
Languages and Compilation

Based on the Jean-Christophe Filliâtre’s Courses

given at École Polytechnique & École Normale Supérieure

Lecture 6 - Typing

Léon Gondelman

aalborg univerisity | copenhagen | 2025

Léon Gondelman Languages and Compilers static typing 1

https://www.enseignement.polytechnique.fr/informatique/INF564/
https://www.lri.fr/~filliatr/ens/compil/

type checking

+

Léon Gondelman Languages and Compilers static typing 2

type checking

/

Léon Gondelman Languages and Compilers static typing 3

type checking

if we write

"5" + 37

do we get

• a compile-time error? (OCaml, Rust, Go)

• a runtime error? (Python, Julia)

• the integer 42? (Visual Basic, PHP)

• the string "537"? (Java, Scala, Kotlin)

• a pointer? (C, C++)

• something else?

and what about

37 / "5"

?
Léon Gondelman Languages and Compilers static typing 4

typing

if we now add two arbitrary expressions

e1 + e2

how can we decide whether this is legal and which operation to perform?

the answer is typing, a program analysis that binds types to each
sub-expression, to rule out inconsistent programs

Léon Gondelman Languages and Compilers static typing 5

when?

some languages are dynamically typed: types are bound to values and
are used at runtime

examples: Lisp, PHP, Python, Julia

other languages are statically typed: types are bound to expressions and
are used at compile time

examples: C, C++, Java, OCaml, Rust, Go

Léon Gondelman Languages and Compilers static typing 6

example

consider the following C and Python code snippets:

int id(int num) {

return num; }

void main(){

printf("%d", id(42,42));}

def id(num):

return num

print(id(42,42))

the C code fails at the compile-time (compilation error)
error: too many arguments to function ’id’

the Python code compiles to the VM and fails at runtime (runtime error)
TypeError: id() takes 1 positional argument but 2 were given

Léon Gondelman Languages and Compilers static typing 7

remark

a language may use both static and dynamic typing

we will illustrate it with Java at the end of this lecture

Léon Gondelman Languages and Compilers static typing 8

roadmap for today

• lecture:

• static typing, illustrated on while with record types
• type safety
• implementing type checking algorithm
• subtyping and overloading

• lab session:
• static type checking a fragment of C
• covers type-checking struct pointers and function declarations

Léon Gondelman Languages and Compilers static typing 9

static typing

Léon Gondelman Languages and Compilers static typing 10

slogan (Milner, 1978)

well-typed programs do not go wrong

Léon Gondelman Languages and Compilers static typing 11

goals of typing

• type checking must be decidable

• type checking must reject programs whose evaluation would fail;
this is type safety

• type checking must not reject too many non-absurd programs;
the type system must be expressive

Léon Gondelman Languages and Compilers static typing 12

several solutions

1. any sub-expression is annotated with a type

int f(int x) { int y = ((x:int)+(1:int):int); ... }

type checking is easy but this is unmanageable for the programmer

2. only annotate variable declarations (C, C++, Java, etc.)

int f(int x) { int y = x+1; return y; }

3. only annotate function parameters (C++ 11, Java 10)

int f(int x) { var y = x+1; return y; }

4. no annotation at all ⇒ type inference (OCaml, Haskell, etc.)

fun x -> x+1

Léon Gondelman Languages and Compilers static typing 13

type checking while

let us consider the language while from lecture 2

to make it more interesting, let us add records
(and any variable is a record)

note: for simplicity, here we consider anonymous records; in
languages like C, records are named and record fields are
declared with their types in the source program

(see the Lab session on type checking a fragment of C).

Léon Gondelman Languages and Compilers static typing 14

syntax

e ::= expression
| c integer or Boolean constant
| x variable
| e.f field access
| e op e binary operator (+, <, . . .)

s ::= statement
| e.f ← e assignment
| if e then s else s conditional
| while e do s loop
| s; s sequence
| skip do nothing

Léon Gondelman Languages and Compilers static typing 15

example

x .a← 0;
x .b ← 1;
while x .b < 100 do

x .b ← x .a+ x .b;
x .a← x .b − x .a

Léon Gondelman Languages and Compilers static typing 16

semantics

the notion of value from lecture 2 is updated

v ::= value
| n integer value
| b Boolean value
| x address (here the name of the variable)

we also update the environment E ,
which now maps pairs (x , f) to values E (x , f)

Léon Gondelman Languages and Compilers static typing 17

semantics

we define a big-step operational semantics for expressions

E , e ↠ v

and a small-step operational semantics for statements

E , s → E ′, s ′

Léon Gondelman Languages and Compilers static typing 18

semantics of expressions

E , n ↠ n E , b ↠ b

E , x ↠ x

E , e ↠ x (x , f) ∈ dom(E)

E , e.f ↠ E (x , f)

E , e1 ↠ n1 E , e2 ↠ n2 n = n1 + n2
E , e1 + e2 ↠ n

etc.

Léon Gondelman Languages and Compilers static typing 19

semantics of statements

E , e1 ↠ x E , e2 ↠ v (x , f) ∈ dom(E)

E , e1.f ← e2 → E{(x , f) 7→ v}, skip

E , skip; s → E , s

E , s1 → E1, s
′
1

E , s1; s2 → E1, s ′1; s2

E , e ↠ true

E , if e then s1 else s2 → E , s1

E , e ↠ false

E , if e then s1 else s2 → E , s2

E , e ↠ true

E , while e do s → E , s; while e do s

E , e ↠ false

E , while e do s → E , skip

Léon Gondelman Languages and Compilers static typing 20

typing

we introduce types, with the following abstract syntax

τ ::= type
| int type of integer values
| bool type of Boolean values
| {f : τ ; . . . ; f : τ} record type

Léon Gondelman Languages and Compilers static typing 21

typing judgment

the type of a variable is given by a typing environment Γ
(a function from variables to types)

the typing judgment is written

Γ ⊢ e : τ

and reads “in typing environment Γ, expression e has type τ”

we use inference rules to define Γ ⊢ e : τ

Léon Gondelman Languages and Compilers static typing 22

typing expressions

Γ ⊢ n : int Γ ⊢ b : bool

x ∈ dom(Γ)

Γ ⊢ x : Γ(x)

Γ ⊢ e : {. . . ; f : τ ; . . . }
Γ ⊢ e.f : τ

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int
etc.

Léon Gondelman Languages and Compilers static typing 23

example

with Γ = {x 7→ {a : int; b : int}}, we have

Γ ⊢ x : {a : int; b : int}
Γ ⊢ x .a : int Γ ⊢ 1 : int

Γ ⊢ x .a+ 1 : int

this derivation is a proof that x.a+1 is well-typed

Léon Gondelman Languages and Compilers static typing 24

expressions without a type

in the same environment, we cannot type expressions such as

x .c

or
42.a

or
1 + true

this is precisely what we want, for these expressions have no value in our
semantics

Léon Gondelman Languages and Compilers static typing 25

type checking statements

to type statements, we introduce a new judgment

Γ ⊢ s

that reads “in environment Γ, statement s is well-typed”

Léon Gondelman Languages and Compilers static typing 26

type checking statements

Γ ⊢ skip
Γ ⊢ s1 Γ ⊢ s2

Γ ⊢ s1; s2

Γ ⊢ e1 : {. . . ; f : τ : . . . } Γ ⊢ e2 : τ

Γ ⊢ e1.f ← e2

Γ ⊢ e : bool Γ ⊢ s1 Γ ⊢ s2
Γ ⊢ if e then s1 else s2

Γ ⊢ e : bool Γ ⊢ s

Γ ⊢ while e do s

Léon Gondelman Languages and Compilers static typing 27

type safety

well-typed programs do not go wrong

Léon Gondelman Languages and Compilers static typing 28

type safety

let us show that our type system is safe wrt our operational semantics

Theorem (type safety)

If Γ ⊢ s, then the reduction s is either infinite or reaches skip.

or, equivalently,

Theorem

If Γ ⊢ s and E , s →⋆ E ′, s ′ and s ′ is irreducible, then s ′ is skip.

Léon Gondelman Languages and Compilers static typing 29

type safety

this means evaluation won’t be stuck or any expression such as

42.a

or on a statement
if e then s1 else s2

where e does not evaluate to either true or false

Léon Gondelman Languages and Compilers static typing 30

expressions

let us show first that well-typed expressions do evaluate successfully

if Γ ⊢ e : τ , then E , e ↠ v

stated as such, this is not correct: we need a relationship between Γ and E

counterexample:
Γ = {x 7→ {a : int}}
e = x .a
E = ∅

Léon Gondelman Languages and Compilers static typing 31

consistency of environments

Definition (well-typed environment)

An execution environment E is well-typed in a typing environment Γ,
written Γ ⊢ E , if

∀x , if Γ(x) = {. . . f : τ . . . } then (x , f) ∈ dom(E) and Γ ⊢ E (x , f) : τ.

Léon Gondelman Languages and Compilers static typing 32

expressions

Lemma (evaluation of a well-typed expression)

If Γ ⊢ e : τ and Γ ⊢ E , then E , e ↠ v and Γ ⊢ v : τ .

proof: by induction on the derivation Γ ⊢ e : τ .

e = c immediate with v = c

e = x immediate with v = x

e = e1.f by IH E , e1 ↠ v1 and Γ ⊢ v1 : τ1 with τ1 = {. . . f : τ . . . }.
so v1 is an address x and v = E (x , f)
since E is well-typed, we have Γ ⊢ v : τ

e = e1 + e2 by IH on e1 and e2 we have E , ei ↠ vi and Γ ⊢ vi : int,
so v1 and v2 are integers and we conclude with v = v1 + v2

□

Léon Gondelman Languages and Compilers static typing 33

evaluation of statements

the type safety proof is based on two lemmas

Lemma (progress)

If Γ ⊢ s and Γ ⊢ E , then either s is skip, or E , s → E ′, s ′.

Lemma (preservation)

If Γ ⊢ s, if Γ ⊢ E and if E , s → E ′, s ′ then Γ ⊢ s ′ and Γ ⊢ E ′.

Léon Gondelman Languages and Compilers static typing 34

progress

Lemma (progress)

If Γ ⊢ s and Γ ⊢ E , then either s is skip, or E , s → E ′, s ′.

proof: by induction on the derivation Γ ⊢ s

s = skip immediate

s = s1; s2 if s1 = skip, we have E , s1; s2 → E , s2
otherwise, we use IH on s1, so E , s1 → E ′, s ′1 and thus
E , s1; s2 → E ′, s ′1; s2

s = e1.f ← e2 since e1 and e2 are well-typed, they evaluate to x and v
respectively
since Γ ⊢ x : {. . . f : τ . . . } we have (x , f) ∈ dom(E) and
thus E , s → E ′, skip with E ′ = E{(x , f) 7→ v}

other cases left as exercise □

Léon Gondelman Languages and Compilers static typing 35

preservation

then we show

Lemma (preservation)

If Γ ⊢ s, if Γ ⊢ E and if E , s → E ′, s ′ then Γ ⊢ s ′ and Γ ⊢ E ′.

proof: by induction on the derivation Γ ⊢ s

s = s1; s2 we have Γ ⊢ s1 and Γ ⊢ s2
• if s1 = skip, then E , s1; s2 → E , s2
• otherwise, E , s1 → E ′, s ′1 and by IH Γ ⊢ s ′1 and Γ ⊢ E ′

so Γ ⊢ s ′1; s2

s = e1.f ← e2 we have E , e1 ↠ x and E , e2 ↠ v and s ′ = skip (so
Γ ⊢ s ′) and E ′ = E{(x , f) 7→ v}
but Γ ⊢ e1 : {. . . f : τ . . . } and Γ ⊢ e2 : τ so Γ ⊢ v : τ (see
slide 33) and thus Γ ⊢ E ′

other cases left as exercise □

Léon Gondelman Languages and Compilers static typing 36

type safety

now we can deduce type safety easily

Theorem (type safety)

If Γ ⊢ s and E , s →⋆ E ′, s ′ and s ′ is irreducible, then s ′ is skip.

proof: we have E , s → E1, s1 → · · · → E ′, s ′ and by repeated applications
of the preservation lemma, we have Γ ⊢ s ′

by the progress lemma, s ′ is reducible or is skip
so this is skip □

Léon Gondelman Languages and Compilers static typing 37

in real life

languages such as Java or OCaml enjoy such a type safety property

which means that the evaluation of an expression of type τ

• either does not terminate

• or raises an exception

• or terminates on a value with type τ

in OCaml, the absence of null makes it a rather strong property

Léon Gondelman Languages and Compilers static typing 38

implementing type checking

Léon Gondelman Languages and Compilers static typing 39

implementing type checking

there is a difference between the typing rules, which define the relation

Γ ⊢ e : τ

and the type checking algorithm, which checks that a given expression e
is well-typed in some environment Γ

for instance

• the type τ is not necessarily given (type inference)

• several rules may apply for a single construct

• an expression may have several types

Léon Gondelman Languages and Compilers static typing 40

in our case

the case of while is simple, as a single rule applies for each expression

we say that typing is syntax-directed

the type checking is then implemented with a linear time traversal of the
program

Léon Gondelman Languages and Compilers static typing 41

practical considerations

• we do not simply say

type error

but we explain the type error precisely

• we keep types for the further phases of the compiler

Léon Gondelman Languages and Compilers static typing 42

practical considerations

to do this, we decorate abstract syntax trees

• input of type checking contains positions in source code

• output of type checking contains types

source
file

parser−−−→ syntax trees
with locations

type checker−−−−−−−→ syntax trees
with types

Léon Gondelman Languages and Compilers static typing 43

decorated AST

in OCaml

type loc = ...

type expr =

| Evar of string

| Econst of int

| Efield of expr * string

...

in Java

class Loc { ... }

abstract class Expr {

}

class Evar extends Expr {...}

class Econst extends Expr {...}

class Efield extends Expr {...}

...

Léon Gondelman Languages and Compilers static typing 44

decorated AST

in OCaml

type loc = ...

type expr = {

desc: desc;

loc : loc;

}

and desc =

| Evar of string

| Econst of int

| Efield of expr * string

...

in Java

class Loc { ... }

abstract class Expr {

Loc loc;

}

class Evar extends Expr {...}

class Econst extends Expr {...}

class Efield extends Expr {...}

...

Léon Gondelman Languages and Compilers static typing 45

error reporting

we signal a type error with an exception

the exception contains

• a message explaining the error

• a position in the source code

Léon Gondelman Languages and Compilers static typing 46

error reporting

we catch this exception in the main function

we display the position and the message

test.c:8:14: error: too few arguments to function ’f’

Léon Gondelman Languages and Compilers static typing 47

output

we set up an abstract syntax for types

type typ = ... class Typ { ... }

and a new abstract syntax for programs

type texpr = {

tdesc: tdesc;

typ : typ

}

and tdesc =

| Tvar of string

| Tconst of int

| Tfield of texpr * string

...

abstract class Texpr {

Typ typ;

}

class Tvar extends Texpr {...}

class Tconst extends Texpr {...}

class Tfield extends Texpr {...}

...

Léon Gondelman Languages and Compilers static typing 48

typing the type checker

the type checker turns a parsed syntax tree into another, typed syntax tree

parsed trees
type checker−−−−−−−→ typed trees

yet this is efficient, since

• it is typically a linear traversal

• former AST are collected by the GC

Léon Gondelman Languages and Compilers static typing 49

subtyping

Léon Gondelman Languages and Compilers static typing 50

definition

we say that a type τ1 is a subtype of a type τ2, which we write

τ1 ≤ τ2

if any value with type τ1 can be considered as a value with type τ2

Léon Gondelman Languages and Compilers static typing 51

example

in many languages, there is subtyping between numerical types

in Java, it is as shown on the right

thus we can write

int n = ’a’;

but not

byte b = 144;

double

float

long

int

char short

byte

Léon Gondelman Languages and Compilers static typing 52

inheritance

in an object-oriented language, inheritance induces subtyping:
if a class B inherits from a class A, we have

B ≤ A

i.e. any value of type B can be seen as a value of type A

Léon Gondelman Languages and Compilers static typing 53

example in Java

the two classes

class Vehicle { ... void move() { ... } ... }

class Car extends Vehicle { ... void move() { ... } ... }

induce the subtyping relation

Car ≤ Vehicle

and thus we can write

Vehicle v = new Car();

v.move();

Léon Gondelman Languages and Compilers static typing 54

static and dynamic types

the construct new C(...) builds an object of class C, and the class of this
object cannot be changed in the future; this is the dynamic type of the
object

however, the static type of an expression, as computed by the compiler,
may differ from the dynamic type, because of subtyping

when we write

Vehicle v = new Car();

v.move();

variable v has type Vehicle, but the method move that is called is that of
class Car (we’ll explain how in another lecture)

Léon Gondelman Languages and Compilers static typing 55

static and dynamic types

in many cases, the compiler cannot determine the dynamic type

example:

void moveAll(LinkedList<Vehicule> l) {

for (Vehicule v: l)

v.move();

}

Léon Gondelman Languages and Compilers static typing 56

type casting

sometimes we need to force the compiler’s hand, which means we claim
that a value has some type

we call this type casting (or simply cast)

Java’s notation, inherited from C, is

(τ)e

the static type of this expression is τ

Léon Gondelman Languages and Compilers static typing 57

example

using a cast, we can write

int n = ...;

byte b = (byte)n;

in this case, there is no dynamic verification
(if the integer is too large, it is truncated)

Léon Gondelman Languages and Compilers static typing 58

casting objects

let us consider
(C)e

where

• D is the dynamic type of (the object designated by) e

• E is the static type of expression e

there are three cases

• C is a super class of E : this is an upcast and the code for (C)e is
that of e (but the cast has some influence anyway, since (C)e has
type C)

• C is a subclass of E : this is a downcast and the code contains
dynamic test to check that D is indeed a subclass of C

• C is neither a subclass nor a super of E : the compiler rejects the
program with a type error

Léon Gondelman Languages and Compilers static typing 59

example (upcast)

class A {

int x = 1;

}

class B extends A {

int x = 2;

}

B b = new B();

System.out.println(b.x); // 2

System.out.println(((A)b).x); // 1

b.x = 4;

((A)b).x = 3;

System.out.println(b.x); // 4

System.out.println(((A)b).x); // 3

Léon Gondelman Languages and Compilers static typing 60

example (downcast)

void m(Vehicle v, Vehicle w) {

((Car)v).await(w);

}

nothing guarantees that the object passed to m will be a car; in particular,
it could have no method await!

the dynamic test is required

Java raises ClassCastException if the test fails

Léon Gondelman Languages and Compilers static typing 61

example of downcasting

class A { int x = 1; }

class B extends A { int x = 2; }

class Example{

static A a = new A();

static B b = new B();

static int m (A a){

return ((B)a).x; }

public static void main(String args[]){

// System.out.println(m(a)); // runtime error

System.out.println(m(b)); // 2

}

}

Léon Gondelman Languages and Compilers static typing 62

testing subtyping dynamically

to allow defensive programming, there exists a Boolean construct

e instanceof C

that checks whether the class of e is indeed a subclass of C

it is idiomatic to do

if (e instanceof C) {

C c = (C)e;

...

}

in this case, the compiler makes an optimization to perform a single test

Léon Gondelman Languages and Compilers static typing 63

overloading

Léon Gondelman Languages and Compilers static typing 64

definition

overloading is the ability to reuse the same name of several operations

overloading is handled at compile time, using the number and the
(static) types of arguments

Léon Gondelman Languages and Compilers static typing 65

example

in Java, operation + is overloaded

int n = 40 + 2;

String s = "foo" + "bar";

String t = "foo" + 42;

these are three distinct operations

int +(int , int)

String +(String, String)

String +(String, int)

Léon Gondelman Languages and Compilers static typing 66

be careful!

when we write

int n = ’a’ + 42;

this is subtyping that allows us to consider ’a’ with type char as a value
of type int, and thus the operation is +(int, int)

for instance, System.out.println(’m’ - ’n’); will output -1

but when we write

String t = "foo" + 42;

this is not subtyping (int ̸≤ String) but is due to two built-in ’+’

in particular, we cannot write

String t = 42;

Léon Gondelman Languages and Compilers static typing 67

another example

in Java, one cannot overload operators such as +
but one can overload methods/constructors

int f(int n, int m) { ... }

int f(int n) { ... }

int f(String s) { ... }

Léon Gondelman Languages and Compilers static typing 68

overloading resolution

this is exactly as if we had written

int f_int_int(int n, int m) { ... }

int f_int (int n) { ... }

int f_String (String s) { ... }

the compiler uses the static types of f’s arguments to determine which
method to call

Léon Gondelman Languages and Compilers static typing 69

overloading resolution

yet overloading resolution can be tricky

class A {...}

class B extends A {

void m(A a) {...}

void m(B b) {...}

}

with

{ ... B b = new B(); b.m(b); ... }

both methods apply

this is method m(B b) that is called, because it is considered more precise

Léon Gondelman Languages and Compilers static typing 70

ambiguity

some cases are ambiguous

class A {...}

class B extends A {

void m(A a, B b) {...}

void m(B b, A a) {...}

}

{ ... B b = new B(); b.m(b, b); ... }

and reported as such

test.java:13: reference to m is ambiguous,

both method m(A,B) in B and method m(B,A) in B match

Léon Gondelman Languages and Compilers static typing 71

Java’s overloading resolution

to each method defined in class C

τ m(τ1 x1, ..., τn xn)

we set the profile (C, τ1, . . . , τn)

then we order profiles: (τ0, τ1, . . . , τn) ⊑ (τ ′0, τ
′
1, . . . , τ

′
n) if and only if τi is

a subtype of τ ′i for all i

for a call
e.m(e1, . . . , en)

where e has static type τ0 and ei has static type τi , we consider the set of
all minimal elements in the set of all compatible profiles

• no element ⇒ no method applies

• several elements ⇒ ambiguity

• a single element ⇒ this is the method to call

Léon Gondelman Languages and Compilers static typing 72

