Compilers compiling OO languages 21

Creating the object

Truck t = new Truck();

we start by allocating a bloc of 12
bytes on the heap

we store the class descriptor of
Truck in the first field

we decide to put t in $s1

we invoke the code of the constructor

li $a0, 12

li $v0, 9 #call sbrk

syscall

la $t0, descr Truck

sw $t0, 0($v0)

move $s1, $v0

move $a0, $v0

jal new Truck

(similarly for c = new Car(), stored in $s2)
Léon Gondelman Languages and Compilers compiling OO languages 22

method call

the call

c.move(60);

is compiled into

move $a0, $s2

li $a1, 60

lw $t0, 0($s2)

lw $t0, 4($t0)

jalr $t0

and finally we make use of jalr !

Léon Gondelman Languages and Compilers compiling OO languages 23

Alias

the variable declaration

Vehicle v = c;

is doing nothing but creating an alias

if v is stored in $s3, the generated code is simply

move $s3, $s2

etc.

Léon Gondelman Languages and Compilers compiling OO languages 24

a few words on C++

Léon Gondelman Languages and Compilers compiling OO languages 25

example

let us reuse the vehicles example

class Vehicle {

static const int start = 10;

public:

int position;

Vehicle() { position = start; }

virtual void move(int d) { position += d; }

};

virtual means that method move can be overridden

Léon Gondelman Languages and Compilers compiling OO languages 26

example

class Car : public Vehicle {

public:

int passengers;

Car() {}

void await(Vehicle &v) { // call by reference

if (v.position < position)

v.move(position - v.position);

else

move(10);

}

};

Léon Gondelman Languages and Compilers compiling OO languages 27

example (cont’d)

class Truck : public Vehicle {

public:

int load;

Truck() {}

void move(int d) {

if (d <= 55) position += d; else position += 55;

}

};

Léon Gondelman Languages and Compilers compiling OO languages 28

example (cont’d)

#include <iostream>

using namespace std;

int main() {

Truck t; // objects are stack-allocated

Car c;

c.passengers = 2;

c.move(60);

Vehicle *v = &c; // alias

v->move(70);

c.await(t);

}

Léon Gondelman Languages and Compilers compiling OO languages 29

representation

on this example, object representation is not different from Java’s

descr. Vehicle

position

descr. Car

position

passengers

descr. Truck

position

load

Léon Gondelman Languages and Compilers compiling OO languages 30

multiple inheritance

but in C++, we also multiple inheritance

consequence: we cannot use anymore the principle that

• the object layout for the super class is a prefix of the object layout of
the subclass

• the descriptor for the super class is a prefix of the descriptor for the
subclass

Léon Gondelman Languages and Compilers compiling OO languages 31

multiple inheritance

class Rocket {

public:

float thrust;

Rocket() { }

virtual void display() {}

};

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { position += 2*d; }

};

descr. RocketCar

position

passengers

descr. Rocket

thrust

name

representations of Car and Rocket are appended

Léon Gondelman Languages and Compilers compiling OO languages 32

multiple inheritance

in particular, a cast such as

RocketCar rc;

... (Rocket)rc ...

is compiled using pointer arithmetic

... rc + 12 ...

this is not a no-op anymore

descr. RocketCar

position

passengers

descr. Rocket

thrust

name

Léon Gondelman Languages and Compilers compiling OO languages 33

multiple inheritance

let us now assume that Rocket also inherits from Vehicle

class Rocket : public Vehicle {

public:

float thrust;

Rocket() { }

virtual void display() {}

};

class RocketCar : public Car, public Rocket {

public:

char *name;

...

};

descr. RocketCar

position

passengers

descr. Rocket

position

thrust

name

we now have two fields position

Léon Gondelman Languages and Compilers compiling OO languages 34

multiple inheritance

and thus a possible ambiguity

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { position += 2*d; }

};

vehicles.cc: In member function ‘virtual void RocketCar::move(int)’:

vehicles.cc:51:22: error: reference to ‘position’ is ambiguous

Léon Gondelman Languages and Compilers compiling OO languages 35

multiple inheritance

we have to say which one we refer to

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { Rocket::position += 2*d; }

};

Léon Gondelman Languages and Compilers compiling OO languages 36

virtual inheritance

to have a single instance of Vehicle inside RocketCar, we need to modify
the way Car and Rocket inherit from Vehicle; this is virtual inheritance

class Vehicle { ... };

class Car : public virtual Vehicle { ... };

class Rocket : public virtual Vehicle { ... };

class RocketCar : public Car, public Rocket {

there is no ambiguity anymore:

public:

char *name;

void move(int d) { position += 2*d; }

};

Léon Gondelman Languages and Compilers compiling OO languages 37

three class diagrams

class Vehicle { ... };

class Car : Vehicle { ... };

class Rocket { ... };

class RocketCar : Car, Rocket { ... };

Vehicle

Car Rocket

RocketCar

class Vehicle { ... };

class Car : Vehicle { ... };

class Rocket : Vehicle { ... };

class RocketCar : Car, Rocket { ... };

Vehicle Vehicle

Car Rocket

RocketCar

class Vehicle { ... };

class Car : virtual Vehicle { ... };

class Rocket : virtual Vehicle { ... };

class RocketCar : Car, Rocket { ... };

Vehicle

Car Rocket

RocketCar

(the diamond)

Léon Gondelman Languages and Compilers compiling OO languages 38

if you are curious

g++’s command line option -fdump-lang-class outputs a text file
containing objects and tables layout

Léon Gondelman Languages and Compilers compiling OO languages 39

Java interfaces

though Java only features simple inheritance, interfaces make method call
more complex, in a way analogous to multiple inheritance

interface I {

void m();

}

class C {

void foo(I x) { x.m(); }

}

when compiling x.m(), we have no idea what the class of object x will be

Léon Gondelman Languages and Compilers compiling OO languages 40

multiple dispatch

instead of dispatching according to the type of the object, we can use the
types of all the actual parameters; this is called multiple dispatch

an example: Julia, a mathematically-oriented language

function +(x::Int64 , y::Int64) ... end

function +(x::Float64, y::Float64) ... end

function +(x::Date , y::Time) ... end

another example: CLOS (Common Lisp Object System)

Léon Gondelman Languages and Compilers compiling OO languages 41

remark

pattern matching, as we find in OCaml for instance, e.g.,

let rec eval = function

| Const n -> ...

| Call ("print", [e]) -> ...

| Call (f, el) -> ...

is a form of dynamic dispatch: the branch is selected according to some
runtime information

Léon Gondelman Languages and Compilers compiling OO languages 42

