
Languages and Compilation

Based on the Jean-Christophe Filliâtre’s Courses

given at École Polytechnique & École Normale Supérieure

Lecture 7 - Assembly

Léon Gondelman

aalborg univerisity | copenhagen | 2025

Léon Gondelman Languages and Compilers assembly 1

https://www.enseignement.polytechnique.fr/informatique/INF564/
https://www.lri.fr/~filliatr/ens/compil/

today

lecture:

• small reminder about computer architecture

• overview of MIPS architecture (with demos)

• functions calls & the stack (slides 36-45)

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/

lab session:

• writing manually some small MIPS programs

• implementing a compiler for a mini-language of arithmetic expressions
generating automatically MIPS code
https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/index.html

Léon Gondelman Languages and Compilers assembly 2

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/
https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/index.html

today

lecture:

• small reminder about computer architecture

• overview of MIPS architecture (with demos)

• functions calls & the stack (slides 36-45)

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/

lab session:

• writing manually some small MIPS programs

• implementing a compiler for a mini-language of arithmetic expressions
generating automatically MIPS code
https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/index.html

Léon Gondelman Languages and Compilers assembly 2

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/
https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/index.html

a little bit of computer arithmetic (reminder)

an integer is represented using n bits,
written from right (least significant) to left (most significant)

bn−1 bn−2 . . . b1 b0

typically, n is 8, 16, 32, or 64

Léon Gondelman Languages and Compilers assembly 3

unsigned integer

bits = bn−1bn−2 . . . b1b0

value =
n−1∑
i=0

bi2
i

bits value

000. . . 000 0
000. . . 001 1
000. . . 010 2

...
...

111. . . 110 2n − 2
111. . . 111 2n − 1

example: 001010102 = 42

Léon Gondelman Languages and Compilers assembly 4

signed integer: two’s complement

the most significant bit bn−1 is the sign bit

bits = bn−1bn−2 . . . b1b0

value = −bn−12
n−1 +

n−2∑
i=0

bi2
i

example:
110101102 = −128 + 86

= −42

bits value

100. . . 000 −2n−1

100. . . 001 −2n−1 + 1
...

...
111. . . 110 −2
111. . . 111 −1
000. . . 000 0
000. . . 001 1
000. . . 010 2

...
...

011. . . 110 2n−1 − 2
011. . . 111 2n−1 − 1

Léon Gondelman Languages and Compilers assembly 5

beware!

according to the context, the same bits are interpreted either as a signed
or unsigned integer

example:

• 110101102 = −42 (signed 8-bit integer)

• 110101102 = 214 (unsigned 8-bit integer)

Léon Gondelman Languages and Compilers assembly 6

operations

the machine provide operations such as

• logical (aka bitwise) operations: and, or, xor, not

• shift operations

• arithmetic operations: addition, subtraction, multiplication, etc.

Léon Gondelman Languages and Compilers assembly 7

logical operations

operation example

negation x 00101001

not x 11010110

and x 00101001

y 01101100

x and y 00101000

or x 00101001

y 01101100

x or y 01101101

xor x 00101001

y 01101100

x xor y 01000101

Léon Gondelman Languages and Compilers assembly 8

shift operation

• logical shift left (inserts least significant zeros)

← bn−3 . . . b1 b0 0 0 ←

(<< in Java, lsl in OCaml)

• logical shift right (inserts most significant zeros)

→ 0 0 bn−1 . . . b3 b2 →

(>>> in Java, lsr in OCaml)

• arithmetic shift right (duplicates the sign bit)

→ bn−1 bn−1 bn−1 . . . b3 b2 →

(>> in Java, asr in OCaml)

Léon Gondelman Languages and Compilers assembly 9

a little bit of architecture

roughly speaking, a computer is composed

• of a CPU, containing
• few integer and floating-point registers
• some computation power

• memory (RAM)
• composed of a large number of bytes (8 bits)

for instance, 1 GiB = 230 bytes = 233 bits, that is 22
33

possible states
• contains data and instructions

Léon Gondelman Languages and Compilers assembly 10

a little bit of architecture

CPU $pc 0000052

$a0 0000012 $a1 0000040

$a2 0000022 $a3 0000000

$v0 0000000 ...

RAM

accessing memory is costly (at one billion instructions per second, light
only traverses 30 centimeters!)

Léon Gondelman Languages and Compilers assembly 11

a little bit of architecture

reality is more complex:

• several (co)processors, some dedicated to floating-point

• one or several memory caches

• virtual memory (MMU)

• etc.

Léon Gondelman Languages and Compilers assembly 12

execution principle

execution proceeds according to the following:

• a register (%pc) contains the address of the next instruction to execute

• we read one or several bytes at this address (fetch)

• we interpret these bytes as an instruction (decode)

• we execute the instruction (execute)

• we modify the register %pc to move to the next instruction
(typically the one immediately after, unless we jump)

Léon Gondelman Languages and Compilers assembly 13

execution principle

CPU $pc 0000052

$a0 0000012 $a1 0000040

$a2 0000022 $a3 0000000

$v0 0000000 ...

RAM

instruction : 001000 00110 00101 0000000000001010
decoding : addi %a2 %a1 10

i.e. add 10 to register %a2 and store the result in the register %a1

Léon Gondelman Languages and Compilers assembly 14

principle

again, reality is more complex:
• pipelines

• several instructions are executed in parallel

• branch prediction
• to optimize the pipeline, we attempt at predicting conditional branches

Léon Gondelman Languages and Compilers assembly 15

which architecture for this course?

two main families of microprocessors
• CISC (Complex Instruction Set)

• many instructions
• many addressing modes
• many instructions read / write memory
• few registers
• examples: VAX, PDP-11, Motorola 68xxx, Intel x86

• RISC (Reduced Instruction Set)
• few instructions
• few instructions read / write memory
• many registers
• examples: Alpha, Sparc, MIPS, ARM

Which architecture to choose for this course?

Léon Gondelman Languages and Compilers assembly 16

quiz

Léon Gondelman Languages and Compilers assembly 17

MIPS architecture

Léon Gondelman Languages and Compilers assembly 18

MIPS architecture

• 32 registers, $0 to $31
• $0 always stores 0
• used under different names, respecting the following conventions:

(zero, at, v0–v1, a0–a3, t0–t9, s0–s7, k0–k1, gp, sp, fp, ra)

• conceptually, three kinds of instructions
• instructions for the transfer between registers and memory
• instructions for computations (logical, arithmetic, comparison)
• instructions for jumping

(see the documentation for MIPS)

Léon Gondelman Languages and Compilers assembly 19

https://homes.cs.aau.dk/~lego/compil25/HP_AppA.pdf

MIPS assembly

we do not code in machine language, but using the assembly language

the assembly language provides several facilities:

• symbolic names

• allocation of global data

assembly language is turned into machine code by a program called an
assembler (a compiler)

Léon Gondelman Languages and Compilers assembly 20

MIPS assembly

the assembly directive

.text

indicates that the instructions will follow and the
directive

.data

indicates that the data will follow

the code will be loaded starting from the address
0x400000

and the data from the address 0x10000000

...

data

code

reserved

7FFFFFFC16→

1000000016→

40000016→

Léon Gondelman Languages and Compilers assembly 21

example : hello world

.text

main: li $v0, 4 # code of print_string

la $a0, hw # address of the string

syscall # system call

li $v0, 10 # exit

syscall

.data

hw: .asciiz "hello world\n"

(.asciiz is to avoid writing explicitly .byte 104, 101, ... 0)

running MIPS on our machines: we’ll use SPIM, a MIPS simulator

Léon Gondelman Languages and Compilers assembly 22

demo: hw.s

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/hw.s

instruction set: constants, addresses and copying

• storing a constant in a register

li $a0, 42 # a0 <- 42

li $a0, -65536 # a0 <- -65536

• storing the address of a label in a register

la $a0, label

• copying the content of a register in a register

move $a0, $a1 # copies a1 in a0!

Léon Gondelman Languages and Compilers assembly 23

demo: arith.s

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/arith.s

instruction set: arithmetic operations

• addition of two registers

add $a0, $a1, $a2 # a0 <- a1 + a2

add $a2, $a2, $t5 # a2 <- a2 + t5

similarly for sub, mul, div

• addition of a register and a constant

addi $a0, $a1, 42 # a0 <- a1 + 42

(but no subi, muli or divi!)

• negation

neg $a0, $a1 # a0 <- -a1

• absolute value

abs $a0, $a1 # a0 <- |a1|

Léon Gondelman Languages and Compilers assembly 24

instruction set: logical operations

• logical NOT (not(1001112) = 0110002)

not $a0, $a1 # a0 <- not(a1)

• logical AND (and(1001112, 1010012) = 1000012)

and $a0, $a1, $a2 # a0 <- and(a1, a2)

andi $a0, $a1, 0x3f # a0 <- and(a1, 0...0111111)

• logical OR (or(1001112, 1010012) = 1011112)

or $a0, $a1, $a2 # a0 <- or(a1, a2)

ori $a0, $a1, 42 # a0 <- or(a1, 0...0101010)

Léon Gondelman Languages and Compilers assembly 25

instruction set: shifts

• shift left (inserting zeros)

sll $a0, $a1, 2 # a0 <- a1 * 4

sllv $a1, $a2, $a3 # a1 <- a2 * 2^a3

• arithmetic shift right (duplicating the sign bit)

sra $a0, $a1, 2 # a0 <- a1 / 4

• logical shift right (inserting zeros)

srl $a0, $a1, 2

• rotation

rol $a0, $a1, 2

ror $a0, $a1, 3

Léon Gondelman Languages and Compilers assembly 26

instruction set: comparisons

• comparison of two registers

slt $a0, $a1, $a2 # a0 <- 1 if a1 < a2

0 otherwise

or of a register and a constant

slti $a0, $a1, 42

• variants : sltu (unsigned comparison), sltiu

• similarly : sle, sleu / sgt, sgtu / sge, sgeu

• equality tests : seq, sne

Léon Gondelman Languages and Compilers assembly 27

instruction set: transfer (reading)

• reading a word (32 bits) from memory

lw $a0, 44($a1) # a0 <- mem[a1 + 44]

the address is given by a register and an offset over 16 signed bits

• variants for reading 8 or 16 bits, signed or not (lb, lh, lbu, lhu)

Léon Gondelman Languages and Compilers assembly 28

instruction set : transfer (writing)

• storing a word (32 bits) in the memory

sw $a0, 44($a1) # mem[a1 + 44] <- a0

pay attention to the direction!

the address is given by a register and an offeset over 16 signed bits

• variants for writing 8 or 16 bits (sb, sh)

Léon Gondelman Languages and Compilers assembly 29

instruction set: branching and jumping

we distinguish

• branching : conditional jump, where the destination address is stored
over 16 signed bits (from -32768 to 32767 instructions)

• jump : unconditional jump, where the destination address is stored
over 26 bits

Léon Gondelman Languages and Compilers assembly 30

instruction set: branching

• conditional branching

beq $a0, $a1, label # if a0 = a1 then jump to label

otherwise do nothing

• variants: bne, blt, ble, bgt, bge (and unsigned comparisons)

• variants: beqz, bnez, bgez, bgtz, bltz, blez

Léon Gondelman Languages and Compilers assembly 31

instruction set: jumps

unconditional jump

• to an address (jump)

j label

• saving the address of the instruction following the jump in %ra

(“return address register”)

jal label # jump and link

• to an address stored in a register

jr $a0

• saving the address of the instruction following the jump in a register

jalr $a0, $a1

Léon Gondelman Languages and Compilers assembly 32

instruction set: system call

some system calls are provided by the special instruction

syscall

the code of the instruction must be stored in the register %v0, the
arguments in the registers %a0–%a3 ;
and the return result (if any) will be stored in the register %v0

example : system call print int to print an integer

li $v0, 1 # code for print_int

li $a0, 42 # value to print

syscall

similarly for read int, print string, etc. (see the documentation)

Léon Gondelman Languages and Compilers assembly 33

pseudo-instructions

many of those instructions are in fact pseudo-instructions :
they are translated by the assembler in a single or multiple machine
instructions

example : when we write

li $a0, 42

assembler translates it into

addiu $a0, $zero, 42

Léon Gondelman Languages and Compilers assembly 34

pseudo-instructions

another example :

if the label hw corresponds to an address 0x10010020, then the instruction

la $a0, hw

is translated by the assembler into

lui $at, 0x1001 # load upper immediate

ori $a0, $at, 0x0020

$at, known as the ”assembler temporary” register, is a special-purpose
register used by the assembler for temporary storage

Léon Gondelman Languages and Compilers assembly 35

demo: fact loop.s

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/fact_loop.s

the challenge of compilation

is to translate a high-level program into this instruction set

in particular, we have to

• translate control structures (tests, loops, exceptions, etc.)

• translate function calls

• translate complex data structures (arrays, structures, objects,
closures, etc.)

• allocate dynamic memory

Léon Gondelman Languages and Compilers assembly 36

function calls

observation: function calls can be arbitrarily nested
⇒ registers cannot hold all the local variables
⇒ we need to allocate memory

yet function calls obey a last-in first-out mode, so we can use a stack

Léon Gondelman Languages and Compilers assembly 37

the stack

stack

↓

↑
dynamic
data
(heap)

static
data

code

the stack is allocated at the top of the memory, and
increases downwards; %sp points to the top of the
stack

dynamic data (which needs to survive function calls)
is allocated on the heap above static data, and
increases upwards

this way, no collision between the stack and the
heap (unless we run out of memory)

note: each program has the illusion of using the whole and contiguous
memory; the OS creates this illusion, using the MMU (Memory
Management Unit)

Léon Gondelman Languages and Compilers assembly 38

function call

when a f (caller) wants to call a function g (callee), it executes the
instruction

jal g

and when the callee has finished the work, it gives the control back to the
caller with the instruction

jr $ra

problem:

• if g itself calls yet another function, %ra will be overwritten

• similarly, any register used locally by g will be lost for f

there are many solutions, but we typically resort to calling conventions

Léon Gondelman Languages and Compilers assembly 39

calling conventions

• %ra stores the return address

• %a0–%a3 used to pass the first 4 arguments (the other arguments
will be passed on the stack) and %v0–%v1 to return the result

• %sp is stack pointer (pushing and popping values, moves downward)
%fp is stack frame pointer (base of the current stack frame, useful
for accessing function parameters & local variables at fixed offsets;
remains constant during function’s execution)

• %t0–%t9 are caller-saved registers used to hold temporary quantities
that need not be preserved across calls (i.e. the caller must save them
if needed before the call)

• %s0–%s7 are callee-saved registers that hold long-lived values that
should be preserved across calls (i.e. the callee must save them)

• %at, %k0 and %k1 are reserved to assembler and OS

• %gp points to the middle of a 64K block of memory in the static data
segment (1000800016)

Léon Gondelman Languages and Compilers assembly 40

calling conventions

• %ra stores the return address

• %a0–%a3 used to pass the first 4 arguments (the other arguments
will be passed on the stack) and %v0–%v1 to return the result

• %sp is stack pointer (pushing and popping values, moves downward)
%fp is stack frame pointer (base of the current stack frame, useful
for accessing function parameters & local variables at fixed offsets;
remains constant during function’s execution)

• %t0–%t9 are caller-saved registers used to hold temporary quantities
that need not be preserved across calls (i.e. the caller must save them
if needed before the call)

• %s0–%s7 are callee-saved registers that hold long-lived values that
should be preserved across calls (i.e. the callee must save them)

• %at, %k0 and %k1 are reserved to assembler and OS

• %gp points to the middle of a 64K block of memory in the static data
segment (1000800016)

Léon Gondelman Languages and Compilers assembly 40

calling conventions

• %ra stores the return address

• %a0–%a3 used to pass the first 4 arguments (the other arguments
will be passed on the stack) and %v0–%v1 to return the result

• %sp is stack pointer (pushing and popping values, moves downward)
%fp is stack frame pointer (base of the current stack frame, useful
for accessing function parameters & local variables at fixed offsets;
remains constant during function’s execution)

• %t0–%t9 are caller-saved registers used to hold temporary quantities
that need not be preserved across calls (i.e. the caller must save them
if needed before the call)

• %s0–%s7 are callee-saved registers that hold long-lived values that
should be preserved across calls (i.e. the callee must save them)

• %at, %k0 and %k1 are reserved to assembler and OS

• %gp points to the middle of a 64K block of memory in the static data
segment (1000800016)

Léon Gondelman Languages and Compilers assembly 40

calling conventions

• %ra stores the return address

• %a0–%a3 used to pass the first 4 arguments (the other arguments
will be passed on the stack) and %v0–%v1 to return the result

• %sp is stack pointer (pushing and popping values, moves downward)
%fp is stack frame pointer (base of the current stack frame, useful
for accessing function parameters & local variables at fixed offsets;
remains constant during function’s execution)

• %t0–%t9 are caller-saved registers used to hold temporary quantities
that need not be preserved across calls (i.e. the caller must save them
if needed before the call)

• %s0–%s7 are callee-saved registers that hold long-lived values that
should be preserved across calls (i.e. the callee must save them)

• %at, %k0 and %k1 are reserved to assembler and OS

• %gp points to the middle of a 64K block of memory in the static data
segment (1000800016)

Léon Gondelman Languages and Compilers assembly 40

calling conventions

• %ra stores the return address

• %a0–%a3 used to pass the first 4 arguments (the other arguments
will be passed on the stack) and %v0–%v1 to return the result

• %sp is stack pointer (pushing and popping values, moves downward)
%fp is stack frame pointer (base of the current stack frame, useful
for accessing function parameters & local variables at fixed offsets;
remains constant during function’s execution)

• %t0–%t9 are caller-saved registers used to hold temporary quantities
that need not be preserved across calls (i.e. the caller must save them
if needed before the call)

• %s0–%s7 are callee-saved registers that hold long-lived values that
should be preserved across calls (i.e. the callee must save them)

• %at, %k0 and %k1 are reserved to assembler and OS

• %gp points to the middle of a 64K block of memory in the static data
segment (1000800016)

Léon Gondelman Languages and Compilers assembly 40

calling conventions

• %ra stores the return address

• %a0–%a3 used to pass the first 4 arguments (the other arguments
will be passed on the stack) and %v0–%v1 to return the result

• %sp is stack pointer (pushing and popping values, moves downward)
%fp is stack frame pointer (base of the current stack frame, useful
for accessing function parameters & local variables at fixed offsets;
remains constant during function’s execution)

• %t0–%t9 are caller-saved registers used to hold temporary quantities
that need not be preserved across calls (i.e. the caller must save them
if needed before the call)

• %s0–%s7 are callee-saved registers that hold long-lived values that
should be preserved across calls (i.e. the callee must save them)

• %at, %k0 and %k1 are reserved to assembler and OS

• %gp points to the middle of a 64K block of memory in the static data
segment (1000800016)

Léon Gondelman Languages and Compilers assembly 40

calling conventions

• %ra stores the return address

• %a0–%a3 used to pass the first 4 arguments (the other arguments
will be passed on the stack) and %v0–%v1 to return the result

• %sp is stack pointer (pushing and popping values, moves downward)
%fp is stack frame pointer (base of the current stack frame, useful
for accessing function parameters & local variables at fixed offsets;
remains constant during function’s execution)

• %t0–%t9 are caller-saved registers used to hold temporary quantities
that need not be preserved across calls (i.e. the caller must save them
if needed before the call)

• %s0–%s7 are callee-saved registers that hold long-lived values that
should be preserved across calls (i.e. the callee must save them)

• %at, %k0 and %k1 are reserved to assembler and OS

• %gp points to the middle of a 64K block of memory in the static data
segment (1000800016)

Léon Gondelman Languages and Compilers assembly 40

function calls, in four steps

there are four steps in a function call:

1. for the caller, just before the call

2. for the callee, at the beginning of the call

3. for the callee, at the end of the call

4. for the caller, just after the call

the stack segment where the effect of those steps takes place is called
stack frame located right on the top of the stack between %fp and %sp

Léon Gondelman Languages and Compilers assembly 41

the caller, before the call

1. passes arguments in %a0–%a3, and others on the stack, if more than 4

2. saves caller-saved registers %t0–%t9, in its own stack frame, if they
are needed after the call

3. executes

jal callee

caller-saved = not preserved across function calls.

• The caller must save them if needed.

• The callee (function) is free to modify them without saving.

Léon Gondelman Languages and Compilers assembly 42

demo: caller saved.s

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/caller_saved.s

the callee, at the beginning of the call

1. allocates its stack frame, e.g.

addi $sp, $sp, -28

2. saves %fp on the stack frame and
moves it, e.g.

sw $fp, 24($sp)

addi $fp, $sp, 24

3. saves %s0–%s7 and %ra if needed

...
argument 5
argument 6

saved
registers

local
variables

↓

$fp→

$sp→

%fp eases access to arguments and local variables, with a fixed offset
(whatever the top of the stack)

Léon Gondelman Languages and Compilers assembly 43

demo: callee saved.s

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/callee_saved.s

the callee, at the end of the call

1. stores the result in %v0 (or %v1)

2. restores the callee-saved registers, including %fp for example

lw $fp, 24($sp)

3. destroys its stack frame, e.g.

addi $sp, $sp, 28

4. and executes

jr $ra

Léon Gondelman Languages and Compilers assembly 44

the caller, just after the call

1. pops arguments 5, 6, ... (if any)

2. restores the caller-saved registers %t0–%t9, if needed

Léon Gondelman Languages and Compilers assembly 45

demo 1: square root of an integer

exercise : let’s implement the following function

isqrt(n) ≡
c ← 0
s ← 1
while s ≤ n

c ← c + 1
s ← s + 2c + 1

return c

the idea why it works is that the invariant of the loop is si = (ci + 1)2

so that when c is returned, we have c2 ≤ n < (c + 1)2

i 0 1 2 . . . i i+1
c 0 1 2 . . . i i+1
s 1 3 9 . . . (i + 1)2 (i + 1)2 + 2(i + 1) + 1 = ((i + 1) + 1)2

Léon Gondelman Languages and Compilers assembly 46

demo: isqrt.s

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/isqrt.s

demo 2: factorial

exercise : let’s program factorial with a recursive function

Léon Gondelman Languages and Compilers assembly 47

demo: fact recursive.s

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/demo/fact_recursive.s

recap

• a machine provides
• a limited instruction set
• efficient registers, costly access to the memory

• the memory is split into
• code / static data / dynamic data (heap) / stack

• function calls make use of
• a notion of stack frame
• calling conventions

• lesson: producing efficient assembly code is not easy,
we have to automate all this in a compiler

Léon Gondelman Languages and Compilers assembly 48

lab session

• writing manually some small MIPS programs

• implementing a compiler for a mini-language of arithmetic expressions
generating automatically MIPS code
https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/index.html

Léon Gondelman Languages and Compilers assembly 49

https://homes.cs.aau.dk/~lego/compil25/lab_sessions/7/index.html

