
Languages and Compilation

Based on the Jean-Christophe Filliâtre’s Courses

given at École Polytechnique & École Normale Supérieure

Lecture 11 -

optimizing compiler (2/3)

Léon Gondelman

aalborg univerisity | copenhagen | 2025

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 1

https://www.enseignement.polytechnique.fr/informatique/INF564/
https://www.lri.fr/~filliatr/ens/compil/

previously, on SPO course...

we took as example a fragment of C language

int fact(int x) {

if (x <= 1) return 1;

return x * fact(x-1);

}

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 2

previously, on SPO course...

phase 1 : instruction selection

• replace C arithmetic operations with MIPS operations

• explicit memory access with constant offset over signed 16 bits

int fact(int x) {

if (Mle x 1) return 1;

return Mmul x fact((Maddi -1) x);

}

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 3

previously, on SPO course...

phase 2 : RTL (Register Transfer Language)

- from code as abstract syntax tree to control-flow graph
- pseudo-registers for function parameters and intermediate computations

%2 fact(%1)

entry : L10

exit : L1

locals:

L10: %7 <- %1 --> L9

L9: %8 <- 1 --> L8

L8: ble %7 %8 --> L7, L6

L7: %2 <- 1 --> L1

L6: %3 <- %1 --> L5

L5: %6 <- %1 --> L4

L4: %5 <- addi -1 %6 --> L3

L3: %4 <- call fact(%5) --> L2

L2: %2 <- mul %3 %4 --> L1

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 4

Today’s Goal: ERTL

phase 3 : ERTL (Explicit Register Transfer Language)

- explicit calling conventions and instructions for handling stack frame

fact(1)

entry : L19

locals: %10, %11, %12

L19: alloc_frame --> L18

L18: %10 <- $ra --> L17

L17: %11 <- $s0 --> L16

L16: %12 <- $s1 --> L15

L15: %1 <- $a0 --> L11

L11: %8 <- %1 --> L10

L10: %9 <- 1 --> L9

L9: ble %8 %9 --> L8, L7

L8: %2 <- 1 --> L1

L7: %3 <- %1 --> L6

L6: %6 <- %1 --> L5

L5: %7 <- 1 --> L4

L4: %5 <- sub %6 %7 --> L3

L3: goto L14

L14: $a0 <- %5 --> L13

L13: call fact --> L12

L12: %4 <- $v0 --> L2

L2: %2 <- mul %3 %4 --> L1

L1: goto L25

L25: $v0 <- %2 --> L24

L24: $ra <- %10 --> L23

L23: $s0 <- %11 --> L22

L22: $s1 <- %12 --> L21

L21: delete_frame --> L20

L20: return
Léon Gondelman Languages and Compilers optimizing compiler (2/3) 5

Roadmap for the backend (2/3)

1. instruction selection

2. RTL (Register Transfer Language)

3. ERTL (Explicit Register Transfer Language)

4. LTL (Location Transfer Language)
4.1 liveness analysis
4.2 interference graph
4.3 register allocation using graph coloring

5. linearization (assembly)

Ttree

Istree

Rtltree

Ertltree

Ltltree

Mips

Is

Rtl

Ertl

Ltl

Lin

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 6

Phase 3: ERTL

the third phase is a transformation that turns RTL into ERTL (Explicit
Register Transfer Language)

goal : make the calling conventions explicit, namely here

• the first four arguments are passed in $a0, $a1, $a2, $a3, and others
on the stack

• the result is returned in $v0
• some registers are preserved by the callee ($s0, $s1, . . .), others by
the caller ($v0, $a0, . . . , $t0, . . . , $ra)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 7

MIPS Registers

assume that the module Register describes physical registers as well

type t

...

val parameters: t list (* for the first n arguments *)

val result: t (* for the result *)

val ra: t

val callee_saved: t list

(* for syscall : *)

val a0: t

val v0: t

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 8

instruction for calls

for RTL, we had

| Ecall of register * ident * register list * label

in ERTL, we now have

| Ecall of ident * int * label

i.e. we are only left with the name of the function to call, since new
instructions will be inserted to load parameters into registers and stack,
and to get the result from $v0
(we only keep the number k of parameters passed into registers (to be
used in phase 4)

similarly, instructions Emalloc and Eprintf disappear, as we now can
express them by introducing ERTL instruction

| Esyscall of label

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 9

new instructions in the ERTL phase

other RTL instructions remain unchanged

however, we introduce some new instructions:
• to create and destroy the stack frame

| Ealloc_frame of label

| Edelete_frame of label

(note : we do not know yet the size of the stack frame)

• to load and store parameters using stack

| Eget_stack_param of register * int * label

| Eset_stack_param of register * int * label

(the integer here corresponds to the offset w.r.t. the top of the stack
frame)

• explicit return instruction

| Ereturn

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 10

stack frame

the stack frame is as follows:

...
param. 5

...
param. n
locale 1

...
$sp → locale m

...

the m local variables area will hold all the pseudo-registers that could not
be allocated to physical registers; register allocation (phase 4) will
determine the value of m

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 11

inserting new instructions

we do not change the structure of the control-flow graph; we simply insert
new instructions
• at the beginning of each function, to

• allocate the stack frame
• save $ra and the callee-saved registers
• copy the parameters into the corresponding pseudo-registers

• at the end of each function, to
• copy the pseudo-register holding the result into $v0
• restore $ra and the callee-saved registers
• delete the stack frame

• around each function call, to
• copy the pseudo-registers holding the parameters into $a0, . . . and on

the stack before the call
• copy $v0 into the pseudo-register holding the result after the call

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 12

translation

we translate the RTL instructions into ERTL with a function

val instr: Rtltree.instr -> Ertltree.instr

few things change, apart from function calls that is, instructions Ecall,
Emalloc and Eprintf

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 13

translating a call

recall that in RTL, the call is represented by

| Rtltree.Ecall (r, x, rl, l) ->

where r is the pseudo-register receiving the result, x is the name of the
function and rl is the list of pseudo-registers containing the arguments

we start by associating the first parameters to physical registers, i.e. to
Register.parameters:

let assoc_formals formals =

let rec assoc = function

| [], _ -> [], []

| rl, [] -> [], rl

| r :: rl, p :: pl ->

let a, rl = assoc (rl, pl) in (r, p) :: a, rl

in

assoc (formals, Register.parameters)
Léon Gondelman Languages and Compilers optimizing compiler (2/3) 14

translating a call

the parameters that are not associated with physical registers are passed on
the stack; we thus store them at relative positions −4, −8, etc. w.r.t. $sp

$sp →
...

param. 5 −4
param. 6 −8

...
param. n −4(n − 4)

...

that is, we make a choice that it’s the callee that will be in charge of
allocating the stack frame (parameters + locals) by a simple subtraction
over $sp

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 15

translating a call

we provide

let move src dst l = generate (Emunop (dst, Mmove, src, l))

let set_stack r n l = generate (Eset_stack_param (r, n, l))

so that the call is realized as follows:

| Rtltree.Ecall (r, x, rl, l) ->

let frl, fsl = assoc_formals rl in

let n = List.length frl in

let l = generate (Ecall (x, n, move Register.result r l)) in

let ofs = ref 0 in

let l = List.fold_left

(fun l t -> ofs := !ofs - word_size; set_stack t !ofs l)

l fsl

in

let l = List.fold_right (fun (t, r) l -> move t r l) frl l in

Egoto l

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 16

example

the RTL code

L3: %4 <- call fact(%5) --> L2

is translated into the ERTL code

L3: goto L14

L14: $a0 <- %5 --> L13

L13: call fact --> L12

L12: %4 <- $v0 --> L2

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 17

malloc

recall that for malloc, we use the system call 9

| Rtltree.Emalloc (r, n, l) ->

Econst (Register.a0, n, generate (

Econst (Register.v0, 9, generate (

Esyscall (

move Register.v0 r l)))))

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 18

printf

similarly for printf,
we use system calls 1 (print int) and 11 (print char)

| Rtltree.Eprintf (r, l) ->

Econst (Register.v0, 1, (

move r Register.a0 (generate (

Esyscall (generate (

Econst (Register.a0, 10, generate (

Econst (Register.v0, 11, generate (

Esyscall l))))))))))

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 19

translating functions

it remains to translate each function

RTL

type deffun = {

fun_name : ident;

fun_formals: register list;

fun_result : register;

fun_locals : Register.set;

fun_entry : label;

fun_exit : label;

fun_body : instr Label.map;

}

ERTL

type deffun = {

fun_name : ident;

fun_formals: int; (* num *)

fun_locals : Register.set;

fun_entry : label;

fun_body : instr Label.map;

}

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 20

translating a function (1)

we start by reconstructing the graph for the function body (which is a
graph computed from a fresh exit label to some entry label) :

let deffun f =

let () = graph := Label.M.empty in

let () = Label.M.iter

(fun l i -> let i = instr i in

graph := Label.M.add l i !graph)

f.Rtltree.fun_body in

...

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 21

translating a function (2)

we associate a fresh pseudo-register to each physical register that has to
be saved i.e. $ra and the callee saved registers

let deffun f =

let () = graph := Label.M.empty in

let () = Label.M.iter

(fun l i -> let i = instr i in

graph := Label.M.add l i !graph)

f.Rtltree.fun_body in

let svl = List.map (fun r -> Register.fresh(), r)

(Register.ra :: Register.callee_saved) in

...

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 22

function entry

at the entry of the function (i.e. before the entry to the call), we must

• allocate its stack frame with Ealloc frame

• save the callee-saved registers (list svl)

• copy the arguments into their pseudo-registers (formals)

let fun_entry svl formals entry =

let frl, fsl = assoc_formals formals in

let ofs = ref 0 in

let l = List.fold_left

(fun l t -> ofs := !ofs - word_size; get_stack t !ofs l)

entry fsl

in

let l = List.fold_right (fun (t, r) l -> move r t l) frl l in

let l = List.fold_right (fun (t, r) l -> move r t l) svl l in

generate (Ealloc_frame l)

(note : the offset of get stack is computed as for set stack here)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 23

function exit

at function exit, we

• delete the stack frame

• restore the saved registers

• copy the pseudo-register holding the result in $v0

let fun_exit svl retr exitl =

let l = generate (Edelete_frame (generate Ereturn)) in

let l = List.fold_right (fun (t, r) l -> move t r l) svl l in

let l = move retr Register.result l in

graph := Label.M.add exitl (Egoto l) !graph

(now, the fresh dummy exitl label finally makes sense)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 24

translating a function (3)

so we compute label for the function entry and exit
given the code on the previous slides, and we are done

let deffun f =

let () = graph := Label.M.empty in

let () = Label.M.iter (fun l i -> let i = instr i in

graph := Label.M.add l i !graph)

f.Rtltree.fun_body in

let svl = List.map (fun r -> Register.fresh(), r)

(Register.ra :: Register.callee_saved) in

let entry =

fun_entry svl f.Rtltree.fun_formals f.Rtltree.fun_entry in

let () = fun_exit svl f.Rtltree.fun_result f.Rtltree.fun_exit in

{ fun_name = f.Rtltree.fun_name;

fun_formals = List.length f.Rtltree.fun_formals;

fun_locals = locals;

fun_entry = entry;

fun_body = !graph; }

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 25

example : factorial

fact(1)

entry : L19

locals: %10, %11, %12

L19: alloc_frame --> L18

L18: %10 <- $ra --> L17

L17: %11 <- $s0 --> L16

L16: %12 <- $s1 --> L15

L15: %1 <- $a0 --> L11

L11: %8 <- %1 --> L10

L10: %9 <- 1 --> L9

L9: ble %8 %9 --> L8, L7

L8: %2 <- 1 --> L1

L7: %3 <- %1 --> L6

L6: %6 <- %1 --> L5

L5: %7 <- 1 --> L4

L4: %5 <- sub %6 %7 --> L3

L3: goto L14

L14: $a0 <- %5 --> L13

L13: call fact --> L12

L12: %4 <- $v0 --> L2

L2: %2 <- mul %3 %4 --> L1

L1: goto L25

L25: $v0 <- %2 --> L24

L24: $ra <- %10 --> L23

L23: $s0 <- %11 --> L22

L22: $s1 <- %12 --> L21

L21: delete_frame --> L20

L20: return

(here we assume that the only callee-saved registers are $s0 and $s1)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 26

disappointment

this is far from being what we think is a good MIPS code for the factorial

at this point, we have to understand that

• register allocation (phase 4) will try to match physical registers to
pseudo-registers to minimize the use of the stack and certain
instructions; e.g., if we map %11 to $s0, we can get rid of instructions
at L17 et L23

• the code is not linearized yet (the graph is simply printed in some
arbitrary order)

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 27

another example

another example, a function with more than 4 arguments

int many(int a, int b, int c, int d, int e, int f) {

if (a == 0) return b; else return many(b, c, d, e, f, a);

}

many(6)

entry : L31

locals: %17, %18, %19

L31: alloc_frame->L30

L30: %17<-$ra ->L29

L29: %18<-$s0 ->L28

L28: %19<-$s1 ->L27

L27: %1<-$a0 ->L26

L26: %2<-$a1 ->L25

L25: %3<-$a2 ->L24

L24: %4<-$a3 ->L23

L23: %6<-st(-8) ->L22

L22: %5<-st(-4) ->L13

L13: %15<-%1 ->L12

L12: %16<-0 ->L11

L11: %14<-seq %15 %16

->L10

L10: beqz %14->L8,L9

L8: %8<-%2 ->L7

L7: %9<-%3 ->L6

L6: %10<-%4 ->L5

L5: %11<-%5 ->L4

L4: %12<-%6 ->L3

L3: %13<-%1 ->L2

L2: goto L21

L21: $a0<-%8 ->L20

L20: $a1<-%9 ->L19

L19: $a2<-%10 ->L18

L18: $a3<-%11 ->L17

L17:st(-8)<-%13 ->L16

L16:st(-4)<-%12 ->L15

L15: call many ->L14

L14: %7<-$v0 ->L1

L1: goto L37

L37: $v0<-%7 ->L36

L36: $ra<-%17 ->L35

L35: $s0<-%18 ->L34

L34: $s1<-%19 ->L33

L33:delete_frame->L32

L32: return

L9: %7<-%2 ->L1
Léon Gondelman Languages and Compilers optimizing compiler (2/3) 28

phase 4: LTL

the next phase translates ERTL to LTL (Location Transfer Language)

the goal is to get rid of pseudo-registers, replacing them with

• physical registers preferably

• stack locations otherwise

this is called register allocation

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 29

register allocation

register allocation is complex, and decomposed into several steps

1. we perform a liveness analysis
• it tells when the value contained in a pseudo-register is needed for the

remaining of the computation

2. we build an interference graph
• it tells what are the pseudo-registers that cannot be mapped to the

same location

3. we allocate registers using a graph coloring
• it maps pseudo-registers to physical registers or stack locations

Léon Gondelman Languages and Compilers optimizing compiler (2/3) 30

