
Languages and Compilation

Based on the Jean-Christophe Filliâtre’s Courses

given at École Polytechnique & École Normale Supérieure

Lecture 12 -

optimizing compiler (3/3)

Léon Gondelman

aalborg univerisity | copenhagen | 2025

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 1

https://www.enseignement.polytechnique.fr/informatique/INF564/
https://www.lri.fr/~filliatr/ens/compil/

previously, on SPO course...

we took as example a fragment of C language

int fact(int x) {

if (x <= 1) return 1;

return x * fact(x-1);

}

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 2

previously, on SPO course...

phase 1 : instruction selection

• replace C arithmetic operations with MIPS operations

• explicit memory access with constant offset over signed 16 bits

int fact(int x) {

if (Mle x 1) return 1;

return Mmul x fact((Maddi -1) x);

}

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 3

previously, on SPO course...

phase 2 : RTL (Register Transfer Language)

- from code as abstract syntax tree to control-flow graph
- pseudo-registers for function parameters and intermediate computations

%2 fact(%1)

entry : L10

exit : L1

locals:

L10: %7 <- %1 --> L9

L9: %8 <- 1 --> L8

L8: ble %7 %8 --> L7, L6

L7: %2 <- 1 --> L1

L6: %3 <- %1 --> L5

L5: %6 <- %1 --> L4

L4: %5 <- addi -1 %6 --> L3

L3: %4 <- call fact(%5) --> L2

L2: %2 <- mul %3 %4 --> L1

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 4

previously, on SPO course...

phase 3 : ERTL (Explicit Register Transfer Language)

- explicit calling conventions and instructions for handling stack frame

fact(1)

entry : L18

locals: %10,%11,%9

L18: alloc_frame --> L17

L17: %9 <- $ra --> L16

L16: %10 <- $s0 --> L15

L15: %11 <- $s1 --> L14

L14: %1 <- $a0 --> L10

L10: %7 <- %1 --> L9

L9: %8 <- 1 --> L8

L8: ble %7 %8 --> L7, L6

L7: %2 <- 1 --> L1

L1: goto L24

L24: $v0 <- %2 --> L23

L23: $ra <- %9 --> L22

L22: $s0 <- %10 --> L21

L21: $s1 <- %11 --> L20

L20: delete_frame --> L19

L19: return

L6: %3 <- %1 --> L5

L5: %6 <- %1 --> L4

L4: %5 <- addi -1 %6 --> L3

L3: goto L13

L13: $a0 <- %5 --> L12

L12: call fact(1) --> L11

L11: %4 <- $v0 --> L2

L2: %2 <- mul %3 %4 --> L1

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 5

Today Goal 1

phase 4 : LTL (Location Transfer Language)
replacing pseudo-registers with physical registers preferably and stack
locations otherwise

fact__1()

entry : L18

L18: $sp <- addi -8 $sp --> L17

L17: stack(0) <- $ra --> L16

L16: goto L15

L15: goto L14

L14: goto L10

L10: goto L9

L9: $a1 <- 1 --> L8

L8: ble $a0 $a1 --> L7, L6

L7: $v0 <- 1 --> L1

L1: goto L24

L24: goto L23

L23: $ra <- stack(0) --> L22

L22: goto L21

L21: goto L20

L20: $sp <- addi 8 $sp --> L19

L19: return

L6: stack(4) <- $a0 --> L5

L5: goto L4

L4: $a0 <- addi -1 $a0 --> L3

L3: goto L13

L13: goto L12

L12: call fact__1 --> L11

L11: goto L2

L2: $v1 <- stack(4) --> L25

L25: $v0 <- mul $v1 $v0 --> L1

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 6

Today Goal 2

phase 5 (Linearization): the code after LTL is still a control-flow graph
and we have to produce linear assembly code

fact 1:

addi $sp, $sp, -8

sw $ra, 0($sp)

li $a1, 1

ble $a0, $a1, L27

sw $a0, 4($sp)

addi $a0, $a0, -1

jal fact 1

lw $v1, 4($sp)

mul $v0, $v1, $v0

L21:

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

L27:

li $v0, 1

b L21

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 7

register allocation

register allocation is complex, and decomposed into several steps

1. we perform a liveness analysis
• it tells when the value contained in a pseudo-register is needed for the

remaining of the computation

2. we build an interference graph
• it tells what are the pseudo-registers that cannot be mapped to the

same location

3. we allocate registers using a graph coloring
• it maps pseudo-registers to physical registers or stack locations

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 8

4.1: liveness analysis

in the following, a variable stands for a pseudo-register or a physical
register

Definition (live variable)

Given a program point, a variable is said to be live if the value it contains
is likely to be used in the remaining of the computation.

we say “is likely” since “is used” is not decidable; so we seek for a sound
over-approximation

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 9

Exemple

live variables are drawn on
edges of the CFG

a <- 0

L2: b <- a + 1

c <- c + b

a <- b * 2

if a < 100 goto L2

return c

a <- 0

b <- a+1

c <- c+b

a <- b*2

a < 100

return c

c

a, c

b, c

b, c

a, c

c

a, c

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 10

definitions and uses

live variables can be deduced from definitions and uses of variables by the
various instructions

Definition

For an instruction at label l in the control-flow graph, we write

• def (l) for the set of variables defined by this instruction,

• use(l) for the set of variables used by this instruction.

example : for the instruction l ≡ r1 ← add r2 r3 we have

def (l) = {r1} et use(l) = {r2, r3}

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 11

computing live variables

to compute live variables, it is handy to map them to labels in the
control-flow graph (instead of edges)

but then we have to distinguish between variables live at entry and
variables live at exit of a given instruction

Definition

For an instruction at label l in the control-flow graph, we write

• in(l) for the set of live variables on the set of incoming edges to l ,

• out(l) for the set of live variables on the set of outcoming edges
from l .

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 12

equations

the equations defining in(l) and out(l) are the following

 in(l) = use(l) ∪ (out(l)\def (l))

out(l) =
⋃

s∈succ(l) in(s)

these are mutually recursive functions and we seek for the smallest solution

we are in the case of a monotonous function over a finite domain and thus
we can use Tarski’s theorem (see lecture 4)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 13

fixpoint computation

a <- 0

b <- a+1

c <- c+b

a <- b*2

a < 100

return c

1

2

3

4

5

6

 in(l) = use(l) ∪ (out(l)\def (l))

out(l) =
⋃

s∈succ(l) in(s)

use def in out in out in out
1 a a . . . c a,c
2 a b a a b,c . . . a,c b,c
3 b,c c b,c b,c b . . . b,c b,c
4 b a b b a . . . b,c a,c
5 a a a a a,c . . . a,c a,c
6 c c c . . . c

we get the fixpoint with 7 iterations

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 14

fixpoint computation

assuming the control-flow graph has N nodes and N variables, a brute
force computation has complexity O(N3) in the worst case

we can improve efficiency in several ways

• traversing the graph in “reverse order” and computing out before in
(on the previous example, we converge in 3 iterations instead of 7)

• merging nodes with a unique predecessor and a unique successor
(basic blocks)

• using a more subtle algorithm that only recomputes the in and out
that may have changed; this is Kildall’s algorithm

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 15

Kildall’s algorithm

idea: if in(l) changes, then we only need to redo the computation for the
predecessors of l {

out(l) =
⋃

s∈succ(l) in(s)

in(l) = use(l) ∪ (out(l)\def (l))

here is the algorithm:

let WS be a set containing all nodes

while WS is not empty

remove a node l from WS

old_in <- in(l)

out(l) <- ...

in(l) <- ...

if in(l) is different from old_in(l) then

add all predecessors of l in WS

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 16

computing def and use

computing the sets def (l) (definitions) and use(l) (uses) is straightforward
for most instructions

examples

let def_use = function (*def*) (*use*)

| Econst (r,_,_) -> [r], []

| Eassign_global (r,_,_) -> [], [r]

| Emunop (rd,_,rs,_) -> [rd], [rs]

| Egoto _ -> [], []

| ...

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 17

computing def and use

this is more subtle for function calls

calls: all caller-saved registers can be erased by the call and the min(4, n)
first registers of parameters may be used

| Ecall (_,n,_) ->

caller_saved, prefix n parameters

system calls: only $a0 and $v0 are relevant

| Esyscall l ->

[v0], [a0; v0]

return: $v0, $ra and all callee-saved registers may be used

| Ereturn ->

[], result :: ra :: callee_saved

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 18

example

this was the ERTL code for fact

fact(1)

entry : L18

locals: %10,%11,%9

L18: alloc_frame --> L17

L17: %9 <- $ra --> L16

L16: %10 <- $s0 --> L15

L15: %11 <- $s1 --> L14

L14: %1 <- $a0 --> L10

L10: %7 <- %1 --> L9

L9: %8 <- 1 --> L8

L8: ble %7 %8 --> L7, L6

L7: %2 <- 1 --> L1

L1: goto L24

L24: $v0 <- %2 --> L23

L23: $ra <- %9 --> L22

L22: $s0 <- %10 --> L21

L21: $s1 <- %11 --> L20

L20: delete_frame --> L19

L19: return

L6: %3 <- %1 --> L5

L5: %6 <- %1 --> L4

L4: %5 <- addi -1 %6 --> L3

L3: goto L13

L13: $a0 <- %5 --> L12

L12: call fact(1) --> L11

L11: %4 <- $v0 --> L2

L2: %2 <- mul %3 %4 --> L1

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 19

liveness for fact

liveness analysis gives us:

L19: alloc_frame --> L18 in=$a0,$ra,$s0,$s1 out=$a0,$ra,$s0,$s1

L18: %10 <- $ra --> L17 in=$a0,$ra,$s0,$s1 out=$a0,$s0,$s1

L17: %11 <- $s0 --> L16 in=$a0,$s0,$s1,%10 out=$a0,$s1,%10,%11

L16: %12 <- $s1 --> L15 in=$a0,$s1,%10,%11 out=$a0,%10,%11,%12

L15: %1 <- $a0 --> L11 in=$a0,%10,%11,%12 out=%1,%10,%11,%12

L11: %8 <- %1 --> L10 in=%1,%10,%11,%12 out=%1,%10,%11,%12,%8

L10: %9 <- 1 --> L9 in=%1,%10,%11,%12,%8 out=%1,%10,%11,%12,%8,%9

L9: ble %8 %9 --> L8, L7 in=%1,%10,%11,%12,%8,%9 out=%1,%10,%11,%12

L8: %2 <- 1 --> L1 in=%10,%11,%12 out=%10,%11,%12,%2

L1: goto L25 in=%10,%11,%12,%2 out=%10,%11,%12,%2

L25: $v0 <- %2 --> L24 in=%10,%11,%12,%2 out=$v0,%10,%11,%12

L24: $ra <- %10 --> L23 in=$v0,%10,%11,%12 out=$ra,$v0,%11,%12

L23: $s0 <- %11 --> L22 in=$ra,$v0,%11,%12 out=$ra,$s0,$v0,%12

L22: $s1 <- %12 --> L21 in=$ra,$s0,$v0,%12 out=$ra,$s0,$s1,$v0

L21: delete_frame --> L20 in=$ra,$s0,$s1,$v0 out=$ra,$s0,$s1,$v0

L20: return in=$ra,$s0,$s1,$v0 out=

L7: %3 <- %1 --> L6 in=%1,%10,%11,%12 out=%1,%10,%11,%12,%3

L6: %6 <- %1 --> L5 in=%1,%10,%11,%12,%3 out=%10,%11,%12,%3,%6

L5: %7 <- 1 --> L4 in=%10,%11,%12,%3,%6 out=%10,%11,%12,%3,%6,%7

L4: %5 <- sub %6 %7-->L3 in=%10,%11,%12,%3,%6,%7 out=%10,%11,%12,%3,%5

L3: goto L14 in=%10,%11,%12,%3,%5 out=%10,%11,%12,%3,%5

L14: $a0 <- %5 --> L13 in=%10,%11,%12,%3,%5 out=$a0,%10,%11,%12,%3

L13: call fact --> L12 in=$a0,%10,%11,%12,%3 out=$v0,%10,%11,%12,%3

L12: %4 <- $v0 --> L2 in=$v0,%10,%11,%12,%3 out=%10,%11,%12,%3,%4

L2: %2 <- mul %3 %4-->L1 in=%10,%11,%12,%3,%4 out=%10,%11,%12,%2

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 20

4.2: interference

we now build an interference graph that represents the constraints over
pseudo-registers

Definition (interference)

We say that two variables v1 and v2 interfere if they cannot be
implemented by the same location (physical register or memory slot).

since interference is not decidable, we look for sufficient conditions

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 21

interference

let’s consider an instruction
v ← e

that defines a variable v ; then any other variable w live out of this
instruction may interfere with v (mapping v to the register of w would
make w not “live”)

however, in the particular case of move

v ← w

we wish instead not to declare that v and w interfere, since mapping v
and w to the same location will eliminate this instruction

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 22

interference graph

so we adopt the following definition

Definition (interference graph)

The interference graph of a function is an undirected graph whose
vertices are the variables and whose edges are of two kinds: interference or
preference.
For each instruction I that defines a variable v and whose out live
variables, other than v , are w1, . . . ,wn, we proceed as follows:

• if I is not a v ← w move, we add the n interference edges v − wi

• if I is a v ← w move, we add the interference edges v − wi for the
wi other than w and we add a preference edge v − w .

(if an edge v − w is both a preference and interference, we only keep the
interference edge)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 23

example : factorial

interference graph for
fact

dashed=preference
edges

$a0

%1

%5

$v0

%10

%11

%3

%9

%6

%7
%8

%2

%4

$a1

$a2

$a3

$ra

$s0

$s1

$t0

$t1

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 24

4.3: graph coloring

we can see register allocation as a graph coloring problem:

• the colors are the physical registers

• two vertices linked by some interference edge cannot receive the
same color

• two vertices linked by some preference edge should receive the same
color as much as possible

note: the graph contains vertices that are physical registers, i.e., that are
already colored

Gregory Chaitin, Register allocation and spilling via graph coloring, 1982

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 25

example of the factorial

if we remove vertices that are already colored, we get the following
coloring problem to solve

possible colors

%1 a0,a1,a2,a3,ra,s0,s1,t0,t1,v0
%10 s0
%11 s1
%2 a0,a1,a2,a3,ra,s0,s1,t0,t1,v0
%3 s0,s1
%4 a0,a1,a2,a3,ra,s0,s1,t0,t1,v0
%5 a0,a1,a2,a3,ra,s0,s1,t0,t1,v0
%6 a0,a1,a2,a3,ra,s0,s1,t0,t1,v0
%7 a0,a1,a2,a3,ra,s0,s1,t0,t1,v0
%8 a0,a1,a2,a3,ra,s0,s1,t0,t1,v0
%9

%1

%3

%6

%7

%10

%11

%8

%9

%4

%5

%2

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 26

difficulty

on this example, we can see immediately that the coloring is impossible

• no color available for %9 (the pseudo-register that will store $ra)
• $s0 and $s1 are the only possible colors for %10 and %11, but then
there are no colors left for %3

if a vertex can’t be colored, it will be allocated on the stack; it is called
a spilled pseudo-register

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 27

another difficulty

even if the graph can be colored, figuring it out would be too costly (the
problem is NP-complete)

so we are going to use heuristiques, to color the graph, looking for

• a linear (of quasi-linear) complexity

• good use of preference edges

one of the best algorithms is due to George and Appel
(Iterated Register Coalescing, 1996)

it uses the following ideas

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 28

simplification

let K be the number of colors (i.e. the number of physical registers)

a first idea, due to Kempe (1879!), is the following:

if a vertex has a degree < K , then we can remove it from the graph, color
the remaining graph, and then assign it a color (because it has less
interference edges than available colors); this is called simplification

removing a vertex decreases the degree of other vertices and thus can
trigger other simplifications

removed vertices are put on a temporary stack of visited nodes

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 29

spilling

when there are only vertices with degree ≥ K , we pick up one vertex as
potential spill; it is removed from the graph and put on the temporary
stack, and the simplification process restarts

we preferably choose a vertex

• that is seldom used (memory access is costly)

• has a strong degree (to favor new simplifications)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 30

selection

when the graph is empty, we start the coloring process, called selection

we pop vertices from the stack, and for each

• if it has a small degree, we are guaranteed to find a color
• if it has a high degree (a potential spill), then

• either it can be colored because its neighbors use less than K colors
(optimistic coloring)

• or it cannot be colored and it is spilled to memory (actual spill)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 31

coalescing

last, we must make good use of preference edges

using a technique called coalescing that merges two vertices of the graph;
since it may increase the degree (of the resulting vertex), we add a
conservative criterion (George’s criterion) not to damage K -colorability:
coalescing x and y is safe if for every neighbor t of y , either

• t already interferes with x , or

• t has less than k neighbors, where k is the number of available
registers.

In simpler terms, if y ’s neighbors can be colored even after x and y are
merged, then the coalescing is safe.

note: this phase is used after simplification but triggers a new
simplification if we have a coalescing

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 32

what about spilled pseudo-registers?

what do we do with spilled pseudo-registers?

they are mapped to stack slots, in the
lower part of the stack frame under the
parameters

...
param. 5

...
param. n
locale 1

...
$sp → locale m

...

several pseudo-registers may use the same slot, if they do not interfere ⇒
how to minimize m ?

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 33

coloring, again

coloring, again this is yet another graph coloring problem, but this time
with an infinite number of colors (stack slots)

algorithm :

1. merge all preference edges (coalescence),
since move between two spilled registers is really costly

2. then use the simplification algorithm again

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 34

example of fact

we get the following register allocation

%1 -> $a0

%10 -> $s0

%11 -> $s1

%2 -> $v0

%3 -> stack 4

%4 -> $v0

%5 -> $a0

%6 -> $a0

%7 -> $a0

%8 -> $a1

%9 -> stack 0

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 35

example

which we would give the following code

fact(1)

entry : L18

locals: %10,%11,%9

L18: alloc_frame --> L17

L17: stack(0) <- $ra --> L16

L16: $s0 <- $s0 --> L15

L15: $s1 <- $s1 --> L14

L14: $a0 <- $a0 --> L10

L10: $a0 <- $a0 --> L9

L9: $a1 <- 1 --> L8

L8: ble $a0 $a1 --> L7, L6

L7: $v0 <- 1 --> L1

L1: goto L24

L24: $v0 <- $v0 --> L23

L23: $ra <- stack(0) --> L22

L22: $s0 <- $s0 --> L21

L21: $s1 <- $s1 --> L20

L20: delete_frame --> L19

L19: return

L6: stack(4) <- $a0 --> L5

L5: $a0 <- $a0 --> L4

L4: $a0 <- addi -1 $a0--> L3

L3: goto L13

L13: $a0 <- $a0 --> L12

L12: call fact --> L11

L11: $v0 <- $v0 --> L2

L2: $v0 <- mul stack(4) $v0

--> L1

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 36

remark

as we notice, many instructions

v ← v

can now be eliminated; this was the purpose of preference edges

conversely, we have now instructions such as

$v0← mul stack(0) $v0

which don’t have direct correspondence in MIPS; what to do?

both cases will be taken care of during the translation to LTL
(see appendix of these slides)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 37

example

so we get the following LTL code for fact

fact__1()

entry : L18

L18: $sp <- addi -8 $sp --> L17

L17: stack(0) <- $ra --> L16

L16: goto L15

L15: goto L14

L14: goto L10

L10: goto L9

L9: $a1 <- 1 --> L8

L8: ble $a0 $a1 --> L7, L6

L7: $v0 <- 1 --> L1

L1: goto L24

L24: goto L23

L23: $ra <- stack(0) --> L22

L22: goto L21

L21: goto L20

L20: $sp <- addi 8 $sp --> L19

L19: return

L6: stack(4) <- $a0 --> L5

L5: goto L4

L4: $a0 <- addi -1 $a0 --> L3

L3: goto L13

L13: goto L12

L12: call fact__1 --> L11

L11: goto L2

L2: $v1 <- stack(4) --> L25

L25: $v0 <- mul $v1 $v0 --> L1

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 38

phase 5: linearization

one last step is needed: the code is still a control-flow graph and we
have to produce linear assembly code

to be precise, LTL branching instructions contain:

• a label for a positive test

• another label for a negative test

while assembler branching instructions:

• contain a single label for a positive test

• move to the next instruction for a negative test

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 39

linearization

the linearization consists in traversing the control-flow graph and
outputting assembly code, while keeping track of visited labels

for a branching instruction, we try to produce idiomatic assembly code
when the negative part of the code is not yet visited

in the worst case, we use some unconditional jump (j)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 40

linearization

MIPS code is produced sequentially using a function

val emit: Label.t -> Mips.instruction -> unit

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 41

linearization

we use two tables

one to store visited labels

let visited = Hashtbl.create 17

and one to store labels that are targets of jumps (we don’t know yet when
the instruction is visited and emitted)

let labels = Hashtbl.create 17

let need_label l = Hashtbl.add labels l ()

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 42

linearization

the linearization is implemented by two mutually recursive functions

• a function lin outputs code from a given label, if not yet visited, and
emits a jump to that label otherwise

val lin: instr Label.map -> Label.t -> unit

• a function instr outputs code for a given label and a given
instruction, unconditionally

val instr: instr Label.map -> Label.t -> instr -> unit

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 43

linearization

the function lin is a mere graph traversal

if the instruction is not yet visited, we mark it as visited and we call
function instr

let rec lin g l =

if not (Hashtbl.mem visited l) then begin

Hashtbl.add visited l ();

instr g l (Label.M.find l g)

otherwise we mark the label as a target in the assembly code and we
output some unconditional jump to that label

end else begin

need_label l;

emit (Label.fresh ()) (B l)

end

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 44

linearization

the function instr outputs MIPS code and calls lin recursively on the
next label

and instr g l = function

| Econst (r, n, l1) ->

emit l (Li (r, n)); lin g l1

| Eaccess_global (r, x, l1) ->

emit l (Lw (r, Alab x)); lin g l1

| ...

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 45

branching

the interesting case is that of a branching instruction (let’s consider
Emubranch ; it’s the same for Embbranch)

we first consider the case where the code corresponding to a negative test
has not yet been produced

| Emubranch (br, r, lt, lf)

when not (Hashtbl.mem visited lf) ->

need_label lt;

emit l (ubranch br r lt);

lin g lf;

lin g lt

(where ubranch is the function that produces MIPS instruction for the
branching)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 46

branching

otherwise, it may be the case that the code corresponding to a positive
test has not yet been produced and then we can switch the condition:

| Emubranch (br, r, lt, lf)

when not (Hashtbl.mem visited lt) ->

instr g l (Emubranch (inv_ubranch br, r, lf, lt))

where

let inv_ubranch = function

| Mbeqz -> Mbnez

| Mbnez -> Mbeqz

| ...

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 47

branching

finally, in the case where both branches has already been visited, we have
no other choice than emitting some unconditional jump

| Emubranch (br, r, lt, lf) ->

need_label lt; need_label lf;

emit l (ubranch br r lt);

emit l (B lf)

note: we can try to estimate which case will be true more often

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 48

goto

the code contains many goto (while loops of the RTL phase, calling
conventions in the ERTL phase, removal of move instructions in the LTL
phase)

we now eliminate unnecessary goto when possible

| Egoto l1 ->

if Hashtbl.mem visited l1 then begin

need_label l1;

emit l (B l1)

end else begin

emit l Nop; (* will be erased *)

lin g l1

end

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 49

assembling all pieces

the main program with all the compilation phases

let f = open_in file in

let buf = Lexing.from_channel f in

let p = Parser.file Lexer.token buf in

close_in f;

let p = Typing.program p in

let p = Is.program p in

let p = Rtl.program p in

let p = Ertl.program p in

let p = Ltl.program p in

let code = Lin.program p in

let c = open_out (Filename.chop_suffix file ".c" ^ ".s") in

let fmt = formatter_of_out_channel c in

Mips.print_program fmt code;

close_out c

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 50

factorial

fact 1:

addi $sp, $sp, -8

sw $ra, 0($sp)

li $a1, 1

ble $a0, $a1, L27

sw $a0, 4($sp)

addi $a0, $a0, -1

jal fact 1

lw $v1, 4($sp)

mul $v0, $v1, $v0

L21:

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

L27:

li $v0, 1

b L21

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 51

we could do better manually

fact 2:

li $v0, 1

ble $a0, $v0, L1

addi $sp, $sp, -8

sw $ra, 4($sp)

sw $a0, 0($sp)

addi $a0, $a0, -1

jal fact 2

lw $v1, 0($sp)

mul $v0, $v1, $v0

lw $ra, 4($sp)

addi $sp, $sp, 8

L1:

jr $ra

but it is always easier to optimize one program

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 52

take away

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 53

programming languages

understanding programming languages is essential for

• coding
• have a precise execution model in mind
• choose the right abstractions

• doing research in (applied/fundamental) Computer Science
• design new languages
• design tools (i.e. static analysis)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 54

programming languages

in particular, we explained

• what is the stack

• various passing modes

• what is an object

• static and dynamic typing

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 55

compilation

compilation involves

• numerous techniques

• several passes, mostly orthogonal

most of these techniques can be reused in contexts other than code
generation, such as

• computational linguistics

• computer-assisted proofs

• databases

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 56

compilation also means...

many other things we didn’t have time to explore

module systems
common sub-expression
program transformations
abstract interpretation

alias analysis
loop unrolling

interprocedural analysis
memory caches

logic programming
just-in-time compilation
instruction scheduling

etc.

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 57

...but in the end

there are no good programming languages,

only good programmers

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 58

appendix

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 59

the LTL language

we still have a control-flow graph
most LTL instructions LTL are the same as in ERTL, but operands are
now physical registers or stack slots

type instr =

| Econst of register * int * label

| Eaccess_global of register * ident * label

| ...

additionally Eget stack param and Eset stack param disappear, being
now replaced by general instructions manipulating the stack using $sp

| Eget_stack of register * int * label

| Eset_stack of register * int * label

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 60

ERTL to LTL

we translate each ERTL instruction using a function that takes as
arguments the graph coloring and the size of the stack frame (which is
now known for each function)

let instr colors frame_size = function

| ...

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 61

ERTL to LTL

let’s consider the case of an instruction that loads the constant n in the
variable r :

let instr colors frame_size = function

| Ertltree.Econst (r, n, l) -> ?

we have two possible cases:

• either r is physical register h or a pseudo-register mapped to a
physical register h; then translation is straightforward

Econst (h, n, l)

• or r is a spilled pseudo-register, and translation is not trivial: we need
to load n in a physical register, then use the latter to write to memory

problem : which physical register shall we use?

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 62

temporary registers

we go for a simple solution: two registers are used as temporary registers
from transfers to/from memory, and are not used anywhere else (we
choose (we choose $v1 and $fp here)

in practice, we can’t always waste two registers like this; we have to patch
the interference graph and rerun the register allocation to free a register
for the transfer (fortunately, it quickly converges (2 or 3 steps) in practice)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 63

ERTL to LTL

with two temporary registers

let tmp1, tmp2 = "$v1", "$fp"

to write into the variable r we define a function write, that takes as
arguments graph coloring c and the label for where to go after the write;
the function then computes the physical register and the continuation label

let write c r l = match lookup c r with

| Reg hr -> hr, l

| Spilled n -> tmp1, generate (Eset_stack (tmp1, n, l))

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 64

ERTL to LTL

we can now translate from ERTL to LTL:

let instr c frame_size = function

| Ertltree.Econst (r, n, l) ->

let hwr, l = write c r l in

Econst (hwr, n, l)

| Ertltree.Eaccess_global (r, x, l) ->

let hwr, l = write c r l in

Eaccess_global (hwr, x, l)

| ...

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 65

ERTL to LTL

conversely, we define a function read1 to read the content of a variable
(using a handler f in case of a physical register):

let read1 c r f = match lookup c r with

| Reg hr -> f hr

| Spilled n -> Eget_stack (tmp1, n, generate (f tmp1))

i.e. we use it as follows:

let instr c frame_size = function

| ...

| Ertltree.Eassign_global (r, x, l) ->

read1 c r (fun hwr -> Eassign_global (hwr, x, l))

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 66

ERTL to LTL

we proceed in a similar way when we need to read the content of two
variables (binary operations) and use it as follows:

| Ertltree.Embinop (r1, op, r2, r3, l) ->

read2 c r2 r3 (fun hw2 hw3 ->

let hw1, l = write c r1 l in

Embinop (hw1, op, hw2, hw3, l))

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 67

move operation

the Mmove instruction requires a special treatment:

| Ertltree.Emunop (r1, Mmove, r2, l) ->

begin match lookup c r1, lookup c r2 with

| w1, w2 when w1 = w2 ->

Egoto l

| Reg hr1, Reg hr2 ->

Emunop (hr1, Mmove, hr2, l)

| Reg hr1, Spilled ofs2 ->

Eget_stack (hr1, ofs2, l)

| Spilled ofs1, Reg hr2 ->

Eset_stack (hr2, ofs1, l)

| Spilled ofs1, Spilled ofs2 ->

Eget_stack (tmp1, ofs2, generate (

Eset_stack (tmp1, ofs1, l)))

end

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 68

stack parameters

and now that we know the size of the stack frame, we can translate
Eget stack param in terms of access of it w.r.t. $sp

| Ertltree.Eget_stack_param (r, n, l) ->

let hwr, l = write c r l in

Eget_stack (hwr, frame_size + n, l)

(but the Eset stack param does not change)

| Ertltree.Eset_stack_param (r, n, l) ->

read1 c r (fun hwr -> Eset_stack (hwr, n, l))

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 69

stack frame

and we can translate Ealloc frame and Edelete frame in terms of $sp

| Ertltree.Ealloc_frame l

| Ertltree.Edelete_frame l when frame_size = 0 ->

Egoto l

| Ertltree.Ealloc_frame l ->

Emunop (Register.sp, Maddi (-frame_size), Register.sp, l)

| Ertltree.Edelete_frame l ->

Emunop (Register.sp, Maddi frame_size, Register.sp, l)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 70

ERTL to LTL

let deffun f =

let ln = Liveness.analyze f.Ertltree.fun_body in

let ig = Interference.make ln in

let c, nlocals = Coloring.find ig in

let n_stack_params =

max 0 (f.Ertltree.fun_formals-List.length Register.parameters)

in

let frame_size = word_size * (nlocals + n_stack_params) in

graph := Label.M.empty;

Label.M.iter (fun l i ->

let i = instr c frame_size i in

graph := Label.M.add l i !graph)

f.Ertltree.fun_body;

{ fun_name = f.Ertltree.fun_name;

fun_entry = f.Ertltree.fun_entry;

fun_body = !graph; }

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 71

