
Languages and Compilation

Based on the Jean-Christophe Filliâtre’s Courses

given at École Polytechnique & École Normale Supérieure

Lecture 8 - evaluation strategies

and parameter passing

Léon Gondelman

aalborg univerisity | copenhagen | 2025

Léon Gondelman Languages and Compilers 1

https://www.enseignement.polytechnique.fr/informatique/INF564/
https://www.lri.fr/~filliatr/ens/compil/

roadmap for today

• concepts: evaluations strategies, parameter passing

• illustration: parameter passing modes of
• Java
• OCaml
• Python
• C
• C++

• lab session:
• continuing the previous lab (compiling a small language to MIPS)
• help with the projects

Léon Gondelman Languages and Compilers 2

evaluation strategies, parameter passing

Léon Gondelman Languages and Compilers 3

some terminology

when declaring a function

function f(x1, ..., xn) =

...

variables x1,...,xn are called the formal parameters of f

and when calling this function

f(e1, ..., en)

expressions e1,...,en are called the actual parameters of f

Léon Gondelman Languages and Compilers 4

some terminology

in a language with in-place modifications, an assignment

e1 := e2

modifies a memory location designated by e1

the expression e1 is limited to certain constructs,
and assignments such as

42 := 17

true := false

do not make sense

an expression that is legal on the left-hand side of an assignment is called
a left value

Léon Gondelman Languages and Compilers 5

evaluation strategy

the evaluation strategy of a language defines the order in which
computations are performed

this can be defined using a formal semantics (see lecture 2)

the compiler must obey the evaluation strategy

Léon Gondelman Languages and Compilers 6

evaluation strategy

in particular, the evaluation strategy may specify

• when actual parameters are evaluated

• the evaluation order of operands and actual parameters

some aspects of evaluation may be left unspecified

this allows the compiler to perform more aggressive optimizations
(such as reordering computations)

Léon Gondelman Languages and Compilers 7

evaluation strategy

we distinguish

• eager evaluation: operands / actual parameters are evaluated before
the operation / the call

examples: C, C++, Java, OCaml, Python

• lazy evaluation: operands / actual parameters are evaluated only
when needed

examples: Haskell, Clojure
but also Boolean operators && and || in most languages

Léon Gondelman Languages and Compilers 8

evaluation and side effects

an imperative language has to adopt an eager evaluation, to ensure that
side effects are performed consistently with the source code

for instance, the Java code

int r = 0;

int id(int x) { r += x; return x; }

int f(int x, int y) { return r; }

{ System.out.println(f(id(40), id(2))); }

prints 42 since both arguments of f are evaluated

Léon Gondelman Languages and Compilers 9

exception

an exception is made for Boolean operations && and || in most languages,
which is really useful

void insertionSort(int[] a) {

for (int i = 1; i < a.length; i++) {

int v = a[i], j = i;

for (; 0 < j && v < a[j-1]; j--)

a[j] = a[j-1];

a[j] = v;

}

}

Léon Gondelman Languages and Compilers 10

remark

non-termination is also a side effect

for instance, the Java code

int loop() { while (true); return 0; }

int f(int x, int y) { return x+1; }

{ System.out.println(f(41, loop())); }

does not terminate, even if argument y is not used

Léon Gondelman Languages and Compilers 11

purely functional programming

a purely functional language (= without imperative features) may adopt
any evaluation strategy, since an expression will always evaluate to the
same value (this is called referential transparency)

in particular, it may adopt a lazy evaluation

Léon Gondelman Languages and Compilers 12

example

the Haskell program

loop () = loop ()

f x y = x

main = putChar (f ’a’ (loop ()))

terminates (and prints a)

Léon Gondelman Languages and Compilers 13

parameter passing

the semantics also defines the way parameters are passed in a function call

several approaches:

• call by value

• call by reference

• call by name

• call by need

(we also say passing by value, etc.)

Léon Gondelman Languages and Compilers 14

call by value

new variables receive the values of actual parameters

function f(x) =

x := x + 1

main() =

int v := 41

f(v)

print(v) // prints 41

Léon Gondelman Languages and Compilers 15

call by reference

formal parameters denote the same left values as actual parameters

function f(x) =

x := x + 1

main() =

int v := 41

f(v)

print(v) // prints 42

Léon Gondelman Languages and Compilers 16

call by name

actual parameters are substituted to formal parameters, textually, and
thus are evaluated only if necessary

function f(x, y, z) =

return x*x + y*y

main() =

print(f(1+2, 2+2, 1/0)) // prints 25

// 1+2 is evaluated twice

// 2+2 is evaluated twice

// 1/0 is never evaluated

Léon Gondelman Languages and Compilers 17

call by need

actual parameters are evaluated only if necessary,
and at most once

function f(x, y, z) =

return x*x + y*y

main() =

print(f(1+2, 2+2, 1/0)) // prints 25

// 1+2 is evaluated once

// 2+2 is evaluated once

// 1/0 is never evaluated

Léon Gondelman Languages and Compilers 18

a few words on Java

Léon Gondelman Languages and Compilers 19

Java

Java uses an eager evaluation, with call by value

evaluation order is left-to-right

a value is

• either of a primitive type (Boolean, character, machine integer, etc.)

• or a pointer to a heap-allocated object

Léon Gondelman Languages and Compilers 20

call by value

void f(int x) {

x = x + 1;

}

int main() {

int v = 41;

f(v);

// v is still 41

}

...
41
...
41
...

v

x

...
41
...
42
...

v

x

Léon Gondelman Languages and Compilers 21

passing an object

an object is allocated on the heap

class C { int f; }

void incr(C x) {

x.f += 1;

}

void main () {

C r = new C();

r.f = 41;

incr(r);

// r.f now is 42

}

...

...

...

41

r

x

...

...

...

42

r

x

this is still call by value,
with a value that is an (implicit) pointer to an object

Léon Gondelman Languages and Compilers 22

passing an array

an array is an object

void incr(int[] x) {

x[1] += 1;

}

void main () {

int[] a = new int[17];

a[1] = 41;

incr(a);

// a[1] now is 42

}

...

...

...

41 ...
a

x

...

...

...

42 ...
a

x

Léon Gondelman Languages and Compilers 23

call by name in Java

we can emulate call by name in Java, by replacing parameters with
functions; for instance, the function

int f(int x, int y) {

if (x < 0 || x == 0) return 42; else return y + y;

}

can be turned into

int f(Supplier<Integer> x, Supplier<Integer> y) {

if (x.get() < 0 || x.get() == 0)

return 42;

else

return y.get() + y.get();

}

and called like this

int v = f(() -> 0, () -> { throw new Error(); });

Léon Gondelman Languages and Compilers 24

call by need in Java

more efficiently, we can simulate call by need in Java

class Lazy<T> implements Supplier<T> {

private T cache = null;

private Supplier<T> f;

Lazy(Supplier<T> f) { this.f = f; }

public T get() {

if (this.cache == null) {

this.cache = this.f.get();

this.f = null; // allows the GC to reclaim f

}

return this.cache;

}

}

(this is memoization)
Léon Gondelman Languages and Compilers 25

call by need in Java

and we use it like this

int w = f(new Lazy<Integer>(() -> 1),

new Lazy<Integer>(() -> { ...takes time... }));

Léon Gondelman Languages and Compilers 26

a few words on OCaml

Léon Gondelman Languages and Compilers 27

OCaml

OCaml has an eager evaluation, with call by value

evaluation order is left unspecified

a value is

• either of a primitive type (Boolean, character, machine integer, etc.)

• or a pointer to a heap-allocated block (array, record, non constant
constructor, etc.)

Léon Gondelman Languages and Compilers 28

left values

left values are array elements

a.(2) <- true

and mutable record fields

x.age <- 42

Léon Gondelman Languages and Compilers 29

references

OCaml’s “mutable variables” (aka references) are records

type ’a ref = { mutable contents: ’a }

and operations := and ! are defined as

let (!) r = r.contents

let (:=) r v = r.contents <- v

Léon Gondelman Languages and Compilers 30

passing a reference

a reference is allocated on the heap

let incr x =

x := !x + 1

let main () =

let r = ref 41 in

incr r

(* !r now is 42 *)

...

...

...

41

r

x

...

...

...

42

r

x

this is still call by value,
with a value that is an (implicit) pointer to a mutable data

Léon Gondelman Languages and Compilers 31

passing an array

an array is allocated on the heap

let incr x =

x.(1) <- x.(1) + 1

let main () =

let a = Array.make 17 0 in

a.(1) <- 41;

incr a

(* a.(1) now is 42 *)

...

...

...

41 ...
a

x

...

...

...

42 ...
a

x

Léon Gondelman Languages and Compilers 32

be careful

to build a matrix, do not write

let m = Array.make 2 (Array.make 3 0)

0 0 0

m

but

let m = Array.make_matrix 2 3 0

0 0 0 0 0 0

m

Léon Gondelman Languages and Compilers 33

call by name in OCaml

we can simulate call by name in OCaml, by replacing parameters with
functions

for instance, the function

let f x y =

if x = 0 then 42 else y + y

can be turned into

let f x y =

if x () = 0 then 42 else y () + y ()

and called like this

let v = f (fun () -> 0) (fun () -> failwith "oups")

Léon Gondelman Languages and Compilers 34

call by need in OCaml

we can also simulate call by need in OCaml

we first introduce a type to represent lazy computations

type ’a value = Value of ’a

| Frozen of (unit -> ’a)

type ’a by_need = ’a value ref

and a function to evaluate a computation when it is not yet done

let force l = match !l with

| Value v -> v

| Frozen f -> let v = f () in l := Value v; v

(this is memoization)

Léon Gondelman Languages and Compilers 35

call by need in OCaml

then we define function f as follows

let f x y =

if force x = 0 then 42 else force y + force y

and we call it with

let v = f (ref (Frozen (fun () -> 1)))

(ref (Frozen (fun () -> ...takes time...)))

note: OCaml has a lazy construct that does something similar
(but in a more subtle and more efficient way)

Léon Gondelman Languages and Compilers 36

a few words on Python

Léon Gondelman Languages and Compilers 37

Python

Python has an eager evaluation, with call by value

evaluation order is left-to-right
(but right-to-left for an assignment)

a value is a pointer to a heap-allocated object

Léon Gondelman Languages and Compilers 38

passing an integer

an integer is an immutable object

def f(x):

x += 1

v = 41

f(v)

print(v) # prints 41

...

...

...

41
v

x

...

...

...

41

42

v

x

this is still call by value,
with a value that is an (implicit) pointer to an object

Léon Gondelman Languages and Compilers 39

passing an array

an array is a mutable object

def incr(x):

x[1] += 1

a = [0] * 17

a[1] = 41

incr(a)

a[1] now is 42

...

...

...

...

41

a

x

...

...

...

...

42

a

x

Léon Gondelman Languages and Compilers 40

be careful

to build a matrix, do not write

m = [[0] * 3] * 2

0 0 0

m

but

m = [[0] * 3 for _ in range(2)]

0 0 0 0 0 0

m

Léon Gondelman Languages and Compilers 41

remark

execution models of Java, OCaml, and Python are very close

even if their surface languages are way different

Léon Gondelman Languages and Compilers 42

a few words on C

Léon Gondelman Languages and Compilers 43

C

C is an imperative language that is considered low-level, notably because
pointers and pointer arithmetic are explicit

conversely, C can be considered as a high-level assembly language

a book that is still relevant:
The C Programming Language
by Brian Kernighan and Dennis Ritchie

Léon Gondelman Languages and Compilers 44

C

the C language has an eager evaluation, with call by value

evaluation order is left unspecified

Léon Gondelman Languages and Compilers 45

the types of C

• we have primitive types such as char, int, float, etc.

• a type τ* for pointers to values of type τ

if p is a pointer of τ*, then *p stands for the value pointed to by p,
of type τ

if e is a left value of type τ , then &e is a pointer to its memory
location, with type τ*

• we have records, called structures, such as

struct L { int head; struct L *next; };

if e has type struct L, we write e.head for a field access

Léon Gondelman Languages and Compilers 46

the left values of C

in C, a left value is either

• x, a variable

• *e, the dereferencing of a pointer

• e.x, a structure field access
if e is itself a left value

• t[e], that is sugar for *(t+e)

• e->x, that is sugar for (*e).x

Léon Gondelman Languages and Compilers 47

call by value

void f(int x) {

x = x + 1;

}

int main() {

int v = 41;

f(v);

// v is still 41

}

...
41
...
41
...

v

x

...
41
...
42
...

v

x

Léon Gondelman Languages and Compilers 48

structures

call by value means that structures are copied when passed to functions
or returned

structures are also copied when variables of structure types are assigned,
i.e. assignments such as x = y, where x and y have type struct S

Léon Gondelman Languages and Compilers 49

structures

struct S { int a; int b; };

void f(struct S x) {

x.b = x.b + 1;

}

int main() {

struct S v = { 1, 2 };

f(v);

// v.b is still 2

}

...
2
1
...
2
1
...

v

x

...
2
1
...
3
1
...

v

x

Léon Gondelman Languages and Compilers 50

passing a pointer

we can simulate a call by reference by passing an explicit pointer

void incr(int *x) {

*x = *x + 1;

}

int main() {

int v = 41;

incr(&v);

// v now is 42

}

...
41
...

...

v

x

...
42
...

...

v

x

but this is still call by value

Léon Gondelman Languages and Compilers 51

pointers to structures

to avoid copies, we often use pointers to structures

struct S { int a; int b; };

void f(struct S *x) {

x->b = x->b + 1;

}

int main() {

struct S v = { 1, 2 };

f(&v);

// v.b now is 3

}

...
2
1
...

...

v

x

...
3
1
...

...

v

x

Léon Gondelman Languages and Compilers 52

dangling reference

explicit pointer manipulation can be dangerous

int* p() {

int x;

...

return &x;

}

this function returns a pointer to a memory location on the stack (the
stack frame of p) that is not meaningful anymore, and that is going to be
reused for another stack frame

we call this a dangling reference

Léon Gondelman Languages and Compilers 53

arrays

notation t[i] is syntactic sugar for *(t+i) where

• t is a pointer to a memory location containing consecutive integers

• + stands for pointer arithmetic (adding 4i to t for an array of 32 bit
integers)

the first element of the array is thus t[0], that is *t

Léon Gondelman Languages and Compilers 54

arrays

an array may be allocated on the stack, as follows

void f() {

int t[10];

and it will be deallocated when the function exits

or allocated on the heap, as follows

int *t = malloc(10 * sizeof(int));

and it has to be deallocated with free

Léon Gondelman Languages and Compilers 55

arrays and pointers

we cannot assign arrays, only pointers

so we can’t write

void p() {

int t[3];

int u[3];

t = u; // <- error

}

t[2]

t[1]

t → t[0]

u[2]

u[1]

u → u[0]

since t and u are (stack-allocated) arrays and arrays assignment is not
possible

Léon Gondelman Languages and Compilers 56

passing

when passing an array, we only pass a pointer (by value, as always)

we can write

void q(int t[3], int u[3]) {

t = u;

}

and this is exactly the same as

void q(int *t, int *u) {

t = u;

}

and pointer assignment is possible

t[2]
t[1]
t[0]
...

u[2]
u[1]
u[0]
...

...

t
u

t[2]
t[1]
t[0]
...

u[2]
u[1]
u[0]
...

...

t
u

Léon Gondelman Languages and Compilers 57

a few words on C++

Léon Gondelman Languages and Compilers 58

C++

in C++, we have (among other things) all the types and constructs of C
with an eager evaluation

passing is call by value by default

but we also have call by reference
indicated with symbol & at the formal parameter site

Léon Gondelman Languages and Compilers 59

example

void f(int &x) {

x = x + 1;

}

int main() {

int v = 41;

f(v);

// v now is 42

}

...
41
...

...

v

x

...
42
...

...

v

x

this is the compiler that

• passed a pointer to v at the call site

• dereferenced the pointer x in function f

Léon Gondelman Languages and Compilers 60

left value

the actual parameter has to be a left value

void f(int &x) {

x = x + 1;

}

int main() {

f(41); // <- error (not a left value)

}

Léon Gondelman Languages and Compilers 61

structures by reference

we can pass structures by reference

struct S { int a; int b; };

void f(struct S &x) {

x.b = x.b + 1;

}

int main() {

struct S v = { 1, 2 };

f(v);

// v.b now is 3

}

...
2
1
...

...

v

x

...
3
1
...

...

v

x

Léon Gondelman Languages and Compilers 62

references and pointers

we can pass pointers by reference

for instance to insert an element into a mutable tree

struct Node { int elt; Node *left, *right; };

void add(Node* &t, int x) {

if (t == NULL) t = create(NULL, x, NULL);

else if (x < t->elt) add(t->left, x);

else if (x > t->elt) add(t->right, x);

}

Léon Gondelman Languages and Compilers 63

summary

...
41
...
41
...

v

x

...
41
...

...

v

x

...

...

...

41

r

x

Java integer by value — pointer by value

(object)

OCaml integer by value — pointer by value

(ref, array, etc.)

Python — — pointer by value
(object)

C integer by value pointer by value pointer by value

C++ integer by value pointer by value pointer by value

integer by reference or by reference

Léon Gondelman Languages and Compilers 64

next

• lab 8
• compiling a small language to MIPS
• help with the projects

• next lecture
• OO languages compilation

Léon Gondelman Languages and Compilers 65

