
Aalborg University – Copenhagen – 2025

Programming Languages and Compilers Course – Lab 6

Static Typing of a Fragment of C Language

Based on material from INF564 course given at
École Polytechnique by Jean-Christophe Filliâtre

1 Introduction

The goal is to build a typechecker for a tiny fragment of the C language, called Mini C in the
following. it contains integers and pointers to structures. It is fully compatible with C. This
means a C compiler such as gcc can be used as a reference.

Differences wrt C. Any Mini C program is a legal C program. Yet, Mini C has limitations
wrt C. Here are some of them:

• There is no variable initialization. To initialize a variable, one has to use an assignment;

• the only types are integers (Basic signed 32 integer type int), pointers to the structures
(struct id *), and void pointer type, void *, (e.g. used for the return type of malloc);

• There is no pointer arithmetic (and no memory deallocation);

• Mini C has fewer keywords than C.

Predefined Functions. The following functions are predefined:

int putchar(int c);
void *malloc(int n);

(But there is no need for #include in Mini Cfor testing.)

2 Syntax

We use the following notations in grammars:

⟨rule⟩⋆ repeats ⟨rule⟩ an arbitrary number of times (including zero)
⟨rule⟩⋆t repeats ⟨rule⟩ an arbitrary number of times (including zero), with separator t
⟨rule⟩+ repeats ⟨rule⟩ at least once
⟨rule⟩+t repeats ⟨rule⟩ at least once, with separator t

⟨rule⟩? use ⟨rule⟩ optionally
(⟨rule⟩) grouping

Be careful not to confuse “⋆” and “+” with “*” and “+” that are C symbols. Similarly, do not
confuse grammar parentheses with terminal symbols (and).

1

2.1 Lexical Conventions

Spaces, tabs, and newlines are blanks. Comments are of two kinds:

• from /* to */ and not nested;

• from // to the end of the line.

Identifiers follow the regular expression ⟨ident⟩ :

⟨digit⟩ ::= 0–9
⟨alpha⟩ ::= a–z | A–Z
⟨ident⟩ ::= (⟨alpha⟩ | _) (⟨alpha⟩ | ⟨digit⟩ | _)⋆

The following identifiers are keywords:

int struct if else while return sizeof

Last, integer literals follow the regular expression ⟨integer⟩ :

⟨integer⟩ ::= 0
| 1–9 ⟨digit⟩⋆
| 0 ⟨digit-octal⟩+
| 0x ⟨digit-hexa⟩+
| ’ ⟨character⟩ ’

⟨digit-octal⟩ ::= 0–7
⟨digit-hexa⟩ ::= 0–9 | a–f | A–F
⟨character⟩ ::= any ASCII character with a code in [32, 127],

other than \, ’, and "
| \\ | \’ | \"
| \x ⟨digit-hexa⟩ ⟨digit-hexa⟩

2.2 Syntax

The grammar of source files is given in Fig. 1. The entry point is ⟨file⟩. Associativity and
priorities are given below, from lowest to strongest priority.

operation associativity priority
= right lowest
|| left
&& left
== != left
< <= > >= left ↓
+ - left
* / left
! - (unary) right
-> left strongest

2

⟨file⟩ ::= ⟨decl⟩⋆ EOF
⟨decl⟩ ::= ⟨decl_typ⟩ | ⟨decl_fct⟩
⟨decl_vars⟩ ::= int ⟨ident⟩+, ;

| struct ⟨ident⟩ (* ⟨ident⟩)+, ;
⟨decl_typ⟩ ::= struct ⟨ident⟩ { ⟨decl_vars⟩⋆ } ;
⟨decl_fct⟩ ::= int ⟨ident⟩ (⟨param⟩⋆,) ⟨bloc⟩

| struct ⟨ident⟩ * ⟨ident⟩ (⟨param⟩⋆,) ⟨bloc⟩
⟨param⟩ ::= int ⟨ident⟩ | struct ⟨ident⟩ * ⟨ident⟩
⟨expr⟩ ::= ⟨integer⟩

| ⟨ident⟩
| ⟨expr⟩ -> ⟨ident⟩
| ⟨ident⟩ (⟨expr⟩⋆,)
| ! ⟨expr⟩ | - ⟨expr⟩
| ⟨expr⟩ ⟨binop⟩ ⟨expr⟩
| ⟨ident⟩ = ⟨expr⟩
| ⟨expr⟩ -> ⟨ident⟩ = ⟨expr⟩
| sizeof (struct ⟨ident⟩)
| malloc (struct ⟨ident⟩)
| (⟨expr⟩)

⟨binop⟩ ::= == | != | < | <= | > | >= | + | - | * | / | && | ||
⟨stmt⟩ ::= ;

| ⟨expr⟩ ;
| if (⟨expr⟩) ⟨stmt⟩
| if (⟨expr⟩) ⟨stmt⟩ else ⟨stmt⟩
| while (⟨expr⟩) ⟨stmt⟩
| ⟨bloc⟩
| return ⟨expr⟩ ;

⟨bloc⟩ ::= { ⟨decl_vars⟩⋆ ⟨stmt⟩⋆ }

Figure 1: Grammar of Mini C.

3

3 Static Typing

Once parsing phase is completed (provided in the lab assignment), we explain how to perform
static typing of Mini C.

Types and Typing Environments. Expressions have types τ with the following abstract
syntax

τ ::= int | struct id * | void*

where id stands for a structure name. We introduce the relation ≡ over types as the smallest
reflexive and symmetric relation that additionally satisfies the equation void* ≡ struct id *.

A typing environment Γ is a sequence of variable declarations τ x, structure declarations
struct S {τ1 x1 · · · τn xn} and function declarations τ f(τ1, . . . , τn). We write struct S {τ x}
to indicate that structure S has a field x with type τ .

We say that a type τ is well-formed in environment Γ, and we write Γ ⊢ τ bf, if all structure
names in τ correspond to structures declared in Γ.

Uniqueness Rules. In addition to the typing rules below (for structure declarations, expres-
sions, statements and function declarations), we have to check for uniqueness

• of structure names over the whole file;

• of structure fields inside a single structure;

• of function parameters;

• of local variables inside a single block;

• of function names over the whole file.

3.1 Adding Structure Declarations to the typing environment

A file is a list of structure and function declarations (there are no global variables in Mini C).
We first add structure declarations to the typing environment. To this end, we introduce the
judgment Γ ⊢ d → Γ′ meaning “in environment Γ, declaration d is well-formed and outputs
environment Γ′”. It is defined as follows.

∀i, Γ, struct id {τ1 x1 · · · τn xn} ⊢ τi bf

Γ ⊢ struct id {τ1 x1; · · · τn xn; } → {struct id {τ1 x1 · · · τn xn}} ∪ Γ

Note that types τi may only refer to the structure id via pointer types (including the case where
structure definition is recursive).

3.2 Type-Checking Expressions

We introduce the typing judgment Γ ⊢ e : τ meaning “in environment Γ, expression e is well-
typed, with type τ ”. This judgment is defined as follows:

Γ ⊢ 0 : void*
c integer constant

Γ ⊢ c : int
τ x ∈ Γ

Γ ⊢ x : τ

Γ ⊢ e : struct S ∗ struct S {τ x} ∈ Γ

Γ ⊢ e->x : τ

struct S ∈ Γ

Γ ⊢ sizeof(struct S) : int

4

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ1 ≡ τ2
Γ ⊢ e1 = e2 : τ1

Γ ⊢ e : τ τ ≡ int
Γ ⊢ - e : int

Γ ⊢ e : τ

Γ ⊢ ! e : int
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ1 ≡ τ2 op ∈ {==, !=, <, <=, >, >=}

Γ ⊢ e1 op e2 : int
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 op ∈ {||, &&}

Γ ⊢ e1 op e2 : int
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ1 ≡ int τ2 ≡ int op ∈ {+, -, *, /}

Γ ⊢ e1 op e2 : int
τ f(τ ′1, . . . , τ

′
n) ∈ Γ ∀i, Γ ⊢ ei : τi τi ≡ τ ′i
Γ ⊢ f(e1, . . . , en) : τ

3.3 Type-Checking Statements

We introduce the judgment Γ ⊢τ0 s meaning “in environment Γ, statement s is well-typed, for a
return type τ0”. Type τ0 stands for the return type of the function in which statement s occurs.
This judgment is defined as follows:

Γ ⊢τ0 ;
Γ ⊢ e : τ

Γ ⊢τ0 e;
Γ ⊢ e : τ τ ≡ τ0
Γ ⊢τ0 return e;

Γ ⊢ e : τ Γ ⊢τ0 s1 Γ ⊢τ0 s2
Γ ⊢τ0 if (e) s1 else s2

Γ ⊢ e : τ Γ ⊢τ0 s

Γ ⊢τ0 while(e) s

∀j, Γ ⊢ τj bf ∀j, Γ + {τ1 x1, . . . , τk xk} ⊢τ0 sj
Γ ⊢τ0 {τ1 x1 · · · τk xk;s1 · · · sn}

The last rule means that, to type a block with k local variables and n statements, we first check
that the variable declarations are well-formed and then we type-check each statement in the
environment that is augmented with the new declarations.

3.4 Type-Checking Function Declarations and Files

Finally, we explain how to type check functions declarations and files.

Function Declarations.
∀i, Γ ⊢ τi bf {τ0 f(τ1, . . . , τn), τ1 x1, . . . , τn xn} ∪ Γ ⊢τ0 b

Γ ⊢ τ0 f(τ1 x1, . . . , τn xn) b → {τ0 f(τ1, . . . , τn)} ∪ Γ

Note that the prototype of function f is added to the environment before we type-check its
body b, so that recursive functions are allowed.

Files. Finally, we introduce the judgment Γ ⊢f d1 · · · dn meaning “in environment Γ, the file
made of declarations d1, . . . , dn is well-formed”. Type-checking a file consists in type-checking
its declarations in sequence, the environment being augmented with each new declaration.

Γ ⊢f ∅
Γ ⊢ d1 → Γ′ Γ′ ⊢f d2 · · · dn

Γ ⊢f d1 d2 · · · dn

Entry Point. Finally, we have to check for the existence of a main function with type

int main();

5

