Languages and Compilation

Based on the Jean-Christophe Filliâtre's Courses given at École Polytechnique & École Normale Supérieure

Lecture 6 - Typing

Léon Gondelman

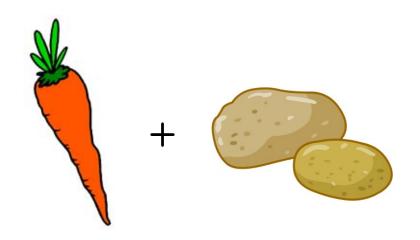
AALBORG UNIVERISITY | COPENHAGEN | 2025

Léon Gondelman

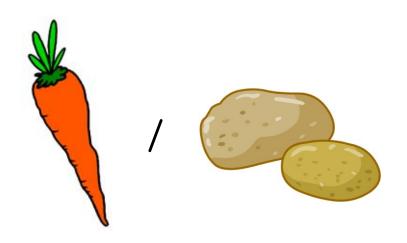
Languages and Compilers

static typing 1

type checking



type checking



type checking

if we write

"5" + 37

do we get

- a compile-time error? (OCaml, Rust, Go)
- a runtime error? (Python, Julia)
- the integer 42? (Visual Basic, PHP)
- the string "537"? (Java, Scala, Kotlin)
- a pointer? (C, C++)
- something else?

and what about

37 / "5"

?

if we now add two arbitrary expressions

e1 + e2

how can we decide whether this is legal and which operation to perform?

the answer is **typing**, a program analysis that binds **types** to each sub-expression, to rule out inconsistent programs

some languages are **dynamically typed**: types are bound to **values** and are used **at runtime**

examples: Lisp, PHP, Python, Julia

other languages are **statically typed**: types are bound to **expressions** and are used **at compile time**

```
examples: C, C++, Java, OCaml, Rust, Go
```

example

consider the following C and Python code snippets:

```
void main(){ print(id(42,42))
printf("%d", id(42,42));}
```

the C code fails at the compile-time (compilation error) error: too many arguments to function 'id'

the Python code compiles to the VM and fails at runtime (runtime error) *TypeError: id() takes 1 positional argument but 2 were given*

remark

a language may use **both** static and dynamic typing

we will illustrate it with Java at the end of this lecture

roadmap for today

• lecture:

- static typing, illustrated on WHILE with record types
- type safety
- implementing type checking algorithm
- subtyping and overloading

Iab session:

- static type checking a fragment of C
- covers type-checking struct pointers and function declarations

static typing

slogan (Milner, 1978)

well-typed programs do not go wrong

goals of typing

- type checking must be **decidable**
- type checking must reject programs whose evaluation would fail; this is type safety
- type checking must not reject too many non-absurd programs; the type system must be expressive

several solutions

2. only annotate variable declarations (C, C++, Java, etc.)
 int f(int x) { int y = x+1; return y; }

3. only annotate function parameters (C++ 11, Java 10)

int f(int x) { var y = x+1; return y; }

4. no annotation at all \Rightarrow type inference (OCaml, Haskell, etc.)

fun x -> x+1

Léon Gondelman

type checking WHILE

let us consider the language ${\rm WHILE}$ from lecture 2

to make it more interesting, let us add **records** (and any variable is a record)

note: for simplicity, here we consider **anonymous** records; in languages like C, records are named and record fields are declared with their types in the source program

(see the Lab session on type checking a fragment of C).

е	::=		expression
		С	integer or Boolean constant
		X	variable
		e.f	field access
		e op e	binary operator (+, <, \dots)

$$s ::= statement$$

$$| e.f \leftarrow e assignment$$

$$| if e then s else s conditional$$

$$| while e do s loop$$

$$| s; s sequence$$

$$| skip do nothing$$

example

$$x.a \leftarrow 0;$$

 $x.b \leftarrow 1;$
while $x.b < 100$ do
 $x.b \leftarrow x.a + x.b;$
 $x.a \leftarrow x.b - x.a$

the notion of value from lecture 2 is updated

V	::=		value	
		п	integer value	
		Ь	Boolean value	
		x	address (here the name of the variable)	

we also update the environment E, which now maps pairs (x, f) to values E(x, f) we define a big-step operational semantics for expressions

 $E, e \twoheadrightarrow v$

and a small-step operational semantics for statements

 $E, s \rightarrow E', s'$

semantics of expressions

$$\overline{E, n \twoheadrightarrow n}$$
 $\overline{E, b \twoheadrightarrow b}$

$$E, x \twoheadrightarrow x$$

$$\frac{E, e \twoheadrightarrow x \quad (x, f) \in \mathsf{dom}(E)}{E, e.f \twoheadrightarrow E(x, f)}$$

$$\frac{E, e_1 \twoheadrightarrow n_1 \quad E, e_2 \twoheadrightarrow n_2 \quad n = n_1 + n_2}{E, e_1 + e_2 \twoheadrightarrow n} \quad \text{etc.}$$

semantics of statements

$$\begin{array}{l} \displaystyle \frac{E,e_1\twoheadrightarrow x \qquad E,e_2\twoheadrightarrow v \quad (x,f)\in \operatorname{dom}(E)}{E,e_1.f\leftarrow e_2\rightarrow E\{(x,f)\mapsto v\},\operatorname{skip}} \\ \\ \displaystyle \frac{E}{E,s\operatorname{kip};s\rightarrow E,s} \qquad \displaystyle \frac{E,s_1\rightarrow E_1,s_1'}{E,s_1;s_2\rightarrow E_1,s_1';s_2} \\ \\ \displaystyle \frac{E,e\twoheadrightarrow\operatorname{true}}{E,\operatorname{if} e \operatorname{then} s_1\operatorname{else} s_2\rightarrow E,s_1} \qquad \displaystyle \frac{E,e\twoheadrightarrow\operatorname{false}}{E,\operatorname{if} e \operatorname{then} s_1\operatorname{else} s_2\rightarrow E,s_2} \\ \\ \displaystyle \frac{E,e\twoheadrightarrow\operatorname{true}}{E,\operatorname{while} e \operatorname{do} s\rightarrow E,s;\operatorname{while} e \operatorname{do} s} \\ \\ \displaystyle \frac{E,e\twoheadrightarrow\operatorname{false}}{E,\operatorname{while} e \operatorname{do} s\rightarrow E,\operatorname{skip}} \end{array}$$

we introduce **types**, with the following abstract syntax

au	::=		type
		int	type of integer values
		bool	type of Boolean values
		$\{f:\tau;\ldots;f:\tau\}$	record type

typing judgment

the type of a variable is given by a **typing environment** Γ (a function from variables to types)

the typing judgment is written

 $\Gamma \vdash e : \tau$

and reads "in typing environment Γ , expression *e* has type τ "

we use **inference rules** to define $\Gamma \vdash e : \tau$

typing expressions

$$\overline{\Gamma \vdash n: int} \qquad \overline{\Gamma \vdash b: bool}$$

$$\frac{x \in dom(\Gamma)}{\overline{\Gamma \vdash x: \Gamma(x)}}$$

$$\frac{\Gamma \vdash e: \{\dots; f: \tau; \dots\}}{\Gamma \vdash e.f: \tau}$$

$$\frac{\Gamma \vdash e_1: int \quad \Gamma \vdash e_2: int}{\Gamma \vdash e_1 + e_2: int} \quad etc.$$

example

with $\Gamma = \{x \mapsto \{a : \texttt{int}; b : \texttt{int}\}\}$, we have

$$\frac{\overline{\Gamma \vdash x : \{a : \text{int}; b : \text{int}\}}}{\overline{\Gamma \vdash x.a : \text{int}}} \frac{\overline{\Gamma \vdash 1 : \text{int}}}{\overline{\Gamma \vdash x.a + 1 : \text{int}}}$$

this derivation is a proof that x.a+1 is well-typed

expressions without a type

in the same environment, we cannot type expressions such as

x.c

or

or

1 + true

42.a

this is precisely what we want, for these expressions have no value in our semantics

type checking statements

to type statements, we introduce a new judgment

$\Gamma \vdash s$

that reads "in environment Γ , statement *s* is well-typed"

type checking statements

$$\frac{\Gamma \vdash s_1 \quad \Gamma \vdash s_2}{\Gamma \vdash s_{1i}; s_2}$$

$$\frac{\Gamma \vdash e_1 : \{\dots; f : \tau : \dots\} \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1.f \leftarrow e_2}$$

$$\frac{\Gamma \vdash e : \text{bool} \quad \Gamma \vdash s_1 \quad \Gamma \vdash s_2}{\Gamma \vdash \text{ if } e \text{ then } s_1 \text{ else } s_2}$$

$$\frac{\Gamma \vdash e : \text{bool} \quad \Gamma \vdash s}{\Gamma \vdash \text{ while } e \text{ do } s}$$

well-typed programs do not go wrong

type safety

let us show that our type system is safe wrt our operational semantics

Theorem (type safety)

If $\Gamma \vdash s$, then the reduction s is either infinite or reaches skip.

or, equivalently,

Theorem

If $\Gamma \vdash s$ and $E, s \rightarrow^{\star} E', s'$ and s' is irreducible, then s' is skip.

type safety

this means evaluation won't be stuck or any expression such as

42.*a*

or on a statement

if e then s_1 else s_2

where e does not evaluate to either true or false

let us show first that well-typed expressions do evaluate successfully

```
if \Gamma \vdash e : \tau, then E, e \twoheadrightarrow v
```

stated as such, this is not correct: we need a relationship between Γ and E counterexample:

Definition (well-typed environment)

An execution environment E is well-typed in a typing environment Γ , written $\Gamma \vdash E$, if

 $\forall x, if \Gamma(x) = \{\dots f : \tau \dots\}$ then $(x, f) \in dom(E)$ and $\Gamma \vdash E(x, f) : \tau$.

Lemma (evaluation of a well-typed expression)

If $\Gamma \vdash e : \tau$ and $\Gamma \vdash E$, then $E, e \twoheadrightarrow v$ and $\Gamma \vdash v : \tau$.

proof: by induction on the derivation $\Gamma \vdash e : \tau$. e = c immediate with v = c e = x immediate with v = x $e = e_1.f$ by IH $E, e_1 \rightarrow v_1$ and $\Gamma \vdash v_1 : \tau_1$ with $\tau_1 = \{ \dots f : \tau \dots \}$. so v_1 is an address x and v = E(x, f)since E is well-typed, we have $\Gamma \vdash v : \tau$ $e = e_1 + e_2$ by IH on e_1 and e_2 we have $E, e_i \rightarrow v_i$ and $\Gamma \vdash v_i : int$, so v_1 and v_2 are integers and we conclude with $v = v_1 + v_2$

evaluation of statements

the type safety proof is based on two lemmas

Lemma (progress)

If $\Gamma \vdash s$ and $\Gamma \vdash E$, then either s is skip, or $E, s \rightarrow E', s'$.

Lemma (preservation)

If $\Gamma \vdash s$, if $\Gamma \vdash E$ and if $E, s \rightarrow E', s'$ then $\Gamma \vdash s'$ and $\Gamma \vdash E'$.

Lemma (progress)

If $\Gamma \vdash s$ and $\Gamma \vdash E$, then either s is skip, or $E, s \rightarrow E', s'$.

proof: by induction on the derivation $\Gamma \vdash s$

s = skip immediate

$$s = s_1; s_2$$
 if $s_1 = \text{skip}$, we have $E, s_1; s_2 \rightarrow E, s_2$
otherwise, we use IH on s_1 , so $E, s_1 \rightarrow E', s'_1$ and thus
 $E, s_1; s_2 \rightarrow E', s'_1; s_2$

 $s = e_1.f \leftarrow e_2$ since e_1 and e_2 are well-typed, they evaluate to x and v respectively since $\Gamma \vdash x : \{ \dots f : \tau \dots \}$ we have $(x, f) \in \text{dom}(E)$ and thus $E, s \rightarrow E'$, skip with $E' = E\{(x, f) \mapsto v\}$

other cases left as exercise

then we show

Lemma (preservation)

If $\Gamma \vdash s$, if $\Gamma \vdash E$ and if $E, s \rightarrow E', s'$ then $\Gamma \vdash s'$ and $\Gamma \vdash E'$.

proof: by induction on the derivation $\Gamma \vdash s$ $s = s_1; s_2$ we have $\Gamma \vdash s_1$ and $\Gamma \vdash s_2$ • if $s_1 = \text{skip}$, then $E, s_1; s_2 \rightarrow E, s_2$ • otherwise, $E, s_1 \rightarrow E', s'_1$ and by IH $\Gamma \vdash s'_1$ and $\Gamma \vdash E'$ so $\Gamma \vdash s'_1; s_2$ $s = e_1.f \leftarrow e_2$ we have $E, e_1 \twoheadrightarrow x$ and $E, e_2 \twoheadrightarrow v$ and s' = skip (so $\Gamma \vdash s'$) and $E' = E\{(x, f) \mapsto v\}$ but $\Gamma \vdash e_1 : \{\dots f : \tau \dots\}$ and $\Gamma \vdash e_2 : \tau$ so $\Gamma \vdash v : \tau$ (see slide 33) and thus $\Gamma \vdash E'$

other cases left as exercise

now we can deduce type safety easily

Theorem (type safety)

If $\Gamma \vdash s$ and $E, s \rightarrow^* E', s'$ and s' is irreducible, then s' is skip.

proof: we have $E, s \to E_1, s_1 \to \cdots \to E', s'$ and by repeated applications of the preservation lemma, we have $\Gamma \vdash s'$ by the progress lemma, s' is reducible or is skip so this is skip languages such as Java or OCaml enjoy such a type safety property

which means that the evaluation of an expression of type $\boldsymbol{\tau}$

- either does not terminate
- or raises an exception
- or terminates on a value with type au

in OCaml, the absence of null makes it a rather strong property

implementing type checking

implementing type checking

there is a difference between the typing rules, which define the relation

$$\Gamma \vdash e : \tau$$

and the type checking algorithm, which checks that a given expression e is well-typed in some environment Γ

for instance

- the type au is not necessarily given (type inference)
- several rules may apply for a single construct
- an expression may have several types

the case of WHILE is simple, as a single rule applies for each expression we say that typing is **syntax-directed**

the type checking is then implemented with a linear time traversal of the program

practical considerations

we do not simply say

type error

but we explain the type error precisely

• we keep types for the further phases of the compiler

to do this, we **decorate** abstract syntax trees

- input of type checking contains positions in source code
- **output** of type checking contains types

decorated AST

in OCaml	in Java
<pre>type loc =</pre>	<pre>class Loc { }</pre>
type expr =	abstract class Expr {
	}
Evar of string	<pre>class Evar extends Expr {}</pre>
Econst of int	<pre>class Econst extends Expr {}</pre>
Efield of expr * string	<pre>class Efield extends Expr {}</pre>
	•••

decorated AST

in OCaml	in Java
<pre>type loc =</pre>	<pre>class Loc { }</pre>
<pre>type expr = {</pre>	<pre>abstract class Expr {</pre>
desc: desc;	Loc loc;
loc : loc;	
}	
and desc =	}
Evar <mark>of</mark> string	<pre>class Evar extends Expr {}</pre>
Econst <mark>of</mark> int	<pre>class Econst extends Expr {}</pre>
Efield of expr * string	<pre>class Efield extends Expr {}</pre>

we signal a type error with an exception

the exception contains

- a message explaining the error
- a position in the source code

we catch this exception in the main function

we display the position and the message

test.c:8:14: error: too few arguments to function 'f'

output

we set up an abstract syntax for types

type typ = ... class Typ { ... }

and a new abstract syntax for programs

<pre>type texpr = {</pre>	<pre>abstract class Texpr {</pre>
tdesc: tdesc;	Typ typ;
typ : typ	
}	
and tdesc =	}
Tvar of string	<pre>class Tvar extends Texpr {}</pre>
Tconst of int	<pre>class Tconst extends Texpr {}</pre>
Tfield of texpr * string	<pre>class Tfield extends Texpr {}</pre>

typing the type checker

the type checker turns a parsed syntax tree into another, typed syntax tree

 $\fbox{parsed trees} \xrightarrow{\texttt{type checker}} \vspace{-1mm} typed trees$

yet this is efficient, since

- it is typically a linear traversal
- former AST are collected by the GC

subtyping

we say that a type τ_1 is a subtype of a type $\tau_2,$ which we write

$\tau_1 \leq \tau_2$

if any value with type τ_1 can be considered as a value with type τ_2

in many languages, there is subtyping between numerical types in Java, it is as shown on the right double float thus we can write long int n = 'a';int but not char short **byte** b = 144;byte

in an object-oriented language, inheritance induces **subtyping**: if a class B inherits from a class A, we have

$\mathtt{B} \leq \mathtt{A}$

i.e. any value of type B can be seen as a value of type A

example in Java

the two classes

class Vehicle { ... void move() { ... } ... }
class Car extends Vehicle { ... void move() { ... } ... }

induce the subtyping relation

 $\texttt{Car} \leq \texttt{Vehicle}$

and thus we can write

Vehicle v = new Car(); v.move();

static and dynamic types

the construct new C(...) builds an object of class C, and the class of this object cannot be changed in the future; this is the **dynamic type** of the object

however, the **static type** of an expression, as computed by the compiler, may differ from the dynamic type, because of subtyping

when we write

```
Vehicle v = new Car();
v.move();
```

variable v has type Vehicle, but the method move that is called is that of class Car (we'll explain how in another lecture)

static and dynamic types

in many cases, the compiler cannot determine the dynamic type

example:

```
void moveAll(LinkedList<Vehicule> 1) {
  for (Vehicule v: 1)
    v.move();
}
```

sometimes we need to force the compiler's hand, which means we claim that a value has some type

we call this type casting (or simply cast)

Java's notation, inherited from C, is

 $(\tau)e$

the static type of this expression is $\boldsymbol{\tau}$

example

using a cast, we can write

int n = ...; byte b = (byte)n;

in this case, there is no dynamic verification (if the integer is too large, it is truncated)

casting objects

let us consider

(C)e

where

- *D* is the dynamic type of (the object designated by) *e*
- E is the static type of expression e

there are three cases

- C is a super class of E: this is an **upcast** and the code for (C)e is that of e (but the cast has some influence anyway, since (C)e has type C)
- *C* is a subclass of *E*: this is a **downcast** and the code contains **dynamic test** to check that *D* is indeed a subclass of *C*
- *C* is neither a subclass nor a super of *E*: the compiler rejects the program with a type error

example (upcast)

```
class A {
  int x = 1;
}
class B extends A {
  int x = 2;
}
```

```
B b = new B();
System.out.println(b.x);  // 2
System.out.println(((A)b).x); // 1
b.x = 4;
((A)b).x = 3;
System.out.println(b.x);  // 4
System.out.println(((A)b).x); // 3
```

example (downcast)

```
void m(Vehicle v, Vehicle w) {
  ((Car)v).await(w);
}
```

nothing guarantees that the object passed to m will be a car; in particular, it could have no method await!

the dynamic test is required

Java raises ClassCastException if the test fails

example of downcasting

```
class A { int x = 1; }
class B extends A { int x = 2; }
class Example{
    static A a = new A():
    static B b = new B();
    static int m (A a){
      return ((B)a).x; }
public static void main(String args[]){
// System.out.println(m(a)); // runtime error
     System.out.println(m(b)); // 2
    }
 }
```

testing subtyping dynamically

to allow defensive programming, there exists a Boolean construct

 $e \; \texttt{instanceof} \; C$

that checks whether the class of e is indeed a subclass of C

it is idiomatic to do

```
if (e instanceof C) {
   C c = (C)e;
   ...
}
```

in this case, the compiler makes an optimization to perform a single test

overloading

overloading is the ability to reuse the same name of several operations

overloading is handled **at compile time**, using the number and the (static) types of arguments

example

in Java, operation + is overloaded

int n = 40 + 2; String s = "foo" + "bar"; String t = "foo" + 42;

these are three distinct operations

int	+(int ,	int)
String	+(String,	String)
String	+(String,	int)

be careful!

when we write

int n = 'a' + 42;

this is subtyping that allows us to consider 'a' with type char as a value of type int, and thus the operation is +(int, int)

```
for instance, System.out.println('m' - 'n'); will output -1
```

but when we write

String t = "foo" + 42;

this is **not** subtyping (int ≤ String) but is due to two built-in '+'

in particular, we cannot write

String t = 42;

in Java, one cannot overload operators such as + but one can overload methods/constructors

```
int f(int n, int m) { ... }
int f(int n) { ... }
int f(String s) { ... }
```

overloading resolution

this is exactly as if we had written

int f_int_int(int n, int m) { ... }
int f_int (int n) { ... }
int f_String (String s) { ... }

the compiler uses the static types of ${\tt f}$'s arguments to determine which method to call

overloading resolution

yet overloading resolution can be tricky

```
class A {...}
class B extends A {
    void m(A a) {...}
    void m(B b) {...}
}
```

with

{ ... B b = new B(); b.m(b); ... }

both methods apply

this is method m(B b) that is called, because it is considered more precise

Léon Gondelman

ambiguity

some cases are ambiguous

```
class A {...}
class B extends A {
    void m(A a, B b) {...}
    void m(B b, A a) {...}
}
{ ... B b = new B(); b.m(b, b); ... }
```

and reported as such

test.java:13: reference to m is ambiguous, both method m(A,B) in B and method m(B,A) in B match

Java's overloading resolution

to each method defined in class C

 $\tau \operatorname{m}(\tau_1 x_1, ..., \tau_n x_n)$

we set the profile $(C, \tau_1, \ldots, \tau_n)$

then we order profiles: $(\tau_0, \tau_1, \ldots, \tau_n) \sqsubseteq (\tau'_0, \tau'_1, \ldots, \tau'_n)$ if and only if τ_i is a subtype of τ'_i for all i

for a call

$$e.m(e_1,\ldots,e_n)$$

where *e* has static type τ_0 and e_i has static type τ_i , we consider the set of all **minimal** elements in the set of all compatible profiles

- no element \Rightarrow no method applies
- several elements ⇒ ambiguity
- a single element \Rightarrow this is the method to call