Aalborg University — Copenhagen — 2025
Programming Languages and Compilers Course — Lab 6

Static Typing of a Fragment of C Language

Based on material from INF564 course given at

Ecole Polytechnique by Jean-Christophe Fillidtre

1 Introduction

The goal is to build a typechecker for a tiny fragment of the C language, called Mini C in the
following. it contains integers and pointers to structures. It is fully compatible with C. This

means a C compiler such as gcc can be used as a reference.

Differences wrt C. Any Mini C program is a legal C program. Yet, Mini C has limitations

wrt C. Here are some of them:

e There is no variable initialization. To initialize a variable, one has to use an assignment;

e the only types are integers (Basic signed 32 integer type int), pointers to the structures
(struct id *), and void pointer type, void *, (e.g. used for the return type of malloc);

e There is no pointer arithmetic (and no memory deallocation);

e Mini C has fewer keywords than C.

Predefined Functions. The following functions are predefined:

int putchar(int c);
void *malloc(int n);

(But there is no need for #include in Mini Cfor testing.)

2 Syntax

We use the following notations in grammars:

rule)* repeats (rule) an arbitrary number of times (including zero)

rule)

(
repeats (rule) an arbitrary number of times (including zero), with separator ¢
(

)
)

rule) repeats (rule) at least once
)

S| T

rule) use (rule) optionally

(
(
(
(rule) repeats (rule) at least once, with separator ¢
(
(

(rule)) | grouping

Be careful not to confuse “*” and “*” with “*” and “+” that are C symbols. Similarly, do not

confuse grammar parentheses with terminal symbols (and).

2.1 Lexical Conventions

Spaces, tabs, and newlines are blanks. Comments are of two kinds:
e from /* to */ and not nested;
e from // to the end of the line.

Identifiers follow the regular expression (ident) :

(digit) == 0-9
(alpha) = a-=z | A-Z
(ident) == ((alpha) | _) ({(alpha) | (digit) | _)*

The following identifiers are keywords:
int struct if else while return sizeof
Last, integer literals follow the regular expression (integer) :

0

1-9 (digit)*

0 (digit-octal)™

0x (digit-hexa)™

> (character) ’

0-7

09 | af | AF

any ASCII character with a code in [32,127],
other than \, ’, and "
NN N [

| \x (digit-hexa) (digit-hexa)

(integer)

(digit-octal)
(digit-hexa)
(character)

2.2 Syntax

The grammar of source files is given in Fig. 1. The entry point is (file). Associativity and
priorities are given below, from lowest to strongest priority.

’operation associativity | priority ‘

= right lowest
Il left
&& left
= I= left
< <= > >=|left ¥
+ - left

x / left

! - (unary) right
-> left strongest

(file)
(decl)
(decl vars)

(decl)* EOF

(decl typ) | (decl fct)

int (ident)t ;

struct <1dent) (* (ident))*t

struct <1dent) (decl Vars> Y

int (ident) ((param)*) (bloc)

struct (ident) * <1dent> (param)*) (bloc)
int (ident) | struct (ident) * (ident)
(integer)

(ident)

(expr) -> (ident)
(ident) ((expr)*)
!

{

(

(decl _typ)
(decl _fct)

(param)
(expr)

(expr) | - {expr)
expr) (binop) (expr)
ident) = (expr)

(expr) -> (ident) = (expr)
sizeof (struct (ident))
malloc (struct (ident))
((expr))

R E Y S P R

(binop)
(stmt) ;
(expr) ;

if ((expr)) (stmt)

if ((expr)) (stmt) else (stmt)
while ((expr)) (stmt)

(bloc)

return (expr) ;
{ (decl_vars)* (stmt)* }

(bloc)

Figure 1: Grammar of Mini C.

3 Static Typing

Once parsing phase is completed (provided in the lab assignment), we explain how to perform
static typing of Mini C.

Types and Typing Environments. Expressions have types 7 with the following abstract
syntax

T = 1int | struct id * | voidx

where id stands for a structure name. We introduce the relation = over types as the smallest
reflexive and symmetric relation that additionally satisfies the equation void* = struct id *.
A typing environment I' is a sequence of variable declarations 7 z, structure declarations
struct S {m x1-- 7, ,} and function declarations 7 f(7y,...,7,). We write struct S {7 x}
to indicate that structure S has a field z with type 7.
We say that a type 7 is well-formed in environment I'; and we write I' - 7 bf, if all structure
names in 7 correspond to structures declared in I'.

Uniqueness Rules. In addition to the typing rules below (for structure declarations, expres-
sions, statements and function declarations), we have to check for uniqueness

e of structure names over the whole file;

e of structure fields inside a single structure;
e of function parameters;

e of local variables inside a single block;

e of function names over the whole file.

3.1 Adding Structure Declarations to the typing environment

A file is a list of structure and function declarations (there are no global variables in Mini C).
We first add structure declarations to the typing environment. To this end, we introduce the
judgment I' + d — I” meaning “in environment I', declaration d is well-formed and outputs
environment I'"”. Tt is defined as follows.

Vi, T',struct id {m z1- -7 xp} - 7; bf
I'F struct id {11 x1;- - Ty Tn; ¥ — {struct id {m =1+ 7 2, }} UT

Note that types 7; may only refer to the structure id via pointer types (including the case where
structure definition is recursive).
3.2 Type-Checking Expressions

We introduce the typing judgment I' - e : 7 meaning “in environment I', expression e is well-
typed, with type 7”. This judgment is defined as follows:

c integer constant Txel
I'F0:voidx* I'ke:int I'tax:7
I'Fe:struct S * struct S{rz} el struct Se T
I'te>z:7 I'F sizeof(struct S) : int

F|—612T1 F|—622T2 T = T2

F|—€1=62:7’1

I'Fe:7 7=1int I'ke:r
I'k-e:int I'E1'e:int
F'kep:m The:mm =7 op€{==1=<<=>>=}

I'Fep opey:int
F'key:m Thex:m ope{ll, &&}
I'Hep opey:int

F'ktep:mp Ther:m 7 =int m=int op€ {+ -, /}

I'Hep opey:int
T f(ri,...,7,) €T Vi, Tke:m m=7]
'k f(er,...,en): T

3.3 Type-Checking Statements

We introduce the judgment I' ™ s meaning “in environment I', statement s is well-typed, for a
return type 7p”. Type 79 stands for the return type of the function in which statement s occurs.
This judgment is defined as follows:

I'ke:r F'Fe:7 7=1

' 'k e; I' 0 return e;
I'bFe:m T'HEHO g TH0 g9
' if (e) s1 else s9
I'te:7 T'HOs
I' 7 while(e) s
Vi, TE7bf Vi, T+ {m x,...., 2} F 55
I'Fo {m 1 T Ti;381 - Snt

The last rule means that, to type a block with k local variables and n statements, we first check
that the variable declarations are well-formed and then we type-check each statement in the
environment that is augmented with the new declarations.

3.4 Type-Checking Function Declarations and Files

Finally, we explain how to type check functions declarations and files.

Function Declarations.
Vi, D7 bf {70 f(71,...,™0), 71 @1, ..., T T} UTE D
P71 f(mi i,y xn) b= {70 f(71,...,)} UT
Note that the prototype of function f is added to the environment before we type-check its
body b, so that recursive functions are allowed.

Files. Finally, we introduce the judgment I' ¢ d; - - - d;, meaning “in environment I', the file
made of declarations dy, ..., d, is well-formed”. Type-checking a file consists in type-checking
its declarations in sequence, the environment being augmented with each new declaration.
F|—d1—>F/ Fll_fdgdn
' 0 Ckpdydy---dy

Entry Point. Finally, we have to check for the existence of a main function with type

int main();

